2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/mcache.h>
75 #include <net/ntstat.h>
77 #include <kern/zalloc.h>
78 #include <mach/boolean.h>
81 #include <net/if_types.h>
82 #include <net/route.h>
84 #include <net/net_api_stats.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_tclass.h>
89 #include <netinet/ip.h>
91 #include <netinet/ip6.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/udp6_var.h>
101 #include <netinet/ip_icmp.h>
102 #include <netinet/icmp_var.h>
103 #include <netinet/udp.h>
104 #include <netinet/udp_var.h>
105 #include <sys/kdebug.h>
108 #include <netinet6/ipsec.h>
109 #include <netinet6/esp.h>
110 extern int ipsec_bypass
;
111 extern int esp_udp_encap_port
;
115 #include <net/necp.h>
119 #include <netinet/flow_divert.h>
120 #endif /* FLOW_DIVERT */
122 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0)
123 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2)
124 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1)
125 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3)
126 #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8))
127 #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1)
130 * UDP protocol implementation.
131 * Per RFC 768, August, 1980.
134 static int udpcksum
= 1;
136 static int udpcksum
= 0; /* XXX */
138 SYSCTL_INT(_net_inet_udp
, UDPCTL_CHECKSUM
, checksum
,
139 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udpcksum
, 0, "");
141 int udp_log_in_vain
= 0;
142 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
143 &udp_log_in_vain
, 0, "Log all incoming UDP packets");
145 static int blackhole
= 0;
146 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, blackhole
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
147 &blackhole
, 0, "Do not send port unreachables for refused connects");
149 struct inpcbhead udb
; /* from udp_var.h */
150 #define udb6 udb /* for KAME src sync over BSD*'s */
151 struct inpcbinfo udbinfo
;
154 #define UDBHASHSIZE 16
157 /* Garbage collection performed during most recent udp_gc() run */
158 static boolean_t udp_gc_done
= FALSE
;
161 extern int fw_verbose
;
162 extern void ipfwsyslog(int level
, const char *format
, ...);
163 extern void ipfw_stealth_stats_incr_udp(void);
165 /* Apple logging, log to ipfw.log */
166 #define log_in_vain_log(a) { \
167 if ((udp_log_in_vain == 3) && (fw_verbose == 2)) { \
169 } else if ((udp_log_in_vain == 4) && (fw_verbose == 2)) { \
170 ipfw_stealth_stats_incr_udp(); \
175 #else /* !IPFIREWALL */
176 #define log_in_vain_log(a) { log a; }
177 #endif /* !IPFIREWALL */
179 static int udp_getstat SYSCTL_HANDLER_ARGS
;
180 struct udpstat udpstat
; /* from udp_var.h */
181 SYSCTL_PROC(_net_inet_udp
, UDPCTL_STATS
, stats
,
182 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
183 0, 0, udp_getstat
, "S,udpstat",
184 "UDP statistics (struct udpstat, netinet/udp_var.h)");
186 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, pcbcount
,
187 CTLFLAG_RD
| CTLFLAG_LOCKED
, &udbinfo
.ipi_count
, 0,
188 "Number of active PCBs");
190 __private_extern__
int udp_use_randomport
= 1;
191 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, randomize_ports
,
192 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_use_randomport
, 0,
193 "Randomize UDP port numbers");
197 struct sockaddr_in6 uin6_sin
;
198 u_char uin6_init_done
: 1;
201 struct ip6_hdr uip6_ip6
;
202 u_char uip6_init_done
: 1;
205 int udp_abort(struct socket
*);
206 int udp_attach(struct socket
*, int, struct proc
*);
207 int udp_bind(struct socket
*, struct sockaddr
*, struct proc
*);
208 int udp_connect(struct socket
*, struct sockaddr
*, struct proc
*);
209 int udp_connectx(struct socket
*, struct sockaddr
*,
210 struct sockaddr
*, struct proc
*, uint32_t, sae_associd_t
,
211 sae_connid_t
*, uint32_t, void *, uint32_t, struct uio
*, user_ssize_t
*);
212 int udp_detach(struct socket
*);
213 int udp_disconnect(struct socket
*);
214 int udp_disconnectx(struct socket
*, sae_associd_t
, sae_connid_t
);
215 int udp_send(struct socket
*, int, struct mbuf
*, struct sockaddr
*,
216 struct mbuf
*, struct proc
*);
217 static void udp_append(struct inpcb
*, struct ip
*, struct mbuf
*, int,
218 struct sockaddr_in
*, struct udp_in6
*, struct udp_ip6
*, struct ifnet
*);
220 static void udp_append(struct inpcb
*, struct ip
*, struct mbuf
*, int,
221 struct sockaddr_in
*, struct ifnet
*);
223 static int udp_input_checksum(struct mbuf
*, struct udphdr
*, int, int);
224 int udp_output(struct inpcb
*, struct mbuf
*, struct sockaddr
*,
225 struct mbuf
*, struct proc
*);
226 static void ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
);
227 static void udp_gc(struct inpcbinfo
*);
229 struct pr_usrreqs udp_usrreqs
= {
230 .pru_abort
= udp_abort
,
231 .pru_attach
= udp_attach
,
232 .pru_bind
= udp_bind
,
233 .pru_connect
= udp_connect
,
234 .pru_connectx
= udp_connectx
,
235 .pru_control
= in_control
,
236 .pru_detach
= udp_detach
,
237 .pru_disconnect
= udp_disconnect
,
238 .pru_disconnectx
= udp_disconnectx
,
239 .pru_peeraddr
= in_getpeeraddr
,
240 .pru_send
= udp_send
,
241 .pru_shutdown
= udp_shutdown
,
242 .pru_sockaddr
= in_getsockaddr
,
243 .pru_sosend
= sosend
,
244 .pru_soreceive
= soreceive
,
245 .pru_soreceive_list
= soreceive_list
,
249 udp_init(struct protosw
*pp
, struct domain
*dp
)
252 static int udp_initialized
= 0;
254 struct inpcbinfo
*pcbinfo
;
256 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
|PR_ATTACHED
)) == PR_ATTACHED
);
263 udbinfo
.ipi_listhead
= &udb
;
264 udbinfo
.ipi_hashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
265 &udbinfo
.ipi_hashmask
);
266 udbinfo
.ipi_porthashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
267 &udbinfo
.ipi_porthashmask
);
268 str_size
= (vm_size_t
) sizeof (struct inpcb
);
269 udbinfo
.ipi_zone
= zinit(str_size
, 80000*str_size
, 8192, "udpcb");
273 * allocate lock group attribute and group for udp pcb mutexes
275 pcbinfo
->ipi_lock_grp_attr
= lck_grp_attr_alloc_init();
276 pcbinfo
->ipi_lock_grp
= lck_grp_alloc_init("udppcb",
277 pcbinfo
->ipi_lock_grp_attr
);
278 pcbinfo
->ipi_lock_attr
= lck_attr_alloc_init();
279 if ((pcbinfo
->ipi_lock
= lck_rw_alloc_init(pcbinfo
->ipi_lock_grp
,
280 pcbinfo
->ipi_lock_attr
)) == NULL
) {
281 panic("%s: unable to allocate PCB lock\n", __func__
);
285 udbinfo
.ipi_gc
= udp_gc
;
286 in_pcbinfo_attach(&udbinfo
);
290 udp_input(struct mbuf
*m
, int iphlen
)
295 struct mbuf
*opts
= NULL
;
296 int len
, isbroadcast
;
298 struct sockaddr
*append_sa
;
299 struct inpcbinfo
*pcbinfo
= &udbinfo
;
300 struct sockaddr_in udp_in
;
301 struct ip_moptions
*imo
= NULL
;
302 int foundmembership
= 0, ret
= 0;
304 struct udp_in6 udp_in6
;
305 struct udp_ip6 udp_ip6
;
307 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
308 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
309 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
310 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
312 bzero(&udp_in
, sizeof (udp_in
));
313 udp_in
.sin_len
= sizeof (struct sockaddr_in
);
314 udp_in
.sin_family
= AF_INET
;
316 bzero(&udp_in6
, sizeof (udp_in6
));
317 udp_in6
.uin6_sin
.sin6_len
= sizeof (struct sockaddr_in6
);
318 udp_in6
.uin6_sin
.sin6_family
= AF_INET6
;
321 udpstat
.udps_ipackets
++;
323 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
325 /* Expect 32-bit aligned data pointer on strict-align platforms */
326 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
329 * Strip IP options, if any; should skip this,
330 * make available to user, and use on returned packets,
331 * but we don't yet have a way to check the checksum
332 * with options still present.
334 if (iphlen
> sizeof (struct ip
)) {
336 iphlen
= sizeof (struct ip
);
340 * Get IP and UDP header together in first mbuf.
342 ip
= mtod(m
, struct ip
*);
343 if (m
->m_len
< iphlen
+ sizeof (struct udphdr
)) {
344 m
= m_pullup(m
, iphlen
+ sizeof (struct udphdr
));
346 udpstat
.udps_hdrops
++;
347 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
351 ip
= mtod(m
, struct ip
*);
353 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
355 /* destination port of 0 is illegal, based on RFC768. */
356 if (uh
->uh_dport
== 0) {
357 IF_UDP_STATINC(ifp
, port0
);
361 KERNEL_DEBUG(DBG_LAYER_IN_BEG
, uh
->uh_dport
, uh
->uh_sport
,
362 ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
, uh
->uh_ulen
);
365 * Make mbuf data length reflect UDP length.
366 * If not enough data to reflect UDP length, drop.
368 len
= ntohs((u_short
)uh
->uh_ulen
);
369 if (ip
->ip_len
!= len
) {
370 if (len
> ip
->ip_len
|| len
< sizeof (struct udphdr
)) {
371 udpstat
.udps_badlen
++;
372 IF_UDP_STATINC(ifp
, badlength
);
375 m_adj(m
, len
- ip
->ip_len
);
376 /* ip->ip_len = len; */
379 * Save a copy of the IP header in case we want restore it
380 * for sending an ICMP error message in response.
385 * Checksum extended UDP header and data.
387 if (udp_input_checksum(m
, uh
, iphlen
, len
))
390 isbroadcast
= in_broadcast(ip
->ip_dst
, ifp
);
392 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) || isbroadcast
) {
393 int reuse_sock
= 0, mcast_delivered
= 0;
395 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
397 * Deliver a multicast or broadcast datagram to *all* sockets
398 * for which the local and remote addresses and ports match
399 * those of the incoming datagram. This allows more than
400 * one process to receive multi/broadcasts on the same port.
