2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @Apple_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
23 #include <sys/errno.h>
24 #include <sys/param.h>
25 #include <sys/systm.h>
26 #include <sys/proc_internal.h>
28 #include <sys/sysctl.h>
29 #include <sys/kdebug.h>
30 #include <sys/kauth.h>
31 #include <sys/ktrace.h>
32 #include <sys/sysproto.h>
33 #include <sys/bsdtask_info.h>
34 #include <sys/random.h>
36 #include <mach/clock_types.h>
37 #include <mach/mach_types.h>
38 #include <mach/mach_time.h>
39 #include <mach/mach_vm.h>
40 #include <machine/machine_routines.h>
42 #include <mach/machine.h>
43 #include <mach/vm_map.h>
45 #if defined(__i386__) || defined(__x86_64__)
46 #include <i386/rtclock_protos.h>
48 #include <i386/machine_routines.h>
52 #include <kern/clock.h>
54 #include <kern/thread.h>
55 #include <kern/task.h>
56 #include <kern/debug.h>
57 #include <kern/kalloc.h>
58 #include <kern/cpu_data.h>
59 #include <kern/assert.h>
60 #include <kern/telemetry.h>
61 #include <kern/sched_prim.h>
62 #include <vm/vm_kern.h>
64 #include <kperf/kperf.h>
65 #include <pexpert/device_tree.h>
67 #include <sys/malloc.h>
68 #include <sys/mcache.h>
70 #include <sys/vnode.h>
71 #include <sys/vnode_internal.h>
72 #include <sys/fcntl.h>
73 #include <sys/file_internal.h>
75 #include <sys/param.h> /* for isset() */
77 #include <mach/mach_host.h> /* for host_info() */
78 #include <libkern/OSAtomic.h>
80 #include <machine/pal_routines.h>
81 #include <machine/atomic.h>
86 * https://coreoswiki.apple.com/wiki/pages/U6z3i0q9/Consistent_Logging_Implementers_Guide.html
88 * IOP(s) are auxiliary cores that want to participate in kdebug event logging.
89 * They are registered dynamically. Each is assigned a cpu_id at registration.
91 * NOTE: IOP trace events may not use the same clock hardware as "normal"
92 * cpus. There is an effort made to synchronize the IOP timebase with the
93 * AP, but it should be understood that there may be discrepancies.
95 * Once registered, an IOP is permanent, it cannot be unloaded/unregistered.
96 * The current implementation depends on this for thread safety.
98 * New registrations occur by allocating an kd_iop struct and assigning
99 * a provisional cpu_id of list_head->cpu_id + 1. Then a CAS to claim the
100 * list_head pointer resolves any races.
102 * You may safely walk the kd_iops list at any time, without holding locks.
104 * When allocating buffers, the current kd_iops head is captured. Any operations
105 * that depend on the buffer state (such as flushing IOP traces on reads,
106 * etc.) should use the captured list head. This will allow registrations to
107 * take place while trace is in use.
110 typedef struct kd_iop
{
111 kd_callback_t callback
;
113 uint64_t last_timestamp
; /* Prevent timer rollback */
117 static kd_iop_t
* kd_iops
= NULL
;
122 * A typefilter is a 8KB bitmap that is used to selectively filter events
123 * being recorded. It is able to individually address every class & subclass.
125 * There is a shared typefilter in the kernel which is lazily allocated. Once
126 * allocated, the shared typefilter is never deallocated. The shared typefilter
127 * is also mapped on demand into userspace processes that invoke kdebug_trace
128 * API from Libsyscall. When mapped into a userspace process, the memory is
129 * read only, and does not have a fixed address.
131 * It is a requirement that the kernel's shared typefilter always pass DBG_TRACE
132 * events. This is enforced automatically, by having the needed bits set any
133 * time the shared typefilter is mutated.
136 typedef uint8_t* typefilter_t
;
138 static typefilter_t kdbg_typefilter
;
139 static mach_port_t kdbg_typefilter_memory_entry
;
142 * There are 3 combinations of page sizes:
148 * The typefilter is exactly 8KB. In the first two scenarios, we would like
149 * to use 2 pages exactly; in the third scenario we must make certain that
150 * a full page is allocated so we do not inadvertantly share 8KB of random
151 * data to userspace. The round_page_32 macro rounds to kernel page size.
153 #define TYPEFILTER_ALLOC_SIZE MAX(round_page_32(KDBG_TYPEFILTER_BITMAP_SIZE), KDBG_TYPEFILTER_BITMAP_SIZE)
155 static typefilter_t
typefilter_create(void)
158 if (KERN_SUCCESS
== kmem_alloc(kernel_map
, (vm_offset_t
*)&tf
, TYPEFILTER_ALLOC_SIZE
, VM_KERN_MEMORY_DIAG
)) {
159 memset(&tf
[KDBG_TYPEFILTER_BITMAP_SIZE
], 0, TYPEFILTER_ALLOC_SIZE
- KDBG_TYPEFILTER_BITMAP_SIZE
);
165 static void typefilter_deallocate(typefilter_t tf
)
168 assert(tf
!= kdbg_typefilter
);
169 kmem_free(kernel_map
, (vm_offset_t
)tf
, TYPEFILTER_ALLOC_SIZE
);
172 static void typefilter_copy(typefilter_t dst
, typefilter_t src
)
176 memcpy(dst
, src
, KDBG_TYPEFILTER_BITMAP_SIZE
);
179 static void typefilter_reject_all(typefilter_t tf
)
182 memset(tf
, 0, KDBG_TYPEFILTER_BITMAP_SIZE
);
185 static void typefilter_allow_class(typefilter_t tf
, uint8_t class)
188 const uint32_t BYTES_PER_CLASS
= 256 / 8; // 256 subclasses, 1 bit each
189 memset(&tf
[class * BYTES_PER_CLASS
], 0xFF, BYTES_PER_CLASS
);
192 static void typefilter_allow_csc(typefilter_t tf
, uint16_t csc
)
198 static bool typefilter_is_debugid_allowed(typefilter_t tf
, uint32_t id
)
201 return isset(tf
, KDBG_EXTRACT_CSC(id
));
204 static mach_port_t
typefilter_create_memory_entry(typefilter_t tf
)
208 mach_port_t memory_entry
= MACH_PORT_NULL
;
209 memory_object_size_t size
= TYPEFILTER_ALLOC_SIZE
;
211 mach_make_memory_entry_64(kernel_map
,
213 (memory_object_offset_t
)tf
,
221 static int kdbg_copyin_typefilter(user_addr_t addr
, size_t size
);
222 static void kdbg_enable_typefilter(void);
223 static void kdbg_disable_typefilter(void);
226 * External prototypes
229 void task_act_iterate_wth_args(task_t
, void(*)(thread_t
, void *), void *);
230 int cpu_number(void); /* XXX <machine/...> include path broken */
231 void commpage_update_kdebug_state(void); /* XXX sign */
233 extern int log_leaks
;
236 * This flag is for testing purposes only -- it's highly experimental and tools
237 * have not been updated to support it.
239 static bool kdbg_continuous_time
= false;
241 static inline uint64_t
244 if (kdbg_continuous_time
) {
245 return mach_continuous_time();
247 return mach_absolute_time();
251 #if KDEBUG_MOJO_TRACE
252 #include <sys/kdebugevents.h>
253 static void kdebug_serial_print( /* forward */
254 uint32_t, uint32_t, uint64_t,
255 uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
258 int kdbg_control(int *, u_int
, user_addr_t
, size_t *);
260 static int kdbg_read(user_addr_t
, size_t *, vnode_t
, vfs_context_t
, uint32_t);
261 static int kdbg_readcpumap(user_addr_t
, size_t *);
262 static int kdbg_readthrmap_v3(user_addr_t
, size_t, int);
263 static int kdbg_readcurthrmap(user_addr_t
, size_t *);
264 static int kdbg_setreg(kd_regtype
*);
265 static int kdbg_setpidex(kd_regtype
*);
266 static int kdbg_setpid(kd_regtype
*);
267 static void kdbg_thrmap_init(void);
268 static int kdbg_reinit(boolean_t
);
269 static int kdbg_bootstrap(boolean_t
);
270 static int kdbg_test(size_t flavor
);
272 static int kdbg_write_v1_header(boolean_t write_thread_map
, vnode_t vp
, vfs_context_t ctx
);
273 static int kdbg_write_thread_map(vnode_t vp
, vfs_context_t ctx
);
274 static int kdbg_copyout_thread_map(user_addr_t buffer
, size_t *buffer_size
);
275 static void kdbg_clear_thread_map(void);
277 static boolean_t
kdbg_wait(uint64_t timeout_ms
, boolean_t locked_wait
);
278 static void kdbg_wakeup(void);
280 int kdbg_cpumap_init_internal(kd_iop_t
* iops
, uint32_t cpu_count
,
281 uint8_t** cpumap
, uint32_t* cpumap_size
);
283 static kd_threadmap
*kdbg_thrmap_init_internal(unsigned int count
,
284 unsigned int *mapsize
,
285 unsigned int *mapcount
);
287 static boolean_t
kdebug_current_proc_enabled(uint32_t debugid
);
288 static errno_t
kdebug_check_trace_string(uint32_t debugid
, uint64_t str_id
);
290 int kdbg_write_v3_header(user_addr_t
, size_t *, int);
291 int kdbg_write_v3_chunk_header(user_addr_t buffer
, uint32_t tag
,
292 uint32_t sub_tag
, uint64_t length
,
293 vnode_t vp
, vfs_context_t ctx
);
295 user_addr_t
kdbg_write_v3_event_chunk_header(user_addr_t buffer
, uint32_t tag
,
296 uint64_t length
, vnode_t vp
,
301 static int create_buffers(boolean_t
);
302 static void delete_buffers(void);
304 extern int tasks_count
;
305 extern int threads_count
;
306 extern char *proc_best_name(proc_t p
);
307 extern void IOSleep(int);
309 /* trace enable status */
310 unsigned int kdebug_enable
= 0;
312 /* A static buffer to record events prior to the start of regular logging */
314 #define KD_EARLY_BUFFER_SIZE (16 * 1024)
315 #define KD_EARLY_BUFFER_NBUFS (KD_EARLY_BUFFER_SIZE / sizeof(kd_buf))
318 * On embedded, the space for this is carved out by osfmk/arm/data.s -- clang
319 * has problems aligning to greater than 4K.
