2 * Copyright (c) 2007-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <machine/asm.h>
30 #include <arm/proc_reg.h>
32 #include <sys/errno.h>
36 .globl EXT(machine_set_current_thread)
37 LEXT(machine_set_current_thread)
38 mcr p15, 0, r0, c13, c0, 4 // Write TPIDRPRW
39 ldr r1, [r0, TH_CTH_SELF]
40 mrc p15, 0, r2, c13, c0, 3 // Read TPIDRURO
41 and r2, r2, #3 // Extract cpu number
43 mcr p15, 0, r1, c13, c0, 3 // Write TPIDRURO
44 ldr r1, [r0, TH_CTH_DATA]
45 mcr p15, 0, r1, c13, c0, 2 // Write TPIDRURW
49 * void machine_idle(void)
53 .globl EXT(machine_idle)
55 cpsid if // Disable FIQ IRQ
59 cpsie if // Enable FIQ IRQ
63 * void cpu_idle_wfi(boolean_t wfi_fast):
64 * cpu_idle is the only function that should call this.
68 .globl EXT(cpu_idle_wfi)
83 * We export the address of the WFI instruction so that it can be patched; this will be
84 * ugly from a debugging perspective.
87 #if (__ARM_ARCH__ >= 7)
93 mcr p15, 0, r0, c7, c10, 4
96 mcr p15, 0, r0, c7, c0, 4
111 .globl EXT(timer_grab)
114 ldr r2, [r0, TIMER_HIGH]
115 ldr r3, [r0, TIMER_LOW]
119 ldr r1, [r0, TIMER_HIGHCHK]
126 .globl EXT(timer_update)
128 str r1, [r0, TIMER_HIGHCHK]
132 str r2, [r0, TIMER_LOW]
136 str r1, [r0, TIMER_HIGH]
140 .globl EXT(get_vfp_enabled)
141 LEXT(get_vfp_enabled)
144 and r1, r0, #FPEXC_EN // Extact vfp enable previous state
145 mov r0, r1, LSR #FPEXC_EN_BIT // Return 1 if enabled, 0 if disabled
147 mov r0, #0 // return false
151 /* This is no longer useful (but is exported, so this may require kext cleanup). */
153 .globl EXT(enable_kernel_vfp_context)
154 LEXT(enable_kernel_vfp_context)
157 /* uint32_t get_fpscr(void):
158 * Returns the current state of the FPSCR register.
161 .globl EXT(get_fpscr)
168 .globl EXT(set_fpscr)
169 /* void set_fpscr(uint32_t value):
170 * Set the FPSCR register.
180 #if (__ARM_VFP__ >= 3)
182 .globl EXT(get_mvfr0)
186 .globl EXT(get_mvfr1)
193 * void OSSynchronizeIO(void)
197 .globl EXT(OSSynchronizeIO)
198 LEXT(OSSynchronizeIO)
204 * void flush_mmu_tlb(void)
210 .globl EXT(flush_mmu_tlb)
214 mcr p15, 0, r0, c8, c3, 0 // Invalidate Inner Shareable entire TLBs
216 mcr p15, 0, r0, c8, c7, 0 // Invalidate entire TLB
223 * void flush_core_tlb(void)
229 .globl EXT(flush_core_tlb)
232 mcr p15, 0, r0, c8, c7, 0 // Invalidate entire TLB
238 * void flush_mmu_tlb_entry(uint32_t)
244 .globl EXT(flush_mmu_tlb_entry)
245 LEXT(flush_mmu_tlb_entry)
247 mcr p15, 0, r0, c8, c3, 1 // Invalidate TLB Inner Shareableentry
249 mcr p15, 0, r0, c8, c7, 1 // Invalidate TLB entry
256 * void flush_mmu_tlb_entries(uint32_t, uint32_t)
262 .globl EXT(flush_mmu_tlb_entries)
263 LEXT(flush_mmu_tlb_entries)
266 mcr p15, 0, r0, c8, c3, 1 // Invalidate TLB Inner Shareable entry
268 mcr p15, 0, r0, c8, c7, 1 // Invalidate TLB entry
270 add r0, r0, ARM_PGBYTES // Increment to the next page
271 cmp r0, r1 // Loop if current address < end address
273 dsb ish // Synchronize
279 * void flush_mmu_tlb_mva_entries(uint32_t)
281 * Flush TLB entries for mva
285 .globl EXT(flush_mmu_tlb_mva_entries)