401 * (This really ought to be done for unicast datagrams as
402 * well, but that would cause problems with existing
403 * applications that open both address-specific sockets and
404 * a wildcard socket listening to the same port -- they would
405 * end up receiving duplicates of every unicast datagram.
406 * Those applications open the multiple sockets to overcome an
407 * inadequacy of the UDP socket interface, but for backwards
408 * compatibility we avoid the problem here rather than
409 * fixing the interface. Maybe 4.5BSD will remedy this?)
413 * Construct sockaddr format source address.
415 udp_in
.sin_port
= uh
->uh_sport
;
416 udp_in
.sin_addr
= ip
->ip_src
;
418 * Locate pcb(s) for datagram.
419 * (Algorithm copied from raw_intr().)
422 udp_in6
.uin6_init_done
= udp_ip6
.uip6_init_done
= 0;
424 LIST_FOREACH(inp
, &udb
, inp_list
) {
429 if (inp
->inp_socket
== NULL
)
431 if (inp
!= sotoinpcb(inp
->inp_socket
)) {
432 panic("%s: bad so back ptr inp=%p\n",
437 if ((inp
->inp_vflag
& INP_IPV4
) == 0)
440 if (inp_restricted_recv(inp
, ifp
))
443 if ((inp
->inp_moptions
== NULL
) &&
444 (ntohl(ip
->ip_dst
.s_addr
) !=
445 INADDR_ALLHOSTS_GROUP
) && (isbroadcast
== 0))
448 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) ==
452 udp_lock(inp
->inp_socket
, 1, 0);
454 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
456 udp_unlock(inp
->inp_socket
, 1, 0);
460 if (inp
->inp_lport
!= uh
->uh_dport
) {
461 udp_unlock(inp
->inp_socket
, 1, 0);
464 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
465 if (inp
->inp_laddr
.s_addr
!=
467 udp_unlock(inp
->inp_socket
, 1, 0);
471 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
472 if (inp
->inp_faddr
.s_addr
!=
474 inp
->inp_fport
!= uh
->uh_sport
) {
475 udp_unlock(inp
->inp_socket
, 1, 0);
480 if (isbroadcast
== 0 && (ntohl(ip
->ip_dst
.s_addr
) !=
481 INADDR_ALLHOSTS_GROUP
)) {
482 struct sockaddr_in group
;
485 if ((imo
= inp
->inp_moptions
) == NULL
) {
486 udp_unlock(inp
->inp_socket
, 1, 0);
491 bzero(&group
, sizeof (struct sockaddr_in
));
492 group
.sin_len
= sizeof (struct sockaddr_in
);
493 group
.sin_family
= AF_INET
;
494 group
.sin_addr
= ip
->ip_dst
;
496 blocked
= imo_multi_filter(imo
, ifp
,
498 if (blocked
== MCAST_PASS
)
502 if (!foundmembership
) {
503 udp_unlock(inp
->inp_socket
, 1, 0);
504 if (blocked
== MCAST_NOTSMEMBER
||
505 blocked
== MCAST_MUTED
)
506 udpstat
.udps_filtermcast
++;
512 reuse_sock
= (inp
->inp_socket
->so_options
&
513 (SO_REUSEPORT
|SO_REUSEADDR
));
517 if (!necp_socket_is_allowed_to_send_recv_v4(inp
,
518 uh
->uh_dport
, uh
->uh_sport
, &ip
->ip_dst
,
519 &ip
->ip_src
, ifp
, NULL
, NULL
)) {
520 /* do not inject data to pcb */
526 struct mbuf
*n
= NULL
;
529 n
= m_copy(m
, 0, M_COPYALL
);
531 udp_append(inp
, ip
, m
,
532 iphlen
+ sizeof (struct udphdr
),
533 &udp_in
, &udp_in6
, &udp_ip6
, ifp
);
535 udp_append(inp
, ip
, m
,
536 iphlen
+ sizeof (struct udphdr
),
543 udp_unlock(inp
->inp_socket
, 1, 0);
546 * Don't look for additional matches if this one does
547 * not have either the SO_REUSEPORT or SO_REUSEADDR
548 * socket options set. This heuristic avoids searching
549 * through all pcbs in the common case of a non-shared
550 * port. It assumes that an application will never
551 * clear these options after setting them.
553 if (reuse_sock
== 0 || m
== NULL
)
557 * Expect 32-bit aligned data pointer on strict-align
560 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
562 * Recompute IP and UDP header pointers for new mbuf
564 ip
= mtod(m
, struct ip
*);
565 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
567 lck_rw_done(pcbinfo
->ipi_lock
);
569 if (mcast_delivered
== 0) {
571 * No matching pcb found; discard datagram.
572 * (No need to send an ICMP Port Unreachable
573 * for a broadcast or multicast datgram.)
575 udpstat
.udps_noportbcast
++;
576 IF_UDP_STATINC(ifp
, port_unreach
);
580 /* free the extra copy of mbuf or skipped by IPSec */
583 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
589 * UDP to port 4500 with a payload where the first four bytes are
590 * not zero is a UDP encapsulated IPSec packet. Packets where
591 * the payload is one byte and that byte is 0xFF are NAT keepalive
592 * packets. Decapsulate the ESP packet and carry on with IPSec input
593 * or discard the NAT keep-alive.
595 if (ipsec_bypass
== 0 && (esp_udp_encap_port
& 0xFFFF) != 0 &&
596 uh
->uh_dport
== ntohs((u_short
)esp_udp_encap_port
)) {
597 int payload_len
= len
- sizeof (struct udphdr
) > 4 ? 4 :
598 len
- sizeof (struct udphdr
);
600 if (m
->m_len
< iphlen
+ sizeof (struct udphdr
) + payload_len
) {
601 if ((m
= m_pullup(m
, iphlen
+ sizeof (struct udphdr
) +
602 payload_len
)) == NULL
) {
603 udpstat
.udps_hdrops
++;
604 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
609 * Expect 32-bit aligned data pointer on strict-align
612 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
614 ip
= mtod(m
, struct ip
*);
615 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
617 /* Check for NAT keepalive packet */
618 if (payload_len
== 1 && *(u_int8_t
*)
619 ((caddr_t
)uh
+ sizeof (struct udphdr
)) == 0xFF) {
621 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
624 } else if (payload_len
== 4 && *(u_int32_t
*)(void *)
625 ((caddr_t
)uh
+ sizeof (struct udphdr
)) != 0) {
626 /* UDP encapsulated IPSec packet to pass through NAT */
627 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
629 /* preserve the udp header */
630 esp4_input(m
, iphlen
+ sizeof (struct udphdr
));
637 * Locate pcb for datagram.
639 inp
= in_pcblookup_hash(&udbinfo
, ip
->ip_src
, uh
->uh_sport
,
640 ip
->ip_dst
, uh
->uh_dport
, 1, ifp
);
642 IF_UDP_STATINC(ifp
, port_unreach
);
644 if (udp_log_in_vain
) {
645 char buf
[MAX_IPv4_STR_LEN
];
646 char buf2
[MAX_IPv4_STR_LEN
];
648 /* check src and dst address */
649 if (udp_log_in_vain
< 3) {
650 log(LOG_INFO
, "Connection attempt to "
651 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
652 &ip
->ip_dst
, buf
, sizeof (buf
)),
653 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
654 &ip
->ip_src
, buf2
, sizeof (buf2
)),
655 ntohs(uh
->uh_sport
));
656 } else if (!(m
->m_flags
& (M_BCAST
| M_MCAST
)) &&
657 ip
->ip_dst
.s_addr
!= ip
->ip_src
.s_addr
) {
658 log_in_vain_log((LOG_INFO
,
659 "Stealth Mode connection attempt to "
660 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
661 &ip
->ip_dst
, buf
, sizeof (buf
)),
662 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
663 &ip
->ip_src
, buf2
, sizeof (buf2
)),
664 ntohs(uh
->uh_sport
)))
667 udpstat
.udps_noport
++;
668 if (m
->m_flags
& (M_BCAST
| M_MCAST
)) {
669 udpstat
.udps_noportbcast
++;
673 if (badport_bandlim(BANDLIM_ICMP_UNREACH
) < 0)
675 #endif /* ICMP_BANDLIM */
677 if (ifp
&& ifp
->if_type
!= IFT_LOOP
)
680 ip
->ip_len
+= iphlen
;
681 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_PORT
, 0, 0);
682 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
685 udp_lock(inp
->inp_socket
, 1, 0);
687 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
688 udp_unlock(inp
->inp_socket
, 1, 0);
689 IF_UDP_STATINC(ifp
, cleanup
);
693 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, uh
->uh_dport
,
694 uh
->uh_sport
, &ip
->ip_dst
, &ip
->ip_src
, ifp
, NULL
, NULL
)) {
695 udp_unlock(inp
->inp_socket
, 1, 0);
696 IF_UDP_STATINC(ifp
, badipsec
);
702 * Construct sockaddr format source address.
703 * Stuff source address and datagram in user buffer.