321 extern kd_buf kd_early_buffer
[KD_EARLY_BUFFER_NBUFS
];
322 #else /* CONFIG_EMBEDDED */
323 __attribute__((aligned(KD_EARLY_BUFFER_SIZE
)))
324 static kd_buf kd_early_buffer
[KD_EARLY_BUFFER_NBUFS
];
325 #endif /* !CONFIG_EMBEDDED */
327 static unsigned int kd_early_index
= 0;
328 static bool kd_early_overflow
= false;
329 static bool kd_early_done
= false;
331 #define SLOW_NOLOG 0x01
332 #define SLOW_CHECKS 0x02
334 #define EVENTS_PER_STORAGE_UNIT 2048
335 #define MIN_STORAGE_UNITS_PER_CPU 4
337 #define POINTER_FROM_KDS_PTR(x) (&kd_bufs[x.buffer_index].kdsb_addr[x.offset])
341 uint32_t buffer_index
:21;
348 union kds_ptr kds_next
;
349 uint32_t kds_bufindx
;
351 uint32_t kds_readlast
;
352 boolean_t kds_lostevents
;
353 uint64_t kds_timestamp
;
355 kd_buf kds_records
[EVENTS_PER_STORAGE_UNIT
];
358 #define MAX_BUFFER_SIZE (1024 * 1024 * 128)
359 #define N_STORAGE_UNITS_PER_BUFFER (MAX_BUFFER_SIZE / sizeof(struct kd_storage))
360 static_assert(N_STORAGE_UNITS_PER_BUFFER
<= 0x7ff,
361 "shoudn't overflow kds_ptr.offset");
363 struct kd_storage_buffers
{
364 struct kd_storage
*kdsb_addr
;
368 #define KDS_PTR_NULL 0xffffffff
369 struct kd_storage_buffers
*kd_bufs
= NULL
;
370 int n_storage_units
= 0;
371 unsigned int n_storage_buffers
= 0;
372 int n_storage_threshold
= 0;
377 union kds_ptr kd_list_head
;
378 union kds_ptr kd_list_tail
;
379 boolean_t kd_lostevents
;
381 uint64_t kd_prev_timebase
;
383 } __attribute__(( aligned(MAX_CPU_CACHE_LINE_SIZE
) ));
387 * In principle, this control block can be shared in DRAM with other
388 * coprocessors and runtimes, for configuring what tracing is enabled.
390 struct kd_ctrl_page_t
{
391 union kds_ptr kds_free_list
;
395 uint32_t kdebug_flags
;
396 uint32_t kdebug_slowcheck
;
397 uint64_t oldest_time
;
399 * The number of kd_bufinfo structs allocated may not match the current
400 * number of active cpus. We capture the iops list head at initialization
401 * which we could use to calculate the number of cpus we allocated data for,
402 * unless it happens to be null. To avoid that case, we explicitly also
403 * capture a cpu count.
405 kd_iop_t
* kdebug_iops
;
406 uint32_t kdebug_cpus
;
408 .kds_free_list
= {.raw
= KDS_PTR_NULL
},
409 .kdebug_slowcheck
= SLOW_NOLOG
,
415 struct kd_bufinfo
*kdbip
= NULL
;
417 #define KDCOPYBUF_COUNT 8192
418 #define KDCOPYBUF_SIZE (KDCOPYBUF_COUNT * sizeof(kd_buf))
420 #define PAGE_4KB 4096
421 #define PAGE_16KB 16384
423 kd_buf
*kdcopybuf
= NULL
;
425 unsigned int nkdbufs
= 0;
426 unsigned int kdlog_beg
=0;
427 unsigned int kdlog_end
=0;
428 unsigned int kdlog_value1
=0;
429 unsigned int kdlog_value2
=0;
430 unsigned int kdlog_value3
=0;
431 unsigned int kdlog_value4
=0;
433 static lck_spin_t
* kdw_spin_lock
;
434 static lck_spin_t
* kds_spin_lock
;
436 kd_threadmap
*kd_mapptr
= 0;
437 unsigned int kd_mapsize
= 0;
438 unsigned int kd_mapcount
= 0;
440 off_t RAW_file_offset
= 0;
441 int RAW_file_written
= 0;
443 #define RAW_FLUSH_SIZE (2 * 1024 * 1024)
446 * A globally increasing counter for identifying strings in trace. Starts at
447 * 1 because 0 is a reserved return value.
449 __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE
)))
450 static uint64_t g_curr_str_id
= 1;
452 #define STR_ID_SIG_OFFSET (48)
453 #define STR_ID_MASK ((1ULL << STR_ID_SIG_OFFSET) - 1)
454 #define STR_ID_SIG_MASK (~STR_ID_MASK)
457 * A bit pattern for identifying string IDs generated by
458 * kdebug_trace_string(2).
460 static uint64_t g_str_id_signature
= (0x70acULL
<< STR_ID_SIG_OFFSET
);
462 #define INTERRUPT 0x01050000
463 #define MACH_vmfault 0x01300008
464 #define BSC_SysCall 0x040c0000
465 #define MACH_SysCall 0x010c0000
467 /* task to string structure */
470 task_t task
; /* from procs task */
471 pid_t pid
; /* from procs p_pid */
472 char task_comm
[20]; /* from procs p_comm */
475 typedef struct tts tts_t
;
479 kd_threadmap
*map
; /* pointer to the map buffer */
485 typedef struct krt krt_t
;
488 kdbg_cpu_count(boolean_t early_trace
)
492 return ml_get_cpu_count();
498 host_basic_info_data_t hinfo
;
499 mach_msg_type_number_t count
= HOST_BASIC_INFO_COUNT
;
500 host_info((host_t
)1 /* BSD_HOST */, HOST_BASIC_INFO
, (host_info_t
)&hinfo
, &count
);
501 assert(hinfo
.logical_cpu_max
> 0);
502 return hinfo
.logical_cpu_max
;
508 kdbg_iop_list_is_valid(kd_iop_t
* iop
)
511 /* Is list sorted by cpu_id? */
512 kd_iop_t
* temp
= iop
;
514 assert(!temp
->next
|| temp
->next
->cpu_id
== temp
->cpu_id
- 1);
515 assert(temp
->next
|| (temp
->cpu_id
== kdbg_cpu_count(FALSE
) || temp
->cpu_id
== kdbg_cpu_count(TRUE
)));
516 } while ((temp
= temp
->next
));
518 /* Does each entry have a function and a name? */
521 assert(temp
->callback
.func
);
522 assert(strlen(temp
->callback
.iop_name
) < sizeof(temp
->callback
.iop_name
));
523 } while ((temp
= temp
->next
));
530 kdbg_iop_list_contains_cpu_id(kd_iop_t
* list
, uint32_t cpu_id
)
533 if (list
->cpu_id
== cpu_id
)
540 #endif /* CONFIG_EMBEDDED */
541 #endif /* MACH_ASSERT */
544 kdbg_iop_list_callback(kd_iop_t
* iop
, kd_callback_type type
, void* arg
)
547 iop
->callback
.func(iop
->callback
.context
, type
, arg
);
553 kdbg_set_tracing_enabled(boolean_t enabled
, uint32_t trace_type
)
555 int s
= ml_set_interrupts_enabled(FALSE
);
556 lck_spin_lock(kds_spin_lock
);
559 * The oldest valid time is now; reject old events from IOPs.
561 kd_ctrl_page
.oldest_time
= kdbg_timestamp();
562 kdebug_enable
|= trace_type
;
563 kd_ctrl_page
.kdebug_slowcheck
&= ~SLOW_NOLOG
;
564 kd_ctrl_page
.enabled
= 1;
565 commpage_update_kdebug_state();
567 kdebug_enable
&= ~(KDEBUG_ENABLE_TRACE
|KDEBUG_ENABLE_PPT
);
568 kd_ctrl_page
.kdebug_slowcheck
|= SLOW_NOLOG
;
569 kd_ctrl_page
.enabled
= 0;
570 commpage_update_kdebug_state();
572 lck_spin_unlock(kds_spin_lock
);
573 ml_set_interrupts_enabled(s
);
576 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_KDEBUG_ENABLED
, NULL
);
579 * If you do not flush the IOP trace buffers, they can linger
580 * for a considerable period; consider code which disables and
581 * deallocates without a final sync flush.
583 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_KDEBUG_DISABLED
, NULL
);
584 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_SYNC_FLUSH
, NULL
);
589 kdbg_set_flags(int slowflag
, int enableflag
, boolean_t enabled
)
591 int s
= ml_set_interrupts_enabled(FALSE
);
592 lck_spin_lock(kds_spin_lock
);
595 kd_ctrl_page
.kdebug_slowcheck
|= slowflag
;
596 kdebug_enable
|= enableflag
;
598 kd_ctrl_page
.kdebug_slowcheck
&= ~slowflag
;
599 kdebug_enable
&= ~enableflag
;
602 lck_spin_unlock(kds_spin_lock
);
603 ml_set_interrupts_enabled(s
);
607 * Disable wrapping and return true if trace wrapped, false otherwise.
610 disable_wrap(uint32_t *old_slowcheck
, uint32_t *old_flags
)
613 int s
= ml_set_interrupts_enabled(FALSE
);
614 lck_spin_lock(kds_spin_lock
);
616 *old_slowcheck
= kd_ctrl_page
.kdebug_slowcheck
;
617 *old_flags
= kd_ctrl_page
.kdebug_flags
;
619 wrapped
= kd_ctrl_page
.kdebug_flags
& KDBG_WRAPPED
;
620 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
621 kd_ctrl_page
.kdebug_flags
|= KDBG_NOWRAP
;
623 lck_spin_unlock(kds_spin_lock
);
624 ml_set_interrupts_enabled(s
);
630 enable_wrap(uint32_t old_slowcheck
, boolean_t lostevents
)
632 int s
= ml_set_interrupts_enabled(FALSE
);
633 lck_spin_lock(kds_spin_lock
);
635 kd_ctrl_page
.kdebug_flags
&= ~KDBG_NOWRAP
;
637 if ( !(old_slowcheck
& SLOW_NOLOG
))
638 kd_ctrl_page
.kdebug_slowcheck
&= ~SLOW_NOLOG
;
640 if (lostevents
== TRUE
)
641 kd_ctrl_page
.kdebug_flags
|= KDBG_WRAPPED
;
643 lck_spin_unlock(kds_spin_lock
);
644 ml_set_interrupts_enabled(s
);
648 create_buffers(boolean_t early_trace
)
651 unsigned int p_buffer_size
;
652 unsigned int f_buffer_size
;
653 unsigned int f_buffers
;
657 * For the duration of this allocation, trace code will only reference
658 * kdebug_iops. Any iops registered after this enabling will not be
659 * messaged until the buffers are reallocated.
661 * TLDR; Must read kd_iops once and only once!
663 kd_ctrl_page
.kdebug_iops
= kd_iops
;
666 assert(kdbg_iop_list_is_valid(kd_ctrl_page
.kdebug_iops
));
670 * If the list is valid, it is sorted, newest -> oldest. Each iop entry
671 * has a cpu_id of "the older entry + 1", so the highest cpu_id will
672 * be the list head + 1.
