2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 This file contains armv7 hand optimized implementation of WKdm memory page compressor.
32 int WKdm_compress (WK_word* src_buf, WK_word* dest_buf, WK_word* scratch, unsigned int bytes_budget);
35 src_buf : address of input page (length = 1024 words)
36 dest_buf : address of output buffer (may not be 16-byte aligned)
37 scratch : a 16-byte aligned 4k bytes scratch memory provided by the caller,
38 bytes_budget : a given byte target in compression
42 if the input buffer can be compressed within the given byte budget, the dest_buf is written with compressed data and the function returns with number of bytes for the compressed data
43 o.w., the function returns -1 to signal that the input data can not be compressed with the given byte budget.
44 During the scan and tag process, each word that can not be compressed will be written to dest_buf, followed by a 12-bytes header + 256-bytes tag area.
45 When the functions returns -1, dest_buf is filled with all those words that can not be compressed and should be considered undefined.
46 The worst-case scenario is that all words can not be compressed. Hence, the minimum size requirement for dest_buf should be 12+256+4096 = 4364 bytes to prevent from memory fault.
48 The 4th argument bytes_budget is the target compress budget in bytes.
49 Should the input page can be compressed within the budget, the compressed data is written to *dest_buf, and the function returns the number of compressed bytes.
50 Otherwise, the function returns -1 (to signal to the caller that the page can not be compressed).
52 WKdm Compression algorithm is briefly stated as follows:
54 There is a dynamically updated dictionary consisting of 16 words. Each dictionary word is initialized to 1 at the point of entry to the function.
55 For a nonzero input word x, its 8-bits (10-bits scaled up) is used to determine a corresponding word from the dictionary, represented by dict_index (4-bits) and dict_word (32-bits).
56 a. k = (x>>10)&255; // 8-bit hash table index
57 b. dict_index = hashTable[k]; // 4-bit dictionary index, hashTable[] is fixed
58 c. dict_word = dictionary[dict_index]; // 32-bit dictionary word, dictionary[] is dynamically updated
60 Each input word x is classified/tagged into 4 classes :
62 1 : (x>>10) == (dict_word>>10), bits 10:31 of the input word match a dictionary word
63 2 : (x>>10) != (dict_word>>10), the above condition (22 higher bits matched) is not met, meaning a dictionary miss
64 3 : (x == dict_word), the exact input word is in the dictionary
66 For each class, different numbers of bits are needed for the decompressor to reproduce the original input word.
67 0 : 2-bits tag (32->2 compression)
68 1 : 2-bits tag + 4-bits dict_index + 10-bits lower bits (32->16 compression)
69 2 : 2-bits tag + 32-bits new word (32->34 expansion)
70 3 : 2-bits tag + 4-bits dict_index (32->6 compression)
72 It is obvious now that WKdm compress algorithm works well for pages where there are lots of zero words (32->2) and/or there are freqeunt repeats of some word patterns (32->6).
74 the output bit stream (*dest_buf) consists of
76 b. 256 bytes for 1024 packed tags
77 c. (varying number of) words for new words not matched to dictionary word.
78 d. (varying number of) 32-bit words for packed 4-bit dict_indices (for class 1 and 3)
79 e. (varying number of) 32-bit words for packed 10-bit low bits (for class 1)
81 the header is actually of 3 words that specify the ending offset (in 32-bit words) from the start of the bit stream of c,d,e, respectively.
82 Note that there might be padding bits in d (if the number of dict_indices does not divide by 8), and there are 2/12/22 padding bits for packing 3/2/1 low 10-bits in a 32-bit word.
85 The WKdm compress algorithm 1st runs a scan and classification pass, tagging and write unpacked data into temporary buffers. It follows by packing those data into the output buffer.
89 uint8_t tempTagsArray[1024]; // temporary saving for tags before final packing
90 uint8_t tempQPosArray[1024]; // temporary saving for dict_indices before final packing
91 uint16_t tempLowBitsArray[1024]; // temporary saving for partially matched lower 10 bits before final packing
93 Since the new words (that can not matched fully or partially to the dictionary) are stored right after the header and the tags section and need no packing, we directly write them to
94 the destination buffer.