705 udp_in
.sin_port
= uh
->uh_sport
;
706 udp_in
.sin_addr
= ip
->ip_src
;
707 if ((inp
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
708 (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
709 (inp
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0) {
711 if (inp
->inp_vflag
& INP_IPV6
) {
714 ip_2_ip6_hdr(&udp_ip6
.uip6_ip6
, ip
);
715 savedflags
= inp
->inp_flags
;
716 inp
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
717 ret
= ip6_savecontrol(inp
, m
, &opts
);
718 inp
->inp_flags
= savedflags
;
722 ret
= ip_savecontrol(inp
, &opts
, ip
, m
);
725 udp_unlock(inp
->inp_socket
, 1, 0);
729 m_adj(m
, iphlen
+ sizeof (struct udphdr
));
731 KERNEL_DEBUG(DBG_LAYER_IN_END
, uh
->uh_dport
, uh
->uh_sport
,
732 save_ip
.ip_src
.s_addr
, save_ip
.ip_dst
.s_addr
, uh
->uh_ulen
);
735 if (inp
->inp_vflag
& INP_IPV6
) {
736 in6_sin_2_v4mapsin6(&udp_in
, &udp_in6
.uin6_sin
);
737 append_sa
= (struct sockaddr
*)&udp_in6
.uin6_sin
;
741 append_sa
= (struct sockaddr
*)&udp_in
;
744 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxpackets
, 1);
745 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxbytes
, m
->m_pkthdr
.len
);
746 inp_set_activity_bitmap(inp
);
748 so_recv_data_stat(inp
->inp_socket
, m
, 0);
749 if (sbappendaddr(&inp
->inp_socket
->so_rcv
, append_sa
,
750 m
, opts
, NULL
) == 0) {
751 udpstat
.udps_fullsock
++;
753 sorwakeup(inp
->inp_socket
);
755 udp_unlock(inp
->inp_socket
, 1, 0);
756 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
762 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
767 ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
)
769 bzero(ip6
, sizeof (*ip6
));
771 ip6
->ip6_vfc
= IPV6_VERSION
;
772 ip6
->ip6_plen
= ip
->ip_len
;
773 ip6
->ip6_nxt
= ip
->ip_p
;
774 ip6
->ip6_hlim
= ip
->ip_ttl
;
775 if (ip
->ip_src
.s_addr
) {
776 ip6
->ip6_src
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
777 ip6
->ip6_src
.s6_addr32
[3] = ip
->ip_src
.s_addr
;
779 if (ip
->ip_dst
.s_addr
) {
780 ip6
->ip6_dst
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
781 ip6
->ip6_dst
.s6_addr32
[3] = ip
->ip_dst
.s_addr
;
787 * subroutine of udp_input(), mainly for source code readability.
791 udp_append(struct inpcb
*last
, struct ip
*ip
, struct mbuf
*n
, int off
,
792 struct sockaddr_in
*pudp_in
, struct udp_in6
*pudp_in6
,
793 struct udp_ip6
*pudp_ip6
, struct ifnet
*ifp
)
795 udp_append(struct inpcb
*last
, struct ip
*ip
, struct mbuf
*n
, int off
,
796 struct sockaddr_in
*pudp_in
, struct ifnet
*ifp
)
799 struct sockaddr
*append_sa
;
800 struct mbuf
*opts
= 0;
801 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
802 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
803 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
807 if (mac_inpcb_check_deliver(last
, n
, AF_INET
, SOCK_DGRAM
) != 0) {
811 #endif /* CONFIG_MACF_NET */
812 if ((last
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
813 (last
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
814 (last
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0) {
816 if (last
->inp_vflag
& INP_IPV6
) {
819 if (pudp_ip6
->uip6_init_done
== 0) {
820 ip_2_ip6_hdr(&pudp_ip6
->uip6_ip6
, ip
);
821 pudp_ip6
->uip6_init_done
= 1;
823 savedflags
= last
->inp_flags
;
824 last
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
825 ret
= ip6_savecontrol(last
, n
, &opts
);
827 last
->inp_flags
= savedflags
;
830 last
->inp_flags
= savedflags
;
834 ret
= ip_savecontrol(last
, &opts
, ip
, n
);
841 if (last
->inp_vflag
& INP_IPV6
) {
842 if (pudp_in6
->uin6_init_done
== 0) {
843 in6_sin_2_v4mapsin6(pudp_in
, &pudp_in6
->uin6_sin
);
844 pudp_in6
->uin6_init_done
= 1;
846 append_sa
= (struct sockaddr
*)&pudp_in6
->uin6_sin
;
849 append_sa
= (struct sockaddr
*)pudp_in
;
851 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxpackets
, 1);
852 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxbytes
,
854 inp_set_activity_bitmap(last
);
856 so_recv_data_stat(last
->inp_socket
, n
, 0);
858 if (sbappendaddr(&last
->inp_socket
->so_rcv
, append_sa
,
859 n
, opts
, NULL
) == 0) {
860 udpstat
.udps_fullsock
++;
862 sorwakeup(last
->inp_socket
);
871 * Notify a udp user of an asynchronous error;
872 * just wake up so that he can collect error status.
875 udp_notify(struct inpcb
*inp
, int errno
)
877 inp
->inp_socket
->so_error
= errno
;
878 sorwakeup(inp
->inp_socket
);
879 sowwakeup(inp
->inp_socket
);
883 udp_ctlinput(int cmd
, struct sockaddr
*sa
, void *vip
, __unused
struct ifnet
* ifp
)
886 void (*notify
)(struct inpcb
*, int) = udp_notify
;
887 struct in_addr faddr
;
888 struct inpcb
*inp
= NULL
;
890 faddr
= ((struct sockaddr_in
*)(void *)sa
)->sin_addr
;
891 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
)
894 if (PRC_IS_REDIRECT(cmd
)) {
896 notify
= in_rtchange
;
897 } else if (cmd
== PRC_HOSTDEAD
) {
899 } else if ((unsigned)cmd
>= PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0) {
905 bcopy(((caddr_t
)ip
+ (ip
->ip_hl
<< 2)), &uh
, sizeof (uh
));
906 inp
= in_pcblookup_hash(&udbinfo
, faddr
, uh
.uh_dport
,
907 ip
->ip_src
, uh
.uh_sport
, 0, NULL
);
908 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
909 udp_lock(inp
->inp_socket
, 1, 0);
910 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
912 udp_unlock(inp
->inp_socket
, 1, 0);
915 (*notify
)(inp
, inetctlerrmap
[cmd
]);
916 udp_unlock(inp
->inp_socket
, 1, 0);
919 in_pcbnotifyall(&udbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
924 udp_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
929 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
930 if (sopt
->sopt_level
!= IPPROTO_UDP
&&
931 !(sopt
->sopt_level
== SOL_SOCKET
&& sopt
->sopt_name
== SO_FLUSH
))
932 return (ip_ctloutput(so
, sopt
));
937 switch (sopt
->sopt_dir
) {
939 switch (sopt
->sopt_name
) {
941 /* This option is settable only for UDP over IPv4 */
942 if (!(inp
->inp_vflag
& INP_IPV4
)) {
947 if ((error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
948 sizeof (optval
))) != 0)
952 inp
->inp_flags
|= INP_UDP_NOCKSUM
;
954 inp
->inp_flags
&= ~INP_UDP_NOCKSUM
;
956 case UDP_KEEPALIVE_OFFLOAD
:
958 struct udp_keepalive_offload ka
;
960 * If the socket is not connected, the stack will
961 * not know the destination address to put in the
962 * keepalive datagram. Return an error now instead
965 if (!(so
->so_state
& SS_ISCONNECTED
)) {
969 if (sopt
->sopt_valsize
!= sizeof(ka
)) {
973 if ((error
= sooptcopyin(sopt
, &ka
, sizeof(ka
),
977 /* application should specify the type */
981 if (ka
.ka_interval
== 0) {
983 * if interval is 0, disable the offload
986 if (inp
->inp_keepalive_data
!= NULL
)
987 FREE(inp
->inp_keepalive_data
,
989 inp
->inp_keepalive_data
= NULL
;
990 inp
->inp_keepalive_datalen
= 0;
991 inp
->inp_keepalive_interval
= 0;
992 inp
->inp_keepalive_type
= 0;
993 inp
->inp_flags2
&= ~INP2_KEEPALIVE_OFFLOAD
;
995 if (inp
->inp_keepalive_data
!= NULL
) {
996 FREE(inp
->inp_keepalive_data
,
998 inp
->inp_keepalive_data
= NULL
;
1001 inp
->inp_keepalive_datalen
= min(
1003 UDP_KEEPALIVE_OFFLOAD_DATA_SIZE
);
1004 if (inp
->inp_keepalive_datalen
> 0) {
1005 MALLOC(inp
->inp_keepalive_data
,
1007 inp
->inp_keepalive_datalen
,
1009 if (inp
->inp_keepalive_data
== NULL
) {
1010 inp
->inp_keepalive_datalen
= 0;
1015 inp
->inp_keepalive_data
,
1016 inp
->inp_keepalive_datalen
);
1018 inp
->inp_keepalive_datalen
= 0;
1020 inp
->inp_keepalive_interval
=
1021 min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS
,
1023 inp
->inp_keepalive_type
= ka
.ka_type
;
1024 inp
->inp_flags2
|= INP2_KEEPALIVE_OFFLOAD
;
1029 if ((error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
1030 sizeof (optval
))) != 0)
1033 error
= inp_flush(inp
, optval
);
1037 error
= ENOPROTOOPT
;
1043 switch (sopt
->sopt_name
) {
1045 optval
= inp
->inp_flags
& INP_UDP_NOCKSUM
;
1049 error
= ENOPROTOOPT
;
1053 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
1060 udp_pcblist SYSCTL_HANDLER_ARGS
1062 #pragma unused(oidp, arg1, arg2)
1064 struct inpcb
*inp
, **inp_list
;
1069 * The process of preparing the TCB list is too time-consuming and
1070 * resource-intensive to repeat twice on every request.
1072 lck_rw_lock_exclusive(udbinfo
.ipi_lock
);
1073 if (req
->oldptr
== USER_ADDR_NULL
) {
1074 n
= udbinfo
.ipi_count
;
1075 req
->oldidx
= 2 * (sizeof (xig
))
1076 + (n
+ n
/8) * sizeof (struct xinpcb
);
1077 lck_rw_done(udbinfo
.ipi_lock
);
1081 if (req
->newptr
!= USER_ADDR_NULL
) {
1082 lck_rw_done(udbinfo
.ipi_lock
);
1087 * OK, now we're committed to doing something.