675 kd_ctrl_page
.kdebug_cpus
= kd_ctrl_page
.kdebug_iops
? kd_ctrl_page
.kdebug_iops
->cpu_id
+ 1 : kdbg_cpu_count(early_trace
);
677 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
682 if (nkdbufs
< (kd_ctrl_page
.kdebug_cpus
* EVENTS_PER_STORAGE_UNIT
* MIN_STORAGE_UNITS_PER_CPU
))
683 n_storage_units
= kd_ctrl_page
.kdebug_cpus
* MIN_STORAGE_UNITS_PER_CPU
;
685 n_storage_units
= nkdbufs
/ EVENTS_PER_STORAGE_UNIT
;
687 nkdbufs
= n_storage_units
* EVENTS_PER_STORAGE_UNIT
;
689 f_buffers
= n_storage_units
/ N_STORAGE_UNITS_PER_BUFFER
;
690 n_storage_buffers
= f_buffers
;
692 f_buffer_size
= N_STORAGE_UNITS_PER_BUFFER
* sizeof(struct kd_storage
);
693 p_buffer_size
= (n_storage_units
% N_STORAGE_UNITS_PER_BUFFER
) * sizeof(struct kd_storage
);
700 if (kdcopybuf
== 0) {
701 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kdcopybuf
, (vm_size_t
)KDCOPYBUF_SIZE
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
706 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
, (vm_size_t
)(n_storage_buffers
* sizeof(struct kd_storage_buffers
)), VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
710 bzero(kd_bufs
, n_storage_buffers
* sizeof(struct kd_storage_buffers
));
712 for (i
= 0; i
< f_buffers
; i
++) {
713 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
[i
].kdsb_addr
, (vm_size_t
)f_buffer_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
717 bzero(kd_bufs
[i
].kdsb_addr
, f_buffer_size
);
719 kd_bufs
[i
].kdsb_size
= f_buffer_size
;
722 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
[i
].kdsb_addr
, (vm_size_t
)p_buffer_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
726 bzero(kd_bufs
[i
].kdsb_addr
, p_buffer_size
);
728 kd_bufs
[i
].kdsb_size
= p_buffer_size
;
732 for (i
= 0; i
< n_storage_buffers
; i
++) {
733 struct kd_storage
*kds
;
737 n_elements
= kd_bufs
[i
].kdsb_size
/ sizeof(struct kd_storage
);
738 kds
= kd_bufs
[i
].kdsb_addr
;
740 for (n
= 0; n
< n_elements
; n
++) {
741 kds
[n
].kds_next
.buffer_index
= kd_ctrl_page
.kds_free_list
.buffer_index
;
742 kds
[n
].kds_next
.offset
= kd_ctrl_page
.kds_free_list
.offset
;
744 kd_ctrl_page
.kds_free_list
.buffer_index
= i
;
745 kd_ctrl_page
.kds_free_list
.offset
= n
;
747 n_storage_units
+= n_elements
;
750 bzero((char *)kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
);
752 for (i
= 0; i
< kd_ctrl_page
.kdebug_cpus
; i
++) {
753 kdbip
[i
].kd_list_head
.raw
= KDS_PTR_NULL
;
754 kdbip
[i
].kd_list_tail
.raw
= KDS_PTR_NULL
;
755 kdbip
[i
].kd_lostevents
= FALSE
;
756 kdbip
[i
].num_bufs
= 0;
759 kd_ctrl_page
.kdebug_flags
|= KDBG_BUFINIT
;
761 kd_ctrl_page
.kds_inuse_count
= 0;
762 n_storage_threshold
= n_storage_units
/ 2;
776 for (i
= 0; i
< n_storage_buffers
; i
++) {
777 if (kd_bufs
[i
].kdsb_addr
) {
778 kmem_free(kernel_map
, (vm_offset_t
)kd_bufs
[i
].kdsb_addr
, (vm_size_t
)kd_bufs
[i
].kdsb_size
);
781 kmem_free(kernel_map
, (vm_offset_t
)kd_bufs
, (vm_size_t
)(n_storage_buffers
* sizeof(struct kd_storage_buffers
)));
784 n_storage_buffers
= 0;
787 kmem_free(kernel_map
, (vm_offset_t
)kdcopybuf
, KDCOPYBUF_SIZE
);
791 kd_ctrl_page
.kds_free_list
.raw
= KDS_PTR_NULL
;
794 kmem_free(kernel_map
, (vm_offset_t
)kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
);
798 kd_ctrl_page
.kdebug_iops
= NULL
;
799 kd_ctrl_page
.kdebug_cpus
= 0;
800 kd_ctrl_page
.kdebug_flags
&= ~KDBG_BUFINIT
;
804 release_storage_unit(int cpu
, uint32_t kdsp_raw
)
807 struct kd_storage
*kdsp_actual
;
808 struct kd_bufinfo
*kdbp
;
813 s
= ml_set_interrupts_enabled(FALSE
);
814 lck_spin_lock(kds_spin_lock
);
818 if (kdsp
.raw
== kdbp
->kd_list_head
.raw
) {
820 * it's possible for the storage unit pointed to
821 * by kdsp to have already been stolen... so
822 * check to see if it's still the head of the list
823 * now that we're behind the lock that protects
824 * adding and removing from the queue...
825 * since we only ever release and steal units from
826 * that position, if it's no longer the head
827 * we having nothing to do in this context
829 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
830 kdbp
->kd_list_head
= kdsp_actual
->kds_next
;
832 kdsp_actual
->kds_next
= kd_ctrl_page
.kds_free_list
;
833 kd_ctrl_page
.kds_free_list
= kdsp
;
835 kd_ctrl_page
.kds_inuse_count
--;
837 lck_spin_unlock(kds_spin_lock
);
838 ml_set_interrupts_enabled(s
);
843 allocate_storage_unit(int cpu
)
846 struct kd_storage
*kdsp_actual
, *kdsp_next_actual
;
847 struct kd_bufinfo
*kdbp
, *kdbp_vict
, *kdbp_try
;
848 uint64_t oldest_ts
, ts
;
849 boolean_t retval
= TRUE
;
852 s
= ml_set_interrupts_enabled(FALSE
);
853 lck_spin_lock(kds_spin_lock
);
857 /* If someone beat us to the allocate, return success */
858 if (kdbp
->kd_list_tail
.raw
!= KDS_PTR_NULL
) {
859 kdsp_actual
= POINTER_FROM_KDS_PTR(kdbp
->kd_list_tail
);
861 if (kdsp_actual
->kds_bufindx
< EVENTS_PER_STORAGE_UNIT
)
865 if ((kdsp
= kd_ctrl_page
.kds_free_list
).raw
!= KDS_PTR_NULL
) {
866 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
867 kd_ctrl_page
.kds_free_list
= kdsp_actual
->kds_next
;
869 kd_ctrl_page
.kds_inuse_count
++;
871 if (kd_ctrl_page
.kdebug_flags
& KDBG_NOWRAP
) {
872 kd_ctrl_page
.kdebug_slowcheck
|= SLOW_NOLOG
;
873 kdbp
->kd_lostevents
= TRUE
;
878 oldest_ts
= UINT64_MAX
;
880 for (kdbp_try
= &kdbip
[0]; kdbp_try
< &kdbip
[kd_ctrl_page
.kdebug_cpus
]; kdbp_try
++) {
882 if (kdbp_try
->kd_list_head
.raw
== KDS_PTR_NULL
) {
884 * no storage unit to steal
889 kdsp_actual
= POINTER_FROM_KDS_PTR(kdbp_try
->kd_list_head
);
891 if (kdsp_actual
->kds_bufcnt
< EVENTS_PER_STORAGE_UNIT
) {
893 * make sure we don't steal the storage unit
894 * being actively recorded to... need to
895 * move on because we don't want an out-of-order
896 * set of events showing up later
902 * When wrapping, steal the storage unit with the
903 * earliest timestamp on its last event, instead of the
904 * earliest timestamp on the first event. This allows a
905 * storage unit with more recent events to be preserved,
906 * even if the storage unit contains events that are
907 * older than those found in other CPUs.
909 ts
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[EVENTS_PER_STORAGE_UNIT
- 1]);
910 if (ts
< oldest_ts
) {
912 kdbp_vict
= kdbp_try
;
915 if (kdbp_vict
== NULL
) {
917 kd_ctrl_page
.enabled
= 0;
918 commpage_update_kdebug_state();
922 kdsp
= kdbp_vict
->kd_list_head
;
923 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
924 kdbp_vict
->kd_list_head
= kdsp_actual
->kds_next
;
926 if (kdbp_vict
->kd_list_head
.raw
!= KDS_PTR_NULL
) {
927 kdsp_next_actual
= POINTER_FROM_KDS_PTR(kdbp_vict
->kd_list_head
);
928 kdsp_next_actual
->kds_lostevents
= TRUE
;
930 kdbp_vict
->kd_lostevents
= TRUE
;
932 kd_ctrl_page
.oldest_time
= oldest_ts
;
933 kd_ctrl_page
.kdebug_flags
|= KDBG_WRAPPED
;
935 kdsp_actual
->kds_timestamp
= kdbg_timestamp();
936 kdsp_actual
->kds_next
.raw
= KDS_PTR_NULL
;
937 kdsp_actual
->kds_bufcnt
= 0;
938 kdsp_actual
->kds_readlast
= 0;
940 kdsp_actual
->kds_lostevents
= kdbp
->kd_lostevents
;
941 kdbp
->kd_lostevents
= FALSE
;
942 kdsp_actual
->kds_bufindx
= 0;
944 if (kdbp
->kd_list_head
.raw
== KDS_PTR_NULL
)
945 kdbp
->kd_list_head
= kdsp
;
947 POINTER_FROM_KDS_PTR(kdbp
->kd_list_tail
)->kds_next
= kdsp
;
948 kdbp
->kd_list_tail
= kdsp
;
950 lck_spin_unlock(kds_spin_lock
);
951 ml_set_interrupts_enabled(s
);
957 kernel_debug_register_callback(kd_callback_t callback
)
960 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&iop
, sizeof(kd_iop_t
), VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
) {
961 memcpy(&iop
->callback
, &callback
, sizeof(kd_callback_t
));
964 * <rdar://problem/13351477> Some IOP clients are not providing a name.
969 boolean_t is_valid_name
= FALSE
;
970 for (uint32_t length
=0; length
<sizeof(callback
.iop_name
); ++length
) {
971 /* This is roughly isprintable(c) */
972 if (callback
.iop_name
[length
] > 0x20 && callback
.iop_name
[length
] < 0x7F)
974 if (callback
.iop_name
[length
] == 0) {
976 is_valid_name
= TRUE
;
981 if (!is_valid_name
) {
982 strlcpy(iop
->callback
.iop_name
, "IOP-???", sizeof(iop
->callback
.iop_name
));
986 iop
->last_timestamp
= 0;
990 * We use two pieces of state, the old list head
991 * pointer, and the value of old_list_head->cpu_id.
992 * If we read kd_iops more than once, it can change
995 * TLDR; Must not read kd_iops more than once per loop.
