2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
77 #include <sys/protosw.h>
78 #include <sys/kernel.h>
79 #include <kern/locks.h>
80 #include <kern/zalloc.h>
84 #include <net/route.h>
85 #include <net/ntstat.h>
86 #include <net/nwk_wq.h>
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip_var.h>
94 #include <netinet/ip6.h>
95 #include <netinet/in_arp.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/in6_var.h>
100 #include <netinet6/nd6.h>
103 #include <net/if_dl.h>
105 #include <libkern/OSAtomic.h>
106 #include <libkern/OSDebug.h>
108 #include <pexpert/pexpert.h>
111 #include <sys/kauth.h>
115 * Synchronization notes:
117 * Routing entries fall under two locking domains: the global routing table
118 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
119 * resides (statically defined) in the rtentry structure.
121 * The locking domains for routing are defined as follows:
123 * The global routing lock is used to serialize all accesses to the radix
124 * trees defined by rt_tables[], as well as the tree of masks. This includes
125 * lookups, insertions and removals of nodes to/from the respective tree.
126 * It is also used to protect certain fields in the route entry that aren't
127 * often modified and/or require global serialization (more details below.)
129 * The per-route entry lock is used to serialize accesses to several routing
130 * entry fields (more details below.) Acquiring and releasing this lock is
131 * done via RT_LOCK() and RT_UNLOCK() routines.
133 * In cases where both rnh_lock and rt_lock must be held, the former must be
134 * acquired first in order to maintain lock ordering. It is not a requirement
135 * that rnh_lock be acquired first before rt_lock, but in case both must be
136 * acquired in succession, the correct lock ordering must be followed.
138 * The fields of the rtentry structure are protected in the following way:
142 * - Routing table lock (rnh_lock).
144 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
146 * - Set once during creation and never changes; no locks to read.
148 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
150 * - Routing entry lock (rt_lock) for read/write access.
152 * - Some values of rt_flags are either set once at creation time,
153 * or aren't currently used, and thus checking against them can
154 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
155 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
156 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
157 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
159 * rt_key, rt_gateway, rt_ifp, rt_ifa
161 * - Always written/modified with both rnh_lock and rt_lock held.
163 * - May be read freely with rnh_lock held, else must hold rt_lock
164 * for read access; holding both locks for read is also okay.
166 * - In the event rnh_lock is not acquired, or is not possible to be
167 * acquired across the operation, setting RTF_CONDEMNED on a route
168 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
169 * from being modified. This is typically done on a route that
170 * has been chosen for a removal (from the tree) prior to dropping
171 * the rt_lock, so that those values will remain the same until
172 * the route is freed.
174 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
175 * single-threaded, thus exclusive. This flag will also prevent the
176 * route from being looked up via rt_lookup().
180 * - Assumes that 32-bit writes are atomic; no locks.
184 * - Currently unused; no locks.
186 * Operations on a route entry can be described as follows:
188 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
190 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
191 * for duplicates and then adds the entry. rtrequest returns the entry
192 * after bumping up the reference count to 1 (for the caller).
194 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
195 * before returning; it is valid to also bump up the reference count using
196 * RT_ADDREF after the lookup has returned an entry.
198 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
199 * entry but does not decrement the reference count. Removal happens when
200 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
201 * state and it expires. The route is said to be "down" when it is no
202 * longer present in the tree. Freeing the entry will happen on the last
203 * reference release of such a "down" route.
205 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
206 * decrements the reference count, rt_refcnt, atomically on the rtentry.
207 * rt_refcnt is modified only using this routine. The general rule is to
208 * do RT_ADDREF in the function that is passing the entry as an argument,
209 * in order to prevent the entry from being freed by the callee.
212 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
214 extern void kdp_set_gateway_mac(void *gatewaymac
);
216 __private_extern__
struct rtstat rtstat
= { 0, 0, 0, 0, 0, 0 };
217 struct radix_node_head
*rt_tables
[AF_MAX
+1];
219 decl_lck_mtx_data(, rnh_lock_data
); /* global routing tables mutex */
220 lck_mtx_t
*rnh_lock
= &rnh_lock_data
;
221 static lck_attr_t
*rnh_lock_attr
;
222 static lck_grp_t
*rnh_lock_grp
;
223 static lck_grp_attr_t
*rnh_lock_grp_attr
;
225 /* Lock group and attribute for routing entry locks */
226 static lck_attr_t
*rte_mtx_attr
;
227 static lck_grp_t
*rte_mtx_grp
;
228 static lck_grp_attr_t
*rte_mtx_grp_attr
;
230 int rttrash
= 0; /* routes not in table but not freed */
232 unsigned int rte_debug
= 0;
234 /* Possible flags for rte_debug */
235 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
236 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
237 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
239 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
241 static struct zone
*rte_zone
; /* special zone for rtentry */
242 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
243 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
245 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
246 #define RTD_FREED 0xDEADBEEF /* entry is freed */
248 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
251 __private_extern__
unsigned int ctrace_stack_size
= CTRACE_STACK_SIZE
;
252 __private_extern__
unsigned int ctrace_hist_size
= CTRACE_HIST_SIZE
;
255 * Debug variant of rtentry structure.
258 struct rtentry rtd_entry
; /* rtentry */
259 struct rtentry rtd_entry_saved
; /* saved rtentry */
260 uint32_t rtd_inuse
; /* in use pattern */
261 uint16_t rtd_refhold_cnt
; /* # of rtref */
262 uint16_t rtd_refrele_cnt
; /* # of rtunref */
263 uint32_t rtd_lock_cnt
; /* # of locks */
264 uint32_t rtd_unlock_cnt
; /* # of unlocks */
266 * Alloc and free callers.
271 * Circular lists of rtref and rtunref callers.
273 ctrace_t rtd_refhold
[CTRACE_HIST_SIZE
];
274 ctrace_t rtd_refrele
[CTRACE_HIST_SIZE
];
276 * Circular lists of locks and unlocks.
278 ctrace_t rtd_lock
[CTRACE_HIST_SIZE
];
279 ctrace_t rtd_unlock
[CTRACE_HIST_SIZE
];
283 TAILQ_ENTRY(rtentry_dbg
) rtd_trash_link
;
286 /* List of trash route entries protected by rnh_lock */
287 static TAILQ_HEAD(, rtentry_dbg
) rttrash_head
;
289 static void rte_lock_init(struct rtentry
*);
290 static void rte_lock_destroy(struct rtentry
*);
291 static inline struct rtentry
*rte_alloc_debug(void);
292 static inline void rte_free_debug(struct rtentry
*);
293 static inline void rte_lock_debug(struct rtentry_dbg
*);
294 static inline void rte_unlock_debug(struct rtentry_dbg
*);
295 static void rt_maskedcopy(const struct sockaddr
*,
296 struct sockaddr
*, const struct sockaddr
*);
297 static void rtable_init(void **);
298 static inline void rtref_audit(struct rtentry_dbg
*);
299 static inline void rtunref_audit(struct rtentry_dbg
*);
300 static struct rtentry
*rtalloc1_common_locked(struct sockaddr
*, int, uint32_t,
302 static int rtrequest_common_locked(int, struct sockaddr
*,
303 struct sockaddr
*, struct sockaddr
*, int, struct rtentry
**,
305 static struct rtentry
*rtalloc1_locked(struct sockaddr
*, int, uint32_t);
306 static void rtalloc_ign_common_locked(struct route
*, uint32_t, unsigned int);
307 static inline void sin6_set_ifscope(struct sockaddr
*, unsigned int);
308 static inline void sin6_set_embedded_ifscope(struct sockaddr
*, unsigned int);
309 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr
*);
310 static struct sockaddr
*ma_copy(int, struct sockaddr
*,
311 struct sockaddr_storage
*, unsigned int);
312 static struct sockaddr
*sa_trim(struct sockaddr
*, int);
313 static struct radix_node
*node_lookup(struct sockaddr
*, struct sockaddr
*,
315 static struct radix_node
*node_lookup_default(int);
316 static struct rtentry
*rt_lookup_common(boolean_t
, boolean_t
, struct sockaddr
*,
317 struct sockaddr
*, struct radix_node_head
*, unsigned int);
318 static int rn_match_ifscope(struct radix_node
*, void *);
319 static struct ifaddr
*ifa_ifwithroute_common_locked(int,
320 const struct sockaddr
*, const struct sockaddr
*, unsigned int);
321 static struct rtentry
*rte_alloc(void);
322 static void rte_free(struct rtentry
*);
323 static void rtfree_common(struct rtentry
*, boolean_t
);
324 static void rte_if_ref(struct ifnet
*, int);
325 static void rt_set_idleref(struct rtentry
*);
326 static void rt_clear_idleref(struct rtentry
*);
327 static void route_event_callback(void *);
328 static void rt_str4(struct rtentry
*, char *, uint32_t, char *, uint32_t);
330 static void rt_str6(struct rtentry
*, char *, uint32_t, char *, uint32_t);
333 uint32_t route_genid_inet
= 0;
335 uint32_t route_genid_inet6
= 0;
338 #define ASSERT_SINIFSCOPE(sa) { \
339 if ((sa)->sa_family != AF_INET || \
340 (sa)->sa_len < sizeof (struct sockaddr_in)) \
341 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
344 #define ASSERT_SIN6IFSCOPE(sa) { \
345 if ((sa)->sa_family != AF_INET6 || \
346 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
347 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
351 * Argument to leaf-matching routine; at present it is scoped routing
352 * specific but can be expanded in future to include other search filters.
354 struct matchleaf_arg
{
355 unsigned int ifscope
; /* interface scope */
359 * For looking up the non-scoped default route (sockaddr instead
360 * of sockaddr_in for convenience).
362 static struct sockaddr sin_def
= {
363 sizeof (struct sockaddr_in
), AF_INET
, { 0, }
366 static struct sockaddr_in6 sin6_def
= {
367 sizeof (struct sockaddr_in6
), AF_INET6
, 0, 0, IN6ADDR_ANY_INIT
, 0
371 * Interface index (scope) of the primary interface; determined at
372 * the time when the default, non-scoped route gets added, changed
373 * or deleted. Protected by rnh_lock.
375 static unsigned int primary_ifscope
= IFSCOPE_NONE
;
376 static unsigned int primary6_ifscope
= IFSCOPE_NONE
;
378 #define INET_DEFAULT(sa) \
379 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
381 #define INET6_DEFAULT(sa) \
382 ((sa)->sa_family == AF_INET6 && \
383 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
385 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
386 #define RT(r) ((struct rtentry *)r)
387 #define RN(r) ((struct radix_node *)r)
388 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
390 unsigned int rt_verbose
= 0;
391 #if (DEVELOPMENT || DEBUG)
392 SYSCTL_DECL(_net_route
);
393 SYSCTL_UINT(_net_route
, OID_AUTO
, verbose
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
395 #endif /* (DEVELOPMENT || DEBUG) */
398 rtable_init(void **table
)
402 domain_proto_mtx_lock_assert_held();
404 TAILQ_FOREACH(dom
, &domains
, dom_entry
) {
405 if (dom
->dom_rtattach
!= NULL
)
406 dom
->dom_rtattach(&table
[dom
->dom_family
],
412 * Called by route_dinit().
420 _CASSERT(offsetof(struct route
, ro_rt
) ==
421 offsetof(struct route_in6
, ro_rt
));
422 _CASSERT(offsetof(struct route
, ro_lle
) ==
423 offsetof(struct route_in6
, ro_lle
));
424 _CASSERT(offsetof(struct route
, ro_srcia
) ==
425 offsetof(struct route_in6
, ro_srcia
));
426 _CASSERT(offsetof(struct route
, ro_flags
) ==
427 offsetof(struct route_in6
, ro_flags
));
428 _CASSERT(offsetof(struct route
, ro_dst
) ==
429 offsetof(struct route_in6
, ro_dst
));
432 PE_parse_boot_argn("rte_debug", &rte_debug
, sizeof (rte_debug
));
434 rte_debug
|= RTD_DEBUG
;
436 rnh_lock_grp_attr
= lck_grp_attr_alloc_init();
437 rnh_lock_grp
= lck_grp_alloc_init("route", rnh_lock_grp_attr
);
438 rnh_lock_attr
= lck_attr_alloc_init();
439 lck_mtx_init(rnh_lock
, rnh_lock_grp
, rnh_lock_attr
);
441 rte_mtx_grp_attr
= lck_grp_attr_alloc_init();
442 rte_mtx_grp
= lck_grp_alloc_init(RTE_NAME
, rte_mtx_grp_attr
);
443 rte_mtx_attr
= lck_attr_alloc_init();
445 lck_mtx_lock(rnh_lock
);
446 rn_init(); /* initialize all zeroes, all ones, mask table */
447 lck_mtx_unlock(rnh_lock
);
448 rtable_init((void **)rt_tables
);
450 if (rte_debug
& RTD_DEBUG
)
451 size
= sizeof (struct rtentry_dbg
);
453 size
= sizeof (struct rtentry
);
455 rte_zone
= zinit(size
, RTE_ZONE_MAX
* size
, 0, RTE_ZONE_NAME
);
456 if (rte_zone
== NULL
) {
457 panic("%s: failed allocating rte_zone", __func__
);
460 zone_change(rte_zone
, Z_EXPAND
, TRUE
);
461 zone_change(rte_zone
, Z_CALLERACCT
, FALSE
);
462 zone_change(rte_zone
, Z_NOENCRYPT
, TRUE
);
464 TAILQ_INIT(&rttrash_head
);
468 * Given a route, determine whether or not it is the non-scoped default
469 * route; dst typically comes from rt_key(rt) but may be coming from
470 * a separate place when rt is in the process of being created.
473 rt_primary_default(struct rtentry
*rt
, struct sockaddr
*dst
)
475 return (SA_DEFAULT(dst
) && !(rt
->rt_flags
& RTF_IFSCOPE
));
479 * Set the ifscope of the primary interface; caller holds rnh_lock.
482 set_primary_ifscope(int af
, unsigned int ifscope
)
485 primary_ifscope
= ifscope
;
487 primary6_ifscope
= ifscope
;
491 * Return the ifscope of the primary interface; caller holds rnh_lock.
494 get_primary_ifscope(int af
)
496 return (af
== AF_INET
? primary_ifscope
: primary6_ifscope
);
500 * Set the scope ID of a given a sockaddr_in.
503 sin_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
505 /* Caller must pass in sockaddr_in */
506 ASSERT_SINIFSCOPE(sa
);
508 SINIFSCOPE(sa
)->sin_scope_id
= ifscope
;
512 * Set the scope ID of given a sockaddr_in6.
515 sin6_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
517 /* Caller must pass in sockaddr_in6 */
518 ASSERT_SIN6IFSCOPE(sa
);
520 SIN6IFSCOPE(sa
)->sin6_scope_id
= ifscope
;
524 * Given a sockaddr_in, return the scope ID to the caller.
527 sin_get_ifscope(struct sockaddr
*sa
)
529 /* Caller must pass in sockaddr_in */
530 ASSERT_SINIFSCOPE(sa
);
532 return (SINIFSCOPE(sa
)->sin_scope_id
);
536 * Given a sockaddr_in6, return the scope ID to the caller.
539 sin6_get_ifscope(struct sockaddr
*sa
)
541 /* Caller must pass in sockaddr_in6 */
542 ASSERT_SIN6IFSCOPE(sa
);
544 return (SIN6IFSCOPE(sa
)->sin6_scope_id
);
548 sin6_set_embedded_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
550 /* Caller must pass in sockaddr_in6 */
551 ASSERT_SIN6IFSCOPE(sa
);
552 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa
)->sin6_addr
)));
554 SIN6(sa
)->sin6_addr
.s6_addr16
[1] = htons(ifscope
);
557 static inline unsigned int
558 sin6_get_embedded_ifscope(struct sockaddr
*sa
)
560 /* Caller must pass in sockaddr_in6 */
561 ASSERT_SIN6IFSCOPE(sa
);
563 return (ntohs(SIN6(sa
)->sin6_addr
.s6_addr16
[1]));
567 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
569 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
570 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
571 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
572 * In any case, the effective scope ID value is returned to the caller via
573 * pifscope, if it is non-NULL.