286 LEXT(flush_mmu_tlb_mva_entries)
288 mcr p15, 0, r0, c8, c3, 3 // Invalidate TLB Inner Shareable entries by mva
290 mcr p15, 0, r0, c8, c7, 3 // Invalidate TLB Inner Shareable entries by mva
297 * void flush_mmu_tlb_asid(uint32_t)
299 * Flush TLB entriesfor requested asid
303 .globl EXT(flush_mmu_tlb_asid)
304 LEXT(flush_mmu_tlb_asid)
306 mcr p15, 0, r0, c8, c3, 2 // Invalidate TLB Inner Shareable entries by asid
308 mcr p15, 0, r0, c8, c7, 2 // Invalidate TLB entries by asid
315 * void flush_core_tlb_asid(uint32_t)
317 * Flush TLB entries for core for requested asid
321 .globl EXT(flush_core_tlb_asid)
322 LEXT(flush_core_tlb_asid)
323 mcr p15, 0, r0, c8, c7, 2 // Invalidate TLB entries by asid
329 * Set MMU Translation Table Base
333 .globl EXT(set_mmu_ttb)
335 orr r0, r0, #(TTBR_SETUP & 0xFF) // Setup PTWs memory attribute
336 orr r0, r0, #(TTBR_SETUP & 0xFF00) // Setup PTWs memory attribute
337 mcr p15, 0, r0, c2, c0, 0 // write r0 to translation table 0
343 * Set MMU Translation Table Base Alternate
347 .globl EXT(set_mmu_ttb_alternate)
348 LEXT(set_mmu_ttb_alternate)
349 orr r0, r0, #(TTBR_SETUP & 0xFF) // Setup PTWs memory attribute
350 orr r0, r0, #(TTBR_SETUP & 0xFF00) // Setup PTWs memory attribute
351 mcr p15, 0, r0, c2, c0, 1 // write r0 to translation table 1
357 * Set MMU Translation Table Base
361 .globl EXT(get_mmu_ttb)
363 mrc p15, 0, r0, c2, c0, 0 // translation table to r0
368 * get MMU control register
372 .globl EXT(get_aux_control)
373 LEXT(get_aux_control)
374 mrc p15, 0, r0, c1, c0, 1 // read aux control into r0
375 bx lr // return old bits in r0
378 * set MMU control register
382 .globl EXT(set_aux_control)
383 LEXT(set_aux_control)
384 mcr p15, 0, r0, c1, c0, 1 // write r0 back to aux control
390 * get MMU control register
394 .globl EXT(get_mmu_control)
395 LEXT(get_mmu_control)
396 mrc p15, 0, r0, c1, c0, 0 // read mmu control into r0
397 bx lr // return old bits in r0
400 * set MMU control register
404 .globl EXT(set_mmu_control)
405 LEXT(set_mmu_control)
406 mcr p15, 0, r0, c1, c0, 0 // write r0 back to mmu control
411 * MMU kernel virtual to physical address translation
415 .globl EXT(mmu_kvtop)
417 mrs r3, cpsr // Read cpsr
418 cpsid if // Disable FIQ IRQ
420 mcr p15, 0, r1, c7, c8, 0 // Write V2PCWPR
422 mrc p15, 0, r0, c7, c4, 0 // Read PAR
423 ands r2, r0, #0x1 // Test conversion aborted
424 bne mmu_kvtophys_fail
425 ands r2, r0, #0x2 // Test super section
426 mvnne r2, #0xFF000000
427 moveq r2, #0x000000FF
428 orreq r2, r2, #0x00000F00
429 bics r0, r0, r2 // Clear lower bits
430 beq mmu_kvtophys_fail
437 msr cpsr, r3 // Restore cpsr
441 * MMU user virtual to physical address translation
445 .globl EXT(mmu_uvtop)
447 mrs r3, cpsr // Read cpsr
448 cpsid if // Disable FIQ IRQ
450 mcr p15, 0, r1, c7, c8, 2 // Write V2PCWUR
452 mrc p15, 0, r0, c7, c4, 0 // Read PAR
453 ands r2, r0, #0x1 // Test conversion aborted
454 bne mmu_uvtophys_fail
455 ands r2, r0, #0x2 // Test super section
456 mvnne r2, #0xFF000000