1089 gencnt
= udbinfo
.ipi_gencnt
;
1090 n
= udbinfo
.ipi_count
;
1092 bzero(&xig
, sizeof (xig
));
1093 xig
.xig_len
= sizeof (xig
);
1095 xig
.xig_gen
= gencnt
;
1096 xig
.xig_sogen
= so_gencnt
;
1097 error
= SYSCTL_OUT(req
, &xig
, sizeof (xig
));
1099 lck_rw_done(udbinfo
.ipi_lock
);
1103 * We are done if there is no pcb
1106 lck_rw_done(udbinfo
.ipi_lock
);
1110 inp_list
= _MALLOC(n
* sizeof (*inp_list
), M_TEMP
, M_WAITOK
);
1111 if (inp_list
== 0) {
1112 lck_rw_done(udbinfo
.ipi_lock
);
1116 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1117 inp
= LIST_NEXT(inp
, inp_list
)) {
1118 if (inp
->inp_gencnt
<= gencnt
&&
1119 inp
->inp_state
!= INPCB_STATE_DEAD
)
1120 inp_list
[i
++] = inp
;
1125 for (i
= 0; i
< n
; i
++) {
1130 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
)
1132 udp_lock(inp
->inp_socket
, 1, 0);
1133 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1134 udp_unlock(inp
->inp_socket
, 1, 0);
1137 if (inp
->inp_gencnt
> gencnt
) {
1138 udp_unlock(inp
->inp_socket
, 1, 0);
1142 bzero(&xi
, sizeof (xi
));
1143 xi
.xi_len
= sizeof (xi
);
1144 /* XXX should avoid extra copy */
1145 inpcb_to_compat(inp
, &xi
.xi_inp
);
1146 if (inp
->inp_socket
)
1147 sotoxsocket(inp
->inp_socket
, &xi
.xi_socket
);
1149 udp_unlock(inp
->inp_socket
, 1, 0);
1151 error
= SYSCTL_OUT(req
, &xi
, sizeof (xi
));
1155 * Give the user an updated idea of our state.
1156 * If the generation differs from what we told
1157 * her before, she knows that something happened
1158 * while we were processing this request, and it
1159 * might be necessary to retry.
1161 bzero(&xig
, sizeof (xig
));
1162 xig
.xig_len
= sizeof (xig
);
1163 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1164 xig
.xig_sogen
= so_gencnt
;
1165 xig
.xig_count
= udbinfo
.ipi_count
;
1166 error
= SYSCTL_OUT(req
, &xig
, sizeof (xig
));
1168 FREE(inp_list
, M_TEMP
);
1169 lck_rw_done(udbinfo
.ipi_lock
);
1173 SYSCTL_PROC(_net_inet_udp
, UDPCTL_PCBLIST
, pcblist
,
1174 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist
,
1175 "S,xinpcb", "List of active UDP sockets");
1177 #if !CONFIG_EMBEDDED
1180 udp_pcblist64 SYSCTL_HANDLER_ARGS
1182 #pragma unused(oidp, arg1, arg2)
1184 struct inpcb
*inp
, **inp_list
;
1189 * The process of preparing the TCB list is too time-consuming and
1190 * resource-intensive to repeat twice on every request.
1192 lck_rw_lock_shared(udbinfo
.ipi_lock
);
1193 if (req
->oldptr
== USER_ADDR_NULL
) {
1194 n
= udbinfo
.ipi_count
;
1196 2 * (sizeof (xig
)) + (n
+ n
/8) * sizeof (struct xinpcb64
);
1197 lck_rw_done(udbinfo
.ipi_lock
);
1201 if (req
->newptr
!= USER_ADDR_NULL
) {
1202 lck_rw_done(udbinfo
.ipi_lock
);
1207 * OK, now we're committed to doing something.
1209 gencnt
= udbinfo
.ipi_gencnt
;
1210 n
= udbinfo
.ipi_count
;
1212 bzero(&xig
, sizeof (xig
));
1213 xig
.xig_len
= sizeof (xig
);
1215 xig
.xig_gen
= gencnt
;
1216 xig
.xig_sogen
= so_gencnt
;
1217 error
= SYSCTL_OUT(req
, &xig
, sizeof (xig
));
1219 lck_rw_done(udbinfo
.ipi_lock
);
1223 * We are done if there is no pcb
1226 lck_rw_done(udbinfo
.ipi_lock
);
1230 inp_list
= _MALLOC(n
* sizeof (*inp_list
), M_TEMP
, M_WAITOK
);
1231 if (inp_list
== 0) {
1232 lck_rw_done(udbinfo
.ipi_lock
);
1236 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1237 inp
= LIST_NEXT(inp
, inp_list
)) {
1238 if (inp
->inp_gencnt
<= gencnt
&&
1239 inp
->inp_state
!= INPCB_STATE_DEAD
)
1240 inp_list
[i
++] = inp
;
1245 for (i
= 0; i
< n
; i
++) {
1250 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
)
1252 udp_lock(inp
->inp_socket
, 1, 0);
1253 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1254 udp_unlock(inp
->inp_socket
, 1, 0);
1257 if (inp
->inp_gencnt
> gencnt
) {
1258 udp_unlock(inp
->inp_socket
, 1, 0);
1262 bzero(&xi
, sizeof (xi
));
1263 xi
.xi_len
= sizeof (xi
);
1264 inpcb_to_xinpcb64(inp
, &xi
);
1265 if (inp
->inp_socket
)
1266 sotoxsocket64(inp
->inp_socket
, &xi
.xi_socket
);
1268 udp_unlock(inp
->inp_socket
, 1, 0);
1270 error
= SYSCTL_OUT(req
, &xi
, sizeof (xi
));
1274 * Give the user an updated idea of our state.
1275 * If the generation differs from what we told
1276 * her before, she knows that something happened
1277 * while we were processing this request, and it
1278 * might be necessary to retry.
1280 bzero(&xig
, sizeof (xig
));
1281 xig
.xig_len
= sizeof (xig
);
1282 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1283 xig
.xig_sogen
= so_gencnt
;
1284 xig
.xig_count
= udbinfo
.ipi_count
;
1285 error
= SYSCTL_OUT(req
, &xig
, sizeof (xig
));
1287 FREE(inp_list
, M_TEMP
);
1288 lck_rw_done(udbinfo
.ipi_lock
);
1292 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist64
,
1293 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist64
,
1294 "S,xinpcb64", "List of active UDP sockets");
1296 #endif /* !CONFIG_EMBEDDED */
1299 udp_pcblist_n SYSCTL_HANDLER_ARGS
1301 #pragma unused(oidp, arg1, arg2)
1302 return (get_pcblist_n(IPPROTO_UDP
, req
, &udbinfo
));
1305 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist_n
,
1306 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist_n
,
1307 "S,xinpcb_n", "List of active UDP sockets");
1309 __private_extern__
void
1310 udp_get_ports_used(uint32_t ifindex
, int protocol
, uint32_t flags
,
1313 inpcb_get_ports_used(ifindex
, protocol
, flags
, bitfield
,
1317 __private_extern__
uint32_t
1318 udp_count_opportunistic(unsigned int ifindex
, u_int32_t flags
)
1320 return (inpcb_count_opportunistic(ifindex
, &udbinfo
, flags
));
1323 __private_extern__
uint32_t
1324 udp_find_anypcb_byaddr(struct ifaddr
*ifa
)
1326 return (inpcb_find_anypcb_byaddr(ifa
, &udbinfo
));
1330 udp_check_pktinfo(struct mbuf
*control
, struct ifnet
**outif
,
1331 struct in_addr
*laddr
)
1333 struct cmsghdr
*cm
= 0;
1334 struct in_pktinfo
*pktinfo
;
1341 * XXX: Currently, we assume all the optional information is stored
1344 if (control
->m_next
)
1347 if (control
->m_len
< CMSG_LEN(0))
1350 for (cm
= M_FIRST_CMSGHDR(control
); cm
;
1351 cm
= M_NXT_CMSGHDR(control
, cm
)) {
1352 if (cm
->cmsg_len
< sizeof (struct cmsghdr
) ||
1353 cm
->cmsg_len
> control
->m_len
)
1356 if (cm
->cmsg_level
!= IPPROTO_IP
|| cm
->cmsg_type
!= IP_PKTINFO
)
1359 if (cm
->cmsg_len
!= CMSG_LEN(sizeof (struct in_pktinfo
)))
1362 pktinfo
= (struct in_pktinfo
*)(void *)CMSG_DATA(cm
);
1364 /* Check for a valid ifindex in pktinfo */
1365 ifnet_head_lock_shared();
1367 if (pktinfo
->ipi_ifindex
> if_index
) {
1373 * If ipi_ifindex is specified it takes precedence
1374 * over ipi_spec_dst.
1376 if (pktinfo
->ipi_ifindex
) {
1377 ifp
= ifindex2ifnet
[pktinfo
->ipi_ifindex
];
1382 if (outif
!= NULL
) {
1383 ifnet_reference(ifp
);
1387 laddr
->s_addr
= INADDR_ANY
;
1394 * Use the provided ipi_spec_dst address for temp
1397 *laddr
= pktinfo
->ipi_spec_dst
;
1404 udp_output(struct inpcb
*inp
, struct mbuf
*m
, struct sockaddr
*addr
,
1405 struct mbuf
*control
, struct proc
*p
)
1407 struct udpiphdr
*ui
;
1408 int len
= m
->m_pkthdr
.len
;
1409 struct sockaddr_in
*sin
;
1410 struct in_addr origladdr
, laddr
, faddr
, pi_laddr
;
1411 u_short lport
, fport
;
1412 int error
= 0, udp_dodisconnect
= 0, pktinfo
= 0;
1413 struct socket
*so
= inp
->inp_socket
;
1415 struct mbuf
*inpopts
;
1416 struct ip_moptions
*mopts
;
1418 struct ip_out_args ipoa
=
1419 { IFSCOPE_NONE
, { 0 }, IPOAF_SELECT_SRCIF
, 0, 0, 0 };
1420 struct ifnet
*outif
= NULL
;
1421 struct flowadv
*adv
= &ipoa
.ipoa_flowadv
;
1422 int sotc
= SO_TC_UNSPEC
;
1423 int netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
1424 struct ifnet
*origoutifp
= NULL
;
1427 /* Enable flow advisory only when connected */
1428 flowadv
= (so
->so_state
& SS_ISCONNECTED
) ? 1 : 0;
1429 pi_laddr
.s_addr
= INADDR_ANY
;
1431 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1433 socket_lock_assert_owned(so
);
1434 if (control
!= NULL
) {
1435 sotc
= so_tc_from_control(control
, &netsvctype
);
1436 VERIFY(outif
== NULL
);
1437 error
= udp_check_pktinfo(control
, &outif
, &pi_laddr
);
1444 ipoa
.ipoa_boundif
= outif
->if_index
;
1446 if (sotc
== SO_TC_UNSPEC
) {
1447 sotc
= so
->so_traffic_class
;
1448 netsvctype
= so
->so_netsvctype
;
1451 KERNEL_DEBUG(DBG_LAYER_OUT_BEG
, inp
->inp_fport
, inp
->inp_lport
,
1452 inp
->inp_laddr
.s_addr
, inp
->inp_faddr
.s_addr
,
1453 (htons((u_short
)len
+ sizeof (struct udphdr
))));
1455 if (len
+ sizeof (struct udpiphdr
) > IP_MAXPACKET
) {
1460 if (flowadv
&& INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
1462 * The socket is flow-controlled, drop the packets
1463 * until the inp is not flow controlled
1469 * If socket was bound to an ifindex, tell ip_output about it.