576 sa_copy(struct sockaddr
*src
, struct sockaddr_storage
*dst
,
577 unsigned int *pifscope
)
579 int af
= src
->sa_family
;
580 unsigned int ifscope
= (pifscope
!= NULL
) ? *pifscope
: IFSCOPE_NONE
;
582 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
584 bzero(dst
, sizeof (*dst
));
587 bcopy(src
, dst
, sizeof (struct sockaddr_in
));
588 if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
)
589 sin_set_ifscope(SA(dst
), ifscope
);
591 bcopy(src
, dst
, sizeof (struct sockaddr_in6
));
592 if (pifscope
!= NULL
&&
593 IN6_IS_SCOPE_EMBED(&SIN6(dst
)->sin6_addr
)) {
594 unsigned int eifscope
;
596 * If the address contains the embedded scope ID,
597 * use that as the value for sin6_scope_id as long
598 * the caller doesn't insist on clearing it (by
599 * passing NULL) or setting it.
601 eifscope
= sin6_get_embedded_ifscope(SA(dst
));
602 if (eifscope
!= IFSCOPE_NONE
&& ifscope
== IFSCOPE_NONE
)
604 if (ifscope
!= IFSCOPE_NONE
) {
605 /* Set ifscope from pifscope or eifscope */
606 sin6_set_ifscope(SA(dst
), ifscope
);
608 /* If sin6_scope_id has a value, use that one */
609 ifscope
= sin6_get_ifscope(SA(dst
));
612 * If sin6_scope_id is set but the address doesn't
613 * contain the equivalent embedded value, set it.
615 if (ifscope
!= IFSCOPE_NONE
&& eifscope
!= ifscope
)
616 sin6_set_embedded_ifscope(SA(dst
), ifscope
);
617 } else if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
) {
618 sin6_set_ifscope(SA(dst
), ifscope
);
622 if (pifscope
!= NULL
) {
623 *pifscope
= (af
== AF_INET
) ? sin_get_ifscope(SA(dst
)) :
624 sin6_get_ifscope(SA(dst
));
631 * Copy a mask from src to a dst storage and set scope ID into dst.
633 static struct sockaddr
*
634 ma_copy(int af
, struct sockaddr
*src
, struct sockaddr_storage
*dst
,
635 unsigned int ifscope
)
637 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
639 bzero(dst
, sizeof (*dst
));
640 rt_maskedcopy(src
, SA(dst
), src
);
643 * The length of the mask sockaddr would need to be adjusted
644 * to cover the additional {sin,sin6}_ifscope field; when ifscope
645 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
646 * the destination mask in addition to extending the length
647 * of the sockaddr, as a side effect. This is okay, as any
648 * trailing zeroes would be skipped by rn_addmask prior to
649 * inserting or looking up the mask in the mask tree.
652 SINIFSCOPE(dst
)->sin_scope_id
= ifscope
;
653 SINIFSCOPE(dst
)->sin_len
=
654 offsetof(struct sockaddr_inifscope
, sin_scope_id
) +
655 sizeof (SINIFSCOPE(dst
)->sin_scope_id
);
657 SIN6IFSCOPE(dst
)->sin6_scope_id
= ifscope
;
658 SIN6IFSCOPE(dst
)->sin6_len
=
659 offsetof(struct sockaddr_in6
, sin6_scope_id
) +
660 sizeof (SIN6IFSCOPE(dst
)->sin6_scope_id
);
667 * Trim trailing zeroes on a sockaddr and update its length.
669 static struct sockaddr
*
670 sa_trim(struct sockaddr
*sa
, int skip
)
672 caddr_t cp
, base
= (caddr_t
)sa
+ skip
;
674 if (sa
->sa_len
<= skip
)
677 for (cp
= base
+ (sa
->sa_len
- skip
); cp
> base
&& cp
[-1] == 0; )
680 sa
->sa_len
= (cp
- base
) + skip
;
681 if (sa
->sa_len
< skip
) {
682 /* Must not happen, and if so, panic */
683 panic("%s: broken logic (sa_len %d < skip %d )", __func__
,
686 } else if (sa
->sa_len
== skip
) {
687 /* If we end up with all zeroes, then there's no mask */
695 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
696 * kernel private information, so that clients of the routing socket will
697 * not be confused by the presence of the information, or the side effect of
698 * the increased length due to that. The source sockaddr is not modified;
699 * instead, the scrubbing happens on the destination sockaddr storage that
700 * is passed in by the caller.
703 * - removing embedded scope identifiers from network mask and destination
704 * IPv4 and IPv6 socket addresses
705 * - optionally removing global scope interface hardware addresses from
706 * link-layer interface addresses when the MAC framework check fails.
709 rtm_scrub(int type
, int idx
, struct sockaddr
*hint
, struct sockaddr
*sa
,
710 void *buf
, uint32_t buflen
, kauth_cred_t
*credp
)
712 struct sockaddr_storage
*ss
= (struct sockaddr_storage
*)buf
;
713 struct sockaddr
*ret
= sa
;
715 VERIFY(buf
!= NULL
&& buflen
>= sizeof (*ss
));
721 * If this is for an AF_INET/AF_INET6 destination address,
722 * call sa_copy() to clear the scope ID field.
724 if (sa
->sa_family
== AF_INET
&&
725 SINIFSCOPE(sa
)->sin_scope_id
!= IFSCOPE_NONE
) {
726 ret
= sa_copy(sa
, ss
, NULL
);
727 } else if (sa
->sa_family
== AF_INET6
&&
728 SIN6IFSCOPE(sa
)->sin6_scope_id
!= IFSCOPE_NONE
) {
729 ret
= sa_copy(sa
, ss
, NULL
);
736 * If this is for a mask, we can't tell whether or not there
737 * is an valid scope ID value, as the span of bytes between
738 * sa_len and the beginning of the mask (offset of sin_addr in
739 * the case of AF_INET, or sin6_addr for AF_INET6) may be
740 * filled with all-ones by rn_addmask(), and hence we cannot
741 * rely on sa_family. Because of this, we use the sa_family
742 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
743 * whether or not the mask is to be treated as one for AF_INET
744 * or AF_INET6. Clearing the scope ID field involves setting
745 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
746 * trailing zeroes from the storage sockaddr, which reverses
747 * what was done earlier by ma_copy() on the source sockaddr.
750 ((af
= hint
->sa_family
) != AF_INET
&& af
!= AF_INET6
))
751 break; /* nothing to do */
753 skip
= (af
== AF_INET
) ?
754 offsetof(struct sockaddr_in
, sin_addr
) :
755 offsetof(struct sockaddr_in6
, sin6_addr
);
757 if (sa
->sa_len
> skip
&& sa
->sa_len
<= sizeof (*ss
)) {
758 bcopy(sa
, ss
, sa
->sa_len
);
760 * Don't use {sin,sin6}_set_ifscope() as sa_family
761 * and sa_len for the netmask might not be set to
762 * the corresponding expected values of the hint.
764 if (hint
->sa_family
== AF_INET
)
765 SINIFSCOPE(ss
)->sin_scope_id
= IFSCOPE_NONE
;
767 SIN6IFSCOPE(ss
)->sin6_scope_id
= IFSCOPE_NONE
;
768 ret
= sa_trim(SA(ss
), skip
);
771 * For AF_INET6 mask, set sa_len appropriately unless
772 * this is requested via systl_dumpentry(), in which
773 * case we return the raw value.
775 if (hint
->sa_family
== AF_INET6
&&
776 type
!= RTM_GET
&& type
!= RTM_GET2
)
777 SA(ret
)->sa_len
= sizeof (struct sockaddr_in6
);
783 * Break if the gateway is not AF_LINK type (indirect routes)
785 * Else, if is, check if it is resolved. If not yet resolved
786 * simply break else scrub the link layer address.
788 if ((sa
->sa_family
!= AF_LINK
) || (SDL(sa
)->sdl_alen
== 0))
793 if (sa
->sa_family
== AF_LINK
&& credp
) {
794 struct sockaddr_dl
*sdl
= SDL(buf
);
798 /* caller should handle worst case: SOCK_MAXADDRLEN */
799 VERIFY(buflen
>= sa
->sa_len
);
801 bcopy(sa
, sdl
, sa
->sa_len
);
802 bytes
= dlil_ifaddr_bytes(sdl
, &size
, credp
);
803 if (bytes
!= CONST_LLADDR(sdl
)) {
804 VERIFY(sdl
->sdl_alen
== size
);
805 bcopy(bytes
, LLADDR(sdl
), size
);
807 ret
= (struct sockaddr
*)sdl
;
819 * Callback leaf-matching routine for rn_matchaddr_args used
820 * for looking up an exact match for a scoped route entry.
823 rn_match_ifscope(struct radix_node
*rn
, void *arg
)
825 struct rtentry
*rt
= (struct rtentry
*)rn
;
826 struct matchleaf_arg
*ma
= arg
;
827 int af
= rt_key(rt
)->sa_family
;
829 if (!(rt
->rt_flags
& RTF_IFSCOPE
) || (af
!= AF_INET
&& af
!= AF_INET6
))
832 return (af
== AF_INET
?
833 (SINIFSCOPE(rt_key(rt
))->sin_scope_id
== ma
->ifscope
) :
834 (SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
== ma
->ifscope
));
838 * Atomically increment route generation counter
841 routegenid_update(void)
843 routegenid_inet_update();
845 routegenid_inet6_update();
850 routegenid_inet_update(void)
852 atomic_add_32(&route_genid_inet
, 1);
857 routegenid_inet6_update(void)
859 atomic_add_32(&route_genid_inet6
, 1);
864 * Packet routing routines.
867 rtalloc(struct route
*ro
)
873 rtalloc_scoped(struct route
*ro
, unsigned int ifscope
)
875 rtalloc_scoped_ign(ro
, 0, ifscope
);
879 rtalloc_ign_common_locked(struct route
*ro
, uint32_t ignore
,
880 unsigned int ifscope
)
884 if ((rt
= ro
->ro_rt
) != NULL
) {
886 if (rt
->rt_ifp
!= NULL
&& !ROUTE_UNUSABLE(ro
)) {
891 ROUTE_RELEASE_LOCKED(ro
); /* rnh_lock already held */
893 ro
->ro_rt
= rtalloc1_common_locked(&ro
->ro_dst
, 1, ignore
, ifscope
);
894 if (ro
->ro_rt
!= NULL
) {
895 RT_GENID_SYNC(ro
->ro_rt
);
896 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
901 rtalloc_ign(struct route
*ro
, uint32_t ignore
)
903 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
904 lck_mtx_lock(rnh_lock
);
905 rtalloc_ign_common_locked(ro
, ignore
, IFSCOPE_NONE
);
906 lck_mtx_unlock(rnh_lock
);
910 rtalloc_scoped_ign(struct route
*ro
, uint32_t ignore
, unsigned int ifscope
)
912 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
913 lck_mtx_lock(rnh_lock
);
914 rtalloc_ign_common_locked(ro
, ignore
, ifscope
);
915 lck_mtx_unlock(rnh_lock
);
918 static struct rtentry
*
919 rtalloc1_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
921 return (rtalloc1_common_locked(dst
, report
, ignflags
, IFSCOPE_NONE
));
925 rtalloc1_scoped_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
926 unsigned int ifscope
)
928 return (rtalloc1_common_locked(dst
, report
, ignflags
, ifscope
));
932 rtalloc1_common_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
933 unsigned int ifscope
)
935 struct radix_node_head
*rnh
= rt_tables
[dst
->sa_family
];
936 struct rtentry
*rt
, *newrt
= NULL
;
937 struct rt_addrinfo info
;
939 int err
= 0, msgtype
= RTM_MISS
;
945 * Find the longest prefix or exact (in the scoped case) address match;
946 * callee adds a reference to entry and checks for root node as well
948 rt
= rt_lookup(FALSE
, dst
, NULL
, rnh
, ifscope
);
954 nflags
= rt
->rt_flags
& ~ignflags
;
956 if (report
&& (nflags
& (RTF_CLONING
| RTF_PRCLONING
))) {
958 * We are apparently adding (report = 0 in delete).
959 * If it requires that it be cloned, do so.
960 * (This implies it wasn't a HOST route.)
962 err
= rtrequest_locked(RTM_RESOLVE
, dst
, NULL
, NULL
, 0, &newrt
);
965 * If the cloning didn't succeed, maybe what we
966 * have from lookup above will do. Return that;
967 * no need to hold another reference since it's
975 * We cloned it; drop the original route found during lookup.
976 * The resulted cloned route (newrt) would now have an extra
977 * reference held during rtrequest.
982 * If the newly created cloned route is a direct host route
983 * then also check if it is to a router or not.
984 * If it is, then set the RTF_ROUTER flag on the host route
987 * XXX It is possible for the default route to be created post
988 * cloned route creation of router's IP.
989 * We can handle that corner case by special handing for RTM_ADD
992 if ((newrt
->rt_flags
& (RTF_HOST
| RTF_LLINFO
)) ==
993 (RTF_HOST
| RTF_LLINFO
)) {
994 struct rtentry
*defrt
= NULL
;
995 struct sockaddr_storage def_key
;
997 bzero(&def_key
, sizeof(def_key
));
998 def_key
.ss_len
= rt_key(newrt
)->sa_len
;
999 def_key
.ss_family
= rt_key(newrt
)->sa_family
;
1001 defrt
= rtalloc1_scoped_locked((struct sockaddr
*)&def_key
,
1002 0, 0, newrt
->rt_ifp
->if_index
);
1005 if (equal(rt_key(newrt
), defrt
->rt_gateway
)) {
1006 newrt
->rt_flags
|= RTF_ROUTER
;
1008 rtfree_locked(defrt
);
1012 if ((rt
= newrt
) && (rt
->rt_flags
& RTF_XRESOLVE
)) {
1014 * If the new route specifies it be
1015 * externally resolved, then go do that.
1017 msgtype
= RTM_RESOLVE
;
1025 * Either we hit the root or couldn't find any match,
1026 * Which basically means "cant get there from here"
1028 rtstat
.rts_unreach
++;
1033 * If required, report the failure to the supervising
1035 * For a delete, this is not an error. (report == 0)
1037 bzero((caddr_t
)&info
, sizeof(info
));
1038 info
.rti_info
[RTAX_DST
] = dst
;
1039 rt_missmsg(msgtype
, &info
, 0, err
);
1046 rtalloc1(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
1048 struct rtentry
*entry
;
1049 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1050 lck_mtx_lock(rnh_lock
);
1051 entry
= rtalloc1_locked(dst
, report
, ignflags
);
1052 lck_mtx_unlock(rnh_lock
);
1057 rtalloc1_scoped(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
1058 unsigned int ifscope
)
1060 struct rtentry
*entry
;
1061 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1062 lck_mtx_lock(rnh_lock
);
1063 entry
= rtalloc1_scoped_locked(dst
, report
, ignflags
, ifscope
);
1064 lck_mtx_unlock(rnh_lock
);
1069 * Remove a reference count from an rtentry.
1070 * If the count gets low enough, take it out of the routing table
1073 rtfree_locked(struct rtentry
*rt
)
1075 rtfree_common(rt
, TRUE
);
1079 rtfree_common(struct rtentry
*rt
, boolean_t locked
)
1081 struct radix_node_head
*rnh
;
1083 LCK_MTX_ASSERT(rnh_lock
, locked
?
1084 LCK_MTX_ASSERT_OWNED
: LCK_MTX_ASSERT_NOTOWNED
);
1087 * Atomically decrement the reference count and if it reaches 0,
1088 * and there is a close function defined, call the close function.
1091 if (rtunref(rt
) > 0) {
1097 * To avoid violating lock ordering, we must drop rt_lock before
1098 * trying to acquire the global rnh_lock. If we are called with
1099 * rnh_lock held, then we already have exclusive access; otherwise
1100 * we do the lock dance.
1104 * Note that we check it again below after grabbing rnh_lock,
1105 * since it is possible that another thread doing a lookup wins
1106 * the race, grabs the rnh_lock first, and bumps up reference
1107 * count in which case the route should be left alone as it is
1108 * still in use. It's also possible that another thread frees
1109 * the route after we drop rt_lock; to prevent the route from
1110 * being freed, we hold an extra reference.