96 uint32_t *new_word = dest_buf+3+64; // 3 words for header, 64 words for tags, new words come right after the tags.
98 Now since we are given a byte budget for this compressor, we can monitor the byte usage on the fly in the scanning and tagging pass.
100 byte_count = bytes_budget - 12 - 256; // header + tags
102 whenever an input word is classified as class
106 in 4-bit/10-bit packing, we can also return -1 when byte_budget <=0;
108 Note : since there might be extra padding bits for class 1 and 3, it is complicated to track this padding bits on the fly. To compromise, we change class 1 to
110 without showing the bit budget management, the pseudo code is given as follows:
112 uint8_t *tags=tempTagsArray;
113 uint8_t *dict=tempQPosArray;
114 uint8_t *partial=tempLowBitsArray;
116 for (i=0;i<1024;i++) {
118 if (x == 0) { // zero, 2-bits tag
122 // find dict_index and dict_word from x
124 dict_index = hashTable[k];
125 dict_word = dictionary[dict_index];
127 if (dict_word == x) { // exactly match
128 // 2-bits tag + 4-bits table index
130 *dict++ = dict_index;
131 } else if (((x^dict_word)>>10)==0) { // 22 higher bits matched
132 // 2-bits tag + 4-bits table index + 10-bits lower partial
134 *dict++ = dict_index;
135 *partial++ = x &0x3ff;
136 dictionary[dict_index] = x;
137 } else { // not matched
138 // 2-bits tag + 32-bits new word
141 dictionary[dict_index] = x;
146 after this classification/tagging pass is completed, the 3 temp buffers are packed into the output *dest_buf:
148 1. 1024 tags are packed into 256 bytes right after the 12-bytes header
149 2. dictionary indices (4-bits each) are packed into are right after the new words section
150 3. 3 low 10-bits are packed into a 32-bit word, this is after the dictionary indices section.
154 Added zero page, single value page, sparse page, early abort optimizations
160 // int WKdm_compress (WK_word* src_buf, WK_word* dest_buf, WK_word* scratch, unsigned int bytes_budget);
162 .globl _WKdm_compress_new
166 ------------------------- symbolizing register use -----------------------------------
170 #define next_input_word r0
173 #define dictionary sp
174 #define byte_count r3
179 #define next_full_patt r5
180 #define dict_location r6
183 #define next_low_bits r10
189 #define tempTagsArray scratch
190 #define R11 r0 // only safe to use between phase-1 and phase-2
191 #define R13 r4 // only safe to use between phase-1 and phase-2
193 ------------------------- allocate scratch memory for local use --------------------------------------
195 need 256*4 (tempTagsArray) + 256*4 (tempQPosArray) + 1024*2 (tempLowBitsArray)
197 [scratch,#0] : tempTagsArray
198 [scratch,#1024] : tempQPosArray
199 [scratch,#2048] : tempLowBitsArray
205 #define TagsArray_offset 0
206 #define QPosArray_offset 1024
207 #define LowBitsArray_offset 2048
209 #define SV_RETURN 0 // return value when SV, ZV page is found
210 #define MZV_MAGIC 17185 // magic value used to identify MZV page encoding
211 #define CHKPT_BYTES 416 // for early aborts: checkpoint after processing this many bytes. Must be in range [4..4096]
212 #define CHKPT_WORDS (CHKPT_BYTES/4) // checkpoint bytes in words
213 #define CHKPT_TAG_BYTES (CHKPT_BYTES/16) // size of the tags for CHKPT_BYTES of data
214 #define CHKPT_SHRUNK_BYTES 426 // for early aborts: max size of compressed stream to allow further processing ..