1470 * If the ancillary IP_PKTINFO option contains an interface index,
1471 * it takes precedence over the one specified by IP_BOUND_IF.
1473 if (ipoa
.ipoa_boundif
== IFSCOPE_NONE
&&
1474 (inp
->inp_flags
& INP_BOUND_IF
)) {
1475 VERIFY(inp
->inp_boundifp
!= NULL
);
1476 ifnet_reference(inp
->inp_boundifp
); /* for this routine */
1478 ifnet_release(outif
);
1479 outif
= inp
->inp_boundifp
;
1480 ipoa
.ipoa_boundif
= outif
->if_index
;
1482 if (INP_NO_CELLULAR(inp
))
1483 ipoa
.ipoa_flags
|= IPOAF_NO_CELLULAR
;
1484 if (INP_NO_EXPENSIVE(inp
))
1485 ipoa
.ipoa_flags
|= IPOAF_NO_EXPENSIVE
;
1486 if (INP_AWDL_UNRESTRICTED(inp
))
1487 ipoa
.ipoa_flags
|= IPOAF_AWDL_UNRESTRICTED
;
1488 ipoa
.ipoa_sotc
= sotc
;
1489 ipoa
.ipoa_netsvctype
= netsvctype
;
1490 soopts
|= IP_OUTARGS
;
1493 * If there was a routing change, discard cached route and check
1494 * that we have a valid source address. Reacquire a new source
1495 * address if INADDR_ANY was specified.
1497 if (ROUTE_UNUSABLE(&inp
->inp_route
)) {
1498 struct in_ifaddr
*ia
= NULL
;
1500 ROUTE_RELEASE(&inp
->inp_route
);
1502 /* src address is gone? */
1503 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1504 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) == NULL
) {
1505 if (!(inp
->inp_flags
& INP_INADDR_ANY
) ||
1506 (so
->so_state
& SS_ISCONNECTED
)) {
1509 * If the source address is gone, return an
1511 * - the source was specified
1512 * - the socket was already connected
1514 soevent(so
, (SO_FILT_HINT_LOCKED
|
1515 SO_FILT_HINT_NOSRCADDR
));
1516 error
= EADDRNOTAVAIL
;
1519 /* new src will be set later */
1520 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
1521 inp
->inp_last_outifp
= NULL
;
1525 IFA_REMREF(&ia
->ia_ifa
);
1529 * IP_PKTINFO option check. If a temporary scope or src address
1530 * is provided, use it for this packet only and make sure we forget
1531 * it after sending this datagram.
1533 if (pi_laddr
.s_addr
!= INADDR_ANY
||
1534 (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
&& pktinfo
)) {
1535 /* temp src address for this datagram only */
1537 origladdr
.s_addr
= INADDR_ANY
;
1538 /* we don't want to keep the laddr or route */
1539 udp_dodisconnect
= 1;
1540 /* remember we don't care about src addr */
1541 inp
->inp_flags
|= INP_INADDR_ANY
;
1543 origladdr
= laddr
= inp
->inp_laddr
;
1546 origoutifp
= inp
->inp_last_outifp
;
1547 faddr
= inp
->inp_faddr
;
1548 lport
= inp
->inp_lport
;
1549 fport
= inp
->inp_fport
;
1552 sin
= (struct sockaddr_in
*)(void *)addr
;
1553 if (faddr
.s_addr
!= INADDR_ANY
) {
1559 * In case we don't have a local port set, go through
1560 * the full connect. We don't have a local port yet
1561 * (i.e., we can't be looked up), so it's not an issue
1562 * if the input runs at the same time we do this.
1564 /* if we have a source address specified, use that */
1565 if (pi_laddr
.s_addr
!= INADDR_ANY
)
1566 inp
->inp_laddr
= pi_laddr
;
1568 * If a scope is specified, use it. Scope from
1569 * IP_PKTINFO takes precendence over the the scope
1570 * set via INP_BOUND_IF.
1572 error
= in_pcbconnect(inp
, addr
, p
, ipoa
.ipoa_boundif
,
1577 laddr
= inp
->inp_laddr
;
1578 lport
= inp
->inp_lport
;
1579 faddr
= inp
->inp_faddr
;
1580 fport
= inp
->inp_fport
;
1581 udp_dodisconnect
= 1;
1583 /* synch up in case in_pcbladdr() overrides */
1584 if (outif
!= NULL
&& ipoa
.ipoa_boundif
!= IFSCOPE_NONE
)
1585 ipoa
.ipoa_boundif
= outif
->if_index
;
1590 * We have a full address and a local port; use those
1591 * info to build the packet without changing the pcb
1592 * and interfering with the input path. See 3851370.
1594 * Scope from IP_PKTINFO takes precendence over the
1595 * the scope set via INP_BOUND_IF.
1597 if (laddr
.s_addr
== INADDR_ANY
) {
1598 if ((error
= in_pcbladdr(inp
, addr
, &laddr
,
1599 ipoa
.ipoa_boundif
, &outif
, 0)) != 0)
1602 * from pcbconnect: remember we don't
1603 * care about src addr.
1605 inp
->inp_flags
|= INP_INADDR_ANY
;
1607 /* synch up in case in_pcbladdr() overrides */
1608 if (outif
!= NULL
&&
1609 ipoa
.ipoa_boundif
!= IFSCOPE_NONE
)
1610 ipoa
.ipoa_boundif
= outif
->if_index
;
1613 faddr
= sin
->sin_addr
;
1614 fport
= sin
->sin_port
;
1617 if (faddr
.s_addr
== INADDR_ANY
) {
1624 mac_mbuf_label_associate_inpcb(inp
, m
);
1625 #endif /* CONFIG_MACF_NET */
1627 if (inp
->inp_flowhash
== 0)
1628 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
1630 if (fport
== htons(53) && !(so
->so_flags1
& SOF1_DNS_COUNTED
)) {
1631 so
->so_flags1
|= SOF1_DNS_COUNTED
;
1632 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_dns
);
1636 * Calculate data length and get a mbuf
1637 * for UDP and IP headers.
1639 M_PREPEND(m
, sizeof (struct udpiphdr
), M_DONTWAIT
, 1);
1646 * Fill in mbuf with extended UDP header
1647 * and addresses and length put into network format.
1649 ui
= mtod(m
, struct udpiphdr
*);
1650 bzero(ui
->ui_x1
, sizeof (ui
->ui_x1
)); /* XXX still needed? */
1651 ui
->ui_pr
= IPPROTO_UDP
;
1654 ui
->ui_sport
= lport
;
1655 ui
->ui_dport
= fport
;
1656 ui
->ui_ulen
= htons((u_short
)len
+ sizeof (struct udphdr
));
1659 * Set up checksum and output datagram.
1661 if (udpcksum
&& !(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
1662 ui
->ui_sum
= in_pseudo(ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
,
1663 htons((u_short
)len
+ sizeof (struct udphdr
) + IPPROTO_UDP
));
1664 m
->m_pkthdr
.csum_flags
= (CSUM_UDP
|CSUM_ZERO_INVERT
);
1665 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
, uh_sum
);
1669 ((struct ip
*)ui
)->ip_len
= sizeof (struct udpiphdr
) + len
;
1670 ((struct ip
*)ui
)->ip_ttl
= inp
->inp_ip_ttl
; /* XXX */
1671 ((struct ip
*)ui
)->ip_tos
= inp
->inp_ip_tos
; /* XXX */
1672 udpstat
.udps_opackets
++;
1674 KERNEL_DEBUG(DBG_LAYER_OUT_END
, ui
->ui_dport
, ui
->ui_sport
,
1675 ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
, ui
->ui_ulen
);
1679 necp_kernel_policy_id policy_id
;
1680 u_int32_t route_rule_id
;
1683 * We need a route to perform NECP route rule checks
1685 if (net_qos_policy_restricted
!= 0 &&
1686 ROUTE_UNUSABLE(&inp
->inp_route
)) {
1687 struct sockaddr_in to
;
1688 struct sockaddr_in from
;
1690 ROUTE_RELEASE(&inp
->inp_route
);
1692 bzero(&from
, sizeof(struct sockaddr_in
));
1693 from
.sin_family
= AF_INET
;
1694 from
.sin_len
= sizeof(struct sockaddr_in
);
1695 from
.sin_addr
= laddr
;
1697 bzero(&to
, sizeof(struct sockaddr_in
));
1698 to
.sin_family
= AF_INET
;
1699 to
.sin_len
= sizeof(struct sockaddr_in
);
1700 to
.sin_addr
= faddr
;
1702 inp
->inp_route
.ro_dst
.sa_family
= AF_INET
;
1703 inp
->inp_route
.ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1704 ((struct sockaddr_in
*)(void *)&inp
->inp_route
.ro_dst
)->sin_addr
=
1707 rtalloc_scoped(&inp
->inp_route
, ipoa
.ipoa_boundif
);
1709 inp_update_necp_policy(inp
, (struct sockaddr
*)&from
,
1710 (struct sockaddr
*)&to
, ipoa
.ipoa_boundif
);
1711 inp
->inp_policyresult
.results
.qos_marking_gencount
= 0;
1714 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, lport
, fport
,
1715 &laddr
, &faddr
, NULL
, &policy_id
, &route_rule_id
)) {
1716 error
= EHOSTUNREACH
;
1720 necp_mark_packet_from_socket(m
, inp
, policy_id
, route_rule_id
);
1722 if (net_qos_policy_restricted
!= 0) {
1723 necp_socket_update_qos_marking(inp
,
1724 inp
->inp_route
.ro_rt
, NULL
, route_rule_id
);
1728 if ((so
->so_flags1
& SOF1_QOSMARKING_ALLOWED
))
1729 ipoa
.ipoa_flags
|= IPOAF_QOSMARKING_ALLOWED
;
1732 if (inp
->inp_sp
!= NULL
&& ipsec_setsocket(m
, inp
->inp_socket
) != 0) {
1738 inpopts
= inp
->inp_options
;
1739 soopts
|= (inp
->inp_socket
->so_options
& (SO_DONTROUTE
| SO_BROADCAST
));
1740 mopts
= inp
->inp_moptions
;
1741 if (mopts
!= NULL
) {
1743 IMO_ADDREF_LOCKED(mopts
);
1744 if (IN_MULTICAST(ntohl(ui