1112 RT_ADDREF_LOCKED(rt
);
1114 lck_mtx_lock(rnh_lock
);
1116 if (rtunref(rt
) > 0) {
1117 /* We've lost the race, so abort */
1124 * We may be blocked on other lock(s) as part of freeing
1125 * the entry below, so convert from spin to full mutex.
1127 RT_CONVERT_LOCK(rt
);
1129 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1131 /* Negative refcnt must never happen */
1132 if (rt
->rt_refcnt
!= 0) {
1133 panic("rt %p invalid refcnt %d", rt
, rt
->rt_refcnt
);
1136 /* Idle refcnt must have been dropped during rtunref() */
1137 VERIFY(!(rt
->rt_flags
& RTF_IFREF
));
1140 * find the tree for that address family
1141 * Note: in the case of igmp packets, there might not be an rnh
1143 rnh
= rt_tables
[rt_key(rt
)->sa_family
];
1146 * On last reference give the "close method" a chance to cleanup
1147 * private state. This also permits (for IPv4 and IPv6) a chance
1148 * to decide if the routing table entry should be purged immediately
1149 * or at a later time. When an immediate purge is to happen the
1150 * close routine typically issues RTM_DELETE which clears the RTF_UP
1151 * flag on the entry so that the code below reclaims the storage.
1153 if (rnh
!= NULL
&& rnh
->rnh_close
!= NULL
)
1154 rnh
->rnh_close((struct radix_node
*)rt
, rnh
);
1157 * If we are no longer "up" (and ref == 0) then we can free the
1158 * resources associated with the route.
1160 if (!(rt
->rt_flags
& RTF_UP
)) {
1161 struct rtentry
*rt_parent
;
1162 struct ifaddr
*rt_ifa
;
1164 rt
->rt_flags
|= RTF_DEAD
;
1165 if (rt
->rt_nodes
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1166 panic("rt %p freed while in radix tree\n", rt
);
1170 * the rtentry must have been removed from the routing table
1171 * so it is represented in rttrash; remove that now.
1173 (void) OSDecrementAtomic(&rttrash
);
1174 if (rte_debug
& RTD_DEBUG
) {
1175 TAILQ_REMOVE(&rttrash_head
, (struct rtentry_dbg
*)rt
,
1180 * release references on items we hold them on..
1181 * e.g other routes and ifaddrs.
1183 if ((rt_parent
= rt
->rt_parent
) != NULL
)
1184 rt
->rt_parent
= NULL
;
1186 if ((rt_ifa
= rt
->rt_ifa
) != NULL
)
1190 * Now free any attached link-layer info.
1192 if (rt
->rt_llinfo
!= NULL
) {
1193 if (rt
->rt_llinfo_free
!= NULL
)
1194 (*rt
->rt_llinfo_free
)(rt
->rt_llinfo
);
1196 R_Free(rt
->rt_llinfo
);
1197 rt
->rt_llinfo
= NULL
;
1200 /* Destroy eventhandler lists context */
1201 eventhandler_lists_ctxt_destroy(&rt
->rt_evhdlr_ctxt
);
1204 * Route is no longer in the tree and refcnt is 0;
1205 * we have exclusive access, so destroy it.
1208 rte_lock_destroy(rt
);
1210 if (rt_parent
!= NULL
)
1211 rtfree_locked(rt_parent
);
1217 * The key is separately alloc'd so free it (see rt_setgate()).
1218 * This also frees the gateway, as they are always malloc'd
1224 * Free any statistics that may have been allocated
1226 nstat_route_detach(rt
);
1229 * and the rtentry itself of course
1234 * The "close method" has been called, but the route is
1235 * still in the radix tree with zero refcnt, i.e. "up"
1236 * and in the cached state.
1242 lck_mtx_unlock(rnh_lock
);
1246 rtfree(struct rtentry
*rt
)
1248 rtfree_common(rt
, FALSE
);
1252 * Decrements the refcount but does not free the route when
1253 * the refcount reaches zero. Unless you have really good reason,
1254 * use rtfree not rtunref.
1257 rtunref(struct rtentry
*p
)
1259 RT_LOCK_ASSERT_HELD(p
);
1261 if (p
->rt_refcnt
== 0) {
1262 panic("%s(%p) bad refcnt\n", __func__
, p
);
1264 } else if (--p
->rt_refcnt
== 0) {
1266 * Release any idle reference count held on the interface;
1267 * if the route is eligible, still UP and the refcnt becomes
1268 * non-zero at some point in future before it is purged from
1269 * the routing table, rt_set_idleref() will undo this.
1271 rt_clear_idleref(p
);
1274 if (rte_debug
& RTD_DEBUG
)
1275 rtunref_audit((struct rtentry_dbg
*)p
);
1277 /* Return new value */
1278 return (p
->rt_refcnt
);
1282 rtunref_audit(struct rtentry_dbg
*rte
)
1286 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1287 panic("rtunref: on freed rte=%p\n", rte
);
1290 idx
= atomic_add_16_ov(&rte
->rtd_refrele_cnt
, 1) % CTRACE_HIST_SIZE
;
1291 if (rte_debug
& RTD_TRACE
)
1292 ctrace_record(&rte
->rtd_refrele
[idx
]);
1296 * Add a reference count from an rtentry.
1299 rtref(struct rtentry
*p
)
1301 RT_LOCK_ASSERT_HELD(p
);
1303 VERIFY((p
->rt_flags
& RTF_DEAD
) == 0);
1304 if (++p
->rt_refcnt
== 0) {
1305 panic("%s(%p) bad refcnt\n", __func__
, p
);
1307 } else if (p
->rt_refcnt
== 1) {
1309 * Hold an idle reference count on the interface,
1310 * if the route is eligible for it.
1315 if (rte_debug
& RTD_DEBUG
)
1316 rtref_audit((struct rtentry_dbg
*)p
);
1320 rtref_audit(struct rtentry_dbg
*rte
)
1324 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1325 panic("rtref_audit: on freed rte=%p\n", rte
);
1328 idx
= atomic_add_16_ov(&rte
->rtd_refhold_cnt
, 1) % CTRACE_HIST_SIZE
;
1329 if (rte_debug
& RTD_TRACE
)
1330 ctrace_record(&rte
->rtd_refhold
[idx
]);
1334 rtsetifa(struct rtentry
*rt
, struct ifaddr
*ifa
)
1336 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1338 RT_LOCK_ASSERT_HELD(rt
);
1340 if (rt
->rt_ifa
== ifa
)
1343 /* Become a regular mutex, just in case */
1344 RT_CONVERT_LOCK(rt
);
1346 /* Release the old ifa */
1348 IFA_REMREF(rt
->rt_ifa
);
1353 /* Take a reference to the ifa */
1355 IFA_ADDREF(rt
->rt_ifa
);
1359 * Force a routing table entry to the specified
1360 * destination to go through the given gateway.
1361 * Normally called as a result of a routing redirect
1362 * message from the network layer.
1365 rtredirect(struct ifnet
*ifp
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1366 struct sockaddr
*netmask
, int flags
, struct sockaddr
*src
,
1367 struct rtentry
**rtp
)
1369 struct rtentry
*rt
= NULL
;
1372 struct rt_addrinfo info
;
1373 struct ifaddr
*ifa
= NULL
;
1374 unsigned int ifscope
= (ifp
!= NULL
) ? ifp
->if_index
: IFSCOPE_NONE
;
1375 struct sockaddr_storage ss
;
1376 int af
= src
->sa_family
;
1378 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1379 lck_mtx_lock(rnh_lock
);
1382 * Transform src into the internal routing table form for
1383 * comparison against rt_gateway below.
1386 if ((af
== AF_INET
) || (af
== AF_INET6
))
1390 src
= sa_copy(src
, &ss
, &ifscope
);
1393 * Verify the gateway is directly reachable; if scoped routing
1394 * is enabled, verify that it is reachable from the interface
1395 * where the ICMP redirect arrived on.
1397 if ((ifa
= ifa_ifwithnet_scoped(gateway
, ifscope
)) == NULL
) {
1398 error
= ENETUNREACH
;
1402 /* Lookup route to the destination (from the original IP header) */
1403 rt
= rtalloc1_scoped_locked(dst
, 0, RTF_CLONING
|RTF_PRCLONING
, ifscope
);
1408 * If the redirect isn't from our current router for this dst,
1409 * it's either old or wrong. If it redirects us to ourselves,
1410 * we have a routing loop, perhaps as a result of an interface
1411 * going down recently. Holding rnh_lock here prevents the
1412 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1413 * in_ifinit), so okay to access ifa_addr without locking.
1415 if (!(flags
& RTF_DONE
) && rt
!= NULL
&&
1416 (!equal(src
, rt
->rt_gateway
) || !equal(rt
->rt_ifa
->ifa_addr
,
1421 if ((ifa
= ifa_ifwithaddr(gateway
))) {
1424 error
= EHOSTUNREACH
;
1440 * Create a new entry if we just got back a wildcard entry
1441 * or the the lookup failed. This is necessary for hosts
1442 * which use routing redirects generated by smart gateways
1443 * to dynamically build the routing tables.
1445 if ((rt
== NULL
) || (rt_mask(rt
) != NULL
&& rt_mask(rt
)->sa_len
< 2))
1448 * Don't listen to the redirect if it's
1449 * for a route to an interface.
1451 RT_LOCK_ASSERT_HELD(rt
);
1452 if (rt
->rt_flags
& RTF_GATEWAY
) {
1453 if (((rt
->rt_flags
& RTF_HOST
) == 0) && (flags
& RTF_HOST
)) {
1455 * Changing from route to net => route to host.
1456 * Create new route, rather than smashing route
1457 * to net; similar to cloned routes, the newly
1458 * created host route is scoped as well.
1463 flags
|= RTF_GATEWAY
| RTF_DYNAMIC
;
1464 error
= rtrequest_scoped_locked(RTM_ADD
, dst
,
1465 gateway
, netmask
, flags
, NULL
, ifscope
);
1466 stat
= &rtstat
.rts_dynamic
;
1469 * Smash the current notion of the gateway to
1470 * this destination. Should check about netmask!!!
1472 rt
->rt_flags
|= RTF_MODIFIED
;
1473 flags
|= RTF_MODIFIED
;
1474 stat
= &rtstat
.rts_newgateway
;
1476 * add the key and gateway (in one malloc'd chunk).
1478 error
= rt_setgate(rt
, rt_key(rt
), gateway
);
1483 error
= EHOSTUNREACH
;
1487 RT_LOCK_ASSERT_NOTHELD(rt
);
1495 rtstat
.rts_badredirect
++;
1501 routegenid_inet_update();
1503 else if (af
== AF_INET6
)
1504 routegenid_inet6_update();
1507 lck_mtx_unlock(rnh_lock
);
1508 bzero((caddr_t
)&info
, sizeof(info
));
1509 info
.rti_info
[RTAX_DST
] = dst
;
1510 info
.rti_info
[RTAX_GATEWAY
] = gateway
;
1511 info
.rti_info
[RTAX_NETMASK
] = netmask
;
1512 info
.rti_info
[RTAX_AUTHOR
] = src
;
1513 rt_missmsg(RTM_REDIRECT
, &info
, flags
, error
);
1517 * Routing table ioctl interface.
1520 rtioctl(unsigned long req
, caddr_t data
, struct proc
*p
)
1522 #pragma unused(p, req, data)
1529 const struct sockaddr
*dst
,
1530 const struct sockaddr
*gateway
)
1534 lck_mtx_lock(rnh_lock
);
1535 ifa
= ifa_ifwithroute_locked(flags
, dst
, gateway
);
1536 lck_mtx_unlock(rnh_lock
);
1542 ifa_ifwithroute_locked(int flags
, const struct sockaddr
*dst
,
1543 const struct sockaddr
*gateway
)
1545 return (ifa_ifwithroute_common_locked((flags
& ~RTF_IFSCOPE
), dst
,
1546 gateway
, IFSCOPE_NONE
));
1550 ifa_ifwithroute_scoped_locked(int flags
, const struct sockaddr
*dst
,
1551 const struct sockaddr
*gateway
, unsigned int ifscope
)
1553 if (ifscope
!= IFSCOPE_NONE
)
1554 flags
|= RTF_IFSCOPE
;
1556 flags
&= ~RTF_IFSCOPE
;
1558 return (ifa_ifwithroute_common_locked(flags
, dst
, gateway
, ifscope
));
1561 static struct ifaddr
*
1562 ifa_ifwithroute_common_locked(int flags
, const struct sockaddr
*dst
,
1563 const struct sockaddr
*gw
, unsigned int ifscope
)
1565 struct ifaddr
*ifa
= NULL
;
1566 struct rtentry
*rt
= NULL
;
1567 struct sockaddr_storage dst_ss
, gw_ss
;
1569 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1572 * Just in case the sockaddr passed in by the caller
1573 * contains a scope ID, make sure to clear it since
1574 * interface addresses aren't scoped.
1578 ((dst
->sa_family
== AF_INET
) ||
1579 (dst
->sa_family
== AF_INET6
)))
1581 if (dst
!= NULL
&& dst
->sa_family
== AF_INET
)
1583 dst
= sa_copy(SA((uintptr_t)dst
), &dst_ss
, NULL
);
1587 ((gw
->sa_family
== AF_INET
) ||
1588 (gw
->sa_family
== AF_INET6
)))
1590 if (gw
!= NULL
&& gw
->sa_family
== AF_INET
)
1592 gw
= sa_copy(SA((uintptr_t)gw
), &gw_ss
, NULL
);
1594 if (!(flags
& RTF_GATEWAY
)) {
1596 * If we are adding a route to an interface,
1597 * and the interface is a pt to pt link
1598 * we should search for the destination
1599 * as our clue to the interface. Otherwise
1600 * we can use the local address.
1602 if (flags
& RTF_HOST
) {
1603 ifa
= ifa_ifwithdstaddr(dst
);
1606 ifa
= ifa_ifwithaddr_scoped(gw
, ifscope
);
1609 * If we are adding a route to a remote net
1610 * or host, the gateway may still be on the
1611 * other end of a pt to pt link.
1613 ifa
= ifa_ifwithdstaddr(gw
);
1616 ifa
= ifa_ifwithnet_scoped(gw
, ifscope
);
1618 /* Workaround to avoid gcc warning regarding const variable */
1619 rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)dst
,
1625 /* Become a regular mutex */
1626 RT_CONVERT_LOCK(rt
);
1629 RT_REMREF_LOCKED(rt
);
1635 * Holding rnh_lock here prevents the possibility of ifa from
1636 * changing (e.g. in_ifinit), so it is safe to access its
1637 * ifa_addr (here and down below) without locking.
1639 if (ifa
!= NULL
&& ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1640 struct ifaddr
*newifa
;
1641 /* Callee adds reference to newifa upon success */
1642 newifa
= ifaof_ifpforaddr(dst
, ifa
->ifa_ifp
);
1643 if (newifa
!= NULL
) {
1649 * If we are adding a gateway, it is quite possible that the
1650 * routing table has a static entry in place for the gateway,
1651 * that may not agree with info garnered from the interfaces.
1652 * The routing table should carry more precedence than the
1653 * interfaces in this matter. Must be careful not to stomp
1654 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1657 !equal(ifa
->ifa_addr
, (struct sockaddr
*)(size_t)gw
)) &&
1658 (rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)gw
,
1659 0, 0, ifscope
)) != NULL
) {
1665 /* Become a regular mutex */
1666 RT_CONVERT_LOCK(rt
);
1669 RT_REMREF_LOCKED(rt
);
1673 * If an interface scope was specified, the interface index of
1674 * the found ifaddr must be equivalent to that of the scope;
1675 * otherwise there is no match.