457 moveq r2, #0x000000FF
458 orreq r2, r2, #0x00000F00
459 bics r0, r0, r2 // Clear lower bits
460 beq mmu_uvtophys_fail
467 msr cpsr, r3 // Restore cpsr
471 * MMU kernel virtual to physical address preflight write access
475 .globl EXT(mmu_kvtop_wpreflight)
476 LEXT(mmu_kvtop_wpreflight)
477 mrs r3, cpsr // Read cpsr
478 cpsid if // Disable FIQ IRQ
480 mcr p15, 0, r1, c7, c8, 1 // Write V2PCWPW
482 mrc p15, 0, r0, c7, c4, 0 // Read PAR
483 ands r2, r0, #0x1 // Test conversion aborted
484 bne mmu_kvtophys_wpreflight_fail
485 ands r2, r0, #0x2 // Test super section
486 mvnne r2, #0xFF000000
487 moveq r2, #0x000000FF
488 orreq r2, r2, #0x00000F00
489 bics r0, r0, r2 // Clear lower bits
490 beq mmu_kvtophys_wpreflight_fail // Sanity check: successful access must deliver zero low bits
493 b mmu_kvtophys_wpreflight_ret
494 mmu_kvtophys_wpreflight_fail:
496 mmu_kvtophys_wpreflight_ret:
497 msr cpsr, r3 // Restore cpsr
501 * set context id register
504 * set context id register
508 .globl EXT(set_context_id)
510 mcr p15, 0, r0, c13, c0, 1
514 #define COPYIO_HEADER(rUser, kLabel) \
515 /* test for zero len */ ;\
519 /* test user_addr, user_addr+len to see if it's in kernel space */ ;\
520 add r12, rUser, r2 ;\
521 cmp r12, KERNELBASE ;\
526 #define COPYIO_VALIDATE(NAME, SIZE) \
527 /* branch around for small sizes */ ;\
529 bls L##NAME##_validate_done ;\
530 /* call NAME_validate to check the arguments */ ;\
531 push {r0, r1, r2, r7, lr} ;\
533 blx EXT(NAME##_validate) ;\
537 pop {r0, r1, r2, r7, lr} ;\
538 L##NAME##_validate_done:
540 #define COPYIO_SET_RECOVER() \
541 /* set recovery address */ ;\
542 stmfd sp!, { r4, r5, r6 } ;\
543 adr r3, copyio_error ;\
544 mrc p15, 0, r12, c13, c0, 4 ;\
545 ldr r4, [r12, TH_RECOVER] ;\
546 str r3, [r12, TH_RECOVER]
548 #if __ARM_USER_PROTECT__
549 #define COPYIO_MAP_USER() \
550 /* disable interrupts to prevent expansion to 2GB at L1 ;\
551 * between loading ttep and storing it in ttbr0.*/ ;\
554 ldr r3, [r12, ACT_UPTW_TTB] ;\
555 mcr p15, 0, r3, c2, c0, 0 ;\
557 ldr r3, [r12, ACT_ASID] ;\
558 mcr p15, 0, r3, c13, c0, 1 ;\
561 #define COPYIO_MAP_USER()
564 #define COPYIO_HEADER_KERN() ;\
565 /* test for zero len */ ;\
571 /* if len is less than 16 bytes, just do a simple copy */
574 /* test for src and dest of the same word alignment */
581 /* 16 bytes at a time */
582 ldmia r0!, { r3, r5, r6, r12 }
583 stmia r1!, { r3, r5, r6, r12 }
585 bge L$0_wordwise_loop
586 /* fixup the len and test for completion */
590 /* copy 2 bytes at a time */
601 #if __ARM_USER_PROTECT__
602 #define COPYIO_UNMAP_USER() \
603 mrc p15, 0, r12, c13, c0, 4 ;\
604 ldr r3, [r12, ACT_KPTW_TTB] ;\
605 mcr p15, 0, r3, c2, c0, 0 ;\
607 mcr p15, 0, r3, c13, c0, 1 ;\
610 #define COPYIO_UNMAP_USER() \
611 mrc p15, 0, r12, c13, c0, 4
614 #define COPYIO_RESTORE_RECOVER() \
615 /* restore the recovery address */ ;\
616 str r4, [r12, TH_RECOVER] ;\
617 ldmfd sp!, { r4, r5, r6 }
621 * const user_addr_t user_addr,
628 .globl EXT(copyinstr)