215 // .. to disable early aborts, set CHKPT_SHRUNK_BYTES to 4096
216 #if CHKPT_BYTES > 4096
217 #error CHKPT_BYTES must be <= 4096
220 #error CHKPT_BYTES must be >= 4
229 vst1.64 {q0,q1}, [sp]
232 sub sp, sp, #(64+24) // reserve stack space for temps + dictionary
235 ----- set up registers and initialize WKdm dictionary ----------
237 // NOTE: ALL THE DICTIONARY VALUES MUST BE INITIALIZED TO ZERO
238 // THIS IS NEEDED TO EFFICIENTLY DETECT SINGLE VALUE PAGES
241 mov next_tag, scratch // &tempTagsArray[0]
244 add next_qp, scratch, #QPosArray_offset // next_qp
246 mov remaining, #(CHKPT_WORDS) // remaining input words .. initially set to checkpoint
248 add next_full_patt, dest_buf, #268 // dest_buf + [TAGS_AREA_OFFSET + (4096 / 16)]*4
251 add next_low_bits, scratch, #LowBitsArray_offset // &tempLowBitsArray[0]
254 #if defined(KERNEL) && !SLIDABLE
255 adr hashTable, L_table
256 ldr hashTable, [hashTable]
258 ldr hashTable, L_table
260 ldr hashTable, [pc, hashTable]
266 #define mode [sp, #64]
267 #define start_next_full_patt [sp, #68]
268 #define start_next_input_word [sp, #72]
269 #define start_next_low_bits [sp, #76]
270 #define byte_budget [sp, #80]
273 str edx, mode // indicate we are yet to evaluate the early aborts
274 str next_full_patt, start_next_full_patt // remember the start of next_full_patt
275 str next_input_word, start_next_input_word // remember the start of next_input_word
276 str next_low_bits, start_next_low_bits // remember the start of next_low_bits
277 str byte_count, byte_budget // remember the byte budget
279 sub byte_count, byte_count, #(12+256) // byte_count - header bytes - tags bytes
284 /* we've just detected a zero input word in edx */
285 strb edx, [next_tag], #1 // *next_tag++ = ZERO;
286 subs remaining, remaining, #1 // remaining input words
287 ble CHECKPOINT // if remaining = 0, break
289 /* WKdm compress scan/tag loop */
291 ldr edx, [next_input_word], #4
293 beq L_RECORD_ZERO // if (input_word==0) RECORD_ZERO
296 now the input word edx is nonzero, we next find the corresponding dictionary word (eax) and dict_location
298 and eax, edx, #(0xff<<10) // part of input_word for hash table index
299 lsr eax, eax, #10 // 8-bit index to the Hash Table
300 ldrb eax, [hashTable, eax] // HASH_TO_DICT_BYTE_OFFSET(input_word)
301 add dict_location, dictionary, eax // ((char*) dictionary) + HASH_TO_DICT_BYTE_OFFSET(input_word));
302 ldr eax, [dictionary, eax] // dict_word = *dict_location;
303 cmp eax, edx // dict_word vs input_word
304 beq L_RECORD_EXACT // if identical, RECORD_EXACT
307 lsrs eax, eax, #10 // HIGH_BITS(dict_word)
308 beq L_RECORD_PARTIAL // if identical, RECORD_PARTIAL
312 if we are here, the input word can not be derived from the dictionary,
313 we write the input word as a new word,
314 and update the dictionary with this new word
317 subs byte_count, byte_count, #4
318 ble L_budgetExhausted // o.w., return -1 to signal this page is not compressable
319 str edx, [next_full_patt], #4 // *next_full_patt++ = input_word;
321 str edx, [dict_location] // *dict_location = input_word
322 strb eax, [next_tag], #1 // *next_tag++ = 2 for miss
323 subs remaining, remaining, #1 // remaining input words
324 bgt L_scan_loop // if bit_count>0, go on the scan/tag pass,
329 // SET_QPOS_AREA_START(dest_buf,next_full_patt);
330 sub eax, next_full_patt, dest_buf // next_full_patt - dest_buf
331 lsr eax, eax, #2 // offset in 4-bytes
332 str eax, [dest_buf] // dest_buf[0] = next_full_patt - dest_buf
335 /* -------------------------- packing 1024 tags into 256 bytes ----------------------------------------*/
336 // boundary_tmp = WK_pack_2bits(tempTagsArray, (WK_word *) next_tag, dest_buf + HEADER_SIZE_IN_WORDS);
338 add rdi, dest_buf, #12 // dest_buf
339 mov eax, scratch // &tempTagsArray[0]
340 sub edx, next_tag, scratch // this should be 1024
342 vld1.64 {q0,q1}, [eax,:128]!