1677 if ((flags
& RTF_IFSCOPE
) &&
1678 ifa
!= NULL
&& ifa
->ifa_ifp
->if_index
!= ifscope
) {
1686 static int rt_fixdelete(struct radix_node
*, void *);
1687 static int rt_fixchange(struct radix_node
*, void *);
1690 struct rtentry
*rt0
;
1691 struct radix_node_head
*rnh
;
1695 rtrequest_locked(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1696 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
1698 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1699 (flags
& ~RTF_IFSCOPE
), ret_nrt
, IFSCOPE_NONE
));
1703 rtrequest_scoped_locked(int req
, struct sockaddr
*dst
,
1704 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1705 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1707 if (ifscope
!= IFSCOPE_NONE
)
1708 flags
|= RTF_IFSCOPE
;
1710 flags
&= ~RTF_IFSCOPE
;
1712 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1713 flags
, ret_nrt
, ifscope
));
1717 * Do appropriate manipulations of a routing tree given all the bits of
1720 * Storing the scope ID in the radix key is an internal job that should be
1721 * left to routines in this module. Callers should specify the scope value
1722 * to the "scoped" variants of route routines instead of manipulating the
1723 * key itself. This is typically done when creating a scoped route, e.g.
1724 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1725 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1726 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1727 * during certain routing socket operations where the search key might be
1728 * derived from the routing message itself, in which case the caller must
1729 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1732 rtrequest_common_locked(int req
, struct sockaddr
*dst0
,
1733 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1734 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1738 struct radix_node
*rn
;
1739 struct radix_node_head
*rnh
;
1740 struct ifaddr
*ifa
= NULL
;
1741 struct sockaddr
*ndst
, *dst
= dst0
;
1742 struct sockaddr_storage ss
, mask
;
1743 struct timeval caltime
;
1744 int af
= dst
->sa_family
;
1745 void (*ifa_rtrequest
)(int, struct rtentry
*, struct sockaddr
*);
1747 #define senderr(x) { error = x; goto bad; }
1749 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1751 * Find the correct routing tree to use for this Address Family
1753 if ((rnh
= rt_tables
[af
]) == NULL
)
1756 * If we are adding a host route then we don't want to put
1757 * a netmask in the tree
1759 if (flags
& RTF_HOST
)
1763 * If Scoped Routing is enabled, use a local copy of the destination
1764 * address to store the scope ID into. This logic is repeated below
1765 * in the RTM_RESOLVE handler since the caller does not normally
1766 * specify such a flag during a resolve, as well as for the handling
1767 * of IPv4 link-local address; instead, it passes in the route used for
1768 * cloning for which the scope info is derived from. Note also that
1769 * in the case of RTM_DELETE, the address passed in by the caller
1770 * might already contain the scope ID info when it is the key itself,
1771 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1772 * explicitly set is inside route_output() as part of handling a
1773 * routing socket request.
1776 if (req
!= RTM_RESOLVE
&& ((af
== AF_INET
) || (af
== AF_INET6
))) {
1778 if (req
!= RTM_RESOLVE
&& af
== AF_INET
) {
1780 /* Transform dst into the internal routing table form */
1781 dst
= sa_copy(dst
, &ss
, &ifscope
);
1783 /* Transform netmask into the internal routing table form */
1784 if (netmask
!= NULL
)
1785 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
1787 if (ifscope
!= IFSCOPE_NONE
)
1788 flags
|= RTF_IFSCOPE
;
1789 } else if ((flags
& RTF_IFSCOPE
) &&
1790 (af
!= AF_INET
&& af
!= AF_INET6
)) {
1794 if (ifscope
== IFSCOPE_NONE
)
1795 flags
&= ~RTF_IFSCOPE
;
1799 struct rtentry
*gwrt
= NULL
;
1800 boolean_t was_router
= FALSE
;
1801 uint32_t old_rt_refcnt
= 0;
1803 * Remove the item from the tree and return it.
1804 * Complain if it is not there and do no more processing.
1806 if ((rn
= rnh
->rnh_deladdr(dst
, netmask
, rnh
)) == NULL
)
1808 if (rn
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1809 panic("rtrequest delete");
1812 rt
= (struct rtentry
*)rn
;
1815 old_rt_refcnt
= rt
->rt_refcnt
;
1816 rt
->rt_flags
&= ~RTF_UP
;
1818 * Release any idle reference count held on the interface
1819 * as this route is no longer externally visible.
1821 rt_clear_idleref(rt
);
1823 * Take an extra reference to handle the deletion of a route
1824 * entry whose reference count is already 0; e.g. an expiring
1825 * cloned route entry or an entry that was added to the table
1826 * with 0 reference. If the caller is interested in this route,
1827 * we will return it with the reference intact. Otherwise we
1828 * will decrement the reference via rtfree_locked() and then
1829 * possibly deallocate it.
1831 RT_ADDREF_LOCKED(rt
);
1834 * For consistency, in case the caller didn't set the flag.
1836 rt
->rt_flags
|= RTF_CONDEMNED
;
1839 * Clear RTF_ROUTER if it's set.
1841 if (rt
->rt_flags
& RTF_ROUTER
) {
1843 VERIFY(rt
->rt_flags
& RTF_HOST
);
1844 rt
->rt_flags
&= ~RTF_ROUTER
;
1848 * Enqueue work item to invoke callback for this route entry
1850 * If the old count is 0, it implies that last reference is being
1851 * removed and there's no one listening for this route event.
1853 if (old_rt_refcnt
!= 0)
1854 route_event_enqueue_nwk_wq_entry(rt
, NULL
,
1855 ROUTE_ENTRY_DELETED
, NULL
, TRUE
);
1858 * Now search what's left of the subtree for any cloned
1859 * routes which might have been formed from this node.
1861 if ((rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) &&
1864 rnh
->rnh_walktree_from(rnh
, dst
, rt_mask(rt
),
1870 struct route_event rt_ev
;
1871 route_event_init(&rt_ev
, rt
, NULL
, ROUTE_LLENTRY_DELETED
);
1873 (void) rnh
->rnh_walktree(rnh
,
1874 route_event_walktree
, (void *)&rt_ev
);
1879 * Remove any external references we may have.
1881 if ((gwrt
= rt
->rt_gwroute
) != NULL
)
1882 rt
->rt_gwroute
= NULL
;
1885 * give the protocol a chance to keep things in sync.
1887 if ((ifa
= rt
->rt_ifa
) != NULL
) {
1889 ifa_rtrequest
= ifa
->ifa_rtrequest
;
1891 if (ifa_rtrequest
!= NULL
)
1892 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
1893 /* keep reference on rt_ifa */
1898 * one more rtentry floating around that is not
1899 * linked to the routing table.
1901 (void) OSIncrementAtomic(&rttrash
);
1902 if (rte_debug
& RTD_DEBUG
) {
1903 TAILQ_INSERT_TAIL(&rttrash_head
,
1904 (struct rtentry_dbg
*)rt
, rtd_trash_link
);
1908 * If this is the (non-scoped) default route, clear
1909 * the interface index used for the primary ifscope.
1911 if (rt_primary_default(rt
, rt_key(rt
))) {
1912 set_primary_ifscope(rt_key(rt
)->sa_family
,
1918 * If this is a change in a default route, update
1919 * necp client watchers to re-evaluate
1921 if (SA_DEFAULT(rt_key(rt
))) {
1922 necp_update_all_clients();
1929 * This might result in another rtentry being freed if
1930 * we held its last reference. Do this after the rtentry
1931 * lock is dropped above, as it could lead to the same
1932 * lock being acquired if gwrt is a clone of rt.
1935 rtfree_locked(gwrt
);
1938 * If the caller wants it, then it can have it,
1939 * but it's up to it to free the rtentry as we won't be
1942 if (ret_nrt
!= NULL
) {
1943 /* Return the route to caller with reference intact */
1946 /* Dereference or deallocate the route */
1950 routegenid_inet_update();
1952 else if (af
== AF_INET6
)
1953 routegenid_inet6_update();
1958 if (ret_nrt
== NULL
|| (rt
= *ret_nrt
) == NULL
)
1961 * According to the UNIX conformance tests, we need to return
1962 * ENETUNREACH when the parent route is RTF_REJECT.
1963 * However, there isn't any point in cloning RTF_REJECT
1964 * routes, so we immediately return an error.
1966 if (rt
->rt_flags
& RTF_REJECT
) {
1967 if (rt
->rt_flags
& RTF_HOST
) {
1968 senderr(EHOSTUNREACH
);
1970 senderr(ENETUNREACH
);
1974 * If cloning, we have the parent route given by the caller
1975 * and will use its rt_gateway, rt_rmx as part of the cloning
1976 * process below. Since rnh_lock is held at this point, the
1977 * parent's rt_ifa and rt_gateway will not change, and its
1978 * relevant rt_flags will not change as well. The only thing
1979 * that could change are the metrics, and thus we hold the
1980 * parent route's rt_lock later on during the actual copying
1985 flags
= rt
->rt_flags
&
1986 ~(RTF_CLONING
| RTF_PRCLONING
| RTF_STATIC
);
1987 flags
|= RTF_WASCLONED
;
1988 gateway
= rt
->rt_gateway
;
1989 if ((netmask
= rt
->rt_genmask
) == NULL
)
1993 if (af
!= AF_INET
&& af
!= AF_INET6
)
2000 * When scoped routing is enabled, cloned entries are
2001 * always scoped according to the interface portion of
2002 * the parent route. The exception to this are IPv4
2003 * link local addresses, or those routes that are cloned
2004 * from a RTF_PROXY route. For the latter, the clone
2005 * gets to keep the RTF_PROXY flag.
2007 if ((af
== AF_INET
&&
2008 IN_LINKLOCAL(ntohl(SIN(dst
)->sin_addr
.s_addr
))) ||
2009 (rt
->rt_flags
& RTF_PROXY
)) {
2010 ifscope
= IFSCOPE_NONE
;
2011 flags
&= ~RTF_IFSCOPE
;
2013 * These types of cloned routes aren't currently
2014 * eligible for idle interface reference counting.
2016 flags
|= RTF_NOIFREF
;
2018 if (flags
& RTF_IFSCOPE
) {
2019 ifscope
= (af
== AF_INET
) ?
2020 sin_get_ifscope(rt_key(rt
)) :
2021 sin6_get_ifscope(rt_key(rt
));
2023 ifscope
= rt
->rt_ifp
->if_index
;
2024 flags
|= RTF_IFSCOPE
;
2026 VERIFY(ifscope
!= IFSCOPE_NONE
);
2030 * Transform dst into the internal routing table form,
2031 * clearing out the scope ID field if ifscope isn't set.
2033 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ?
2036 /* Transform netmask into the internal routing table form */
2037 if (netmask
!= NULL
)
2038 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2043 if ((flags
& RTF_GATEWAY
) && !gateway
) {
2044 panic("rtrequest: RTF_GATEWAY but no gateway");
2047 if (flags
& RTF_IFSCOPE
) {
2048 ifa
= ifa_ifwithroute_scoped_locked(flags
, dst0
,
2051 ifa
= ifa_ifwithroute_locked(flags
, dst0
, gateway
);
2054 senderr(ENETUNREACH
);
2057 * We land up here for both RTM_RESOLVE and RTM_ADD
2058 * when we decide to create a route.
2060 if ((rt
= rte_alloc()) == NULL
)
2062 Bzero(rt
, sizeof(*rt
));
2064 eventhandler_lists_ctxt_init(&rt
->rt_evhdlr_ctxt
);
2065 getmicrotime(&caltime
);
2066 rt
->base_calendartime
= caltime
.tv_sec
;
2067 rt
->base_uptime
= net_uptime();
2069 rt
->rt_flags
= RTF_UP
| flags
;
2072 * Point the generation ID to the tree's.
2076 rt
->rt_tree_genid
= &route_genid_inet
;
2080 rt
->rt_tree_genid
= &route_genid_inet6
;
2088 * Add the gateway. Possibly re-malloc-ing the storage for it
2089 * also add the rt_gwroute if possible.
2091 if ((error
= rt_setgate(rt
, dst
, gateway
)) != 0) {
2094 nstat_route_detach(rt
);
2095 rte_lock_destroy(rt
);
2101 * point to the (possibly newly malloc'd) dest address.
2106 * make sure it contains the value we want (masked if needed).
2109 rt_maskedcopy(dst
, ndst
, netmask
);
2111 Bcopy(dst
, ndst
, dst
->sa_len
);
2114 * Note that we now have a reference to the ifa.
2115 * This moved from below so that rnh->rnh_addaddr() can
2116 * examine the ifa and ifa->ifa_ifp if it so desires.
2119 rt
->rt_ifp
= rt
->rt_ifa
->ifa_ifp
;
2121 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2123 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
, (caddr_t
)netmask
,
2126 struct rtentry
*rt2
;
2128 * Uh-oh, we already have one of these in the tree.
2129 * We do a special hack: if the route that's already
2130 * there was generated by the protocol-cloning
2131 * mechanism, then we just blow it away and retry
2132 * the insertion of the new one.
2134 if (flags
& RTF_IFSCOPE
) {
2135 rt2
= rtalloc1_scoped_locked(dst0
, 0,
2136 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2138 rt2
= rtalloc1_locked(dst
, 0,
2139 RTF_CLONING
| RTF_PRCLONING
);
2141 if (rt2
&& rt2
->rt_parent
) {
2143 * rnh_lock is held here, so rt_key and
2144 * rt_gateway of rt2 will not change.
2146 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt2
),
2147 rt2
->rt_gateway
, rt_mask(rt2
),
2150 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
,
2151 (caddr_t
)netmask
, rnh
, rt
->rt_nodes
);
2153 /* undo the extra ref we got */
2159 * If it still failed to go into the tree,
2160 * then un-make it (this should be a function)
2163 /* Clear gateway route */
2164 rt_set_gwroute(rt
, rt_key(rt
), NULL
);
2166 IFA_REMREF(rt
->rt_ifa
);
2171 nstat_route_detach(rt
);
2172 rte_lock_destroy(rt
);
2177 rt
->rt_parent
= NULL
;
2180 * If we got here from RESOLVE, then we are cloning so clone
2181 * the rest, and note that we are a clone (and increment the
2182 * parent's references). rnh_lock is still held, which prevents
2183 * a lookup from returning the newly-created route. Hence
2184 * holding and releasing the parent's rt_lock while still
2185 * holding the route's rt_lock is safe since the new route
2186 * is not yet externally visible.
2188 if (req
== RTM_RESOLVE
) {
2189 RT_LOCK_SPIN(*ret_nrt
);
2190 VERIFY((*ret_nrt
)->rt_expire
== 0 ||
2191 (*ret_nrt
)->rt_rmx
.rmx_expire
!= 0);
2192 VERIFY((*ret_nrt
)->rt_expire
!= 0 ||
2193 (*ret_nrt
)->rt_rmx
.rmx_expire
== 0);
2194 rt
->rt_rmx
= (*ret_nrt
)->rt_rmx
;
2195 rt_setexpire(rt
, (*ret_nrt
)->rt_expire
);
2196 if ((*ret_nrt
)->rt_flags
&
2197 (RTF_CLONING
| RTF_PRCLONING
)) {
2198 rt
->rt_parent
= (*ret_nrt
);
2199 RT_ADDREF_LOCKED(*ret_nrt
);
2201 RT_UNLOCK(*ret_nrt
);
2205 * if this protocol has something to add to this then
2206 * allow it to do that as well.
2209 ifa_rtrequest
= ifa
->ifa_rtrequest
;
2211 if (ifa_rtrequest
!= NULL
)
2212 ifa_rtrequest(req
, rt
, SA(ret_nrt
? *ret_nrt
: NULL
));
2217 * If this is the (non-scoped) default route, record
2218 * the interface index used for the primary ifscope.
2220 if (rt_primary_default(rt
, rt_key(rt
))) {
2221 set_primary_ifscope(rt_key(rt
)->sa_family
,
2222 rt
->rt_ifp
->if_index
);
2227 * If this is a change in a default route, update
2228 * necp client watchers to re-evaluate
2230 if (SA_DEFAULT(rt_key(rt
))) {
2231 necp_update_all_clients();
2236 * actually return a resultant rtentry and
2237 * give the caller a single reference.
2241 RT_ADDREF_LOCKED(rt
);
2245 routegenid_inet_update();
2247 else if (af
== AF_INET6
)
2248 routegenid_inet6_update();
2254 * We repeat the same procedures from rt_setgate() here
2255 * because they weren't completed when we called it earlier,
2256 * since the node was embryonic.