630 stmfd sp!, { r4, r5, r6 }
633 add r3, r0, r2 // user_addr + max
634 cmp r3, KERNELBASE // Check KERNELBASE < user_addr + max
635 bhs copyinstr_param_error // Drop out if it is
636 cmp r3, r0 // Check we're copying from user space
637 bcc copyinstr_param_error // Drop out if we aren't
638 adr r3, copyinstr_error // Get address for recover
639 mrc p15, 0, r12, c13, c0, 4 // Read TPIDRPRW
640 ldr r4, [r12, TH_RECOVER] ;\
641 str r3, [r12, TH_RECOVER]
643 mov r12, #0 // Number of bytes copied so far
645 beq copyinstr_too_long
647 ldrb r3, [r0], #1 // Load a byte from the source (user)
648 strb r3, [r1], #1 // Store a byte to the destination (kernel)
652 cmp r12, r2 // Room to copy more bytes?
655 // Ran out of space in the destination buffer, so return ENAMETOOLONG.
658 mov r3, #ENAMETOOLONG
661 // When we get here, we have finished copying the string. We came here from
662 // either the "beq copyinstr_done" above, in which case r4 == 0 (which is also
663 // the function result for success), or falling through from copyinstr_too_long,
664 // in which case r4 == ENAMETOOLONG.
666 str r12, [r6] // Save the count for actual
667 mov r0, r3 // Return error code from r3
670 str r4, [r12, TH_RECOVER]
672 ldmfd sp!, { r4, r5, r6 }
676 /* set error, exit routine */
680 copyinstr_param_error:
681 /* set error, exit routine */
686 * int copyin(const user_addr_t user_addr, char *kernel_addr, vm_size_t nbytes)
692 COPYIO_HEADER(r0,copyio_kernel)
693 COPYIO_VALIDATE(copyin,4096)
698 COPYIO_RESTORE_RECOVER()
702 * int copyout(const char *kernel_addr, user_addr_t user_addr, vm_size_t nbytes)
708 COPYIO_HEADER(r1,copyio_kernel)
709 COPYIO_VALIDATE(copyout,4096)
714 COPYIO_RESTORE_RECOVER()
719 * int copyin_word(const user_addr_t user_addr, uint64_t *kernel_addr, vm_size_t nbytes)
723 .globl EXT(copyin_word)
725 cmp r2, #4 // Test if size is 4 or 8
729 tst r0, r3 // Test alignment of user address
732 COPYIO_HEADER(r0,L_copyin_word_fault)
736 mov r3, #0 // Clear high register
737 cmp r2, #4 // If size is 4
738 ldreq r2, [r0] // Load word from user
739 ldrdne r2, r3, [r0] // Else Load double word from user
740 stm r1, {r2, r3} // Store to kernel_addr
741 mov r0, #0 // Success
744 COPYIO_RESTORE_RECOVER()
757 str r4, [r12, TH_RECOVER]
758 ldmfd sp!, { r4, r5, r6 }
762 * int copyin_kern(const user_addr_t user_addr, char *kernel_addr, vm_size_t nbytes)
766 .globl EXT(copyin_kern)
772 * int copyout_kern(const char *kernel_addr, user_addr_t user_addr, vm_size_t nbytes)
776 .globl EXT(copyout_kern)
786 /* if (current_thread()->map->pmap != kernel_pmap) return EFAULT */
787 mrc p15, 0, r12, c13, c0, 4 // Read TPIDRPRW
788 ldr r3, [r12, ACT_MAP]
789 ldr r3, [r3, MAP_PMAP]
790 LOAD_ADDR(ip, kernel_pmap_store)
792 bne copyio_kernel_error
795 stmfd sp!, { r5, r6 }
796 COPYIO_BODY copyio_kernel
797 ldmfd sp!, { r5, r6 }
801 * int copyinframe(const vm_address_t frame_addr, char *kernel_addr)
803 * Safely copy eight bytes (the fixed top of an ARM frame) from
804 * either user or kernel memory.