->ui_dst
.s_addr
)) &&
1745 mopts
->imo_multicast_ifp
!= NULL
) {
1746 /* no reference needed */
1747 inp
->inp_last_outifp
= mopts
->imo_multicast_ifp
;
1753 /* Copy the cached route and take an extra reference */
1754 inp_route_copyout(inp
, &ro
);
1756 set_packet_service_class(m
, so
, sotc
, 0);
1757 m
->m_pkthdr
.pkt_flowsrc
= FLOWSRC_INPCB
;
1758 m
->m_pkthdr
.pkt_flowid
= inp
->inp_flowhash
;
1759 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
1760 m
->m_pkthdr
.pkt_flags
|= (PKTF_FLOW_ID
| PKTF_FLOW_LOCALSRC
);
1762 m
->m_pkthdr
.pkt_flags
|= PKTF_FLOW_ADV
;
1764 if (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
)
1765 ipoa
.ipoa_flags
|= IPOAF_BOUND_IF
;
1767 if (laddr
.s_addr
!= INADDR_ANY
)
1768 ipoa
.ipoa_flags
|= IPOAF_BOUND_SRCADDR
;
1770 inp
->inp_sndinprog_cnt
++;
1772 socket_unlock(so
, 0);
1773 error
= ip_output(m
, inpopts
, &ro
, soopts
, mopts
, &ipoa
);
1779 if (error
== 0 && nstat_collect
) {
1780 boolean_t cell
, wifi
, wired
;
1782 if (ro
.ro_rt
!= NULL
) {
1783 cell
= IFNET_IS_CELLULAR(ro
.ro_rt
->rt_ifp
);
1784 wifi
= (!cell
&& IFNET_IS_WIFI(ro
.ro_rt
->rt_ifp
));
1785 wired
= (!wifi
&& IFNET_IS_WIRED(ro
.ro_rt
->rt_ifp
));
1787 cell
= wifi
= wired
= FALSE
;
1789 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txpackets
, 1);
1790 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txbytes
, len
);
1791 inp_set_activity_bitmap(inp
);
1794 if (flowadv
&& (adv
->code
== FADV_FLOW_CONTROLLED
||
1795 adv
->code
== FADV_SUSPENDED
)) {
1797 * return a hint to the application that
1798 * the packet has been dropped
1801 inp_set_fc_state(inp
, adv
->code
);
1804 VERIFY(inp
->inp_sndinprog_cnt
> 0);
1805 if ( --inp
->inp_sndinprog_cnt
== 0)
1806 inp
->inp_flags
&= ~(INP_FC_FEEDBACK
);
1808 /* Synchronize PCB cached route */
1809 inp_route_copyin(inp
, &ro
);
1812 if (udp_dodisconnect
) {
1813 /* Always discard the cached route for unconnected socket */
1814 ROUTE_RELEASE(&inp
->inp_route
);
1815 in_pcbdisconnect(inp
);
1816 inp
->inp_laddr
= origladdr
; /* XXX rehash? */
1817 /* no reference needed */
1818 inp
->inp_last_outifp
= origoutifp
;
1820 } else if (inp
->inp_route
.ro_rt
!= NULL
) {
1821 struct rtentry
*rt
= inp
->inp_route
.ro_rt
;
1822 struct ifnet
*outifp
;
1824 if (rt
->rt_flags
& (RTF_MULTICAST
|RTF_BROADCAST
))
1825 rt
= NULL
; /* unusable */
1827 * Always discard if it is a multicast or broadcast route.
1830 ROUTE_RELEASE(&inp
->inp_route
);
1833 * If the destination route is unicast, update outifp with
1834 * that of the route interface used by IP.
1837 (outifp
= rt
->rt_ifp
) != inp
->inp_last_outifp
) {
1838 inp
->inp_last_outifp
= outifp
; /* no reference needed */
1840 so
->so_pktheadroom
= P2ROUNDUP(
1841 sizeof(struct udphdr
) +
1843 ifnet_hdrlen(outifp
) +
1844 ifnet_mbuf_packetpreamblelen(outifp
),
1848 ROUTE_RELEASE(&inp
->inp_route
);
1852 * If output interface was cellular/expensive, and this socket is
1853 * denied access to it, generate an event.
1855 if (error
!= 0 && (ipoa
.ipoa_retflags
& IPOARF_IFDENIED
) &&
1856 (INP_NO_CELLULAR(inp
) || INP_NO_EXPENSIVE(inp
)))
1857 soevent(so
, (SO_FILT_HINT_LOCKED
|SO_FILT_HINT_IFDENIED
));
1860 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
1866 ifnet_release(outif
);
1871 u_int32_t udp_sendspace
= 9216; /* really max datagram size */
1872 /* 187 1K datagrams (approx 192 KB) */
1873 u_int32_t udp_recvspace
= 187 * (1024 +
1875 sizeof (struct sockaddr_in6
)
1877 sizeof (struct sockaddr_in
)
1881 /* Check that the values of udp send and recv space do not exceed sb_max */
1883 sysctl_udp_sospace(struct sysctl_oid
*oidp
, void *arg1
, int arg2
,
1884 struct sysctl_req
*req
)
1886 #pragma unused(arg1, arg2)
1887 u_int32_t new_value
= 0, *space_p
= NULL
;
1888 int changed
= 0, error
= 0;
1889 u_quad_t sb_effective_max
= (sb_max
/(MSIZE
+MCLBYTES
)) * MCLBYTES
;
1891 switch (oidp
->oid_number
) {
1892 case UDPCTL_RECVSPACE
:
1893 space_p
= &udp_recvspace
;
1895 case UDPCTL_MAXDGRAM
:
1896 space_p
= &udp_sendspace
;
1901 error
= sysctl_io_number(req
, *space_p
, sizeof (u_int32_t
),
1902 &new_value
, &changed
);
1904 if (new_value
> 0 && new_value
<= sb_effective_max
)
1905 *space_p
= new_value
;
1912 SYSCTL_PROC(_net_inet_udp
, UDPCTL_RECVSPACE
, recvspace
,
1913 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_recvspace
, 0,
1914 &sysctl_udp_sospace
, "IU", "Maximum incoming UDP datagram size");
1916 SYSCTL_PROC(_net_inet_udp
, UDPCTL_MAXDGRAM
, maxdgram
,
1917 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_sendspace
, 0,
1918 &sysctl_udp_sospace
, "IU", "Maximum outgoing UDP datagram size");
1921 udp_abort(struct socket
*so
)
1925 inp
= sotoinpcb(so
);
1927 panic("%s: so=%p null inp\n", __func__
, so
);
1930 soisdisconnected(so
);
1936 udp_attach(struct socket
*so
, int proto
, struct proc
*p
)
1938 #pragma unused(proto)
1942 inp
= sotoinpcb(so
);
1944 panic("%s so=%p inp=%p\n", __func__
, so
, inp
);
1947 error
= in_pcballoc(so
, &udbinfo
, p
);
1950 error
= soreserve(so
, udp_sendspace
, udp_recvspace
);
1953 inp
= (struct inpcb
*)so
->so_pcb
;
1954 inp
->inp_vflag
|= INP_IPV4
;
1955 inp
->inp_ip_ttl
= ip_defttl
;
1957 nstat_udp_new_pcb(inp
);
1962 udp_bind(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
1967 if (nam
->sa_family
!= 0 && nam
->sa_family
!= AF_INET
&&
1968 nam
->sa_family
!= AF_INET6
)
1969 return (EAFNOSUPPORT
);
1971 inp
= sotoinpcb(so
);
1974 error
= in_pcbbind(inp
, nam
, p
);
1977 /* Update NECP client with bind result if not in middle of connect */
1979 (inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
) &&
1980 !uuid_is_null(inp
->necp_client_uuid
)) {
1981 socket_unlock(so
, 0);
1982 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
1991 udp_connect(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
1996 inp
= sotoinpcb(so
);
1999 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
)
2002 if (!(so
->so_flags1
& SOF1_CONNECT_COUNTED
)) {
2003 so
->so_flags1
|= SOF1_CONNECT_COUNTED
;
2004 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_connected
);
2009 if (necp_socket_should_use_flow_divert(inp
)) {
2010 uint32_t fd_ctl_unit
=
2011 necp_socket_get_flow_divert_control_unit(inp
);
2012 if (fd_ctl_unit
> 0) {
2013 error
= flow_divert_pcb_init(so
, fd_ctl_unit
);
2015 error
= flow_divert_connect_out(so
, nam
, p
);
2022 #endif /* FLOW_DIVERT */
2025 error
= in_pcbconnect(inp
, nam
, p
, IFSCOPE_NONE
, NULL
);
2028 /* Update NECP client with connected five-tuple */
2029 if (!uuid_is_null(inp
->necp_client_uuid
)) {
2030 socket_unlock(so
, 0);
2031 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
2037 if (inp
->inp_flowhash
== 0)
2038 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
2044 udp_connectx_common(struct socket
*so
, int af
, struct sockaddr
*src
, struct sockaddr
*dst
,
2045 struct proc
*p
, uint32_t ifscope
, sae_associd_t aid
, sae_connid_t
*pcid
,
2046 uint32_t flags
, void *arg
, uint32_t arglen
,
2047 struct uio
*uio
, user_ssize_t
*bytes_written
)
2049 #pragma unused(aid, flags, arg, arglen)
2050 struct inpcb
*inp
= sotoinpcb(so
);
2052 user_ssize_t datalen
= 0;
2057 VERIFY(dst
!= NULL
);
2059 ASSERT(!(inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
));
2060 inp
->inp_flags2
|= INP2_CONNECT_IN_PROGRESS
;
2063 inp_update_necp_policy(inp
, src
, dst
, ifscope
);
2066 /* bind socket to the specified interface, if requested */
2067 if (ifscope
!= IFSCOPE_NONE
&&
2068 (error
= inp_bindif(inp
, ifscope
, NULL
)) != 0) {
2072 /* if source address and/or port is specified, bind to it */
2074 error
= sobindlock(so
, src
, 0); /* already locked */
2082 error
= udp_connect(so
, dst
, p
);
2086 error
= udp6_connect(so
, dst
, p
);
2099 * If there is data, copy it. DATA_IDEMPOTENT is ignored.