2258 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
)
2259 rt_set_gwroute(rt
, rt_key(rt
), rt
->rt_gwroute
);
2261 if (req
== RTM_ADD
&&
2262 !(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != NULL
) {
2263 struct rtfc_arg arg
;
2267 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2268 rt_fixchange
, &arg
);
2273 nstat_route_new_entry(rt
);
2284 rtrequest(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2285 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
2288 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2289 lck_mtx_lock(rnh_lock
);
2290 error
= rtrequest_locked(req
, dst
, gateway
, netmask
, flags
, ret_nrt
);
2291 lck_mtx_unlock(rnh_lock
);
2296 rtrequest_scoped(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2297 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
,
2298 unsigned int ifscope
)
2301 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2302 lck_mtx_lock(rnh_lock
);
2303 error
= rtrequest_scoped_locked(req
, dst
, gateway
, netmask
, flags
,
2305 lck_mtx_unlock(rnh_lock
);
2310 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2311 * (i.e., the routes related to it by the operation of cloning). This
2312 * routine is iterated over all potential former-child-routes by way of
2313 * rnh->rnh_walktree_from() above, and those that actually are children of
2314 * the late parent (passed in as VP here) are themselves deleted.
2317 rt_fixdelete(struct radix_node
*rn
, void *vp
)
2319 struct rtentry
*rt
= (struct rtentry
*)rn
;
2320 struct rtentry
*rt0
= vp
;
2322 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2325 if (rt
->rt_parent
== rt0
&&
2326 !(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2328 * Safe to drop rt_lock and use rt_key, since holding
2329 * rnh_lock here prevents another thread from calling
2330 * rt_setgate() on this route.
2333 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2334 rt_mask(rt
), rt
->rt_flags
, NULL
));
2341 * This routine is called from rt_setgate() to do the analogous thing for
2342 * adds and changes. There is the added complication in this case of a
2343 * middle insert; i.e., insertion of a new network route between an older
2344 * network route and (cloned) host routes. For this reason, a simple check
2345 * of rt->rt_parent is insufficient; each candidate route must be tested
2346 * against the (mask, value) of the new route (passed as before in vp)
2347 * to see if the new route matches it.
2349 * XXX - it may be possible to do fixdelete() for changes and reserve this
2350 * routine just for adds. I'm not sure why I thought it was necessary to do
2354 rt_fixchange(struct radix_node
*rn
, void *vp
)
2356 struct rtentry
*rt
= (struct rtentry
*)rn
;
2357 struct rtfc_arg
*ap
= vp
;
2358 struct rtentry
*rt0
= ap
->rt0
;
2359 struct radix_node_head
*rnh
= ap
->rnh
;
2360 u_char
*xk1
, *xm1
, *xk2
, *xmp
;
2363 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2367 if (!rt
->rt_parent
||
2368 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2373 if (rt
->rt_parent
== rt0
)
2377 * There probably is a function somewhere which does this...
2378 * if not, there should be.
2380 len
= imin(rt_key(rt0
)->sa_len
, rt_key(rt
)->sa_len
);
2382 xk1
= (u_char
*)rt_key(rt0
);
2383 xm1
= (u_char
*)rt_mask(rt0
);
2384 xk2
= (u_char
*)rt_key(rt
);
2387 * Avoid applying a less specific route; do this only if the parent
2388 * route (rt->rt_parent) is a network route, since otherwise its mask
2389 * will be NULL if it is a cloning host route.
2391 if ((xmp
= (u_char
*)rt_mask(rt
->rt_parent
)) != NULL
) {
2392 int mlen
= rt_mask(rt
->rt_parent
)->sa_len
;
2393 if (mlen
> rt_mask(rt0
)->sa_len
) {
2398 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< mlen
; i
++) {
2399 if ((xmp
[i
] & ~(xmp
[i
] ^ xm1
[i
])) != xmp
[i
]) {
2406 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< len
; i
++) {
2407 if ((xk2
[i
] & xm1
[i
]) != xk1
[i
]) {
2414 * OK, this node is a clone, and matches the node currently being
2415 * changed/added under the node's mask. So, get rid of it.
2419 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2420 * prevents another thread from calling rt_setgate() on this route.
2423 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2424 rt_mask(rt
), rt
->rt_flags
, NULL
));
2428 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2429 * or even eliminate the need to re-allocate the chunk of memory used
2430 * for rt_key and rt_gateway in the event the gateway portion changes.
2431 * Certain code paths (e.g. IPSec) are notorious for caching the address
2432 * of rt_gateway; this rounding-up would help ensure that the gateway
2433 * portion never gets deallocated (though it may change contents) and
2434 * thus greatly simplifies things.
2436 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2439 * Sets the gateway and/or gateway route portion of a route; may be
2440 * called on an existing route to modify the gateway portion. Both
2441 * rt_key and rt_gateway are allocated out of the same memory chunk.
2442 * Route entry lock must be held by caller; this routine will return
2443 * with the lock held.
2446 rt_setgate(struct rtentry
*rt
, struct sockaddr
*dst
, struct sockaddr
*gate
)
2448 int dlen
= SA_SIZE(dst
->sa_len
), glen
= SA_SIZE(gate
->sa_len
);
2449 struct radix_node_head
*rnh
= NULL
;
2450 boolean_t loop
= FALSE
;
2452 if (dst
->sa_family
!= AF_INET
&& dst
->sa_family
!= AF_INET6
) {
2456 rnh
= rt_tables
[dst
->sa_family
];
2457 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2458 RT_LOCK_ASSERT_HELD(rt
);
2461 * If this is for a route that is on its way of being removed,
2462 * or is temporarily frozen, reject the modification request.
2464 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2468 /* Add an extra ref for ourselves */
2469 RT_ADDREF_LOCKED(rt
);
2471 if (rt
->rt_flags
& RTF_GATEWAY
) {
2472 if ((dst
->sa_len
== gate
->sa_len
) &&
2473 (dst
->sa_family
== AF_INET
|| dst
->sa_family
== AF_INET6
)) {
2474 struct sockaddr_storage dst_ss
, gate_ss
;
2476 (void) sa_copy(dst
, &dst_ss
, NULL
);
2477 (void) sa_copy(gate
, &gate_ss
, NULL
);
2479 loop
= equal(SA(&dst_ss
), SA(&gate_ss
));
2481 loop
= (dst
->sa_len
== gate
->sa_len
&&
2487 * A (cloning) network route with the destination equal to the gateway
2488 * will create an endless loop (see notes below), so disallow it.
2490 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2491 RTF_GATEWAY
) && loop
) {
2492 /* Release extra ref */
2493 RT_REMREF_LOCKED(rt
);
2494 return (EADDRNOTAVAIL
);
2498 * A host route with the destination equal to the gateway
2499 * will interfere with keeping LLINFO in the routing
2500 * table, so disallow it.
2502 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2503 (RTF_HOST
|RTF_GATEWAY
)) && loop
) {
2505 * The route might already exist if this is an RTM_CHANGE
2506 * or a routing redirect, so try to delete it.
2508 if (rt_key(rt
) != NULL
) {
2510 * Safe to drop rt_lock and use rt_key, rt_gateway,
2511 * since holding rnh_lock here prevents another thread
2512 * from calling rt_setgate() on this route.
2515 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt
),
2516 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
2519 /* Release extra ref */
2520 RT_REMREF_LOCKED(rt
);
2521 return (EADDRNOTAVAIL
);
2525 * The destination is not directly reachable. Get a route
2526 * to the next-hop gateway and store it in rt_gwroute.
2528 if (rt
->rt_flags
& RTF_GATEWAY
) {
2529 struct rtentry
*gwrt
;
2530 unsigned int ifscope
;
2532 if (dst
->sa_family
== AF_INET
)
2533 ifscope
= sin_get_ifscope(dst
);
2534 else if (dst
->sa_family
== AF_INET6
)
2535 ifscope
= sin6_get_ifscope(dst
);
2537 ifscope
= IFSCOPE_NONE
;
2541 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2542 * points to a clone rather than a cloning route; see above
2543 * check for cloning loop avoidance (dst == gate).
2545 gwrt
= rtalloc1_scoped_locked(gate
, 1, RTF_PRCLONING
, ifscope
);
2547 RT_LOCK_ASSERT_NOTHELD(gwrt
);
2551 * Cloning loop avoidance:
2553 * In the presence of protocol-cloning and bad configuration,
2554 * it is possible to get stuck in bottomless mutual recursion
2555 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2556 * allowing protocol-cloning to operate for gateways (which
2557 * is probably the correct choice anyway), and avoid the
2558 * resulting reference loops by disallowing any route to run
2559 * through itself as a gateway. This is obviously mandatory
2560 * when we get rt->rt_output(). It implies that a route to
2561 * the gateway must already be present in the system in order
2562 * for the gateway to be referred to by another route.
2565 RT_REMREF_LOCKED(gwrt
);
2566 /* Release extra ref */
2567 RT_REMREF_LOCKED(rt
);
2568 return (EADDRINUSE
); /* failure */
2572 * If scoped, the gateway route must use the same interface;
2573 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2574 * should not change and are freely accessible.
2576 if (ifscope
!= IFSCOPE_NONE
&& (rt
->rt_flags
& RTF_IFSCOPE
) &&
2577 gwrt
!= NULL
&& gwrt
->rt_ifp
!= NULL
&&
2578 gwrt
->rt_ifp
->if_index
!= ifscope
) {
2579 rtfree_locked(gwrt
); /* rt != gwrt, no deadlock */
2580 /* Release extra ref */
2581 RT_REMREF_LOCKED(rt
);
2582 return ((rt
->rt_flags
& RTF_HOST
) ?
2583 EHOSTUNREACH
: ENETUNREACH
);
2586 /* Check again since we dropped the lock above */
2587 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2589 rtfree_locked(gwrt
);
2590 /* Release extra ref */
2591 RT_REMREF_LOCKED(rt
);
2595 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2596 rt_set_gwroute(rt
, dst
, gwrt
);
2599 * In case the (non-scoped) default route gets modified via
2600 * an ICMP redirect, record the interface index used for the
2601 * primary ifscope. Also done in rt_setif() to take care
2602 * of the non-redirect cases.
2604 if (rt_primary_default(rt
, dst
) && rt
->rt_ifp
!= NULL
) {
2605 set_primary_ifscope(dst
->sa_family
,
2606 rt
->rt_ifp
->if_index
);
2611 * If this is a change in a default route, update
2612 * necp client watchers to re-evaluate
2614 if (SA_DEFAULT(dst
)) {
2615 necp_update_all_clients();
2620 * Tell the kernel debugger about the new default gateway
2621 * if the gateway route uses the primary interface, or
2622 * if we are in a transient state before the non-scoped
2623 * default gateway is installed (similar to how the system
2624 * was behaving in the past). In future, it would be good
2625 * to do all this only when KDP is enabled.
2627 if ((dst
->sa_family
== AF_INET
) &&
2628 gwrt
!= NULL
&& gwrt
->rt_gateway
->sa_family
== AF_LINK
&&
2629 (gwrt
->rt_ifp
->if_index
== get_primary_ifscope(AF_INET
) ||
2630 get_primary_ifscope(AF_INET
) == IFSCOPE_NONE
)) {
2631 kdp_set_gateway_mac(SDL((void *)gwrt
->rt_gateway
)->
2635 /* Release extra ref from rtalloc1() */
2641 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2642 * are stored one after the other in the same malloc'd chunk. If we
2643 * have room, reuse the old buffer since rt_gateway already points
2644 * to the right place. Otherwise, malloc a new block and update
2645 * the 'dst' address and point rt_gateway to the right place.
2647 if (rt
->rt_gateway
== NULL
|| glen
> SA_SIZE(rt
->rt_gateway
->sa_len
)) {
2650 /* The underlying allocation is done with M_WAITOK set */
2651 R_Malloc(new, caddr_t
, dlen
+ glen
);
2653 /* Clear gateway route */
2654 rt_set_gwroute(rt
, dst
, NULL
);
2655 /* Release extra ref */
2656 RT_REMREF_LOCKED(rt
);
2661 * Copy from 'dst' and not rt_key(rt) because we can get
2662 * here to initialize a newly allocated route entry, in
2663 * which case rt_key(rt) is NULL (and so does rt_gateway).
2665 bzero(new, dlen
+ glen
);
2666 Bcopy(dst
, new, dst
->sa_len
);
2667 R_Free(rt_key(rt
)); /* free old block; NULL is okay */
2668 rt
->rt_nodes
->rn_key
= new;
2669 rt
->rt_gateway
= (struct sockaddr
*)(new + dlen
);
2673 * Copy the new gateway value into the memory chunk.
2675 Bcopy(gate
, rt
->rt_gateway
, gate
->sa_len
);
2678 * For consistency between rt_gateway and rt_key(gwrt).
2680 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
&&
2681 (rt
->rt_gwroute
->rt_flags
& RTF_IFSCOPE
)) {
2682 if (rt
->rt_gateway
->sa_family
== AF_INET
&&
2683 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET
) {
2684 sin_set_ifscope(rt
->rt_gateway
,
2685 sin_get_ifscope(rt_key(rt
->rt_gwroute
)));
2686 } else if (rt
->rt_gateway
->sa_family
== AF_INET6
&&
2687 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET6
) {
2688 sin6_set_ifscope(rt
->rt_gateway
,
2689 sin6_get_ifscope(rt_key(rt
->rt_gwroute
)));
2694 * This isn't going to do anything useful for host routes, so
2695 * don't bother. Also make sure we have a reasonable mask
2696 * (we don't yet have one during adds).
2698 if (!(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != 0) {
2699 struct rtfc_arg arg
;
2703 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2704 rt_fixchange
, &arg
);
2708 /* Release extra ref */
2709 RT_REMREF_LOCKED(rt
);
2716 rt_set_gwroute(struct rtentry
*rt
, struct sockaddr
*dst
, struct rtentry
*gwrt
)
2718 boolean_t gwrt_isrouter
;
2720 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2721 RT_LOCK_ASSERT_HELD(rt
);
2724 RT_ADDREF(gwrt
); /* for this routine */
2727 * Get rid of existing gateway route; if rt_gwroute is already
2728 * set to gwrt, this is slightly redundant (though safe since
2729 * we held an extra ref above) but makes the code simpler.
2731 if (rt
->rt_gwroute
!= NULL
) {
2732 struct rtentry
*ogwrt
= rt
->rt_gwroute
;
2734 VERIFY(rt
!= ogwrt
); /* sanity check */
2735 rt
->rt_gwroute
= NULL
;
2737 rtfree_locked(ogwrt
);
2739 VERIFY(rt
->rt_gwroute
== NULL
);
2743 * And associate the new gateway route.
2745 if ((rt
->rt_gwroute
= gwrt
) != NULL
) {
2746 RT_ADDREF(gwrt
); /* for rt */
2748 if (rt
->rt_flags
& RTF_WASCLONED
) {
2749 /* rt_parent might be NULL if rt is embryonic */
2750 gwrt_isrouter
= (rt
->rt_parent
!= NULL
&&
2751 SA_DEFAULT(rt_key(rt
->rt_parent
)) &&
2752 !RT_HOST(rt
->rt_parent
));
2754 gwrt_isrouter
= (SA_DEFAULT(dst
) && !RT_HOST(rt
));
2757 /* If gwrt points to a default router, mark it accordingly */
2758 if (gwrt_isrouter
&& RT_HOST(gwrt
) &&
2759 !(gwrt
->rt_flags
& RTF_ROUTER
)) {
2761 gwrt
->rt_flags
|= RTF_ROUTER
;
2765 RT_REMREF(gwrt
); /* for this routine */
2770 rt_maskedcopy(const struct sockaddr
*src
, struct sockaddr
*dst
,
2771 const struct sockaddr
*netmask
)
2773 const char *netmaskp
= &netmask
->sa_data
[0];
2774 const char *srcp
= &src
->sa_data
[0];
2775 char *dstp
= &dst
->sa_data
[0];
2776 const char *maskend
= (char *)dst
2777 + MIN(netmask
->sa_len
, src
->sa_len
);
2778 const char *srcend
= (char *)dst
+ src
->sa_len
;
2780 dst
->sa_len
= src
->sa_len
;
2781 dst
->sa_family
= src
->sa_family
;
2783 while (dstp
< maskend
)
2784 *dstp
++ = *srcp
++ & *netmaskp
++;
2786 memset(dstp
, 0, (size_t)(srcend
- dstp
));
2790 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2791 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2793 static struct radix_node
*
2794 node_lookup(struct sockaddr
*dst
, struct sockaddr
*netmask
,
2795 unsigned int ifscope
)
2797 struct radix_node_head
*rnh
;
2798 struct radix_node
*rn
;
2799 struct sockaddr_storage ss
, mask
;
2800 int af
= dst
->sa_family
;
2801 struct matchleaf_arg ma
= { ifscope
};
2802 rn_matchf_t
*f
= rn_match_ifscope
;
2805 if (af
!= AF_INET
&& af
!= AF_INET6
)
2808 rnh
= rt_tables
[af
];
2811 * Transform dst into the internal routing table form,
2812 * clearing out the scope ID field if ifscope isn't set.