808 .globl EXT(copyinframe)
817 * uint32_t arm_debug_read_dscr(void)
821 .globl EXT(arm_debug_read_dscr)
822 LEXT(arm_debug_read_dscr)
823 #if __ARM_DEBUG__ >= 6
824 mrc p14, 0, r0, c0, c1
831 * void arm_debug_set_cp14(arm_debug_state_t *debug_state)
833 * Set debug registers to match the current thread state
834 * (NULL to disable). Assume 6 breakpoints and 2
835 * watchpoints, since that has been the case in all cores
840 .globl EXT(arm_debug_set_cp14)
841 LEXT(arm_debug_set_cp14)
842 #if __ARM_DEBUG__ >= 6
843 mrc p15, 0, r1, c13, c0, 4 // Read TPIDRPRW
844 ldr r2, [r1, ACT_CPUDATAP] // Get current cpu
845 str r0, [r2, CPU_USER_DEBUG] // Set current user debug
847 // Lock the debug registers
850 mcr p14, 0, ip, c1, c0, 4
852 // enable monitor mode (needed to set and use debug registers)
853 mrc p14, 0, ip, c0, c1, 0
854 orr ip, ip, #0x8000 // set MDBGen = 1
855 #if __ARM_DEBUG__ >= 7
856 mcr p14, 0, ip, c0, c2, 2
858 mcr p14, 0, ip, c0, c1, 0
860 // first turn off all breakpoints/watchpoints
862 mcr p14, 0, r1, c0, c0, 5 // BCR0
863 mcr p14, 0, r1, c0, c1, 5 // BCR1
864 mcr p14, 0, r1, c0, c2, 5 // BCR2
865 mcr p14, 0, r1, c0, c3, 5 // BCR3
866 mcr p14, 0, r1, c0, c4, 5 // BCR4
867 mcr p14, 0, r1, c0, c5, 5 // BCR5
868 mcr p14, 0, r1, c0, c0, 7 // WCR0
869 mcr p14, 0, r1, c0, c1, 7 // WCR1
870 // if (debug_state == NULL) disable monitor mode and return;
872 biceq ip, ip, #0x8000 // set MDBGen = 0
873 #if __ARM_DEBUG__ >= 7
874 mcreq p14, 0, ip, c0, c2, 2
876 mcreq p14, 0, ip, c0, c1, 0
879 ldmia r0!, {r1, r2, r3, ip}
880 mcr p14, 0, r1, c0, c0, 4 // BVR0
881 mcr p14, 0, r2, c0, c1, 4 // BVR1
882 mcr p14, 0, r3, c0, c2, 4 // BVR2
883 mcr p14, 0, ip, c0, c3, 4 // BVR3
885 mcr p14, 0, r1, c0, c4, 4 // BVR4
886 mcr p14, 0, r2, c0, c5, 4 // BVR5
887 add r0, r0, #40 // advance to bcr[0]
888 ldmia r0!, {r1, r2, r3, ip}
889 mcr p14, 0, r1, c0, c0, 5 // BCR0
890 mcr p14, 0, r2, c0, c1, 5 // BCR1
891 mcr p14, 0, r3, c0, c2, 5 // BCR2
892 mcr p14, 0, ip, c0, c3, 5 // BCR3
894 mcr p14, 0, r1, c0, c4, 5 // BCR4
895 mcr p14, 0, r2, c0, c5, 5 // BCR5
896 add r0, r0, #40 // advance to wvr[0]
898 mcr p14, 0, r1, c0, c0, 6 // WVR0
899 mcr p14, 0, r2, c0, c1, 6 // WVR1
900 add r0, r0, #56 // advance to wcr[0]
902 mcr p14, 0, r1, c0, c0, 7 // WCR0
903 mcr p14, 0, r2, c0, c1, 7 // WCR1
905 // Unlock debug registers
907 mcr p14, 0, ip, c1, c0, 4
912 * void fiq_context_init(boolean_t enable_fiq)
916 .globl EXT(fiq_context_init)
917 LEXT(fiq_context_init)
918 mrs r3, cpsr // Save current CPSR
919 cmp r0, #0 // Test enable_fiq
920 bicne r3, r3, #PSR_FIQF // Enable FIQ if not FALSE
921 mrc p15, 0, r12, c13, c0, 4 // Read TPIDRPRW
922 ldr r2, [r12, ACT_CPUDATAP] // Get current cpu data
925 /* Despite the fact that we use the physical timebase
926 * register as the basis for time on our platforms, we
927 * end up using the virtual timer in order to manage
928 * deadlines. This is due to the fact that for our
929 * current platforms, the interrupt generated by the
930 * physical timer is not hooked up to anything, and is
931 * therefore dropped on the floor. Therefore, for
932 * timers to function they MUST be based on the virtual
936 mov r0, #1 // Enable Timer
937 mcr p15, 0, r0, c14, c3, 1 // Write to CNTV_CTL
939 /* Enable USER access to the physical timebase (PL0PCTEN).