2100 * CONNECT_RESUME_ON_READ_WRITE is ignored.
2103 socket_unlock(so
, 0);
2105 VERIFY(bytes_written
!= NULL
);
2107 datalen
= uio_resid(uio
);
2108 error
= so
->so_proto
->pr_usrreqs
->pru_sosend(so
, NULL
,
2109 (uio_t
)uio
, NULL
, NULL
, 0);
2112 /* If error returned is EMSGSIZE, for example, disconnect */
2113 if (error
== 0 || error
== EWOULDBLOCK
)
2114 *bytes_written
= datalen
- uio_resid(uio
);
2116 (void) so
->so_proto
->pr_usrreqs
->pru_disconnectx(so
,
2117 SAE_ASSOCID_ANY
, SAE_CONNID_ANY
);
2119 * mask the EWOULDBLOCK error so that the caller
2120 * knows that atleast the connect was successful.
2122 if (error
== EWOULDBLOCK
)
2126 if (error
== 0 && pcid
!= NULL
)
2127 *pcid
= 1; /* there is only 1 connection for UDP */
2130 inp
->inp_flags2
&= ~INP2_CONNECT_IN_PROGRESS
;
2135 udp_connectx(struct socket
*so
, struct sockaddr
*src
,
2136 struct sockaddr
*dst
, struct proc
*p
, uint32_t ifscope
,
2137 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
2138 uint32_t arglen
, struct uio
*uio
, user_ssize_t
*bytes_written
)
2140 return (udp_connectx_common(so
, AF_INET
, src
, dst
,
2141 p
, ifscope
, aid
, pcid
, flags
, arg
, arglen
, uio
, bytes_written
));
2145 udp_detach(struct socket
*so
)
2149 inp
= sotoinpcb(so
);
2151 panic("%s: so=%p null inp\n", __func__
, so
);
2156 * If this is a socket that does not want to wakeup the device
2157 * for it's traffic, the application might be waiting for
2158 * close to complete before going to sleep. Send a notification
2159 * for this kind of sockets
2161 if (so
->so_options
& SO_NOWAKEFROMSLEEP
)
2162 socket_post_kev_msg_closed(so
);
2165 inp
->inp_state
= INPCB_STATE_DEAD
;
2170 udp_disconnect(struct socket
*so
)
2174 inp
= sotoinpcb(so
);
2177 || (necp_socket_should_use_flow_divert(inp
))
2180 return (inp
== NULL
? EINVAL
: EPROTOTYPE
);
2181 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
)
2184 in_pcbdisconnect(inp
);
2186 /* reset flow controlled state, just in case */
2187 inp_reset_fc_state(inp
);
2189 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
2190 so
->so_state
&= ~SS_ISCONNECTED
; /* XXX */
2191 inp
->inp_last_outifp
= NULL
;
2197 udp_disconnectx(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
2200 if (aid
!= SAE_ASSOCID_ANY
&& aid
!= SAE_ASSOCID_ALL
)
2203 return (udp_disconnect(so
));
2207 udp_send(struct socket
*so
, int flags
, struct mbuf
*m
,
2208 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2211 #pragma unused(flags)
2212 #endif /* !(FLOW_DIVERT) */
2215 inp
= sotoinpcb(so
);
2219 if (control
!= NULL
)
2226 if (necp_socket_should_use_flow_divert(inp
)) {
2227 /* Implicit connect */
2228 return (flow_divert_implicit_data_out(so
, flags
, m
, addr
,
2231 #endif /* FLOW_DIVERT */
2234 return (udp_output(inp
, m
, addr
, control
, p
));
2238 udp_shutdown(struct socket
*so
)
2242 inp
= sotoinpcb(so
);
2250 udp_lock(struct socket
*so
, int refcount
, void *debug
)
2255 lr_saved
= __builtin_return_address(0);
2259 if (so
->so_pcb
!= NULL
) {
2260 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2261 LCK_MTX_ASSERT_NOTOWNED
);
2262 lck_mtx_lock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2264 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2265 so
, lr_saved
, solockhistory_nr(so
));
2271 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
2272 so
->next_lock_lr
= (so
->next_lock_lr
+1) % SO_LCKDBG_MAX
;
2277 udp_unlock(struct socket
*so
, int refcount
, void *debug
)
2282 lr_saved
= __builtin_return_address(0);
2287 VERIFY(so
->so_usecount
> 0);
2290 if (so
->so_pcb
== NULL
) {
2291 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2292 so
, lr_saved
, solockhistory_nr(so
));
2295 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2296 LCK_MTX_ASSERT_OWNED
);
2297 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2298 so
->next_unlock_lr
= (so
->next_unlock_lr
+1) % SO_LCKDBG_MAX
;
2299 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2305 udp_getlock(struct socket
*so
, int flags
)
2307 #pragma unused(flags)
2308 struct inpcb
*inp
= sotoinpcb(so
);
2310 if (so
->so_pcb
== NULL
) {
2311 panic("%s: so=%p NULL so_pcb lrh= %s\n", __func__
,
2312 so
, solockhistory_nr(so
));
2315 return (&inp
->inpcb_mtx
);
2319 * UDP garbage collector callback (inpcb_timer_func_t).
2321 * Returns > 0 to keep timer active.
2324 udp_gc(struct inpcbinfo
*ipi
)
2326 struct inpcb
*inp
, *inpnxt
;
2329 if (lck_rw_try_lock_exclusive(ipi
->ipi_lock
) == FALSE
) {
2330 if (udp_gc_done
== TRUE
) {
2331 udp_gc_done
= FALSE
;
2332 /* couldn't get the lock, must lock next time */
2333 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2336 lck_rw_lock_exclusive(ipi
->ipi_lock
);
2341 for (inp
= udb
.lh_first
; inp
!= NULL
; inp
= inpnxt
) {
2342 inpnxt
= inp
->inp_list
.le_next
;
2345 * Skip unless it's STOPUSING; garbage collector will
2346 * be triggered by in_pcb_checkstate() upon setting
2347 * wantcnt to that value. If the PCB is already dead,
2348 * keep gc active to anticipate wantcnt changing.
2350 if (inp
->inp_wantcnt
!= WNT_STOPUSING
)
2354 * Skip if busy, no hurry for cleanup. Keep gc active
2355 * and try the lock again during next round.
2357 if (!socket_try_lock(inp
->inp_socket
)) {
2358 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2363 * Keep gc active unless usecount is 0.
2365 so
= inp
->inp_socket
;
2366 if (so
->so_usecount
== 0) {
2367 if (inp
->inp_state
!= INPCB_STATE_DEAD
) {
2369 if (SOCK_CHECK_DOM(so
, PF_INET6
))
2377 socket_unlock(so
, 0);
2378 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2381 lck_rw_done(ipi
->ipi_lock
);
2385 udp_getstat SYSCTL_HANDLER_ARGS
2387 #pragma unused(oidp, arg1, arg2)
2388 if (req
->oldptr
== USER_ADDR_NULL
)
2389 req
->oldlen
= (size_t)sizeof (struct udpstat
);
2391 return (SYSCTL_OUT(req
, &udpstat
, MIN(sizeof (udpstat
), req
->oldlen
)));
2395 udp_in_cksum_stats(u_int32_t len
)
2397 udpstat
.udps_rcv_swcsum
++;
2398 udpstat
.udps_rcv_swcsum_bytes
+= len
;
2402 udp_out_cksum_stats(u_int32_t len
)
2404 udpstat
.udps_snd_swcsum
++;
2405 udpstat
.udps_snd_swcsum_bytes
+= len
;
2410 udp_in6_cksum_stats(u_int32_t len
)
2412 udpstat
.udps_rcv6_swcsum
++;
2413 udpstat
.udps_rcv6_swcsum_bytes
+= len
;
2417 udp_out6_cksum_stats(u_int32_t len
)
2419 udpstat
.udps_snd6_swcsum
++;
2420 udpstat
.udps_snd6_swcsum_bytes
+= len
;
2425 * Checksum extended UDP header and data.
2428 udp_input_checksum(struct mbuf
*m
, struct udphdr
*uh
, int off
, int ulen
)
2430 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
2431 struct ip
*ip
= mtod(m
, struct ip
*);
2432 struct ipovly
*ipov
= (struct ipovly
*)ip
;
2434 if (uh
->uh_sum
== 0) {
2435 udpstat
.udps_nosum
++;
2439 /* ip_stripoptions() must have been called before we get here */
2440 ASSERT((ip
->ip_hl
<< 2) == sizeof (*ip
));
2442 if ((hwcksum_rx
|| (ifp
->if_flags
& IFF_LOOPBACK
) ||
2443 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) &&
2444 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
)) {
2445 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
) {
2446 uh
->uh_sum
= m
->m_pkthdr
.csum_rx_val
;
2448 uint32_t sum
= m
->m_pkthdr
.csum_rx_val
;
2449 uint32_t start
= m
->m_pkthdr
.csum_rx_start
;
2450 int32_t trailer
= (m_pktlen(m
) - (off
+ ulen
));
2453 * Perform 1's complement adjustment of octets
2454 * that got included/excluded in the hardware-
2455 * calculated checksum value. Ignore cases
2456 * where the value already includes the entire
2457 * IP header span, as the sum for those octets
2458 * would already be 0 by the time we get here;
2459 * IP has already performed its header checksum
2460 * checks. If we do need to adjust, restore
2461 * the original fields in the IP header when
2462 * computing the adjustment value. Also take
2463 * care of any trailing bytes and subtract out
2464 * their partial sum.