2814 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ? NULL
: &ifscope
);
2816 /* Transform netmask into the internal routing table form */
2817 if (netmask
!= NULL
)
2818 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2820 if (ifscope
== IFSCOPE_NONE
)
2823 rn
= rnh
->rnh_lookup_args(dst
, netmask
, rnh
, f
, w
);
2824 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2831 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2833 static struct radix_node
*
2834 node_lookup_default(int af
)
2836 struct radix_node_head
*rnh
;
2838 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
2839 rnh
= rt_tables
[af
];
2841 return (af
== AF_INET
? rnh
->rnh_lookup(&sin_def
, NULL
, rnh
) :
2842 rnh
->rnh_lookup(&sin6_def
, NULL
, rnh
));
2846 rt_ifa_is_dst(struct sockaddr
*dst
, struct ifaddr
*ifa
)
2848 boolean_t result
= FALSE
;
2850 if (ifa
== NULL
|| ifa
->ifa_addr
== NULL
)
2855 if (dst
->sa_family
== ifa
->ifa_addr
->sa_family
&&
2856 ((dst
->sa_family
== AF_INET
&&
2857 SIN(dst
)->sin_addr
.s_addr
==
2858 SIN(ifa
->ifa_addr
)->sin_addr
.s_addr
) ||
2859 (dst
->sa_family
== AF_INET6
&&
2860 SA6_ARE_ADDR_EQUAL(SIN6(dst
), SIN6(ifa
->ifa_addr
)))))
2869 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2870 * callback which could be address family-specific. The main difference
2871 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2872 * not alter the expiring state of a route, whereas a match would unexpire
2873 * or revalidate the route.
2875 * The optional scope or interface index property of a route allows for a
2876 * per-interface route instance. This permits multiple route entries having
2877 * the same destination (but not necessarily the same gateway) to exist in
2878 * the routing table; each of these entries is specific to the corresponding
2879 * interface. This is made possible by storing the scope ID value into the
2880 * radix key, thus making each route entry unique. These scoped entries
2881 * exist along with the regular, non-scoped entries in the same radix tree
2882 * for a given address family (AF_INET/AF_INET6); the scope logically
2883 * partitions it into multiple per-interface sub-trees.
2885 * When a scoped route lookup is performed, the routing table is searched for
2886 * the best match that would result in a route using the same interface as the
2887 * one associated with the scope (the exception to this are routes that point
2888 * to the loopback interface). The search rule follows the longest matching
2889 * prefix with the additional interface constraint.
2891 static struct rtentry
*
2892 rt_lookup_common(boolean_t lookup_only
, boolean_t coarse
, struct sockaddr
*dst
,
2893 struct sockaddr
*netmask
, struct radix_node_head
*rnh
, unsigned int ifscope
)
2895 struct radix_node
*rn0
, *rn
= NULL
;
2896 int af
= dst
->sa_family
;
2897 struct sockaddr_storage dst_ss
;
2898 struct sockaddr_storage mask_ss
;
2900 #if (DEVELOPMENT || DEBUG)
2901 char dbuf
[MAX_SCOPE_ADDR_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
2902 char s_dst
[MAX_IPv6_STR_LEN
], s_netmask
[MAX_IPv6_STR_LEN
];
2904 VERIFY(!coarse
|| ifscope
== IFSCOPE_NONE
);
2906 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2909 * While we have rnh_lock held, see if we need to schedule the timer.
2911 if (nd6_sched_timeout_want
)
2912 nd6_sched_timeout(NULL
, NULL
);
2919 * Non-scoped route lookup.
2922 if (af
!= AF_INET
&& af
!= AF_INET6
) {
2924 if (af
!= AF_INET
) {
2926 rn
= rnh
->rnh_matchaddr(dst
, rnh
);
2929 * Don't return a root node; also, rnh_matchaddr callback
2930 * would have done the necessary work to clear RTPRF_OURS
2931 * for certain protocol families.
2933 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2936 RT_LOCK_SPIN(RT(rn
));
2937 if (!(RT(rn
)->rt_flags
& RTF_CONDEMNED
)) {
2938 RT_ADDREF_LOCKED(RT(rn
));
2948 /* Transform dst/netmask into the internal routing table form */
2949 dst
= sa_copy(dst
, &dst_ss
, &ifscope
);
2950 if (netmask
!= NULL
)
2951 netmask
= ma_copy(af
, netmask
, &mask_ss
, ifscope
);
2952 dontcare
= (ifscope
== IFSCOPE_NONE
);
2954 #if (DEVELOPMENT || DEBUG)
2957 (void) inet_ntop(af
, &SIN(dst
)->sin_addr
.s_addr
,
2958 s_dst
, sizeof (s_dst
));
2960 (void) inet_ntop(af
, &SIN6(dst
)->sin6_addr
,
2961 s_dst
, sizeof (s_dst
));
2963 if (netmask
!= NULL
&& af
== AF_INET
)
2964 (void) inet_ntop(af
, &SIN(netmask
)->sin_addr
.s_addr
,
2965 s_netmask
, sizeof (s_netmask
));
2966 if (netmask
!= NULL
&& af
== AF_INET6
)
2967 (void) inet_ntop(af
, &SIN6(netmask
)->sin6_addr
,
2968 s_netmask
, sizeof (s_netmask
));
2971 printf("%s (%d, %d, %s, %s, %u)\n",
2972 __func__
, lookup_only
, coarse
, s_dst
, s_netmask
, ifscope
);
2977 * Scoped route lookup:
2979 * We first perform a non-scoped lookup for the original result.
2980 * Afterwards, depending on whether or not the caller has specified
2981 * a scope, we perform a more specific scoped search and fallback
2982 * to this original result upon failure.
2984 rn0
= rn
= node_lookup(dst
, netmask
, IFSCOPE_NONE
);
2987 * If the caller did not specify a scope, use the primary scope
2988 * derived from the system's non-scoped default route. If, for
2989 * any reason, there is no primary interface, ifscope will be
2990 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
2991 * we'll do a more-specific search below, scoped to the interface
2995 ifscope
= get_primary_ifscope(af
);
2998 * Keep the original result if either of the following is true:
3000 * 1) The interface portion of the route has the same interface
3001 * index as the scope value and it is marked with RTF_IFSCOPE.
3002 * 2) The route uses the loopback interface, in which case the
3003 * destination (host/net) is local/loopback.
3005 * Otherwise, do a more specified search using the scope;
3006 * we're holding rnh_lock now, so rt_ifp should not change.
3009 struct rtentry
*rt
= RT(rn
);
3010 #if (DEVELOPMENT || DEBUG)
3012 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3013 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
3016 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3017 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3018 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3021 if (!(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) ||
3022 (rt
->rt_flags
& RTF_GATEWAY
)) {
3023 if (rt
->rt_ifp
->if_index
!= ifscope
) {
3025 * Wrong interface; keep the original result
3026 * only if the caller did not specify a scope,
3027 * and do a more specific scoped search using
3028 * the scope of the found route. Otherwise,
3029 * start again from scratch.
3031 * For loopback scope we keep the unscoped
3032 * route for local addresses
3036 ifscope
= rt
->rt_ifp
->if_index
;
3037 else if (ifscope
!= lo_ifp
->if_index
||
3038 rt_ifa_is_dst(dst
, rt
->rt_ifa
) == FALSE
)
3040 } else if (!(rt
->rt_flags
& RTF_IFSCOPE
)) {
3042 * Right interface, except that this route
3043 * isn't marked with RTF_IFSCOPE. Do a more
3044 * specific scoped search. Keep the original
3045 * result and return it it in case the scoped
3054 * Scoped search. Find the most specific entry having the same
3055 * interface scope as the one requested. The following will result
3056 * in searching for the longest prefix scoped match.
3059 rn
= node_lookup(dst
, netmask
, ifscope
);
3060 #if (DEVELOPMENT || DEBUG)
3061 if (rt_verbose
&& rn
!= NULL
) {
3062 struct rtentry
*rt
= RT(rn
);
3064 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3065 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
3068 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3069 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3070 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3075 * Use the original result if either of the following is true:
3077 * 1) The scoped search did not yield any result.
3078 * 2) The caller insists on performing a coarse-grained lookup.
3079 * 3) The result from the scoped search is a scoped default route,
3080 * and the original (non-scoped) result is not a default route,
3081 * i.e. the original result is a more specific host/net route.
3082 * 4) The scoped search yielded a net route but the original
3083 * result is a host route, i.e. the original result is treated
3084 * as a more specific route.
3086 if (rn
== NULL
|| coarse
|| (rn0
!= NULL
&&
3087 ((SA_DEFAULT(rt_key(RT(rn
))) && !SA_DEFAULT(rt_key(RT(rn0
)))) ||
3088 (!RT_HOST(rn
) && RT_HOST(rn0
)))))
3092 * If we still don't have a route, use the non-scoped default
3093 * route as long as the interface portion satistifes the scope.
3095 if (rn
== NULL
&& (rn
= node_lookup_default(af
)) != NULL
&&
3096 RT(rn
)->rt_ifp
->if_index
!= ifscope
) {
3102 * Manually clear RTPRF_OURS using rt_validate() and
3103 * bump up the reference count after, and not before;
3104 * we only get here for AF_INET/AF_INET6. node_lookup()
3105 * has done the check against RNF_ROOT, so we can be sure
3106 * that we're not returning a root node here.
3108 RT_LOCK_SPIN(RT(rn
));
3109 if (rt_validate(RT(rn
))) {
3110 RT_ADDREF_LOCKED(RT(rn
));
3117 #if (DEVELOPMENT || DEBUG)
3120 printf("%s %u return NULL\n", __func__
, ifscope
);
3122 struct rtentry
*rt
= RT(rn
);
3124 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3126 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3127 __func__
, ifscope
, rt
,
3129 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3130 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3131 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3139 rt_lookup(boolean_t lookup_only
, struct sockaddr
*dst
, struct sockaddr
*netmask
,
3140 struct radix_node_head
*rnh
, unsigned int ifscope
)
3142 return (rt_lookup_common(lookup_only
, FALSE
, dst
, netmask
,
3147 rt_lookup_coarse(boolean_t lookup_only
, struct sockaddr
*dst
,
3148 struct sockaddr
*netmask
, struct radix_node_head
*rnh
)
3150 return (rt_lookup_common(lookup_only
, TRUE
, dst
, netmask
,
3151 rnh
, IFSCOPE_NONE
));
3155 rt_validate(struct rtentry
*rt
)
3157 RT_LOCK_ASSERT_HELD(rt
);
3159 if ((rt
->rt_flags
& (RTF_UP
| RTF_CONDEMNED
)) == RTF_UP
) {
3160 int af
= rt_key(rt
)->sa_family
;
3163 (void) in_validate(RN(rt
));
3164 else if (af
== AF_INET6
)
3165 (void) in6_validate(RN(rt
));
3170 return (rt
!= NULL
);
3174 * Set up a routing table entry, normally
3178 rtinit(struct ifaddr
*ifa
, int cmd
, int flags
)
3182 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
3184 lck_mtx_lock(rnh_lock
);
3185 error
= rtinit_locked(ifa
, cmd
, flags
);
3186 lck_mtx_unlock(rnh_lock
);
3192 rtinit_locked(struct ifaddr
*ifa
, int cmd
, int flags
)
3194 struct radix_node_head
*rnh
;
3195 uint8_t nbuf
[128]; /* long enough for IPv6 */
3196 #if (DEVELOPMENT || DEBUG)
3197 char dbuf
[MAX_IPv6_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
3198 char abuf
[MAX_IPv6_STR_LEN
];
3200 struct rtentry
*rt
= NULL
;
3201 struct sockaddr
*dst
;
3202 struct sockaddr
*netmask
;
3206 * Holding rnh_lock here prevents the possibility of ifa from
3207 * changing (e.g. in_ifinit), so it is safe to access its
3208 * ifa_{dst}addr (here and down below) without locking.
3210 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
3212 if (flags
& RTF_HOST
) {
3213 dst
= ifa
->ifa_dstaddr
;
3216 dst
= ifa
->ifa_addr
;
3217 netmask
= ifa
->ifa_netmask
;
3220 if (dst
->sa_len
== 0) {
3221 log(LOG_ERR
, "%s: %s failed, invalid dst sa_len %d\n",
3222 __func__
, rtm2str(cmd
), dst
->sa_len
);
3226 if (netmask
!= NULL
&& netmask
->sa_len
> sizeof (nbuf
)) {
3227 log(LOG_ERR
, "%s: %s failed, mask sa_len %d too large\n",
3228 __func__
, rtm2str(cmd
), dst
->sa_len
);
3233 #if (DEVELOPMENT || DEBUG)
3234 if (dst
->sa_family
== AF_INET
) {
3235 (void) inet_ntop(AF_INET
, &SIN(dst
)->sin_addr
.s_addr
,
3236 abuf
, sizeof (abuf
));
3239 else if (dst
->sa_family
== AF_INET6
) {
3240 (void) inet_ntop(AF_INET6
, &SIN6(dst
)->sin6_addr
,
3241 abuf
, sizeof (abuf
));
3244 #endif /* (DEVELOPMENT || DEBUG) */
3246 if ((rnh
= rt_tables
[dst
->sa_family
]) == NULL
) {
3252 * If it's a delete, check that if it exists, it's on the correct
3253 * interface or we might scrub a route to another ifa which would
3254 * be confusing at best and possibly worse.
3256 if (cmd
== RTM_DELETE
) {
3258 * It's a delete, so it should already exist..
3259 * If it's a net, mask off the host bits
3260 * (Assuming we have a mask)
3262 if (netmask
!= NULL
) {
3263 rt_maskedcopy(dst
, SA(nbuf
), netmask
);
3267 * Get an rtentry that is in the routing tree and contains
3268 * the correct info. Note that we perform a coarse-grained
3269 * lookup here, in case there is a scoped variant of the
3270 * subnet/prefix route which we should ignore, as we never
3271 * add a scoped subnet/prefix route as part of adding an
3272 * interface address.
3274 rt
= rt_lookup_coarse(TRUE
, dst
, NULL
, rnh
);
3276 #if (DEVELOPMENT || DEBUG)
3277 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3280 * Ok so we found the rtentry. it has an extra reference
3281 * for us at this stage. we won't need that so
3285 if (rt
->rt_ifa
!= ifa
) {
3287 * If the interface address in the rtentry
3288 * doesn't match the interface we are using,
3289 * then we don't want to delete it, so return
3290 * an error. This seems to be the only point
3291 * of this whole RTM_DELETE clause.
3293 #if (DEVELOPMENT || DEBUG)
3295 log(LOG_DEBUG
, "%s: not removing "
3296 "route to %s->%s->%s, flags %b, "
3297 "ifaddr %s, rt_ifa 0x%llx != "
3298 "ifa 0x%llx\n", __func__
, dbuf
,
3299 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3300 rt
->rt_ifp
->if_xname
: ""),
3301 rt
->rt_flags
, RTF_BITS
, abuf
,
3302 (uint64_t)VM_KERNEL_ADDRPERM(
3304 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3306 #endif /* (DEVELOPMENT || DEBUG) */
3307 RT_REMREF_LOCKED(rt
);
3310 error
= ((flags
& RTF_HOST
) ?
