2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * $FreeBSD: src/sys/netinet/ip_dummynet.h,v 1.32 2004/08/17 22:05:54 andre Exp $
57 #ifndef _IP_DUMMYNET_H
58 #define _IP_DUMMYNET_H
60 #include <sys/appleapiopts.h>
63 #include <netinet/ip_flowid.h>
65 /* Apply ipv6 mask on ipv6 addr */
66 #define APPLY_MASK(addr,mask) \
67 (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
68 (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
69 (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
70 (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3];
73 * Definition of dummynet data structures. In the structures, I decided
74 * not to use the macros in <sys/queue.h> in the hope of making the code
75 * easier to port to other architectures. The type of lists and queue we
76 * use here is pretty simple anyways.
80 * We start with a heap, which is used in the scheduler to decide when
81 * to transmit packets etc.
83 * The key for the heap is used for two different values:
85 * 1. timer ticks- max 10K/second, so 32 bits are enough;
87 * 2. virtual times. These increase in steps of len/x, where len is the
88 * packet length, and x is either the weight of the flow, or the
90 * If we limit to max 1000 flows and a max weight of 100, then
91 * x needs 17 bits. The packet size is 16 bits, so we can easily
92 * overflow if we do not allow errors.
93 * So we use a key "dn_key" which is 64 bits. Some macros are used to
94 * compare key values and handle wraparounds.
95 * MAX64 returns the largest of two key values.
96 * MY_M is used as a shift count when doing fixed point arithmetic
97 * (a better name would be useful...).
99 typedef u_int64_t dn_key
; /* sorting key */
100 #define DN_KEY_LT(a,b) ((int64_t)((a)-(b)) < 0)
101 #define DN_KEY_LEQ(a,b) ((int64_t)((a)-(b)) <= 0)
102 #define DN_KEY_GT(a,b) ((int64_t)((a)-(b)) > 0)
103 #define DN_KEY_GEQ(a,b) ((int64_t)((a)-(b)) >= 0)
104 #define MAX64(x,y) (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
105 #define MY_M 16 /* number of left shift to obtain a larger precision */
108 * XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the
109 * virtual time wraps every 15 days.
113 * The OFFSET_OF macro is used to return the offset of a field within
114 * a structure. It is used by the heap management routines.
116 #define OFFSET_OF(type, field) ((int)&( ((type *)0)->field) )
119 * The maximum hash table size for queues. This value must be a power
122 #define DN_MAX_HASH_SIZE 65536
125 * A heap entry is made of a key and a pointer to the actual
126 * object stored in the heap.
127 * The heap is an array of dn_heap_entry entries, dynamically allocated.
128 * Current size is "size", with "elements" actually in use.
129 * The heap normally supports only ordered insert and extract from the top.
130 * If we want to extract an object from the middle of the heap, we
131 * have to know where the object itself is located in the heap (or we
132 * need to scan the whole array). To this purpose, an object has a
133 * field (int) which contains the index of the object itself into the
134 * heap. When the object is moved, the field must also be updated.
135 * The offset of the index in the object is stored in the 'offset'
136 * field in the heap descriptor. The assumption is that this offset
137 * is non-zero if we want to support extract from the middle.
139 struct dn_heap_entry
{
140 dn_key key
; /* sorting key. Topmost element is smallest one */
141 void *object
; /* object pointer */
147 int offset
; /* XXX if > 0 this is the offset of direct ptr to obj */
148 struct dn_heap_entry
*p
; /* really an array of "size" entries */
152 * Packets processed by dummynet have an mbuf tag associated with
153 * them that carries their dummynet state. This is used within
154 * the dummynet code as well as outside when checking for special
155 * processing requirements.