998 iop
->cpu_id
= iop
->next
? (iop
->next
->cpu_id
+1) : kdbg_cpu_count(FALSE
);
1001 * Header says OSCompareAndSwapPtr has a memory barrier
1003 } while (!OSCompareAndSwapPtr(iop
->next
, iop
, (void* volatile*)&kd_iops
));
1025 struct kd_bufinfo
*kdbp
;
1026 struct kd_storage
*kdsp_actual
;
1027 union kds_ptr kds_raw
;
1029 if (kd_ctrl_page
.kdebug_slowcheck
) {
1031 if ( (kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) || !(kdebug_enable
& (KDEBUG_ENABLE_TRACE
|KDEBUG_ENABLE_PPT
)))
1034 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1035 if (typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
))
1039 else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1040 if (debugid
>= kdlog_beg
&& debugid
<= kdlog_end
)
1044 else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1045 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1046 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1047 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1048 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1054 if (timestamp
< kd_ctrl_page
.oldest_time
) {
1060 * When start_kern_tracing is called by the kernel to trace very
1061 * early kernel events, it saves data to a secondary buffer until
1062 * it is possible to initialize ktrace, and then dumps the events
1063 * into the ktrace buffer using this method. In this case, iops will
1064 * be NULL, and the coreid will be zero. It is not possible to have
1065 * a valid IOP coreid of zero, so pass if both iops is NULL and coreid
1068 assert(kdbg_iop_list_contains_cpu_id(kd_ctrl_page
.kdebug_iops
, coreid
) || (kd_ctrl_page
.kdebug_iops
== NULL
&& coreid
== 0));
1071 disable_preemption();
1073 if (kd_ctrl_page
.enabled
== 0)
1076 kdbp
= &kdbip
[coreid
];
1077 timestamp
&= KDBG_TIMESTAMP_MASK
;
1079 #if KDEBUG_MOJO_TRACE
1080 if (kdebug_enable
& KDEBUG_ENABLE_SERIAL
)
1081 kdebug_serial_print(coreid
, debugid
, timestamp
,
1082 arg1
, arg2
, arg3
, arg4
, threadid
);
1086 kds_raw
= kdbp
->kd_list_tail
;
1088 if (kds_raw
.raw
!= KDS_PTR_NULL
) {
1089 kdsp_actual
= POINTER_FROM_KDS_PTR(kds_raw
);
1090 bindx
= kdsp_actual
->kds_bufindx
;
1093 bindx
= EVENTS_PER_STORAGE_UNIT
;
1096 if (kdsp_actual
== NULL
|| bindx
>= EVENTS_PER_STORAGE_UNIT
) {
1097 if (allocate_storage_unit(coreid
) == FALSE
) {
1099 * this can only happen if wrapping
1106 if ( !OSCompareAndSwap(bindx
, bindx
+ 1, &kdsp_actual
->kds_bufindx
))
1109 // IOP entries can be allocated before xnu allocates and inits the buffer
1110 if (timestamp
< kdsp_actual
->kds_timestamp
)
1111 kdsp_actual
->kds_timestamp
= timestamp
;
1113 kd
= &kdsp_actual
->kds_records
[bindx
];
1115 kd
->debugid
= debugid
;
1120 kd
->arg5
= threadid
;
1122 kdbg_set_timestamp_and_cpu(kd
, timestamp
, coreid
);
1124 OSAddAtomic(1, &kdsp_actual
->kds_bufcnt
);
1126 enable_preemption();
1128 if ((kds_waiter
&& kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
)) {
1134 kernel_debug_internal(
1135 boolean_t only_filter
,
1143 struct proc
*curproc
;
1148 struct kd_bufinfo
*kdbp
;
1149 struct kd_storage
*kdsp_actual
;
1150 union kds_ptr kds_raw
;
1152 if (kd_ctrl_page
.kdebug_slowcheck
) {
1153 if ((kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) ||
1154 !(kdebug_enable
& (KDEBUG_ENABLE_TRACE
| KDEBUG_ENABLE_PPT
)))
1159 if ( !ml_at_interrupt_context()) {
1160 if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDCHECK
) {
1162 * If kdebug flag is not set for current proc, return
1164 curproc
= current_proc();
1166 if ((curproc
&& !(curproc
->p_kdebug
)) &&
1167 ((debugid
& 0xffff0000) != (MACHDBG_CODE(DBG_MACH_SCHED
, 0) | DBG_FUNC_NONE
)) &&
1168 (debugid
>> 24 != DBG_TRACE
))
1171 else if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDEXCLUDE
) {
1173 * If kdebug flag is set for current proc, return
1175 curproc
= current_proc();
1177 if ((curproc
&& curproc
->p_kdebug
) &&
1178 ((debugid
& 0xffff0000) != (MACHDBG_CODE(DBG_MACH_SCHED
, 0) | DBG_FUNC_NONE
)) &&
1179 (debugid
>> 24 != DBG_TRACE
))
1184 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1185 if (typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
))
1189 } else if (only_filter
== TRUE
) {
1192 else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1193 /* Always record trace system info */
1194 if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
)
1197 if (debugid
< kdlog_beg
|| debugid
> kdlog_end
)
1200 else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1201 /* Always record trace system info */
1202 if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
)
1205 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1206 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1207 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1208 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1211 } else if (only_filter
== TRUE
) {
1216 disable_preemption();
1218 if (kd_ctrl_page
.enabled
== 0)
1224 #if KDEBUG_MOJO_TRACE
1225 if (kdebug_enable
& KDEBUG_ENABLE_SERIAL
)
1226 kdebug_serial_print(cpu
, debugid
,
1227 kdbg_timestamp() & KDBG_TIMESTAMP_MASK
,
1228 arg1
, arg2
, arg3
, arg4
, arg5
);
1232 kds_raw
= kdbp
->kd_list_tail
;
1234 if (kds_raw
.raw
!= KDS_PTR_NULL
) {
1235 kdsp_actual
= POINTER_FROM_KDS_PTR(kds_raw
);
1236 bindx
= kdsp_actual
->kds_bufindx
;
1239 bindx
= EVENTS_PER_STORAGE_UNIT
;
1242 if (kdsp_actual
== NULL
|| bindx
>= EVENTS_PER_STORAGE_UNIT
) {
1243 if (allocate_storage_unit(cpu
) == FALSE
) {
1245 * this can only happen if wrapping
1252 now
= kdbg_timestamp() & KDBG_TIMESTAMP_MASK
;
1254 if ( !OSCompareAndSwap(bindx
, bindx
+ 1, &kdsp_actual
->kds_bufindx
))
1257 kd
= &kdsp_actual
->kds_records
[bindx
];
1259 kd
->debugid
= debugid
;
1266 kdbg_set_timestamp_and_cpu(kd
, now
, cpu
);
1268 OSAddAtomic(1, &kdsp_actual
->kds_bufcnt
);
1271 kperf_kdebug_callback(debugid
, __builtin_frame_address(0));
1274 enable_preemption();
1276 if (kds_waiter
&& kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
) {
1280 etype
= debugid
& KDBG_EVENTID_MASK
;
1281 stype
= debugid
& KDBG_CSC_MASK
;
1283 if (etype
== INTERRUPT
|| etype
== MACH_vmfault
||
1284 stype
== BSC_SysCall
|| stype
== MACH_SysCall
) {
1297 __unused
uintptr_t arg5
)
1299 kernel_debug_internal(FALSE
, debugid
, arg1
, arg2
, arg3
, arg4
,
1300 (uintptr_t)thread_tid(current_thread()));
1312 kernel_debug_internal(FALSE
, debugid
, arg1
, arg2
, arg3
, arg4
, arg5
);
1316 kernel_debug_filtered(
1323 kernel_debug_internal(TRUE
, debugid
, arg1
, arg2
, arg3
, arg4
,
1324 (uintptr_t)thread_tid(current_thread()));
1328 kernel_debug_string_early(const char *message
)
1330 uintptr_t arg
[4] = {0, 0, 0, 0};
1332 /* Stuff the message string in the args and log it. */
1333 strncpy((char *)arg
, message
, MIN(sizeof(arg
), strlen(message
)));
1336 arg
[0], arg
[1], arg
[2], arg
[3]);
1339 #define SIMPLE_STR_LEN (64)
1340 static_assert(SIMPLE_STR_LEN
% sizeof(uintptr_t) == 0);
1343 kernel_debug_string_simple(uint32_t eventid
, const char *str
)
1345 /* array of uintptr_ts simplifies emitting the string as arguments */
1346 uintptr_t str_buf
[(SIMPLE_STR_LEN
/ sizeof(uintptr_t)) + 1] = { 0 };
1347 size_t len
= strlcpy((char *)str_buf
, str
, SIMPLE_STR_LEN
+ 1);
1349 uintptr_t thread_id
= (uintptr_t)thread_tid(current_thread());
1350 uint32_t debugid
= eventid
| DBG_FUNC_START
;
1352 /* string can fit in a single tracepoint */
1353 if (len
<= (4 * sizeof(uintptr_t))) {
1354 debugid
|= DBG_FUNC_END
;
1357 kernel_debug_internal(FALSE
, debugid
, str_buf
[0],
1360 str_buf
[3], thread_id
);
1362 debugid
&= KDBG_EVENTID_MASK
;
1364 size_t written
= 4 * sizeof(uintptr_t);
1366 for (; written
< len
; i
+= 4, written
+= 4 * sizeof(uintptr_t)) {
1367 /* if this is the last tracepoint to be emitted */
1368 if ((written
+ (4 * sizeof(uintptr_t))) >= len
) {
1369 debugid
|= DBG_FUNC_END
;
1371 kernel_debug_internal(FALSE
, debugid
, str_buf
[i
],
1374 str_buf
[i
+ 3], thread_id
);
1378 extern int master_cpu
; /* MACH_KERNEL_PRIVATE */
1380 * Used prior to start_kern_tracing() being called.
1381 * Log temporarily into a static buffer.
1391 /* If early tracing is over, use the normal path. */
1392 if (kd_early_done
) {
1393 KERNEL_DEBUG_CONSTANT(debugid
, arg1
, arg2
, arg3
, arg4
, 0);
1397 /* Do nothing if the buffer is full or we're not on the boot cpu. */
1398 kd_early_overflow
= kd_early_index
>= KD_EARLY_BUFFER_NBUFS
;
1399 if (kd_early_overflow
|| cpu_number() != master_cpu
) {
1403 kd_early_buffer
[kd_early_index
].debugid
= debugid
;
1404 kd_early_buffer
[kd_early_index
].timestamp
= mach_absolute_time();
1405 kd_early_buffer
[kd_early_index
].arg1
= arg1
;
1406 kd_early_buffer
[kd_early_index
].arg2
= arg2
;
1407 kd_early_buffer
[kd_early_index
].arg3
= arg3
;
1408 kd_early_buffer
[kd_early_index
].arg4
= arg4
;
1409 kd_early_buffer
[kd_early_index
].arg5
= 0;
1414 * Transfer the contents of the temporary buffer into the trace buffers.
1415 * Precede that by logging the rebase time (offset) - the TSC-based time (in ns)
1416 * when mach_absolute_time is set to 0.
1419 kernel_debug_early_end(void)
1421 if (cpu_number() != master_cpu
) {
1422 panic("kernel_debug_early_end() not call on boot processor");
1425 /* reset the current oldest time to allow early events */
1426 kd_ctrl_page
.oldest_time
= 0;
1428 #if !CONFIG_EMBEDDED
1429 /* Fake sentinel marking the start of kernel time relative to TSC */
1430 kernel_debug_enter(0,
1433 (uint32_t)(tsc_rebase_abs_time
>> 32),
1434 (uint32_t)tsc_rebase_abs_time
,
1439 for (unsigned int i
= 0; i
< kd_early_index
; i
++) {
1440 kernel_debug_enter(0,
1441 kd_early_buffer
[i
].debugid
,
1442 kd_early_buffer
[i
].timestamp
,
1443 kd_early_buffer
[i
].arg1
,
1444 kd_early_buffer
[i
].arg2
,
1445 kd_early_buffer
[i
].arg3
,
1446 kd_early_buffer
[i
].arg4
,
1450 /* Cut events-lost event on overflow */
1451 if (kd_early_overflow
) {
1452 KDBG_RELEASE(TRACE_LOST_EVENTS
, 1);
1455 kd_early_done
= true;
1457 /* This trace marks the start of kernel tracing */
1458 kernel_debug_string_early("early trace done");
1462 kernel_debug_disable(void)
1464 if (kdebug_enable
) {
1465 kdbg_set_tracing_enabled(FALSE
, 0);
1470 * Returns non-zero if debugid is in a reserved class.
1473 kdebug_validate_debugid(uint32_t debugid
)
1475 uint8_t debugid_class
;
1477 debugid_class
= KDBG_EXTRACT_CLASS(debugid
);
1478 switch (debugid_class
) {
1487 * Support syscall SYS_kdebug_typefilter.
1490 kdebug_typefilter(__unused
struct proc
* p
,
1491 struct kdebug_typefilter_args
* uap
,
1492 __unused
int *retval
)
1494 int ret
= KERN_SUCCESS
;
1496 if (uap
->addr
== USER_ADDR_NULL
||
1497 uap
->size
== USER_ADDR_NULL
) {
1502 * The atomic load is to close a race window with setting the typefilter
1503 * and memory entry values. A description follows:
1507 * Allocate Typefilter
1508 * Allocate MemoryEntry
1509 * Write Global MemoryEntry Ptr
1510 * Atomic Store (Release) Global Typefilter Ptr
1512 * Thread 2 (reader, AKA us)
1514 * if ((Atomic Load (Acquire) Global Typefilter Ptr) == NULL)
1517 * Without the atomic store, it isn't guaranteed that the write of
1518 * Global MemoryEntry Ptr is visible before we can see the write of
1519 * Global Typefilter Ptr.