2466 ASSERT(trailer
>= 0);
2467 if ((m
->m_pkthdr
.csum_flags
& CSUM_PARTIAL
) &&
2468 ((start
!= 0 && start
!= off
) || trailer
!= 0)) {
2469 uint32_t swbytes
= (uint32_t)trailer
;
2472 ip
->ip_len
+= sizeof (*ip
);
2473 #if BYTE_ORDER != BIG_ENDIAN
2476 #endif /* BYTE_ORDER != BIG_ENDIAN */
2478 /* callee folds in sum */
2479 sum
= m_adj_sum16(m
, start
, off
, ulen
, sum
);
2481 swbytes
+= (off
- start
);
2483 swbytes
+= (start
- off
);
2486 #if BYTE_ORDER != BIG_ENDIAN
2489 #endif /* BYTE_ORDER != BIG_ENDIAN */
2490 ip
->ip_len
-= sizeof (*ip
);
2494 udp_in_cksum_stats(swbytes
);
2499 /* callee folds in sum */
2500 uh
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2501 ip
->ip_dst
.s_addr
, sum
+ htonl(ulen
+ IPPROTO_UDP
));
2503 uh
->uh_sum
^= 0xffff;
2508 bcopy(ipov
->ih_x1
, b
, sizeof (ipov
->ih_x1
));
2509 bzero(ipov
->ih_x1
, sizeof (ipov
->ih_x1
));
2510 ip_sum
= ipov
->ih_len
;
2511 ipov
->ih_len
= uh
->uh_ulen
;
2512 uh
->uh_sum
= in_cksum(m
, ulen
+ sizeof (struct ip
));
2513 bcopy(b
, ipov
->ih_x1
, sizeof (ipov
->ih_x1
));
2514 ipov
->ih_len
= ip_sum
;
2516 udp_in_cksum_stats(ulen
);
2519 if (uh
->uh_sum
!= 0) {
2520 udpstat
.udps_badsum
++;
2521 IF_UDP_STATINC(ifp
, badchksum
);
2529 udp_fill_keepalive_offload_frames(ifnet_t ifp
,
2530 struct ifnet_keepalive_offload_frame
*frames_array
,
2531 u_int32_t frames_array_count
, size_t frame_data_offset
,
2532 u_int32_t
*used_frames_count
)
2536 u_int32_t frame_index
= *used_frames_count
;
2538 if (ifp
== NULL
|| frames_array
== NULL
||
2539 frames_array_count
== 0 ||
2540 frame_index
>= frames_array_count
||
2541 frame_data_offset
>= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
)
2544 lck_rw_lock_shared(udbinfo
.ipi_lock
);
2545 gencnt
= udbinfo
.ipi_gencnt
;
2546 LIST_FOREACH(inp
, udbinfo
.ipi_listhead
, inp_list
) {
2549 struct ifnet_keepalive_offload_frame
*frame
;
2550 struct mbuf
*m
= NULL
;
2552 if (frame_index
>= frames_array_count
)
2555 if (inp
->inp_gencnt
> gencnt
||
2556 inp
->inp_state
== INPCB_STATE_DEAD
)
2559 if ((so
= inp
->inp_socket
) == NULL
||
2560 (so
->so_state
& SS_DEFUNCT
))
2563 * check for keepalive offload flag without socket
2564 * lock to avoid a deadlock
2566 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
2571 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
2572 udp_unlock(so
, 1, 0);
2575 if ((inp
->inp_vflag
& INP_IPV4
) &&
2576 (inp
->inp_laddr
.s_addr
== INADDR_ANY
||
2577 inp
->inp_faddr
.s_addr
== INADDR_ANY
)) {
2578 udp_unlock(so
, 1, 0);
2581 if ((inp
->inp_vflag
& INP_IPV6
) &&
2582 (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
) ||
2583 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
))) {
2584 udp_unlock(so
, 1, 0);
2587 if (inp
->inp_lport
== 0 || inp
->inp_fport
== 0) {
2588 udp_unlock(so
, 1, 0);
2591 if (inp
->inp_last_outifp
== NULL
||
2592 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
2593 udp_unlock(so
, 1, 0);
2596 if ((inp
->inp_vflag
& INP_IPV4
)) {
2597 if ((frame_data_offset
+ sizeof(struct udpiphdr
) +
2598 inp
->inp_keepalive_datalen
) >
2599 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2600 udp_unlock(so
, 1, 0);
2603 if ((sizeof(struct udpiphdr
) +
2604 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2605 udp_unlock(so
, 1, 0);
2609 if ((frame_data_offset
+ sizeof(struct ip6_hdr
) +
2610 sizeof(struct udphdr
) +
2611 inp
->inp_keepalive_datalen
) >
2612 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2613 udp_unlock(so
, 1, 0);
2616 if ((sizeof(struct ip6_hdr
) + sizeof(struct udphdr
) +
2617 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2618 udp_unlock(so
, 1, 0);
2622 MGETHDR(m
, M_WAIT
, MT_HEADER
);
2624 udp_unlock(so
, 1, 0);
2628 * This inp has all the information that is needed to
2629 * generate an offload frame.
2631 if (inp
->inp_vflag
& INP_IPV4
) {
2635 frame
= &frames_array
[frame_index
];
2636 frame
->length
= frame_data_offset
+
2637 sizeof(struct udpiphdr
) +
2638 inp
->inp_keepalive_datalen
;
2640 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4
;
2641 frame
->interval
= inp
->inp_keepalive_interval
;
2642 switch (inp
->inp_keepalive_type
) {
2643 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2645 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2650 data
= mtod(m
, u_int8_t
*);
2651 bzero(data
, sizeof(struct udpiphdr
));
2652 ip
= (__typeof__(ip
))(void *)data
;
2653 udp
= (__typeof__(udp
))(void *) (data
+
2655 m
->m_len
= sizeof(struct udpiphdr
);
2656 data
= data
+ sizeof(struct udpiphdr
);
2657 if (inp
->inp_keepalive_datalen
> 0 &&
2658 inp
->inp_keepalive_data
!= NULL
) {
2659 bcopy(inp
->inp_keepalive_data
, data
,
2660 inp
->inp_keepalive_datalen
);
2661 m
->m_len
+= inp
->inp_keepalive_datalen
;
2663 m
->m_pkthdr
.len
= m
->m_len
;
2665 ip
->ip_v
= IPVERSION
;
2666 ip
->ip_hl
= (sizeof(struct ip
) >> 2);
2667 ip
->ip_p
= IPPROTO_UDP
;
2668 ip
->ip_len
= htons(sizeof(struct udpiphdr
) +
2669 (u_short
)inp
->inp_keepalive_datalen
);
2670 ip
->ip_ttl
= inp
->inp_ip_ttl
;
2671 ip
->ip_tos
|= (inp
->inp_ip_tos
& ~IPTOS_ECN_MASK
);
2672 ip
->ip_src
= inp
->inp_laddr
;
2673 ip
->ip_dst
= inp
->inp_faddr
;
2674 ip
->ip_sum
= in_cksum_hdr_opt(ip
);
2676 udp
->uh_sport
= inp
->inp_lport
;
2677 udp
->uh_dport
= inp
->inp_fport
;
2678 udp
->uh_ulen
= htons(sizeof(struct udphdr
) +
2679 (u_short
)inp
->inp_keepalive_datalen
);
2681 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2682 udp
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2684 htons(sizeof(struct udphdr
) +
2685 (u_short
)inp
->inp_keepalive_datalen
+
2687 m
->m_pkthdr
.csum_flags
=
2688 (CSUM_UDP
|CSUM_ZERO_INVERT
);
2689 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2692 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2693 in_delayed_cksum(m
);
2694 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2697 struct ip6_hdr
*ip6
;
2698 struct udphdr
*udp6
;
2700 VERIFY(inp
->inp_vflag
& INP_IPV6
);
2701 frame
= &frames_array
[frame_index
];
2702 frame
->length
= frame_data_offset
+
2703 sizeof(struct ip6_hdr
) +
2704 sizeof(struct udphdr
) +
2705 inp
->inp_keepalive_datalen
;
2707 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6
;
2708 frame
->interval
= inp
->inp_keepalive_interval
;
2709 switch (inp
->inp_keepalive_type
) {
2710 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2712 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2717 data
= mtod(m
, u_int8_t
*);
2718 bzero(data
, sizeof(struct ip6_hdr
) + sizeof(struct udphdr
));
2719 ip6
= (__typeof__(ip6
))(void *)data
;
2720 udp6
= (__typeof__(udp6
))(void *)(data
+
2721 sizeof(struct ip6_hdr
));
2722 m
->m_len
= sizeof(struct ip6_hdr
) +
2723 sizeof(struct udphdr
);
2724 data
= data
+ (sizeof(struct ip6_hdr
) +
2725 sizeof(struct udphdr
));
2726 if (inp
->inp_keepalive_datalen
> 0 &&
2727 inp
->inp_keepalive_data
!= NULL
) {
2728 bcopy(inp
->inp_keepalive_data
, data
,
2729 inp
->inp_keepalive_datalen
);
2730 m
->m_len
+= inp
->inp_keepalive_datalen
;
2732 m
->m_pkthdr
.len
= m
->m_len
;
2733 ip6
->ip6_flow
= inp
->inp_flow
& IPV6_FLOWINFO_MASK
;
2734 ip6
->ip6_flow
= ip6
->ip6_flow
& ~IPV6_FLOW_ECN_MASK
;
2735 ip6
->ip6_vfc
&= ~IPV6_VERSION_MASK
;
2736 ip6
->ip6_vfc
|= IPV6_VERSION
;
2737 ip6
->ip6_nxt
= IPPROTO_UDP
;
2738 ip6
->ip6_hlim
= ip6_defhlim
;
2739 ip6
->ip6_plen
= htons(sizeof(struct udphdr
) +
2740 (u_short
)inp
->inp_keepalive_datalen
);
2741 ip6
->ip6_src
= inp
->in6p_laddr
;
2742 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
))
2743 ip6
->ip6_src
.s6_addr16
[1] = 0;
2745 ip6
->ip6_dst
= inp
->in6p_faddr
;
2746 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
))
2747 ip6
->ip6_dst
.s6_addr16
[1] = 0;
2749 udp6
->uh_sport
= inp
->in6p_lport
;
2750 udp6
->uh_dport
= inp
->in6p_fport
;
2751 udp6
->uh_ulen
= htons(sizeof(struct udphdr
) +
2752 (u_short
)inp
->inp_keepalive_datalen
);
2753 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2754 udp6
->uh_sum
= in6_pseudo(&ip6
->ip6_src
,
2756 htonl(sizeof(struct udphdr
) +
2757 (u_short
)inp
->inp_keepalive_datalen
+
2759 m
->m_pkthdr
.csum_flags
=
2760 (CSUM_UDPIPV6
|CSUM_ZERO_INVERT
);
2761 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2764 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2765 in6_delayed_cksum(m
);
2766 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2774 udp_unlock(so
, 1, 0);
2776 lck_rw_done(udbinfo
.ipi_lock
);
2777 *used_frames_count
= frame_index
;