343 subs edx, edx, #32 // pre-decrement by 32
356 vld1.64 {q0,q1}, [eax,:128]!
370 /* --------------------------------- packing 4-bits dict indices into dest_buf ---------------------------------- */
372 /* 1st, round up number of 4-bits dict_indices to a multiple of 8 and fill in 0 if needed */
373 add ecx, scratch, #QPosArray_offset // tempQPosArray
374 sub eax, next_qp, ecx // eax = num_bytes_to_pack = next_qp - (char *) tempQPosArray;
375 add eax, eax, #7 // num_bytes_to_pack+7
376 lsr eax, eax, #3 // num_packed_words = (num_bytes_to_pack + 7) >> 3
377 subs byte_count, byte_count, eax, lsl #2 // byte_count -= 4 * packed_words
378 blt L_budgetExhausted // o.w., return -1 to signal this page is not compressable
379 add ecx, ecx, eax, lsl #3 // endQPosArray = tempQPosArray + 2*num_source_words
380 cmp ecx, next_qp // endQPosArray vs next_qp
381 bls L16 // if (next_qp >= endQPosArray) skip the following zero paddings
382 sub eax, ecx, next_qp
386 str edx, [next_qp], #4
389 strh edx, [next_qp], #2
392 strb edx, [next_qp], #1
395 add edx, scratch, #QPosArray_offset // tempQPosArray
396 mov rdi, next_full_patt // next_full_patt
397 cmp ecx, edx // endQPosArray vs tempQPosArray
399 bls L20 // if (endQPosArray <= tempQPosArray) skip the following
401 /* packing 4-bits dict indices into dest_buf */
403 vld1.64 {d0}, [edx,:64]! // src_next[1]:src_next[0]
404 vshr.u64 d1, d0, #28 // (src_next[1] << 4)
405 vorr d0, d0, d1 // src_next[0] | (src_next[1] << 4)
406 cmp ecx, edx // source_end vs src_next
409 bhi L_pack_4bits // while (src_next < source_end) repeat the loop
411 /* --------------------------- packing 3 10-bits low bits into a 32-bit word in dest_buf[] ----------------------------------------- */
412 // SET_LOW_BITS_AREA_START(dest_buf,boundary_tmp);
413 sub eax, rdi, dest_buf // boundary_tmp - dest_buf
414 lsr eax, eax, #2 // boundary_tmp - dest_buf in words
416 str eax, [dest_buf,#4] // dest_buf[1] = boundary_tmp - dest_buf
418 add ecx, scratch, #LowBitsArray_offset // tempLowBitsArray
419 sub edx, next_low_bits, ecx // next_low_bits - tempLowBitsArray (in bytes)
420 lsr edx, edx, #1 // num_tenbits_to_pack (in half-words)
421 subs edx, edx, #3 // pre-decrement num_tenbits_to_pack by 3
422 blt 1f // if num_tenbits_to_pack < 3, skip the following loop
424 subs byte_count, byte_count, #4 // byte_count -= 4
425 ble L_budgetExhausted // o.w., return -1 to signal this page is not compressable
426 ldr r4,[ecx, #2] // w2:6bits:w1
427 ldrh r0,[ecx], #6 // w0
428 uxth r5, r4, ror #16 // w2
430 orr r0, r0, r4, lsl #10 // w1:w0
431 subs edx, edx, #3 // num_tenbits_to_pack-=3
432 orr r0, r0, r5, lsl #20 // w2:w1:w0
433 str r0, [rdi], #4 // pack w0,w1,w2 into 1 dest_buf word
434 bge 0b // if no less than 3 elements, back to loop head
436 1: adds edx, edx, #3 // post-increment num_tenbits_to_pack by 3
437 beq 3f // if num_tenbits_to_pack is a multiple of 3, skip the following
438 subs byte_count, byte_count, #4 // byte_count -= 4
439 ble L_budgetExhausted // o.w., return -1 to signal this page is not compressable
441 subs edx, edx, #1 // num_tenbits_to_pack--
443 ldrh edx, [ecx, #2] // w1
444 orr eax, eax, edx, lsl #10 // w0 | (w1<<10)
446 2: str eax, [rdi], #4 // write the final dest_buf word
448 3: sub eax, rdi, dest_buf // boundary_tmp - dest_buf
449 lsr eax, eax, #2 // boundary_tmp - dest_buf in terms of words
450 str eax, [dest_buf, #8] // SET_LOW_BITS_AREA_END(dest_buf,boundary_tmp)
451 lsl r0, eax, #2 // boundary_tmp - dest_buf in terms of bytes
454 // restore registers and return
456 add sp, sp, #(64+24) // skip memory for temps + dictionary
458 vld1.64 {q0,q1}, [sp]!