1521 * Without the atomic load, it isn't guaranteed that the loads of
1522 * Global MemoryEntry Ptr aren't speculated.
1524 * The global pointers transition from NULL -> valid once and only once,
1525 * and never change after becoming valid. This means that having passed
1526 * the first atomic load test of Global Typefilter Ptr, this function
1527 * can then safely use the remaining global state without atomic checks.
1529 if (!__c11_atomic_load((_Atomic typefilter_t
*)&kdbg_typefilter
, memory_order_acquire
)) {
1533 assert(kdbg_typefilter_memory_entry
);
1535 mach_vm_offset_t user_addr
= 0;
1536 vm_map_t user_map
= current_map();
1538 ret
= mach_to_bsd_errno(
1539 mach_vm_map_kernel(user_map
, // target map
1540 &user_addr
, // [in, out] target address
1541 TYPEFILTER_ALLOC_SIZE
, // initial size
1542 0, // mask (alignment?)
1543 VM_FLAGS_ANYWHERE
, // flags
1544 VM_KERN_MEMORY_NONE
,
1545 kdbg_typefilter_memory_entry
, // port (memory entry!)
1546 0, // offset (in memory entry)
1547 FALSE
, // should copy
1548 VM_PROT_READ
, // cur_prot
1549 VM_PROT_READ
, // max_prot
1550 VM_INHERIT_SHARE
)); // inherit behavior on fork
1552 if (ret
== KERN_SUCCESS
) {
1553 vm_size_t user_ptr_size
= vm_map_is_64bit(user_map
) ? 8 : 4;
1554 ret
= copyout(CAST_DOWN(void *, &user_addr
), uap
->addr
, user_ptr_size
);
1556 if (ret
!= KERN_SUCCESS
) {
1557 mach_vm_deallocate(user_map
, user_addr
, TYPEFILTER_ALLOC_SIZE
);
1565 * Support syscall SYS_kdebug_trace. U64->K32 args may get truncated in kdebug_trace64
1568 kdebug_trace(struct proc
*p
, struct kdebug_trace_args
*uap
, int32_t *retval
)
1570 struct kdebug_trace64_args uap64
;
1572 uap64
.code
= uap
->code
;
1573 uap64
.arg1
= uap
->arg1
;
1574 uap64
.arg2
= uap
->arg2
;
1575 uap64
.arg3
= uap
->arg3
;
1576 uap64
.arg4
= uap
->arg4
;
1578 return kdebug_trace64(p
, &uap64
, retval
);
1582 * Support syscall SYS_kdebug_trace64. 64-bit args on K32 will get truncated
1583 * to fit in 32-bit record format.
1585 * It is intentional that error conditions are not checked until kdebug is
1586 * enabled. This is to match the userspace wrapper behavior, which is optimizing
1587 * for non-error case performance.
1589 int kdebug_trace64(__unused
struct proc
*p
, struct kdebug_trace64_args
*uap
, __unused
int32_t *retval
)
1593 if ( __probable(kdebug_enable
== 0) )
1596 if ((err
= kdebug_validate_debugid(uap
->code
)) != 0) {
1600 kernel_debug_internal(FALSE
, uap
->code
,
1601 (uintptr_t)uap
->arg1
,
1602 (uintptr_t)uap
->arg2
,
1603 (uintptr_t)uap
->arg3
,
1604 (uintptr_t)uap
->arg4
,
1605 (uintptr_t)thread_tid(current_thread()));
1611 * Adding enough padding to contain a full tracepoint for the last
1612 * portion of the string greatly simplifies the logic of splitting the
1613 * string between tracepoints. Full tracepoints can be generated using
1614 * the buffer itself, without having to manually add zeros to pad the
1618 /* 2 string args in first tracepoint and 9 string data tracepoints */
1619 #define STR_BUF_ARGS (2 + (9 * 4))
1620 /* times the size of each arg on K64 */
1621 #define MAX_STR_LEN (STR_BUF_ARGS * sizeof(uint64_t))
1622 /* on K32, ending straddles a tracepoint, so reserve blanks */
1623 #define STR_BUF_SIZE (MAX_STR_LEN + (2 * sizeof(uint32_t)))
1626 * This function does no error checking and assumes that it is called with
1627 * the correct arguments, including that the buffer pointed to by str is at
1628 * least STR_BUF_SIZE bytes. However, str must be aligned to word-size and
1629 * be NUL-terminated. In cases where a string can fit evenly into a final
1630 * tracepoint without its NUL-terminator, this function will not end those
1631 * strings with a NUL in trace. It's up to clients to look at the function
1632 * qualifier for DBG_FUNC_END in this case, to end the string.
1635 kernel_debug_string_internal(uint32_t debugid
, uint64_t str_id
, void *vstr
,
1638 /* str must be word-aligned */
1639 uintptr_t *str
= vstr
;
1641 uintptr_t thread_id
;
1643 uint32_t trace_debugid
= TRACEDBG_CODE(DBG_TRACE_STRING
,
1644 TRACE_STRING_GLOBAL
);
1646 thread_id
= (uintptr_t)thread_tid(current_thread());
1648 /* if the ID is being invalidated, just emit that */
1649 if (str_id
!= 0 && str_len
== 0) {
1650 kernel_debug_internal(FALSE
, trace_debugid
| DBG_FUNC_START
| DBG_FUNC_END
,
1651 (uintptr_t)debugid
, (uintptr_t)str_id
, 0, 0,
1656 /* generate an ID, if necessary */
1658 str_id
= OSIncrementAtomic64((SInt64
*)&g_curr_str_id
);
1659 str_id
= (str_id
& STR_ID_MASK
) | g_str_id_signature
;
1662 trace_debugid
|= DBG_FUNC_START
;
1663 /* string can fit in a single tracepoint */
1664 if (str_len
<= (2 * sizeof(uintptr_t))) {
1665 trace_debugid
|= DBG_FUNC_END
;
1668 kernel_debug_internal(FALSE
, trace_debugid
, (uintptr_t)debugid
,
1669 (uintptr_t)str_id
, str
[0],
1672 trace_debugid
&= KDBG_EVENTID_MASK
;
1674 written
+= 2 * sizeof(uintptr_t);
1676 for (; written
< str_len
; i
+= 4, written
+= 4 * sizeof(uintptr_t)) {
1677 if ((written
+ (4 * sizeof(uintptr_t))) >= str_len
) {
1678 trace_debugid
|= DBG_FUNC_END
;
1680 kernel_debug_internal(FALSE
, trace_debugid
, str
[i
],
1683 str
[i
+ 3], thread_id
);
1690 * Returns true if the current process can emit events, and false otherwise.
1691 * Trace system and scheduling events circumvent this check, as do events
1692 * emitted in interrupt context.
1695 kdebug_current_proc_enabled(uint32_t debugid
)
1697 /* can't determine current process in interrupt context */
1698 if (ml_at_interrupt_context()) {
1702 /* always emit trace system and scheduling events */
1703 if ((KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
||
1704 (debugid
& KDBG_CSC_MASK
) == MACHDBG_CODE(DBG_MACH_SCHED
, 0)))
1709 if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDCHECK
) {
1710 proc_t cur_proc
= current_proc();
1712 /* only the process with the kdebug bit set is allowed */
1713 if (cur_proc
&& !(cur_proc
->p_kdebug
)) {
1716 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDEXCLUDE
) {
1717 proc_t cur_proc
= current_proc();
1719 /* every process except the one with the kdebug bit set is allowed */
1720 if (cur_proc
&& cur_proc
->p_kdebug
) {
1729 kdebug_debugid_enabled(uint32_t debugid
)
1731 /* if no filtering is enabled */
1732 if (!kd_ctrl_page
.kdebug_slowcheck
) {
1736 return kdebug_debugid_explicitly_enabled(debugid
);
1740 kdebug_debugid_explicitly_enabled(uint32_t debugid
)
1742 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1743 return typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
);
1744 } else if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
) {
1746 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1747 if (debugid
< kdlog_beg
|| debugid
> kdlog_end
) {
1750 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1751 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1752 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1753 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1754 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1764 * Returns 0 if a string can be traced with these arguments. Returns errno
1765 * value if error occurred.
1768 kdebug_check_trace_string(uint32_t debugid
, uint64_t str_id
)
1770 /* if there are function qualifiers on the debugid */
1771 if (debugid
& ~KDBG_EVENTID_MASK
) {
1775 if (kdebug_validate_debugid(debugid
)) {
1779 if (str_id
!= 0 && (str_id
& STR_ID_SIG_MASK
) != g_str_id_signature
) {
1787 * Implementation of KPI kernel_debug_string.
1790 kernel_debug_string(uint32_t debugid
, uint64_t *str_id
, const char *str
)
1792 /* arguments to tracepoints must be word-aligned */
1793 __attribute__((aligned(sizeof(uintptr_t)))) char str_buf
[STR_BUF_SIZE
];
1794 static_assert(sizeof(str_buf
) > MAX_STR_LEN
);
1795 vm_size_t len_copied
;
1800 if (__probable(kdebug_enable
== 0)) {
1804 if (!kdebug_current_proc_enabled(debugid
)) {
1808 if (!kdebug_debugid_enabled(debugid
)) {
1812 if ((err
= kdebug_check_trace_string(debugid
, *str_id
)) != 0) {
1821 *str_id
= kernel_debug_string_internal(debugid
, *str_id
, NULL
, 0);
1825 memset(str_buf
, 0, sizeof(str_buf
));
1826 len_copied
= strlcpy(str_buf
, str
, MAX_STR_LEN
+ 1);
1827 *str_id
= kernel_debug_string_internal(debugid
, *str_id
, str_buf
,
1833 * Support syscall kdebug_trace_string.