158 #include <net/if_var.h>
159 #include <net/route.h>
160 #include <netinet/ip_var.h> /* for ip_out_args */
161 #include <netinet/ip6.h> /* for ip6_out_args */
162 #include <netinet/in.h>
163 #include <netinet6/ip6_var.h> /* for ip6_out_args */
166 struct ip_fw
*dn_ipfw_rule
; /* matching IPFW rule */
167 void *dn_pf_rule
; /* matching PF rule */
168 int dn_dir
; /* action when packet comes out. */
169 #define DN_TO_IP_OUT 1
170 #define DN_TO_IP_IN 2
171 #define DN_TO_BDG_FWD 3
172 #define DN_TO_IP6_IN 4
173 #define DN_TO_IP6_OUT 5
174 dn_key dn_output_time
; /* when the pkt is due for delivery */
175 struct ifnet
*dn_ifp
; /* interface, for ip[6]_output */
177 struct sockaddr_in _dn_dst
;
178 struct sockaddr_in6 _dn_dst6
;
180 #define dn_dst dn_dst_._dn_dst
181 #define dn_dst6 dn_dst_._dn_dst6
183 struct route _dn_ro
; /* route, for ip_output. MUST COPY */
184 struct route_in6 _dn_ro6
; /* route, for ip6_output. MUST COPY */
186 #define dn_ro dn_ro_._dn_ro
187 #define dn_ro6 dn_ro_._dn_ro6
188 struct route_in6 dn_ro6_pmtu
; /* for ip6_output */
189 struct ifnet
*dn_origifp
; /* for ip6_output */
190 u_int32_t dn_mtu
; /* for ip6_output */
191 int dn_alwaysfrag
; /* for ip6_output */
192 u_int32_t dn_unfragpartlen
; /* for ip6_output */
193 struct ip6_exthdrs dn_exthdrs
; /* for ip6_output */
194 int dn_flags
; /* flags, for ip[6]_output */
196 #define DN_CLIENT_IPFW 1
197 #define DN_CLIENT_PF 2
199 struct ip_out_args _dn_ipoa
; /* output args, for ip_output. MUST COPY */
200 struct ip6_out_args _dn_ip6oa
; /* output args, for ip_output. MUST COPY */
202 #define dn_ipoa dn_ipoa_._dn_ipoa
203 #define dn_ip6oa dn_ipoa_._dn_ip6oa
210 * Overall structure of dummynet (with WF2Q+):
212 In dummynet, packets are selected with the firewall rules, and passed
213 to two different objects: PIPE or QUEUE.
215 A QUEUE is just a queue with configurable size and queue management
216 policy. It is also associated with a mask (to discriminate among
217 different flows), a weight (used to give different shares of the
218 bandwidth to different flows) and a "pipe", which essentially
219 supplies the transmit clock for all queues associated with that
222 A PIPE emulates a fixed-bandwidth link, whose bandwidth is
223 configurable. The "clock" for a pipe can come from either an
224 internal timer, or from the transmit interrupt of an interface.
225 A pipe is also associated with one (or more, if masks are used)
226 queue, where all packets for that pipe are stored.
228 The bandwidth available on the pipe is shared by the queues
229 associated with that pipe (only one in case the packet is sent
230 to a PIPE) according to the WF2Q+ scheduling algorithm and the
233 In general, incoming packets are stored in the appropriate queue,
234 which is then placed into one of a few heaps managed by a scheduler
235 to decide when the packet should be extracted.
236 The scheduler (a function called dummynet()) is run at every timer
237 tick, and grabs queues from the head of the heaps when they are
238 ready for processing.
240 There are three data structures definining a pipe and associated queues:
242 + dn_pipe, which contains the main configuration parameters related
243 to delay and bandwidth;
244 + dn_flow_set, which contains WF2Q+ configuration, flow
245 masks, plr and RED configuration;
246 + dn_flow_queue, which is the per-flow queue (containing the packets)
248 Multiple dn_flow_set can be linked to the same pipe, and multiple
249 dn_flow_queue can be linked to the same dn_flow_set.
250 All data structures are linked in a linear list which is used for
251 housekeeping purposes.
253 During configuration, we create and initialize the dn_flow_set
254 and dn_pipe structures (a dn_pipe also contains a dn_flow_set).
256 At runtime: packets are sent to the appropriate dn_flow_set (either
257 WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows),
258 which in turn dispatches them to the appropriate dn_flow_queue
259 (created dynamically according to the masks).
261 The transmit clock for fixed rate flows (ready_event()) selects the
262 dn_flow_queue to be used to transmit the next packet. For WF2Q,
263 wfq_ready_event() extract a pipe which in turn selects the right
264 flow using a number of heaps defined into the pipe itself.
270 * per flow queue. This contains the flow identifier, the queue
271 * of packets, counters, and parameters used to support both RED and
274 * A dn_flow_queue is created and initialized whenever a packet for
275 * a new flow arrives.