472 we have an exact match of the input word to its corresponding dictionary word
473 write tag/dict_index to the temorary buffers
475 sub edx, dict_location, dictionary // dict_location - dictionary
477 lsr edx, edx, #2 // divide by 4 for word offset
478 strb eax, [next_tag], #1 // *next_tag++ = 3 for exact
479 strb edx, [next_qp], #1 // *next_qp = word offset (4-bit)
480 subs remaining, remaining, #1 // remaining input words
481 bgt L_scan_loop // if remaining>0, go on the scan/tag pass,
482 b CHECKPOINT // if remaining = 0, break
487 we have a partial (high 22-bits) match of the input word to its corresponding dictionary word
488 write tag/dict_index/low 10 bits to the temorary buffers
490 sub eax, dict_location, dictionary // dict_location - dictionary
491 str edx, [dict_location] // *dict_location = input_word;
492 lsr eax, eax, #2 // offset in 32-bit word
494 strb eax, [next_qp], #1 // update *next_qp++
496 lsr edx, edx, #22 // lower 10 bits
497 strb eax, [next_tag], #1 // *next_tag++ = 1 for partial matched
498 strh edx, [next_low_bits], #2 // save next_low_bits++
499 subs remaining, remaining, #1 // remaining input words
500 bgt L_scan_loop // if remaining>0, go on the scan/tag pass,
503 ldr eax, mode // load the mode
505 beq L_check_compression_ratio // early abort check
509 ldr eax, start_next_full_patt // check if any dictionary misses in page
510 cmp eax, next_full_patt
511 bne L_check_single_value_page
513 add eax, scratch, #QPosArray_offset // get start_next_qp
514 cmp eax, next_qp // check if any partial or exact dictionary matches
516 moveq r0, #SV_RETURN // Magic return value
519 L_check_single_value_page:
521 ldr eax, start_next_full_patt // get # dictionary misses
522 sub eax, next_full_patt, eax
525 add R11, scratch, #QPosArray_offset // get start_next_qp
526 sub R11, next_qp, R11 // get # dictionary hits (exact + partial)
528 ldr R13, start_next_low_bits
529 sub R13, next_low_bits, R13 // get # dictionary partial hits
532 // Single value page if one of the follwoing is true:
533 // partial == 0 AND hits == 1023 AND miss == 1 AND tag[0] == 2 (i.e. miss)
534 // partial == 1 AND hits == 1024 AND tag[0] == 1 (i.e. partial)
536 bne 1f // were there 0 partial hits?
539 cmp R11, edx // were there 1023 dictionary hits
542 cmp eax, #1 // was there exacly 1 dictionary miss?
545 ldrb edx, [tempTagsArray] // read the very 1st tag
546 cmp edx, #2 // was the very 1st tag a miss?
547 beq L_is_single_value_page
550 cmp R13, #1 // was there 1 partial hit?
551 bne L_check_mostly_zero
554 cmp R11, edx // were there 1024 dictionary hits
555 bne L_check_mostly_zero
557 ldrb edx, [tempTagsArray] // read the very 1st tag
558 cmp edx, #1 // was the very 1st tag a partial?
559 bne L_is_single_value_page
561 L_is_single_value_page:
563 moveq r0, #SV_RETURN // Magic return value
567 // how much space will the sparse packer take?