1836 kdebug_trace_string(__unused
struct proc
*p
,
1837 struct kdebug_trace_string_args
*uap
,
1840 __attribute__((aligned(sizeof(uintptr_t)))) char str_buf
[STR_BUF_SIZE
];
1841 static_assert(sizeof(str_buf
) > MAX_STR_LEN
);
1845 if (__probable(kdebug_enable
== 0)) {
1849 if (!kdebug_current_proc_enabled(uap
->debugid
)) {
1853 if (!kdebug_debugid_enabled(uap
->debugid
)) {
1857 if ((err
= kdebug_check_trace_string(uap
->debugid
, uap
->str_id
)) != 0) {
1861 if (uap
->str
== USER_ADDR_NULL
) {
1862 if (uap
->str_id
== 0) {
1866 *retval
= kernel_debug_string_internal(uap
->debugid
, uap
->str_id
,
1871 memset(str_buf
, 0, sizeof(str_buf
));
1872 err
= copyinstr(uap
->str
, str_buf
, MAX_STR_LEN
+ 1, &len_copied
);
1874 /* it's alright to truncate the string, so allow ENAMETOOLONG */
1875 if (err
== ENAMETOOLONG
) {
1876 str_buf
[MAX_STR_LEN
] = '\0';
1881 if (len_copied
<= 1) {
1885 /* convert back to a length */
1888 *retval
= kernel_debug_string_internal(uap
->debugid
, uap
->str_id
, str_buf
,
1894 kdbg_lock_init(void)
1896 static lck_grp_attr_t
*kdebug_lck_grp_attr
= NULL
;
1897 static lck_grp_t
*kdebug_lck_grp
= NULL
;
1898 static lck_attr_t
*kdebug_lck_attr
= NULL
;
1900 if (kd_ctrl_page
.kdebug_flags
& KDBG_LOCKINIT
) {
1904 assert(kdebug_lck_grp_attr
== NULL
);
1905 kdebug_lck_grp_attr
= lck_grp_attr_alloc_init();
1906 kdebug_lck_grp
= lck_grp_alloc_init("kdebug", kdebug_lck_grp_attr
);
1907 kdebug_lck_attr
= lck_attr_alloc_init();
1909 kds_spin_lock
= lck_spin_alloc_init(kdebug_lck_grp
, kdebug_lck_attr
);
1910 kdw_spin_lock
= lck_spin_alloc_init(kdebug_lck_grp
, kdebug_lck_attr
);
1912 kd_ctrl_page
.kdebug_flags
|= KDBG_LOCKINIT
;
1916 kdbg_bootstrap(boolean_t early_trace
)
1918 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
1920 return (create_buffers(early_trace
));
1924 kdbg_reinit(boolean_t early_trace
)
1929 * Disable trace collecting
1930 * First make sure we're not in
1931 * the middle of cutting a trace
1933 kernel_debug_disable();
1936 * make sure the SLOW_NOLOG is seen
1937 * by everyone that might be trying
1944 kdbg_clear_thread_map();
1945 ret
= kdbg_bootstrap(early_trace
);
1947 RAW_file_offset
= 0;
1948 RAW_file_written
= 0;
1954 kdbg_trace_data(struct proc
*proc
, long *arg_pid
, long *arg_uniqueid
)
1960 *arg_pid
= proc
->p_pid
;
1961 *arg_uniqueid
= proc
->p_uniqueid
;
1962 if ((uint64_t) *arg_uniqueid
!= proc
->p_uniqueid
) {
1970 kdbg_trace_string(struct proc
*proc
, long *arg1
, long *arg2
, long *arg3
, long *arg4
)
1984 * Collect the pathname for tracing
1986 dbg_nameptr
= proc
->p_comm
;
1987 dbg_namelen
= (int)strlen(proc
->p_comm
);
1993 if(dbg_namelen
> (int)sizeof(dbg_parms
))
1994 dbg_namelen
= (int)sizeof(dbg_parms
);
1996 strncpy((char *)dbg_parms
, dbg_nameptr
, dbg_namelen
);
2005 kdbg_resolve_map(thread_t th_act
, void *opaque
)
2007 kd_threadmap
*mapptr
;
2008 krt_t
*t
= (krt_t
*)opaque
;
2010 if (t
->count
< t
->maxcount
) {
2011 mapptr
= &t
->map
[t
->count
];
2012 mapptr
->thread
= (uintptr_t)thread_tid(th_act
);
2014 (void) strlcpy (mapptr
->command
, t
->atts
->task_comm
,
2015 sizeof(t
->atts
->task_comm
));
2017 * Some kernel threads have no associated pid.
2018 * We still need to mark the entry as valid.
2021 mapptr
->valid
= t
->atts
->pid
;
2031 * Writes a cpumap for the given iops_list/cpu_count to the provided buffer.
2033 * You may provide a buffer and size, or if you set the buffer to NULL, a
2034 * buffer of sufficient size will be allocated.
2036 * If you provide a buffer and it is too small, sets cpumap_size to the number
2037 * of bytes required and returns EINVAL.
2039 * On success, if you provided a buffer, cpumap_size is set to the number of
2040 * bytes written. If you did not provide a buffer, cpumap is set to the newly
2041 * allocated buffer and cpumap_size is set to the number of bytes allocated.
2043 * NOTE: It may seem redundant to pass both iops and a cpu_count.
2045 * We may be reporting data from "now", or from the "past".
2047 * The "past" data would be for kdbg_readcpumap().
2049 * If we do not pass both iops and cpu_count, and iops is NULL, this function
2050 * will need to read "now" state to get the number of cpus, which would be in
2051 * error if we were reporting "past" state.
2055 kdbg_cpumap_init_internal(kd_iop_t
* iops
, uint32_t cpu_count
, uint8_t** cpumap
, uint32_t* cpumap_size
)
2058 assert(cpumap_size
);
2060 assert(!iops
|| iops
->cpu_id
+ 1 == cpu_count
);
2062 uint32_t bytes_needed
= sizeof(kd_cpumap_header
) + cpu_count
* sizeof(kd_cpumap
);
2063 uint32_t bytes_available
= *cpumap_size
;
2064 *cpumap_size
= bytes_needed
;
2066 if (*cpumap
== NULL
) {
2067 if (kmem_alloc(kernel_map
, (vm_offset_t
*)cpumap
, (vm_size_t
)*cpumap_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
2070 bzero(*cpumap
, *cpumap_size
);
2071 } else if (bytes_available
< bytes_needed
) {
2075 kd_cpumap_header
* header
= (kd_cpumap_header
*)(uintptr_t)*cpumap
;
2077 header
->version_no
= RAW_VERSION1
;
2078 header
->cpu_count
= cpu_count
;
2080 kd_cpumap
* cpus
= (kd_cpumap
*)&header
[1];
2082 int32_t index
= cpu_count
- 1;
2084 cpus
[index
].cpu_id
= iops
->cpu_id
;
2085 cpus
[index
].flags
= KDBG_CPUMAP_IS_IOP
;
2086 strlcpy(cpus
[index
].name
, iops
->callback
.iop_name
, sizeof(cpus
->name
));
2092 while (index
>= 0) {
2093 cpus
[index
].cpu_id
= index
;
2094 cpus
[index
].flags
= 0;
2095 strlcpy(cpus
[index
].name
, "AP", sizeof(cpus
->name
));
2100 return KERN_SUCCESS
;
2104 kdbg_thrmap_init(void)
2106 ktrace_assert_lock_held();
2108 if (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
) {
2112 kd_mapptr
= kdbg_thrmap_init_internal(0, &kd_mapsize
, &kd_mapcount
);
2115 kd_ctrl_page
.kdebug_flags
|= KDBG_MAPINIT
;
2119 static kd_threadmap
*
2120 kdbg_thrmap_init_internal(unsigned int count
, unsigned int *mapsize
, unsigned int *mapcount
)
2122 kd_threadmap
*mapptr
;
2125 int tts_count
= 0; /* number of task-to-string structures */
2126 struct tts
*tts_mapptr
;
2127 unsigned int tts_mapsize
= 0;
2130 assert(mapsize
!= NULL
);
2131 assert(mapcount
!= NULL
);
2133 *mapcount
= threads_count
;
2134 tts_count
= tasks_count
;
2137 * The proc count could change during buffer allocation,
2138 * so introduce a small fudge factor to bump up the
2139 * buffer sizes. This gives new tasks some chance of
2140 * making into the tables. Bump up by 25%.
2142 *mapcount
+= *mapcount
/ 4;
2143 tts_count
+= tts_count
/ 4;
2145 *mapsize
= *mapcount
* sizeof(kd_threadmap
);
2147 if (count
&& count
< *mapcount
) {
2151 if ((kmem_alloc(kernel_map
, &kaddr
, (vm_size_t
)*mapsize
, VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
)) {
2152 bzero((void *)kaddr
, *mapsize
);
2153 mapptr
= (kd_threadmap
*)kaddr
;
2158 tts_mapsize
= tts_count
* sizeof(struct tts
);
2160 if ((kmem_alloc(kernel_map
, &kaddr
, (vm_size_t
)tts_mapsize
, VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
)) {
2161 bzero((void *)kaddr
, tts_mapsize
);
2162 tts_mapptr
= (struct tts
*)kaddr
;
2164 kmem_free(kernel_map
, (vm_offset_t
)mapptr
, *mapsize
);
2170 * Save the proc's name and take a reference for each task associated
2171 * with a valid process.
2176 ALLPROC_FOREACH(p
) {
2177 if (i
>= tts_count
) {
2180 if (p
->p_lflag
& P_LEXIT
) {
2184 task_reference(p
->task
);
2185 tts_mapptr
[i
].task
= p
->task
;
2186 tts_mapptr
[i
].pid
= p
->p_pid
;
2187 (void)strlcpy(tts_mapptr
[i
].task_comm
, proc_best_name(p
), sizeof(tts_mapptr
[i
].task_comm
));
2196 * Initialize thread map data
2200 akrt
.maxcount
= *mapcount
;
2202 for (i
= 0; i
< tts_count
; i
++) {
2203 akrt
.atts
= &tts_mapptr
[i
];
2204 task_act_iterate_wth_args(tts_mapptr
[i
].task
, kdbg_resolve_map
, &akrt
);
2205 task_deallocate((task_t
)tts_mapptr
[i
].task
);
2207 kmem_free(kernel_map
, (vm_offset_t
)tts_mapptr
, tts_mapsize
);
2209 *mapcount
= akrt
.count
;
2218 * Clean up the trace buffer
2219 * First make sure we're not in
2220 * the middle of cutting a trace
2222 kernel_debug_disable();
2223 kdbg_disable_typefilter();
2226 * make sure the SLOW_NOLOG is seen
2227 * by everyone that might be trying
2232 /* reset kdebug state for each process */
2233 if (kd_ctrl_page
.kdebug_flags
& (KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
)) {
2236 ALLPROC_FOREACH(p
) {
2242 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2243 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_NOWRAP
| KDBG_RANGECHECK
| KDBG_VALCHECK
);
2244 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
);
2246 kd_ctrl_page
.oldest_time
= 0;
2251 /* Clean up the thread map buffer */
2252 kdbg_clear_thread_map();
2254 RAW_file_offset
= 0;
2255 RAW_file_written
= 0;
2261 ktrace_assert_lock_held();
2266 if (kdbg_typefilter
) {
2267 typefilter_reject_all(kdbg_typefilter
);
2268 typefilter_allow_class(kdbg_typefilter
, DBG_TRACE
);
2273 kdebug_free_early_buf(void)
2275 /* Must be done with the buffer, so release it back to the VM. */
2276 ml_static_mfree((vm_offset_t
)&kd_early_buffer
, sizeof(kd_early_buffer
));
2280 kdbg_setpid(kd_regtype
*kdr
)
2286 pid
= (pid_t
)kdr
->value1
;
2287 flag
= (int)kdr
->value2
;
2290 if ((p
= proc_find(pid
)) == NULL
)
2295 * turn on pid check for this and all pids
2297 kd_ctrl_page
.kdebug_flags
|= KDBG_PIDCHECK
;
2298 kd_ctrl_page
.kdebug_flags
&= ~KDBG_PIDEXCLUDE
;
2299 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2304 * turn off pid check for this pid value
2305 * Don't turn off all pid checking though
2307 * kd_ctrl_page.kdebug_flags &= ~KDBG_PIDCHECK;
2320 /* This is for pid exclusion in the trace buffer */
2322 kdbg_setpidex(kd_regtype
*kdr
)
2328 pid
= (pid_t
)kdr
->value1
;
2329 flag
= (int)kdr
->value2
;
2332 if ((p
= proc_find(pid
)) == NULL
)
2337 * turn on pid exclusion
2339 kd_ctrl_page
.kdebug_flags
|= KDBG_PIDEXCLUDE
;
2340 kd_ctrl_page
.kdebug_flags
&= ~KDBG_PIDCHECK
;
2341 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2347 * turn off pid exclusion for this pid value
2348 * Don't turn off all pid exclusion though
2350 * kd_ctrl_page.kdebug_flags &= ~KDBG_PIDEXCLUDE;
2363 * The following functions all operate on the "global" typefilter singleton.