3311 EHOSTUNREACH
: ENETUNREACH
);
3313 } else if (rt
->rt_flags
& RTF_STATIC
) {
3315 * Don't remove the subnet/prefix route if
3316 * this was manually added from above.
3318 #if (DEVELOPMENT || DEBUG)
3320 log(LOG_DEBUG
, "%s: not removing "
3321 "static route to %s->%s->%s, "
3322 "flags %b, ifaddr %s\n", __func__
,
3323 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3324 rt
->rt_ifp
->if_xname
: ""),
3325 rt
->rt_flags
, RTF_BITS
, abuf
);
3327 #endif /* (DEVELOPMENT || DEBUG) */
3328 RT_REMREF_LOCKED(rt
);
3334 #if (DEVELOPMENT || DEBUG)
3336 log(LOG_DEBUG
, "%s: removing route to "
3337 "%s->%s->%s, flags %b, ifaddr %s\n",
3338 __func__
, dbuf
, gbuf
,
3339 ((rt
->rt_ifp
!= NULL
) ?
3340 rt
->rt_ifp
->if_xname
: ""),
3341 rt
->rt_flags
, RTF_BITS
, abuf
);
3343 #endif /* (DEVELOPMENT || DEBUG) */
3344 RT_REMREF_LOCKED(rt
);
3350 * Do the actual request
3352 if ((error
= rtrequest_locked(cmd
, dst
, ifa
->ifa_addr
, netmask
,
3353 flags
| ifa
->ifa_flags
, &rt
)) != 0)
3357 #if (DEVELOPMENT || DEBUG)
3358 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3359 #endif /* (DEVELOPMENT || DEBUG) */
3363 * If we are deleting, and we found an entry, then it's
3364 * been removed from the tree. Notify any listening
3365 * routing agents of the change and throw it away.
3368 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3370 #if (DEVELOPMENT || DEBUG)
3372 log(LOG_DEBUG
, "%s: removed route to %s->%s->%s, "
3373 "flags %b, ifaddr %s\n", __func__
, dbuf
, gbuf
,
3374 ((rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: ""),
3375 rt
->rt_flags
, RTF_BITS
, abuf
);
3377 #endif /* (DEVELOPMENT || DEBUG) */
3383 * We are adding, and we have a returned routing entry.
3384 * We need to sanity check the result. If it came back
3385 * with an unexpected interface, then it must have already
3386 * existed or something.
3389 if (rt
->rt_ifa
!= ifa
) {
3390 void (*ifa_rtrequest
)
3391 (int, struct rtentry
*, struct sockaddr
*);
3392 #if (DEVELOPMENT || DEBUG)
3394 if (!(rt
->rt_ifa
->ifa_ifp
->if_flags
&
3395 (IFF_POINTOPOINT
|IFF_LOOPBACK
))) {
3396 log(LOG_ERR
, "%s: %s route to %s->%s->%s, "
3397 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3398 "ifa 0x%llx\n", __func__
, rtm2str(cmd
),
3399 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3400 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3402 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3403 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3406 log(LOG_DEBUG
, "%s: %s route to %s->%s->%s, "
3407 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3408 "now 0x%llx\n", __func__
, rtm2str(cmd
),
3409 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3410 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3412 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3413 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3415 #endif /* (DEVELOPMENT || DEBUG) */
3418 * Ask that the protocol in question
3419 * remove anything it has associated with
3420 * this route and ifaddr.
3422 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
3423 if (ifa_rtrequest
!= NULL
)
3424 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
3426 * Set the route's ifa.
3430 if (rt
->rt_ifp
!= ifa
->ifa_ifp
) {
3432 * Purge any link-layer info caching.
3434 if (rt
->rt_llinfo_purge
!= NULL
)
3435 rt
->rt_llinfo_purge(rt
);
3437 * Adjust route ref count for the interfaces.
3439 if (rt
->rt_if_ref_fn
!= NULL
) {
3440 rt
->rt_if_ref_fn(ifa
->ifa_ifp
, 1);
3441 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3446 * And substitute in references to the ifaddr
3449 rt
->rt_ifp
= ifa
->ifa_ifp
;
3451 * If rmx_mtu is not locked, update it
3452 * to the MTU used by the new interface.
3454 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
))
3455 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
3458 * Now ask the protocol to check if it needs
3459 * any special processing in its new form.
3461 ifa_rtrequest
= ifa
->ifa_rtrequest
;
3462 if (ifa_rtrequest
!= NULL
)
3463 ifa_rtrequest(RTM_ADD
, rt
, NULL
);
3465 #if (DEVELOPMENT || DEBUG)
3467 log(LOG_DEBUG
, "%s: added route to %s->%s->%s, "
3468 "flags %b, ifaddr %s\n", __func__
, dbuf
,
3469 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3470 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3473 #endif /* (DEVELOPMENT || DEBUG) */
3476 * notify any listenning routing agents of the change
3478 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3480 * We just wanted to add it; we don't actually need a
3481 * reference. This will result in a route that's added
3482 * to the routing table without a reference count. The
3483 * RTM_DELETE code will do the necessary step to adjust
3484 * the reference count at deletion time.
3486 RT_REMREF_LOCKED(rt
);
3499 rt_set_idleref(struct rtentry
*rt
)
3501 RT_LOCK_ASSERT_HELD(rt
);
3504 * We currently keep idle refcnt only on unicast cloned routes
3505 * that aren't marked with RTF_NOIFREF.
3507 if (rt
->rt_parent
!= NULL
&& !(rt
->rt_flags
&
3508 (RTF_NOIFREF
|RTF_BROADCAST
| RTF_MULTICAST
)) &&
3509 (rt
->rt_flags
& (RTF_UP
|RTF_WASCLONED
|RTF_IFREF
)) ==
3510 (RTF_UP
|RTF_WASCLONED
)) {
3511 rt_clear_idleref(rt
); /* drop existing refcnt if any */
3512 rt
->rt_if_ref_fn
= rte_if_ref
;
3513 /* Become a regular mutex, just in case */
3514 RT_CONVERT_LOCK(rt
);
3515 rt
->rt_if_ref_fn(rt
->rt_ifp
, 1);
3516 rt
->rt_flags
|= RTF_IFREF
;
3521 rt_clear_idleref(struct rtentry
*rt
)
3523 RT_LOCK_ASSERT_HELD(rt
);
3525 if (rt
->rt_if_ref_fn
!= NULL
) {
3526 VERIFY((rt
->rt_flags
& (RTF_NOIFREF
| RTF_IFREF
)) == RTF_IFREF
);
3527 /* Become a regular mutex, just in case */
3528 RT_CONVERT_LOCK(rt
);
3529 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3530 rt
->rt_flags
&= ~RTF_IFREF
;
3531 rt
->rt_if_ref_fn
= NULL
;
3536 rt_set_proxy(struct rtentry
*rt
, boolean_t set
)
3538 lck_mtx_lock(rnh_lock
);
3541 * Search for any cloned routes which might have
3542 * been formed from this node, and delete them.
3544 if (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) {
3545 struct radix_node_head
*rnh
= rt_tables
[rt_key(rt
)->sa_family
];
3548 rt
->rt_flags
|= RTF_PROXY
;
3550 rt
->rt_flags
&= ~RTF_PROXY
;
3553 if (rnh
!= NULL
&& rt_mask(rt
)) {
3554 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
3560 lck_mtx_unlock(rnh_lock
);
3564 rte_lock_init(struct rtentry
*rt
)
3566 lck_mtx_init(&rt
->rt_lock
, rte_mtx_grp
, rte_mtx_attr
);
3570 rte_lock_destroy(struct rtentry
*rt
)
3572 RT_LOCK_ASSERT_NOTHELD(rt
);
3573 lck_mtx_destroy(&rt
->rt_lock
, rte_mtx_grp
);
3577 rt_lock(struct rtentry
*rt
, boolean_t spin
)
3579 RT_LOCK_ASSERT_NOTHELD(rt
);
3581 lck_mtx_lock_spin(&rt
->rt_lock
);
3583 lck_mtx_lock(&rt
->rt_lock
);
3584 if (rte_debug
& RTD_DEBUG
)
3585 rte_lock_debug((struct rtentry_dbg
*)rt
);
3589 rt_unlock(struct rtentry
*rt
)
3591 if (rte_debug
& RTD_DEBUG
)
3592 rte_unlock_debug((struct rtentry_dbg
*)rt
);
3593 lck_mtx_unlock(&rt
->rt_lock
);
3598 rte_lock_debug(struct rtentry_dbg
*rte
)
3602 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3603 idx
= atomic_add_32_ov(&rte
->rtd_lock_cnt
, 1) % CTRACE_HIST_SIZE
;
3604 if (rte_debug
& RTD_TRACE
)
3605 ctrace_record(&rte
->rtd_lock
[idx
]);
3609 rte_unlock_debug(struct rtentry_dbg
*rte
)
3613 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3614 idx
= atomic_add_32_ov(&rte
->rtd_unlock_cnt
, 1) % CTRACE_HIST_SIZE
;
3615 if (rte_debug
& RTD_TRACE
)
3616 ctrace_record(&rte
->rtd_unlock
[idx
]);
3619 static struct rtentry
*
3622 if (rte_debug
& RTD_DEBUG
)
3623 return (rte_alloc_debug());
3625 return ((struct rtentry
*)zalloc(rte_zone
));
3629 rte_free(struct rtentry
*p
)
3631 if (rte_debug
& RTD_DEBUG
) {
3636 if (p
->rt_refcnt
!= 0) {
3637 panic("rte_free: rte=%p refcnt=%d non-zero\n", p
, p
->rt_refcnt
);
3645 rte_if_ref(struct ifnet
*ifp
, int cnt
)
3647 struct kev_msg ev_msg
;
3648 struct net_event_data ev_data
;
3651 /* Force cnt to 1 increment/decrement */
3652 if (cnt
< -1 || cnt
> 1) {
3653 panic("%s: invalid count argument (%d)", __func__
, cnt
);
3656 old
= atomic_add_32_ov(&ifp
->if_route_refcnt
, cnt
);
3657 if (cnt
< 0 && old
== 0) {
3658 panic("%s: ifp=%p negative route refcnt!", __func__
, ifp
);
3662 * The following is done without first holding the ifnet lock,
3663 * for performance reasons. The relevant ifnet fields, with
3664 * the exception of the if_idle_flags, are never changed
3665 * during the lifetime of the ifnet. The if_idle_flags
3666 * may possibly be modified, so in the event that the value
3667 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3668 * sending the event anyway. This is harmless as it is just
3669 * a notification to the monitoring agent in user space, and
3670 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3672 if ((ifp
->if_idle_flags
& IFRF_IDLE_NOTIFY
) && cnt
< 0 && old
== 1) {
3673 bzero(&ev_msg
, sizeof (ev_msg
));
3674 bzero(&ev_data
, sizeof (ev_data
));
3676 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3677 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
3678 ev_msg
.kev_subclass
= KEV_DL_SUBCLASS
;
3679 ev_msg
.event_code
= KEV_DL_IF_IDLE_ROUTE_REFCNT
;
3681 strlcpy(&ev_data
.if_name
[0], ifp
->if_name
, IFNAMSIZ
);
3683 ev_data
.if_family
= ifp
->if_family
;
3684 ev_data
.if_unit
= ifp
->if_unit
;
3685 ev_msg
.dv
[0].data_length
= sizeof (struct net_event_data
);
3686 ev_msg
.dv
[0].data_ptr
= &ev_data
;
3688 dlil_post_complete_msg(NULL
, &ev_msg
);
3692 static inline struct rtentry
*
3693 rte_alloc_debug(void)
3695 struct rtentry_dbg
*rte
;
3697 rte
= ((struct rtentry_dbg
*)zalloc(rte_zone
));
3699 bzero(rte
, sizeof (*rte
));
3700 if (rte_debug
& RTD_TRACE
)
3701 ctrace_record(&rte
->rtd_alloc
);
3702 rte
->rtd_inuse
= RTD_INUSE
;
3704 return ((struct rtentry
*)rte
);
3708 rte_free_debug(struct rtentry
*p
)
3710 struct rtentry_dbg
*rte
= (struct rtentry_dbg
*)p
;
3712 if (p
->rt_refcnt
!= 0) {
3713 panic("rte_free: rte=%p refcnt=%d\n", p
, p
->rt_refcnt
);
3716 if (rte
->rtd_inuse
== RTD_FREED
) {
3717 panic("rte_free: double free rte=%p\n", rte
);
3719 } else if (rte
->rtd_inuse
!= RTD_INUSE
) {
3720 panic("rte_free: corrupted rte=%p\n", rte
);
3723 bcopy((caddr_t
)p
, (caddr_t
)&rte
->rtd_entry_saved
, sizeof (*p
));
3724 /* Preserve rt_lock to help catch use-after-free cases */
3725 bzero((caddr_t
)p
, offsetof(struct rtentry
, rt_lock
));
3727 rte
->rtd_inuse
= RTD_FREED
;
3729 if (rte_debug
& RTD_TRACE
)
3730 ctrace_record(&rte
->rtd_free
);
3732 if (!(rte_debug
& RTD_NO_FREE
))
3737 ctrace_record(ctrace_t
*tr
)
3739 tr
->th
= current_thread();
3740 bzero(tr
->pc
, sizeof (tr
->pc
));
3741 (void) OSBacktrace(tr
->pc
, CTRACE_STACK_SIZE
);
3745 route_copyout(struct route
*dst
, const struct route
*src
, size_t length
)
3747 /* Copy everything (rt, srcif, flags, dst) from src */
3748 bcopy(src
, dst
, length
);
3750 /* Hold one reference for the local copy of struct route */
3751 if (dst
->ro_rt
!= NULL
)
3752 RT_ADDREF(dst
->ro_rt
);
3754 /* Hold one reference for the local copy of struct lle */
3755 if (dst
->ro_lle
!= NULL
)
3756 LLE_ADDREF(dst
->ro_lle
);
3758 /* Hold one reference for the local copy of struct ifaddr */
3759 if (dst
->ro_srcia
!= NULL
)
3760 IFA_ADDREF(dst
->ro_srcia
);
3764 route_copyin(struct route
*src
, struct route
*dst
, size_t length
)
3767 * No cached route at the destination?
3768 * If none, then remove old references if present
3769 * and copy entire src route.
3771 if (dst
->ro_rt
== NULL
) {
3773 * Ditch the cached link layer reference (dst)
3774 * since we're about to take everything there is in src
3776 if (dst
->ro_lle
!= NULL
)
3777 LLE_REMREF(dst
->ro_lle
);
3779 * Ditch the address in the cached copy (dst) since
3780 * we're about to take everything there is in src.
3782 if (dst
->ro_srcia
!= NULL
)
3783 IFA_REMREF(dst
->ro_srcia
);
3785 * Copy everything (rt, ro_lle, srcia, flags, dst) from src; the
3786 * references to rt and/or srcia were held at the time
3787 * of storage and are kept intact.
3789 bcopy(src
, dst
, length
);
3794 * We know dst->ro_rt is not NULL here.
3795 * If the src->ro_rt is the same, update ro_lle, srcia and flags
3796 * and ditch the route in the local copy.
3798 if (dst
->ro_rt
== src
->ro_rt
) {
3799 dst
->ro_flags
= src
->ro_flags
;
3801 if (dst
->ro_lle
!= src
->ro_lle
) {
3802 if (dst
->ro_lle
!= NULL
)
3803 LLE_REMREF(dst
->ro_lle
);
3804 dst
->ro_lle
= src
->ro_lle
;
3805 } else if (src
->ro_lle
!= NULL
) {
3806 LLE_REMREF(src
->ro_lle
);
3809 if (dst
->ro_srcia
!= src
->ro_srcia
) {
3810 if (dst
->ro_srcia
!= NULL
)
3811 IFA_REMREF(dst
->ro_srcia
);
3812 dst
->ro_srcia
= src
->ro_srcia
;
3813 } else if (src
->ro_srcia
!= NULL
) {
3814 IFA_REMREF(src
->ro_srcia
);
3821 * If they are dst's ro_rt is not equal to src's,
3822 * and src'd rt is not NULL, then remove old references
3823 * if present and copy entire src route.