568 add eax, eax, R11 // eax += (next_qp - start_next_qp)
571 mla R11, eax, edx, R11 // R11 = eax * 6 (i.e. 4 byte word + 2 byte offset) + 4 byte for header
573 ldr eax, start_next_low_bits
574 sub eax, next_low_bits, eax // get bytes consumed by lower-10 bits
578 ldr edx, start_next_full_patt
579 sub edx, next_full_patt, edx // get bytes consumed by dictionary misses
580 add eax, edx, eax, lsr #11 // eax = 2/3*(next_low_bits - start_next_low_bits) + (next_full_patt - start_next_full_patt)
582 add edx, scratch, #QPosArray_offset // get start_next_qp
583 sub edx, next_qp, edx
584 add eax, eax, edx, lsr #1 // eax += (next_qp - start_next_qp)/2
586 add eax, eax, edx // rax += bytes taken by the header + tags
588 cmp eax, R11 // is the default packer the better option?
592 cmp R11, edx // can the sparse packer fit into the given budget?
593 bgt L_budgetExhausted
598 str edx, [dest_buf], #4 // header to indicate a sparse packer
600 ldr R13, start_next_input_word // get the starting address of src
605 ldm R13!, {r2, r3, r5, r6, r7, r8, r9, r10}
618 add edx, edx, #32 // 16 more bytes have been processed
620 mov r0, R11 // store the size of the compressed stream
625 strne r2, [dest_buf], #4 // store the non-0 word in the dest buffer
626 strhne edx, [dest_buf], #2 // store the byte index
630 strne r3, [dest_buf], #4 // store the non-0 word in the dest buffer
631 strhne edx, [dest_buf], #2 // store the byte index
635 strne r5, [dest_buf], #4 // store the non-0 word in the dest buffer
636 strhne edx, [dest_buf], #2 // store the byte index
640 strne r6, [dest_buf], #4 // store the non-0 word in the dest buffer
641 strhne edx, [dest_buf], #2 // store the byte index
645 strne r7, [dest_buf], #4 // store the non-0 word in the dest buffer
646 strhne edx, [dest_buf], #2 // store the byte index
650 strne r8, [dest_buf], #4 // store the non-0 word in the dest buffer
651 strhne edx, [dest_buf], #2 // store the byte index
655 strne r9, [dest_buf], #4 // store the non-0 word in the dest buffer
656 strhne edx, [dest_buf], #2 // store the byte index
660 strne r10, [dest_buf], #4 // store the non-0 word in the dest buffer
661 strhne edx, [dest_buf], #2 // store the byte index
666 mov r0, R11 // store the size of the compressed stream
669 L_check_compression_ratio:
673 mov remaining, #(1024 - CHKPT_WORDS) // remaining input words to process
675 beq CHECKPOINT // if there are no remaining words to process
677 ldr eax, start_next_low_bits
678 sub eax, next_low_bits, eax // get bytes consumed by lower-10 bits
682 ldr edx, start_next_full_patt
683 sub edx, next_full_patt, edx // get bytes consumed by dictionary misses
684 add eax, edx, eax, lsr #11 // eax = 2/3*(next_low_bits - start_next_low_bits) + (next_full_patt - start_next_full_patt)
686 add edx, scratch, #QPosArray_offset // get start_next_qp
687 sub edx, next_qp, edx
688 add eax, eax, edx, lsr #1 // eax += (next_qp - start_next_qp)/2
689 mov edx, #(CHKPT_SHRUNK_BYTES - CHKPT_TAG_BYTES)
690 subs eax, eax, edx // eax += CHKPT_TAG_BYTES; eax -= CHKPT_SHRUNK_BYTES
691 bgt L_budgetExhausted // if eax is > 0, we need to early abort
692 b L_scan_loop // we are done
695 #if defined(KERNEL) && !SLIDABLE
698 .long _hashLookupTable_new
702 .long L_Tab$non_lazy_ptr-(L_table0+8)
704 .section __DATA,__nl_symbol_ptr,non_lazy_symbol_pointers
707 .indirect_symbol _hashLookupTable_new