277 struct dn_flow_queue
{
278 struct dn_flow_queue
*next
;
279 struct ip_flow_id id
;
281 struct mbuf
*head
, *tail
; /* queue of packets */
284 u_int32_t numbytes
; /* credit for transmission (dynamic queues) */
286 u_int64_t tot_pkts
; /* statistics counters */
287 u_int64_t tot_bytes
;
290 int hash_slot
; /* debugging/diagnostic */
293 int avg
; /* average queue length est. (scaled) */
294 int count
; /* arrivals since last RED drop */
295 int random
; /* random value (scaled) */
296 u_int32_t q_time
; /* start of queue idle time */
299 struct dn_flow_set
*fs
; /* parent flow set */
300 int heap_pos
; /* position (index) of struct in heap */
301 dn_key sched_time
; /* current time when queue enters ready_heap */
303 dn_key S
,F
; /* start time, finish time */
305 * Setting F < S means the timestamp is invalid. We only need
306 * to test this when the queue is empty.
311 * flow_set descriptor. Contains the "template" parameters for the
312 * queue configuration, and pointers to the hash table of dn_flow_queue's.
314 * The hash table is an array of lists -- we identify the slot by
315 * hashing the flow-id, then scan the list looking for a match.
316 * The size of the hash table (buckets) is configurable on a per-queue
319 * A dn_flow_set is created whenever a new queue or pipe is created (in the
320 * latter case, the structure is located inside the struct dn_pipe).
323 SLIST_ENTRY(dn_flow_set
) next
; /* linked list in a hash slot */
325 u_short fs_nr
; /* flow_set number */
327 #define DN_HAVE_FLOW_MASK 0x0001
328 #define DN_IS_RED 0x0002
329 #define DN_IS_GENTLE_RED 0x0004
330 #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
331 #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
332 #define DN_IS_PIPE 0x4000
333 #define DN_IS_QUEUE 0x8000
335 struct dn_pipe
*pipe
; /* pointer to parent pipe */
336 u_short parent_nr
; /* parent pipe#, 0 if local to a pipe */
338 int weight
; /* WFQ queue weight */
339 int qsize
; /* queue size in slots or bytes */
340 int plr
; /* pkt loss rate (2^31-1 means 100%) */
342 struct ip_flow_id flow_mask
;
344 /* hash table of queues onto this flow_set */
345 int rq_size
; /* number of slots */
346 int rq_elements
; /* active elements */
347 struct dn_flow_queue
**rq
; /* array of rq_size entries */
349 u_int32_t last_expired
; /* do not expire too frequently */
350 int backlogged
; /* #active queues for this flowset */
354 #define SCALE(x) ( (x) << SCALE_RED )
355 #define SCALE_VAL(x) ( (x) >> SCALE_RED )
356 #define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
357 int w_q
; /* queue weight (scaled) */
358 int max_th
; /* maximum threshold for queue (scaled) */
359 int min_th
; /* minimum threshold for queue (scaled) */
360 int max_p
; /* maximum value for p_b (scaled) */
361 u_int c_1
; /* max_p/(max_th-min_th) (scaled) */
362 u_int c_2
; /* max_p*min_th/(max_th-min_th) (scaled) */
363 u_int c_3
; /* for GRED, (1-max_p)/max_th (scaled) */
364 u_int c_4
; /* for GRED, 1 - 2*max_p (scaled) */
365 u_int
* w_q_lookup
; /* lookup table for computing (1-w_q)^t */
366 u_int lookup_depth
; /* depth of lookup table */
367 int lookup_step
; /* granularity inside the lookup table */
368 int lookup_weight
; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
369 int avg_pkt_size
; /* medium packet size */
370 int max_pkt_size
; /* max packet size */
373 SLIST_HEAD(dn_flow_set_head
, dn_flow_set
);
376 * Pipe descriptor. Contains global parameters, delay-line queue,
377 * and the flow_set used for fixed-rate queues.
379 * For WF2Q+ support it also has 3 heaps holding dn_flow_queue:
380 * not_eligible_heap, for queues whose start time is higher
381 * than the virtual time. Sorted by start time.
382 * scheduler_heap, for queues eligible for scheduling. Sorted by
384 * idle_heap, all flows that are idle and can be removed. We
385 * do that on each tick so we do not slow down too much
386 * operations during forwarding.