2367 * The tf param is optional, you may pass either a valid typefilter or NULL.
2368 * If you pass a valid typefilter, you release ownership of that typefilter.
2371 kdbg_initialize_typefilter(typefilter_t tf
)
2373 ktrace_assert_lock_held();
2374 assert(!kdbg_typefilter
);
2375 assert(!kdbg_typefilter_memory_entry
);
2376 typefilter_t deallocate_tf
= NULL
;
2378 if (!tf
&& ((tf
= deallocate_tf
= typefilter_create()) == NULL
)) {
2382 if ((kdbg_typefilter_memory_entry
= typefilter_create_memory_entry(tf
)) == MACH_PORT_NULL
) {
2383 if (deallocate_tf
) {
2384 typefilter_deallocate(deallocate_tf
);
2390 * The atomic store closes a race window with
2391 * the kdebug_typefilter syscall, which assumes
2392 * that any non-null kdbg_typefilter means a
2393 * valid memory_entry is available.
2395 __c11_atomic_store(((_Atomic typefilter_t
*)&kdbg_typefilter
), tf
, memory_order_release
);
2397 return KERN_SUCCESS
;
2401 kdbg_copyin_typefilter(user_addr_t addr
, size_t size
)
2406 ktrace_assert_lock_held();
2408 if (size
!= KDBG_TYPEFILTER_BITMAP_SIZE
) {
2412 if ((tf
= typefilter_create())) {
2413 if ((ret
= copyin(addr
, tf
, KDBG_TYPEFILTER_BITMAP_SIZE
)) == 0) {
2414 /* The kernel typefilter must always allow DBG_TRACE */
2415 typefilter_allow_class(tf
, DBG_TRACE
);
2418 * If this is the first typefilter; claim it.
2419 * Otherwise copy and deallocate.
2421 * Allocating a typefilter for the copyin allows
2422 * the kernel to hold the invariant that DBG_TRACE
2423 * must always be allowed.
2425 if (!kdbg_typefilter
) {
2426 if ((ret
= kdbg_initialize_typefilter(tf
))) {
2431 typefilter_copy(kdbg_typefilter
, tf
);
2434 kdbg_enable_typefilter();
2435 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_TYPEFILTER_CHANGED
, kdbg_typefilter
);
2439 typefilter_deallocate(tf
);
2446 * Enable the flags in the control page for the typefilter. Assumes that
2447 * kdbg_typefilter has already been allocated, so events being written
2448 * don't see a bad typefilter.
2451 kdbg_enable_typefilter(void)
2453 assert(kdbg_typefilter
);
2454 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_RANGECHECK
| KDBG_VALCHECK
);
2455 kd_ctrl_page
.kdebug_flags
|= KDBG_TYPEFILTER_CHECK
;
2456 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2457 commpage_update_kdebug_state();
2461 * Disable the flags in the control page for the typefilter. The typefilter
2462 * may be safely deallocated shortly after this function returns.
2465 kdbg_disable_typefilter(void)
2467 kd_ctrl_page
.kdebug_flags
&= ~KDBG_TYPEFILTER_CHECK
;
2469 if ((kd_ctrl_page
.kdebug_flags
& (KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
))) {
2470 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2472 kdbg_set_flags(SLOW_CHECKS
, 0, FALSE
);
2474 commpage_update_kdebug_state();
2478 kdebug_commpage_state(void)
2480 if (kdebug_enable
) {
2481 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
2482 return KDEBUG_COMMPAGE_ENABLE_TYPEFILTER
| KDEBUG_COMMPAGE_ENABLE_TRACE
;
2485 return KDEBUG_COMMPAGE_ENABLE_TRACE
;
2492 kdbg_setreg(kd_regtype
* kdr
)
2495 unsigned int val_1
, val_2
, val
;
2496 switch (kdr
->type
) {
2498 case KDBG_CLASSTYPE
:
2499 val_1
= (kdr
->value1
& 0xff);
2500 val_2
= (kdr
->value2
& 0xff);
2501 kdlog_beg
= (val_1
<<24);
2502 kdlog_end
= (val_2
<<24);
2503 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2504 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2505 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_CLASSTYPE
);
2506 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2508 case KDBG_SUBCLSTYPE
:
2509 val_1
= (kdr
->value1
& 0xff);
2510 val_2
= (kdr
->value2
& 0xff);
2512 kdlog_beg
= ((val_1
<<24) | (val_2
<< 16));
2513 kdlog_end
= ((val_1
<<24) | (val
<< 16));
2514 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2515 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2516 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_SUBCLSTYPE
);
2517 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2519 case KDBG_RANGETYPE
:
2520 kdlog_beg
= (kdr
->value1
);
2521 kdlog_end
= (kdr
->value2
);
2522 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2523 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2524 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_RANGETYPE
);
2525 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2528 kdlog_value1
= (kdr
->value1
);
2529 kdlog_value2
= (kdr
->value2
);
2530 kdlog_value3
= (kdr
->value3
);
2531 kdlog_value4
= (kdr
->value4
);
2532 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2533 kd_ctrl_page
.kdebug_flags
&= ~KDBG_RANGECHECK
; /* Turn off range check */
2534 kd_ctrl_page
.kdebug_flags
|= KDBG_VALCHECK
; /* Turn on specific value check */
2535 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2537 case KDBG_TYPENONE
:
2538 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2540 if ( (kd_ctrl_page
.kdebug_flags
& (KDBG_RANGECHECK
| KDBG_VALCHECK
|
2541 KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
|
2542 KDBG_TYPEFILTER_CHECK
)) )
2543 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2545 kdbg_set_flags(SLOW_CHECKS
, 0, FALSE
);
2558 kdbg_write_to_vnode(caddr_t buffer
, size_t size
, vnode_t vp
, vfs_context_t ctx
, off_t file_offset
)
2560 return vn_rdwr(UIO_WRITE
, vp
, buffer
, size
, file_offset
, UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
,
2561 vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2565 kdbg_write_v3_chunk_header(user_addr_t buffer
, uint32_t tag
, uint32_t sub_tag
, uint64_t length
, vnode_t vp
, vfs_context_t ctx
)
2567 int ret
= KERN_SUCCESS
;
2568 kd_chunk_header_v3 header
= {
2574 // Check that only one of them is valid
2575 assert(!buffer
^ !vp
);
2576 assert((vp
== NULL
) || (ctx
!= NULL
));
2578 // Write the 8-byte future_chunk_timestamp field in the payload
2581 ret
= kdbg_write_to_vnode((caddr_t
)&header
, sizeof(kd_chunk_header_v3
), vp
, ctx
, RAW_file_offset
);
2585 RAW_file_offset
+= (sizeof(kd_chunk_header_v3
));
2588 ret
= copyout(&header
, buffer
, sizeof(kd_chunk_header_v3
));
2599 kdbg_write_v3_chunk_header_to_buffer(void * buffer
, uint32_t tag
, uint32_t sub_tag
, uint64_t length
)
2601 kd_chunk_header_v3 header
= {
2611 memcpy(buffer
, &header
, sizeof(kd_chunk_header_v3
));
2613 return (sizeof(kd_chunk_header_v3
));
2617 kdbg_write_v3_chunk_to_fd(uint32_t tag
, uint32_t sub_tag
, uint64_t length
, void *payload
, uint64_t payload_size
, int fd
)
2620 struct vfs_context context
;
2621 struct fileproc
*fp
;
2626 if ( (fp_lookup(p
, fd
, &fp
, 1)) ) {
2631 context
.vc_thread
= current_thread();
2632 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
2634 if (FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_VNODE
) {
2635 fp_drop(p
, fd
, fp
, 1);
2639 vp
= (struct vnode
*) fp
->f_fglob
->fg_data
;
2642 if ( (vnode_getwithref(vp
)) == 0 ) {
2643 RAW_file_offset
= fp
->f_fglob
->fg_offset
;
2645 kd_chunk_header_v3 chunk_header
= {
2651 int ret
= kdbg_write_to_vnode((caddr_t
) &chunk_header
, sizeof(kd_chunk_header_v3
), vp
, &context
, RAW_file_offset
);
2653 RAW_file_offset
+= sizeof(kd_chunk_header_v3
);
2656 ret
= kdbg_write_to_vnode((caddr_t
) payload
, (size_t) payload_size
, vp
, &context
, RAW_file_offset
);
2658 RAW_file_offset
+= payload_size
;
2661 fp
->f_fglob
->fg_offset
= RAW_file_offset
;
2665 fp_drop(p
, fd
, fp
, 0);
2666 return KERN_SUCCESS
;
2670 kdbg_write_v3_event_chunk_header(user_addr_t buffer
, uint32_t tag
, uint64_t length
, vnode_t vp
, vfs_context_t ctx
)
2672 uint64_t future_chunk_timestamp
= 0;
2673 length
+= sizeof(uint64_t);
2675 if (kdbg_write_v3_chunk_header(buffer
, tag
, V3_EVENT_DATA_VERSION
, length
, vp
, ctx
)) {
2679 buffer
+= sizeof(kd_chunk_header_v3
);
2682 // Check that only one of them is valid
2683 assert(!buffer
^ !vp
);
2684 assert((vp
== NULL
) || (ctx
!= NULL
));
2686 // Write the 8-byte future_chunk_timestamp field in the payload
2689 int ret
= kdbg_write_to_vnode((caddr_t
)&future_chunk_timestamp
, sizeof(uint64_t), vp
, ctx
, RAW_file_offset
);
2691 RAW_file_offset
+= (sizeof(uint64_t));
2695 if (copyout(&future_chunk_timestamp
, buffer
, sizeof(uint64_t))) {
2701 return (buffer
+ sizeof(uint64_t));
2705 kdbg_write_v3_header(user_addr_t user_header
, size_t *user_header_size
, int fd
)
2707 int ret
= KERN_SUCCESS
;
2709 uint8_t* cpumap
= 0;
2710 uint32_t cpumap_size
= 0;
2711 uint32_t thrmap_size
= 0;
2713 size_t bytes_needed
= 0;
2715 // Check that only one of them is valid
2716 assert(!user_header
^ !fd
);
2717 assert(user_header_size
);
2719 if ( !(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) ) {
2724 if ( !(user_header
|| fd
) ) {
2729 // Initialize the cpu map
2730 ret
= kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, &cpumap
, &cpumap_size
);
2731 if (ret
!= KERN_SUCCESS
) {
2735 // Check if a thread map is initialized
2740 thrmap_size
= kd_mapcount
* sizeof(kd_threadmap
);
2742 mach_timebase_info_data_t timebase
= {0, 0};
2743 clock_timebase_info(&timebase
);
2745 // Setup the header.
2746 // See v3 header description in sys/kdebug.h for more inforamtion.
2747 kd_header_v3 header
= {
2748 .tag
= RAW_VERSION3
,
2749 .sub_tag
= V3_HEADER_VERSION
,
2750 .length
= (sizeof(kd_header_v3
) + cpumap_size
- sizeof(kd_cpumap_header
)),
2751 .timebase_numer
= timebase
.numer
,
2752 .timebase_denom
= timebase
.denom
,
2753 .timestamp
= 0, /* FIXME rdar://problem/22053009 */
2755 .walltime_usecs
= 0,
2756 .timezone_minuteswest
= 0,
2758 #if defined(__LP64__)
2765 // If its a buffer, check if we have enough space to copy the header and the maps.