940 * The rationale for providing access to the physical
941 * timebase being that the virtual timebase is broken for
942 * some platforms. Maintaining the offset ourselves isn't
943 * expensive, so mandate that the userspace implementation
944 * do timebase_phys+offset rather than trying to propogate
945 * all of the informaiton about what works up to USER.
947 mcr p15, 0, r0, c14, c1, 0 // Set CNTKCTL.PL0PCTEN (CNTKCTL[0])
949 #else /* ! __ARM_TIME__ */
950 msr cpsr_c, #(PSR_FIQ_MODE|PSR_FIQF|PSR_IRQF) // Change mode to FIQ with FIQ/IRQ disabled
951 mov r8, r2 // Load the BootCPUData address
952 ldr r9, [r2, CPU_GET_FIQ_HANDLER] // Load fiq function address
953 ldr r10, [r2, CPU_TBD_HARDWARE_ADDR] // Load the hardware address
954 ldr r11, [r2, CPU_TBD_HARDWARE_VAL] // Load the hardware value
955 #endif /* __ARM_TIME__ */
957 msr cpsr_c, r3 // Restore saved CPSR
961 * void reenable_async_aborts(void)
965 .globl EXT(reenable_async_aborts)
966 LEXT(reenable_async_aborts)
967 cpsie a // Re-enable async aborts
971 * uint64_t ml_get_timebase(void)
975 .globl EXT(ml_get_timebase)
976 LEXT(ml_get_timebase)
977 mrc p15, 0, r12, c13, c0, 4 // Read TPIDRPRW
978 ldr r3, [r12, ACT_CPUDATAP] // Get current cpu data
979 #if __ARM_TIME__ || __ARM_TIME_TIMEBASE_ONLY__
980 isb // Required by ARMV7C.b section B8.1.2, ARMv8 section D6.1.2.
982 mrrc p15, 0, r3, r1, c14 // Read the Time Base (CNTPCT), high => r1
983 mrrc p15, 0, r0, r3, c14 // Read the Time Base (CNTPCT), low => r0
984 mrrc p15, 0, r3, r2, c14 // Read the Time Base (CNTPCT), high => r2
986 bne 1b // Loop until both high values are the same
988 ldr r3, [r12, ACT_CPUDATAP] // Get current cpu data
989 ldr r2, [r3, CPU_BASE_TIMEBASE_LOW] // Add in the offset to
990 adds r0, r0, r2 // convert to
991 ldr r2, [r3, CPU_BASE_TIMEBASE_HIGH] // mach_absolute_time
993 #else /* ! __ARM_TIME__ || __ARM_TIME_TIMEBASE_ONLY__ */
995 ldr r2, [r3, CPU_TIMEBASE_HIGH] // Get the saved TBU value
996 ldr r0, [r3, CPU_TIMEBASE_LOW] // Get the saved TBL value
997 ldr r1, [r3, CPU_TIMEBASE_HIGH] // Get the saved TBU value
998 cmp r1, r2 // Make sure TB has not rolled over
1000 #endif /* __ARM_TIME__ */
1005 * uint32_t ml_get_decrementer(void)
1009 .globl EXT(ml_get_decrementer)
1010 LEXT(ml_get_decrementer)
1011 mrc p15, 0, r12, c13, c0, 4 // Read TPIDRPRW
1012 ldr r3, [r12, ACT_CPUDATAP] // Get current cpu data
1013 ldr r2, [r3, CPU_GET_DECREMENTER_FUNC] // Get get_decrementer_func
1015 bxne r2 // Call it if there is one
1017 mrc p15, 0, r0, c14, c3, 0 // Read the Decrementer (CNTV_TVAL)