3825 if (src
->ro_rt
!= NULL
) {
3828 if (dst
->ro_lle
!= NULL
)
3829 LLE_REMREF(dst
->ro_lle
);
3830 if (dst
->ro_srcia
!= NULL
)
3831 IFA_REMREF(dst
->ro_srcia
);
3832 bcopy(src
, dst
, length
);
3837 * Here, dst's cached route is not NULL but source's is.
3838 * Just get rid of all the other cached reference in src.
3840 if (src
->ro_srcia
!= NULL
) {
3842 * Ditch src address in the local copy (src) since we're
3843 * not caching the route entry anyway (ro_rt is NULL).
3845 IFA_REMREF(src
->ro_srcia
);
3847 if (src
->ro_lle
!= NULL
) {
3849 * Ditch cache lle in the local copy (src) since we're
3850 * not caching the route anyway (ro_rt is NULL).
3852 LLE_REMREF(src
->ro_lle
);
3855 /* This function consumes the references on src */
3858 src
->ro_srcia
= NULL
;
3862 * route_to_gwroute will find the gateway route for a given route.
3864 * If the route is down, look the route up again.
3865 * If the route goes through a gateway, get the route to the gateway.
3866 * If the gateway route is down, look it up again.
3867 * If the route is set to reject, verify it hasn't expired.
3869 * If the returned route is non-NULL, the caller is responsible for
3870 * releasing the reference and unlocking the route.
3872 #define senderr(e) { error = (e); goto bad; }
3874 route_to_gwroute(const struct sockaddr
*net_dest
, struct rtentry
*hint0
,
3875 struct rtentry
**out_route
)
3878 struct rtentry
*rt
= hint0
, *hint
= hint0
;
3880 unsigned int ifindex
;
3889 * Next hop determination. Because we may involve the gateway route
3890 * in addition to the original route, locking is rather complicated.
3891 * The general concept is that regardless of whether the route points
3892 * to the original route or to the gateway route, this routine takes
3893 * an extra reference on such a route. This extra reference will be
3894 * released at the end.
3896 * Care must be taken to ensure that the "hint0" route never gets freed
3897 * via rtfree(), since the caller may have stored it inside a struct
3898 * route with a reference held for that placeholder.
3901 ifindex
= rt
->rt_ifp
->if_index
;
3902 RT_ADDREF_LOCKED(rt
);
3903 if (!(rt
->rt_flags
& RTF_UP
)) {
3904 RT_REMREF_LOCKED(rt
);
3906 /* route is down, find a new one */
3907 hint
= rt
= rtalloc1_scoped((struct sockaddr
*)
3908 (size_t)net_dest
, 1, 0, ifindex
);
3911 ifindex
= rt
->rt_ifp
->if_index
;
3913 senderr(EHOSTUNREACH
);
3918 * We have a reference to "rt" by now; it will either
3919 * be released or freed at the end of this routine.
3921 RT_LOCK_ASSERT_HELD(rt
);
3922 if ((gwroute
= (rt
->rt_flags
& RTF_GATEWAY
))) {
3923 struct rtentry
*gwrt
= rt
->rt_gwroute
;
3924 struct sockaddr_storage ss
;
3925 struct sockaddr
*gw
= (struct sockaddr
*)&ss
;
3928 RT_ADDREF_LOCKED(hint
);
3930 /* If there's no gateway rt, look it up */
3932 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3933 rt
->rt_gateway
->sa_len
));
3937 /* Become a regular mutex */
3938 RT_CONVERT_LOCK(rt
);
3941 * Take gwrt's lock while holding route's lock;
3942 * this is okay since gwrt never points back
3943 * to "rt", so no lock ordering issues.
3946 if (!(gwrt
->rt_flags
& RTF_UP
)) {
3947 rt
->rt_gwroute
= NULL
;
3949 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3950 rt
->rt_gateway
->sa_len
));
3954 lck_mtx_lock(rnh_lock
);
3955 gwrt
= rtalloc1_scoped_locked(gw
, 1, 0, ifindex
);
3959 * Bail out if the route is down, no route
3960 * to gateway, circular route, or if the
3961 * gateway portion of "rt" has changed.
3963 if (!(rt
->rt_flags
& RTF_UP
) || gwrt
== NULL
||
3964 gwrt
== rt
|| !equal(gw
, rt
->rt_gateway
)) {
3966 RT_REMREF_LOCKED(gwrt
);
3970 RT_REMREF_LOCKED(hint
);
3974 rtfree_locked(gwrt
);
3975 lck_mtx_unlock(rnh_lock
);
3976 senderr(EHOSTUNREACH
);
3978 VERIFY(gwrt
!= NULL
);
3980 * Set gateway route; callee adds ref to gwrt;
3981 * gwrt has an extra ref from rtalloc1() for
3984 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
3986 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
3988 lck_mtx_unlock(rnh_lock
);
3991 RT_ADDREF_LOCKED(gwrt
);
3994 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
3998 VERIFY(rt
== gwrt
&& rt
!= hint
);
4001 * This is an opportunity to revalidate the parent route's
4002 * rt_gwroute, in case it now points to a dead route entry.
4003 * Parent route won't go away since the clone (hint) holds
4004 * a reference to it. rt == gwrt.
4007 if ((hint
->rt_flags
& (RTF_WASCLONED
| RTF_UP
)) ==
4008 (RTF_WASCLONED
| RTF_UP
)) {
4009 struct rtentry
*prt
= hint
->rt_parent
;
4010 VERIFY(prt
!= NULL
);
4012 RT_CONVERT_LOCK(hint
);
4015 rt_revalidate_gwroute(prt
, rt
);
4021 /* Clean up "hint" now; see notes above regarding hint0 */
4028 /* rt == gwrt; if it is now down, give up */
4030 if (!(rt
->rt_flags
& RTF_UP
)) {
4032 senderr(EHOSTUNREACH
);
4036 if (rt
->rt_flags
& RTF_REJECT
) {
4037 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
4038 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
4039 timenow
= net_uptime();
4040 if (rt
->rt_expire
== 0 || timenow
< rt
->rt_expire
) {
4042 senderr(!gwroute
? EHOSTDOWN
: EHOSTUNREACH
);
4046 /* Become a regular mutex */
4047 RT_CONVERT_LOCK(rt
);
4049 /* Caller is responsible for cleaning up "rt" */
4054 /* Clean up route (either it is "rt" or "gwrt") */
4058 RT_REMREF_LOCKED(rt
);
4070 rt_revalidate_gwroute(struct rtentry
*rt
, struct rtentry
*gwrt
)
4072 VERIFY(gwrt
!= NULL
);
4075 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_UP
)) == (RTF_GATEWAY
| RTF_UP
) &&
4076 rt
->rt_ifp
== gwrt
->rt_ifp
&& rt
->rt_gateway
->sa_family
==
4077 rt_key(gwrt
)->sa_family
&& (rt
->rt_gwroute
== NULL
||
4078 !(rt
->rt_gwroute
->rt_flags
& RTF_UP
))) {
4080 VERIFY(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
));
4082 if (rt
->rt_gateway
->sa_family
== AF_INET
||
4083 rt
->rt_gateway
->sa_family
== AF_INET6
) {
4084 struct sockaddr_storage key_ss
, gw_ss
;
4086 * We need to compare rt_key and rt_gateway; create
4087 * local copies to get rid of any ifscope association.
4089 (void) sa_copy(rt_key(gwrt
), &key_ss
, NULL
);
4090 (void) sa_copy(rt
->rt_gateway
, &gw_ss
, NULL
);
4092 isequal
= equal(SA(&key_ss
), SA(&gw_ss
));
4094 isequal
= equal(rt_key(gwrt
), rt
->rt_gateway
);
4097 /* If they are the same, update gwrt */
4100 lck_mtx_lock(rnh_lock
);
4102 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4104 lck_mtx_unlock(rnh_lock
);
4114 rt_str4(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4116 VERIFY(rt_key(rt
)->sa_family
== AF_INET
);
4119 (void) inet_ntop(AF_INET
,
4120 &SIN(rt_key(rt
))->sin_addr
.s_addr
, ds
, dslen
);
4121 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4122 SINIFSCOPE(rt_key(rt
))->sin_scope_id
!= IFSCOPE_NONE
) {
4125 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4126 SINIFSCOPE(rt_key(rt
))->sin_scope_id
);
4128 strlcat(ds
, scpstr
, dslen
);
4133 if (rt
->rt_flags
& RTF_GATEWAY
) {
4134 (void) inet_ntop(AF_INET
,
4135 &SIN(rt
->rt_gateway
)->sin_addr
.s_addr
, gs
, gslen
);
4136 } else if (rt
->rt_ifp
!= NULL
) {
4137 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4139 snprintf(gs
, gslen
, "%s", "link");
4146 rt_str6(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4148 VERIFY(rt_key(rt
)->sa_family
== AF_INET6
);
4151 (void) inet_ntop(AF_INET6
,
4152 &SIN6(rt_key(rt
))->sin6_addr
, ds
, dslen
);
4153 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4154 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
!= IFSCOPE_NONE
) {
4157 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4158 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
);
4160 strlcat(ds
, scpstr
, dslen
);
4165 if (rt
->rt_flags
& RTF_GATEWAY
) {
4166 (void) inet_ntop(AF_INET6
,
4167 &SIN6(rt
->rt_gateway
)->sin6_addr
, gs
, gslen
);
4168 } else if (rt
->rt_ifp
!= NULL
) {
4169 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4171 snprintf(gs
, gslen
, "%s", "link");
4179 rt_str(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4181 switch (rt_key(rt
)->sa_family
) {
4183 rt_str4(rt
, ds
, dslen
, gs
, gslen
);
4187 rt_str6(rt
, ds
, dslen
, gs
, gslen
);
4199 void route_event_init(struct route_event
*p_route_ev
, struct rtentry
*rt
,
4200 struct rtentry
*gwrt
, int route_ev_code
)
4202 VERIFY(p_route_ev
!= NULL
);
4203 bzero(p_route_ev
, sizeof(*p_route_ev
));
4205 p_route_ev
->rt
= rt
;
4206 p_route_ev
->gwrt
= gwrt
;
4207 p_route_ev
->route_event_code
= route_ev_code
;
4211 route_event_callback(void *arg
)
4213 struct route_event
*p_rt_ev
= (struct route_event
*)arg
;
4214 struct rtentry
*rt
= p_rt_ev
->rt
;
4215 eventhandler_tag evtag
= p_rt_ev
->evtag
;
4216 int route_ev_code
= p_rt_ev
->route_event_code
;
4218 if (route_ev_code
== ROUTE_EVHDLR_DEREGISTER
) {
4219 VERIFY(evtag
!= NULL
);
4220 EVENTHANDLER_DEREGISTER(&rt
->rt_evhdlr_ctxt
, route_event
,
4226 EVENTHANDLER_INVOKE(&rt
->rt_evhdlr_ctxt
, route_event
, rt_key(rt
),
4227 route_ev_code
, (struct sockaddr
*)&p_rt_ev
->rt_addr
,
4230 /* The code enqueuing the route event held a reference */
4232 /* XXX No reference is taken on gwrt */
4236 route_event_walktree(struct radix_node
*rn
, void *arg
)
4238 struct route_event
*p_route_ev
= (struct route_event
*)arg
;
4239 struct rtentry
*rt
= (struct rtentry
*)rn
;
4240 struct rtentry
*gwrt
= p_route_ev
->rt
;
4242 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
4246 /* Return if the entry is pending cleanup */
4247 if (rt
->rt_flags
& RTPRF_OURS
) {
4252 /* Return if it is not an indirect route */
4253 if (!(rt
->rt_flags
& RTF_GATEWAY
)) {
4258 if (rt
->rt_gwroute
!= gwrt
) {
4263 route_event_enqueue_nwk_wq_entry(rt
, gwrt
, p_route_ev
->route_event_code
,
4270 struct route_event_nwk_wq_entry
4272 struct nwk_wq_entry nwk_wqe
;
4273 struct route_event rt_ev_arg
;
4277 route_event_enqueue_nwk_wq_entry(struct rtentry
*rt
, struct rtentry
*gwrt
,
4278 uint32_t route_event_code
, eventhandler_tag evtag
, boolean_t rt_locked
)
4280 struct route_event_nwk_wq_entry
*p_rt_ev
= NULL
;
4281 struct sockaddr
*p_gw_saddr
= NULL
;
4283 MALLOC(p_rt_ev
, struct route_event_nwk_wq_entry
*,
4284 sizeof(struct route_event_nwk_wq_entry
),
4285 M_NWKWQ
, M_WAITOK
| M_ZERO
);
4288 * If the intent is to de-register, don't take
4289 * reference, route event registration already takes
4290 * a reference on route.
4292 if (route_event_code
!= ROUTE_EVHDLR_DEREGISTER
) {
4293 /* The reference is released by route_event_callback */
4295 RT_ADDREF_LOCKED(rt
);
4300 p_rt_ev
->rt_ev_arg
.rt
= rt
;
4301 p_rt_ev
->rt_ev_arg
.gwrt
= gwrt
;
4302 p_rt_ev
->rt_ev_arg
.evtag
= evtag
;
4305 p_gw_saddr
= gwrt
->rt_gateway
;
4307 p_gw_saddr
= rt
->rt_gateway
;
4309 VERIFY(p_gw_saddr
->sa_len
<= sizeof(p_rt_ev
->rt_ev_arg
.rt_addr
));
4310 bcopy(p_gw_saddr
, &(p_rt_ev
->rt_ev_arg
.rt_addr
), p_gw_saddr
->sa_len
);
4312 p_rt_ev
->rt_ev_arg
.route_event_code
= route_event_code
;
4313 p_rt_ev
->nwk_wqe
.func
= route_event_callback
;
4314 p_rt_ev
->nwk_wqe
.is_arg_managed
= TRUE
;
4315 p_rt_ev
->nwk_wqe
.arg
= &p_rt_ev
->rt_ev_arg
;
4316 nwk_wq_enqueue((struct nwk_wq_entry
*)p_rt_ev
);
4320 route_event2str(int route_event
)
4322 const char *route_event_str
= "ROUTE_EVENT_UNKNOWN";
4323 switch (route_event
) {
4324 case ROUTE_STATUS_UPDATE
:
4325 route_event_str
= "ROUTE_STATUS_UPDATE";
4327 case ROUTE_ENTRY_REFRESH
:
4328 route_event_str
= "ROUTE_ENTRY_REFRESH";
4330 case ROUTE_ENTRY_DELETED
:
4331 route_event_str
= "ROUTE_ENTRY_DELETED";
4333 case ROUTE_LLENTRY_RESOLVED
:
4334 route_event_str
= "ROUTE_LLENTRY_RESOLVED";
4336 case ROUTE_LLENTRY_UNREACH
:
4337 route_event_str
= "ROUTE_LLENTRY_UNREACH";
4339 case ROUTE_LLENTRY_CHANGED
:
4340 route_event_str
= "ROUTE_LLENTRY_CHANGED";
4342 case ROUTE_LLENTRY_STALE
:
4343 route_event_str
= "ROUTE_LLENTRY_STALE";
4345 case ROUTE_LLENTRY_TIMEDOUT
:
4346 route_event_str
= "ROUTE_LLENTRY_TIMEDOUT";
4348 case ROUTE_LLENTRY_DELETED
:
4349 route_event_str
= "ROUTE_LLENTRY_DELETED";
4351 case ROUTE_LLENTRY_EXPIRED
:
4352 route_event_str
= "ROUTE_LLENTRY_EXPIRED";
4354 case ROUTE_LLENTRY_PROBED
:
4355 route_event_str
= "ROUTE_LLENTRY_PROBED";
4357 case ROUTE_EVHDLR_DEREGISTER
:
4358 route_event_str
= "ROUTE_EVHDLR_DEREGISTER";
4361 /* Init'd to ROUTE_EVENT_UNKNOWN */
4364 return route_event_str
;