389 struct dn_pipe
{ /* a pipe */
390 SLIST_ENTRY(dn_pipe
) next
; /* linked list in a hash slot */
392 int pipe_nr
; /* number */
393 int bandwidth
; /* really, bytes/tick. */
394 int delay
; /* really, ticks */
396 struct mbuf
*head
, *tail
; /* packets in delay line */
399 struct dn_heap scheduler_heap
; /* top extract - key Finish time*/
400 struct dn_heap not_eligible_heap
; /* top extract- key Start time */
401 struct dn_heap idle_heap
; /* random extract - key Start=Finish time */
403 dn_key V
; /* virtual time */
404 int sum
; /* sum of weights of all active sessions */
405 int numbytes
; /* bits I can transmit (more or less). */
407 dn_key sched_time
; /* time pipe was scheduled in ready_heap */
410 * When the tx clock come from an interface (if_name[0] != '\0'), its name
411 * is stored below, whereas the ifp is filled when the rule is configured.
413 char if_name
[IFNAMSIZ
];
415 int ready
; /* set if ifp != NULL and we got a signal from it */
417 struct dn_flow_set fs
; /* used with fixed-rate flows */
420 SLIST_HEAD(dn_pipe_head
, dn_pipe
);
422 #ifdef BSD_KERNEL_PRIVATE
423 extern uint32_t my_random(void);
424 void ip_dn_init(void); /* called from raw_ip.c:load_ipfw() */
426 typedef int ip_dn_ctl_t(struct sockopt
*); /* raw_ip.c */
427 typedef int ip_dn_io_t(struct mbuf
*m
, int pipe_nr
, int dir
,
428 struct ip_fw_args
*fwa
, int );
429 extern ip_dn_ctl_t
*ip_dn_ctl_ptr
;
430 extern ip_dn_io_t
*ip_dn_io_ptr
;
431 void dn_ipfw_rule_delete(void *);
432 #define DUMMYNET_LOADED (ip_dn_io_ptr != NULL)
439 int offset
; /* XXX if > 0 this is the offset of direct ptr to obj */
440 user32_addr_t p
; /* really an array of "size" entries */
443 struct dn_flow_queue_32
{
445 struct ip_flow_id id
;
447 user32_addr_t head
, tail
; /* queue of packets */
450 u_int32_t numbytes
; /* credit for transmission (dynamic queues) */
452 u_int64_t tot_pkts
; /* statistics counters */
453 u_int64_t tot_bytes
;
456 int hash_slot
; /* debugging/diagnostic */
459 int avg
; /* average queue length est. (scaled) */
460 int count
; /* arrivals since last RED drop */
461 int random
; /* random value (scaled) */
462 u_int32_t q_time
; /* start of queue idle time */
465 user32_addr_t fs
; /* parent flow set */
466 int heap_pos
; /* position (index) of struct in heap */
467 dn_key sched_time
; /* current time when queue enters ready_heap */
469 dn_key S
,F
; /* start time, finish time */
471 * Setting F < S means the timestamp is invalid. We only need
472 * to test this when the queue is empty.
476 struct dn_flow_set_32
{
477 user32_addr_t next
; /* next flow set in all_flow_sets list */
479 u_short fs_nr
; /* flow_set number */
481 #define DN_HAVE_FLOW_MASK 0x0001
482 #define DN_IS_RED 0x0002
483 #define DN_IS_GENTLE_RED 0x0004
484 #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
485 #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
486 #define DN_IS_PIPE 0x4000
487 #define DN_IS_QUEUE 0x8000
489 user32_addr_t pipe
; /* pointer to parent pipe */
490 u_short parent_nr
; /* parent pipe#, 0 if local to a pipe */
492 int weight
; /* WFQ queue weight */
493 int qsize
; /* queue size in slots or bytes */
494 int plr
; /* pkt loss rate (2^31-1 means 100%) */
496 struct ip_flow_id flow_mask