1019 ldr r0, [r3, CPU_DECREMENTER] // Get the saved dec value
1025 * void ml_set_decrementer(uint32_t dec_value)
1029 .globl EXT(ml_set_decrementer)
1030 LEXT(ml_set_decrementer)
1031 mrc p15, 0, r12, c13, c0, 4 // Read TPIDRPRW
1032 ldr r3, [r12, ACT_CPUDATAP] // Get current cpu data
1033 ldr r2, [r3, CPU_SET_DECREMENTER_FUNC] // Get set_decrementer_func
1035 bxne r2 // Call it if there is one
1037 str r0, [r3, CPU_DECREMENTER] // Save the new dec value
1038 mcr p15, 0, r0, c14, c3, 0 // Write the Decrementer (CNTV_TVAL)
1040 mrs r2, cpsr // Save current CPSR
1041 msr cpsr_c, #(PSR_FIQ_MODE|PSR_FIQF|PSR_IRQF) // Change mode to FIQ with FIQ/IRQ disabled.
1042 mov r12, r0 // Set the DEC value
1043 str r12, [r8, CPU_DECREMENTER] // Store DEC
1044 msr cpsr_c, r2 // Restore saved CPSR
1050 * boolean_t ml_get_interrupts_enabled(void)
1054 .globl EXT(ml_get_interrupts_enabled)
1055 LEXT(ml_get_interrupts_enabled)
1058 bic r0, r0, r2, lsr #PSR_IRQFb
1062 * Platform Specific Timebase & Decrementer Functions
1066 #if defined(ARM_BOARD_CLASS_S7002)
1069 .globl EXT(fleh_fiq_s7002)
1070 LEXT(fleh_fiq_s7002)
1071 str r11, [r10, #PMGR_INTERVAL_TMR_CTL_OFFSET] // Clear the decrementer interrupt
1073 str r13, [r8, CPU_DECREMENTER]
1078 .globl EXT(s7002_get_decrementer)
1079 LEXT(s7002_get_decrementer)
1080 ldr ip, [r3, CPU_TBD_HARDWARE_ADDR] // Get the hardware address
1081 add ip, ip, #PMGR_INTERVAL_TMR_OFFSET
1082 ldr r0, [ip] // Get the Decrementer
1087 .globl EXT(s7002_set_decrementer)
1088 LEXT(s7002_set_decrementer)
1089 str r0, [r3, CPU_DECREMENTER] // Save the new dec value
1090 ldr ip, [r3, CPU_TBD_HARDWARE_ADDR] // Get the hardware address
1091 str r0, [ip, #PMGR_INTERVAL_TMR_OFFSET] // Store the new Decrementer
1093 #endif /* defined(ARM_BOARD_CLASS_S7002) */
1095 #if defined(ARM_BOARD_CLASS_T8002)
1098 .globl EXT(fleh_fiq_t8002)
1099 LEXT(fleh_fiq_t8002)
1100 mov r13, #kAICTmrIntStat
1101 str r11, [r10, r13] // Clear the decrementer interrupt
1103 str r13, [r8, CPU_DECREMENTER]
1108 .globl EXT(t8002_get_decrementer)
1109 LEXT(t8002_get_decrementer)
1110 ldr ip, [r3, CPU_TBD_HARDWARE_ADDR] // Get the hardware address
1113 ldr r0, [ip] // Get the Decrementer
1118 .globl EXT(t8002_set_decrementer)
1119 LEXT(t8002_set_decrementer)
1120 str r0, [r3, CPU_DECREMENTER] // Save the new dec value
1121 ldr ip, [r3, CPU_TBD_HARDWARE_ADDR] // Get the hardware address
1123 str r0, [ip, r5] // Store the new Decrementer
1125 #endif /* defined(ARM_BOARD_CLASS_T8002) */
1127 LOAD_ADDR_GEN_DEF(kernel_pmap_store)
1129 #include "globals_asm.h"
1131 /* vim: set ts=4: */