;
498 /* hash table of queues onto this flow_set */
499 int rq_size
; /* number of slots */
500 int rq_elements
; /* active elements */
501 user32_addr_t rq
; /* array of rq_size entries */
503 u_int32_t last_expired
; /* do not expire too frequently */
504 int backlogged
; /* #active queues for this flowset */
508 #define SCALE(x) ( (x) << SCALE_RED )
509 #define SCALE_VAL(x) ( (x) >> SCALE_RED )
510 #define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
511 int w_q
; /* queue weight (scaled) */
512 int max_th
; /* maximum threshold for queue (scaled) */
513 int min_th
; /* minimum threshold for queue (scaled) */
514 int max_p
; /* maximum value for p_b (scaled) */
515 u_int c_1
; /* max_p/(max_th-min_th) (scaled) */
516 u_int c_2
; /* max_p*min_th/(max_th-min_th) (scaled) */
517 u_int c_3
; /* for GRED, (1-max_p)/max_th (scaled) */
518 u_int c_4
; /* for GRED, 1 - 2*max_p (scaled) */
519 user32_addr_t w_q_lookup
; /* lookup table for computing (1-w_q)^t */
520 u_int lookup_depth
; /* depth of lookup table */
521 int lookup_step
; /* granularity inside the lookup table */
522 int lookup_weight
; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
523 int avg_pkt_size
; /* medium packet size */
524 int max_pkt_size
; /* max packet size */
527 struct dn_pipe_32
{ /* a pipe */
530 int pipe_nr
; /* number */
531 int bandwidth
; /* really, bytes/tick. */
532 int delay
; /* really, ticks */
534 user32_addr_t head
, tail
; /* packets in delay line */
537 struct dn_heap_32 scheduler_heap
; /* top extract - key Finish time*/
538 struct dn_heap_32 not_eligible_heap
; /* top extract- key Start time */
539 struct dn_heap_32 idle_heap
; /* random extract - key Start=Finish time */
541 dn_key V
; /* virtual time */
542 int sum
; /* sum of weights of all active sessions */
543 int numbytes
; /* bits I can transmit (more or less). */
545 dn_key sched_time
; /* time pipe was scheduled in ready_heap */
548 * When the tx clock come from an interface (if_name[0] != '\0'), its name
549 * is stored below, whereas the ifp is filled when the rule is configured.
551 char if_name
[IFNAMSIZ
];
553 int ready
; /* set if ifp != NULL and we got a signal from it */
555 struct dn_flow_set_32 fs
; /* used with fixed-rate flows */
563 int offset
; /* XXX if > 0 this is the offset of direct ptr to obj */
564 user64_addr_t p
; /* really an array of "size" entries */
568 struct dn_flow_queue_64
{
570 struct ip_flow_id id
;
572 user64_addr_t head
, tail
; /* queue of packets */
575 u_int32_t numbytes
; /* credit for transmission (dynamic queues) */
577 u_int64_t tot_pkts
; /* statistics counters */
578 u_int64_t tot_bytes
;
581 int hash_slot
; /* debugging/diagnostic */
584 int avg
; /* average queue length est. (scaled) */
585 int count
; /* arrivals since last RED drop */
586 int random
; /* random value (scaled) */
587 u_int32_t q_time
; /* start of queue idle time */
590 user64_addr_t fs
; /* parent flow set */
591 int heap_pos
; /* position (index) of struct in heap */
592 dn_key sched_time
; /* current time when queue enters ready_heap */
594 dn_key S
,F
; /* start time, finish time */
596 * Setting F < S means the timestamp is invalid. We only need
597 * to test this when the queue is empty.
601 struct dn_flow_set_64
{
602 user64_addr_t next
; /* next flow set in all_flow_sets list */
604 u_short fs_nr
; /* flow_set number */
606 #define DN_HAVE_FLOW_MASK 0x0001
607 #define DN_IS_RED 0x0002
608 #define DN_IS_GENTLE_RED 0x0004
609 #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
610 #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
611 #define DN_IS_PIPE 0x4000
612 #define DN_IS_QUEUE 0x8000
614 user64_addr_t pipe
; /* pointer to parent pipe */
615 u_short parent_nr
; /* parent pipe#, 0 if local to a pipe */
617 int weight
; /* WFQ queue weight */
618 int qsize
; /* queue size in slots or bytes */
619 int plr
; /* pkt loss rate (2^31-1 means 100%) */
621 struct ip_flow_id flow_mask
;
623 /* hash table of queues onto this flow_set */
624 int rq_size
; /* number of slots */
625 int rq_elements
; /* active elements */
626 user64_addr_t rq
; /* array of rq_size entries */
628 u_int32_t last_expired
; /* do not expire too frequently */
629 int backlogged
; /* #active queues for this flowset */
633 #define SCALE(x) ( (x) << SCALE_RED )
634 #define SCALE_VAL(x) ( (x) >> SCALE_RED )
635 #define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
636 int w_q
; /* queue weight (scaled) */
637 int max_th
; /* maximum threshold for queue (scaled) */
638 int min_th
; /* minimum threshold for queue (scaled) */
639 int max_p
; /* maximum value for p_b (scaled) */
640 u_int c_1
; /* max_p/(max_th-min_th) (scaled) */
641 u_int c_2
; /* max_p*min_th/(max_th-min_th) (scaled) */
642 u_int c_3
; /* for GRED, (1-max_p)/max_th (scaled) */
643 u_int c_4
; /* for GRED, 1 - 2*max_p (scaled) */
644 user64_addr_t w_q_lookup
; /* lookup table for computing (1-w_q)^t */
645 u_int lookup_depth
; /* depth of lookup table */
646 int lookup_step
; /* granularity inside the lookup table */
647 int lookup_weight
; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
648 int avg_pkt_size
; /* medium packet size */
649 int max_pkt_size
; /* max packet size */
652 struct dn_pipe_64
{ /* a pipe */
655 int pipe_nr
; /* number */
656 int bandwidth
; /* really, bytes/tick. */
657 int delay
; /* really, ticks */
659 user64_addr_t head
, tail
; /* packets in delay line */
662 struct dn_heap_64 scheduler_heap
; /* top extract - key Finish time*/
663 struct dn_heap_64 not_eligible_heap
; /* top extract- key Start time */
664 struct dn_heap_64 idle_heap
; /* random extract - key Start=Finish time */
666 dn_key V
; /* virtual time */
667 int sum
; /* sum of weights of all active sessions */
668 int numbytes
; /* bits I can transmit (more or less). */
670 dn_key sched_time
; /* time pipe was scheduled in ready_heap */
673 * When the tx clock come from an interface (if_name[0] != '\0'), its name
674 * is stored below, whereas the ifp is filled when the rule is configured.
676 char if_name
[IFNAMSIZ
];
678 int ready
; /* set if ifp != NULL and we got a signal from it */
680 struct dn_flow_set_64 fs
; /* used with fixed-rate flows */
684 * Return the IPFW rule associated with the dummynet tag; if any.
685 * Make sure that the dummynet tag is not reused by lower layers.
687 static __inline
struct ip_fw
*
688 ip_dn_claim_rule(struct mbuf
*m
)
690 struct m_tag
*mtag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
691 KERNEL_TAG_TYPE_DUMMYNET
, NULL
);
693 mtag
->m_tag_type
= KERNEL_TAG_TYPE_NONE
;
694 return (((struct dn_pkt_tag
*)(mtag
+1))->dn_ipfw_rule
);
699 #include <sys/eventhandler.h>
700 /* Dummynet event handling declarations */
701 extern struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt
;
702 extern void dummynet_init(void);
704 struct dn_pipe_mini_config
{
710 struct dn_rule_mini_config
{
715 * XXX PF rules actually define ranges of ports and
716 * along with range goes an opcode ((not) equal to, less than
718 * For now the following works assuming there's no port range
719 * and the rule is for specific port.
720 * Also the operation is assumed as equal to.
724 char ifname
[IFXNAMSIZ
];
727 struct dummynet_event
{
728 uint32_t dn_event_code
;
730 struct dn_pipe_mini_config _dnev_pipe_config
;
731 struct dn_rule_mini_config _dnev_rule_config
;
735 #define dn_event_pipe_config dn_event._dnev_pipe_config
736 #define dn_event_rule_config dn_event._dnev_rule_config
738 extern void dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event
*);
741 DUMMYNET_RULE_CONFIG
,
742 DUMMYNET_RULE_DELETE
,
743 DUMMYNET_PIPE_CONFIG
,
744 DUMMYNET_PIPE_DELETE
,
745 DUMMYNET_NLC_DISABLED
,
748 enum { DN_INOUT
, DN_IN
, DN_OUT
};
750 * The signature for the callback is:
751 * eventhandler_entry_arg __unused
752 * dummynet_event pointer to dummynet event object
754 typedef void (*dummynet_event_fn
) (struct eventhandler_entry_arg
, struct dummynet_event
*);
755 EVENTHANDLER_DECLARE(dummynet_event
, dummynet_event_fn
);
756 #endif /* BSD_KERNEL_PRIVATE */
758 #endif /* _IP_DUMMYNET_H */