2767 bytes_needed
= header
.length
+ thrmap_size
+ (2 * sizeof(kd_chunk_header_v3
));
2768 if (*user_header_size
< bytes_needed
) {
2774 // Start writing the header
2776 void *hdr_ptr
= (void *)(((uintptr_t) &header
) + sizeof(kd_chunk_header_v3
));
2777 size_t payload_size
= (sizeof(kd_header_v3
) - sizeof(kd_chunk_header_v3
));
2779 ret
= kdbg_write_v3_chunk_to_fd(RAW_VERSION3
, V3_HEADER_VERSION
, header
.length
, hdr_ptr
, payload_size
, fd
);
2785 if (copyout(&header
, user_header
, sizeof(kd_header_v3
))) {
2789 // Update the user pointer
2790 user_header
+= sizeof(kd_header_v3
);
2793 // Write a cpu map. This is a sub chunk of the header
2794 cpumap
= (uint8_t*)((uintptr_t) cpumap
+ sizeof(kd_cpumap_header
));
2795 size_t payload_size
= (size_t)(cpumap_size
- sizeof(kd_cpumap_header
));
2797 ret
= kdbg_write_v3_chunk_to_fd(V3_CPU_MAP
, V3_CPUMAP_VERSION
, payload_size
, (void *)cpumap
, payload_size
, fd
);
2803 ret
= kdbg_write_v3_chunk_header(user_header
, V3_CPU_MAP
, V3_CPUMAP_VERSION
, payload_size
, NULL
, NULL
);
2807 user_header
+= sizeof(kd_chunk_header_v3
);
2808 if (copyout(cpumap
, user_header
, payload_size
)) {
2812 // Update the user pointer
2813 user_header
+= payload_size
;
2816 // Write a thread map
2818 ret
= kdbg_write_v3_chunk_to_fd(V3_THREAD_MAP
, V3_THRMAP_VERSION
, thrmap_size
, (void *)kd_mapptr
, thrmap_size
, fd
);
2824 ret
= kdbg_write_v3_chunk_header(user_header
, V3_THREAD_MAP
, V3_THRMAP_VERSION
, thrmap_size
, NULL
, NULL
);
2828 user_header
+= sizeof(kd_chunk_header_v3
);
2829 if (copyout(kd_mapptr
, user_header
, thrmap_size
)) {
2833 user_header
+= thrmap_size
;
2837 RAW_file_written
+= bytes_needed
;
2840 *user_header_size
= bytes_needed
;
2843 kmem_free(kernel_map
, (vm_offset_t
)cpumap
, cpumap_size
);
2849 kdbg_readcpumap(user_addr_t user_cpumap
, size_t *user_cpumap_size
)
2851 uint8_t* cpumap
= NULL
;
2852 uint32_t cpumap_size
= 0;
2853 int ret
= KERN_SUCCESS
;
2855 if (kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) {
2856 if (kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, &cpumap
, &cpumap_size
) == KERN_SUCCESS
) {
2858 size_t bytes_to_copy
= (*user_cpumap_size
>= cpumap_size
) ? cpumap_size
: *user_cpumap_size
;
2859 if (copyout(cpumap
, user_cpumap
, (size_t)bytes_to_copy
)) {
2863 *user_cpumap_size
= cpumap_size
;
2864 kmem_free(kernel_map
, (vm_offset_t
)cpumap
, cpumap_size
);
2874 kdbg_readcurthrmap(user_addr_t buffer
, size_t *bufsize
)
2876 kd_threadmap
*mapptr
;
2877 unsigned int mapsize
;
2878 unsigned int mapcount
;
2879 unsigned int count
= 0;
2882 count
= *bufsize
/sizeof(kd_threadmap
);
2885 if ( (mapptr
= kdbg_thrmap_init_internal(count
, &mapsize
, &mapcount
)) ) {
2886 if (copyout(mapptr
, buffer
, mapcount
* sizeof(kd_threadmap
)))
2889 *bufsize
= (mapcount
* sizeof(kd_threadmap
));
2891 kmem_free(kernel_map
, (vm_offset_t
)mapptr
, mapsize
);
2899 kdbg_write_v1_header(boolean_t write_thread_map
, vnode_t vp
, vfs_context_t ctx
)
2907 uint32_t extra_thread_count
= 0;
2908 uint32_t cpumap_size
;
2909 size_t map_size
= 0;
2910 size_t map_count
= 0;
2912 if (write_thread_map
) {
2913 assert(kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
2914 map_count
= kd_mapcount
;
2915 map_size
= map_count
* sizeof(kd_threadmap
);
2919 * Without the buffers initialized, we cannot construct a CPU map or a
2920 * thread map, and cannot write a header.
2922 if (!(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
)) {
2927 * To write a RAW_VERSION1+ file, we must embed a cpumap in the
2928 * "padding" used to page align the events following the threadmap. If
2929 * the threadmap happens to not require enough padding, we artificially
2930 * increase its footprint until it needs enough padding.
2936 pad_size
= PAGE_16KB
- ((sizeof(RAW_header
) + map_size
) & PAGE_MASK_64
);
2937 cpumap_size
= sizeof(kd_cpumap_header
) + kd_ctrl_page
.kdebug_cpus
* sizeof(kd_cpumap
);
2939 if (cpumap_size
> pad_size
) {
2940 /* If the cpu map doesn't fit in the current available pad_size,
2941 * we increase the pad_size by 16K. We do this so that the event
2942 * data is always available on a page aligned boundary for both
2943 * 4k and 16k systems. We enforce this alignment for the event
2944 * data so that we can take advantage of optimized file/disk writes.
2946 pad_size
+= PAGE_16KB
;
2949 /* The way we are silently embedding a cpumap in the "padding" is by artificially
2950 * increasing the number of thread entries. However, we'll also need to ensure that
2951 * the cpumap is embedded in the last 4K page before when the event data is expected.
2952 * This way the tools can read the data starting the next page boundary on both
2953 * 4K and 16K systems preserving compatibility with older versions of the tools
2955 if (pad_size
> PAGE_4KB
) {
2956 pad_size
-= PAGE_4KB
;
2957 extra_thread_count
= (pad_size
/ sizeof(kd_threadmap
)) + 1;
2960 memset(&header
, 0, sizeof(header
));
2961 header
.version_no
= RAW_VERSION1
;
2962 header
.thread_count
= map_count
+ extra_thread_count
;
2964 clock_get_calendar_microtime(&secs
, &usecs
);
2965 header
.TOD_secs
= secs
;
2966 header
.TOD_usecs
= usecs
;
2968 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)&header
, sizeof(RAW_header
), RAW_file_offset
,
2969 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2973 RAW_file_offset
+= sizeof(RAW_header
);
2974 RAW_file_written
+= sizeof(RAW_header
);
2976 if (write_thread_map
) {
2977 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)kd_mapptr
, map_size
, RAW_file_offset
,
2978 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2983 RAW_file_offset
+= map_size
;
2984 RAW_file_written
+= map_size
;
2987 if (extra_thread_count
) {
2988 pad_size
= extra_thread_count
* sizeof(kd_threadmap
);
2989 pad_buf
= kalloc(pad_size
);
2994 memset(pad_buf
, 0, pad_size
);
2996 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)pad_buf
, pad_size
, RAW_file_offset
,
2997 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2998 kfree(pad_buf
, pad_size
);
3003 RAW_file_offset
+= pad_size
;
3004 RAW_file_written
+= pad_size
;
3007 pad_size
= PAGE_SIZE
- (RAW_file_offset
& PAGE_MASK_64
);
3009 pad_buf
= (char *)kalloc(pad_size
);
3014 memset(pad_buf
, 0, pad_size
);
3017 * embed a cpumap in the padding bytes.
3018 * older code will skip this.
3019 * newer code will know how to read it.
3021 uint32_t temp
= pad_size
;
3022 if (kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, (uint8_t**)&pad_buf
, &temp
) != KERN_SUCCESS
) {
3023 memset(pad_buf
, 0, pad_size
);
3026 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)pad_buf
, pad_size
, RAW_file_offset
,
3027 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
3028 kfree(pad_buf
, pad_size
);
3033 RAW_file_offset
+= pad_size
;
3034 RAW_file_written
+= pad_size
;
3042 kdbg_clear_thread_map(void)
3044 ktrace_assert_lock_held();
3046 if (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
) {
3047 assert(kd_mapptr
!= NULL
);
3048 kmem_free(kernel_map
, (vm_offset_t
)kd_mapptr
, kd_mapsize
);
3052 kd_ctrl_page
.kdebug_flags
&= ~KDBG_MAPINIT
;
3057 * Write out a version 1 header and the thread map, if it is initialized, to a
3058 * vnode. Used by KDWRITEMAP and kdbg_dump_trace_to_file.
3060 * Returns write errors from vn_rdwr if a write fails. Returns ENODATA if the
3061 * thread map has not been initialized, but the header will still be written.
3062 * Returns ENOMEM if padding could not be allocated. Returns 0 otherwise.
3065 kdbg_write_thread_map(vnode_t vp
, vfs_context_t ctx
)
3068 boolean_t map_initialized
;
3070 ktrace_assert_lock_held();
3071 assert(ctx
!= NULL
);
3073 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3075 ret
= kdbg_write_v1_header(map_initialized
, vp
, ctx
);
3077 if (map_initialized
) {
3078 kdbg_clear_thread_map();
3088 * Copy out the thread map to a user space buffer. Used by KDTHRMAP.
3090 * Returns copyout errors if the copyout fails. Returns ENODATA if the thread
3091 * map has not been initialized. Returns EINVAL if the buffer provided is not
3092 * large enough for the entire thread map. Returns 0 otherwise.
3095 kdbg_copyout_thread_map(user_addr_t buffer
, size_t *buffer_size
)
3097 boolean_t map_initialized
;
3101 ktrace_assert_lock_held();
3102 assert(buffer_size
!= NULL
);
3104 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3105 if (!map_initialized
) {
3109 map_size
= kd_mapcount
* sizeof(kd_threadmap
);
3110 if (*buffer_size
< map_size
) {
3114 ret
= copyout(kd_mapptr
, buffer
, map_size
);
3116 kdbg_clear_thread_map();
3123 kdbg_readthrmap_v3(user_addr_t buffer
, size_t buffer_size
, int fd
)
3126 boolean_t map_initialized
;
3129 ktrace_assert_lock_held();
3131 if ((!fd
&& !buffer
) || (fd
&& buffer
)) {
3135 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3136 map_size
= kd_mapcount
* sizeof(kd_threadmap
);
3138 if (map_initialized
&& (buffer_size
>= map_size
))
3140 ret
= kdbg_write_v3_header(buffer
, &buffer_size
, fd
);
3143 kdbg_clear_thread_map();
3153 kdbg_set_nkdbufs(unsigned int value
)
3156 * We allow a maximum buffer size of 50% of either ram or max mapped
3157 * address, whichever is smaller 'value' is the desired number of trace
3160 unsigned int max_entries
= (sane_size
/ 2) / sizeof(kd_buf
);
3162 if (value
<= max_entries
) {
3165 nkdbufs
= max_entries
;
3170 * Block until there are `n_storage_threshold` storage units filled with
3171 * events or `timeout_ms` milliseconds have passed. If `locked_wait` is true,
3172 * `ktrace_lock` is held while waiting. This is necessary while waiting to
3173 * write events out of the buffers.
3175 * Returns true if the threshold was reached and false otherwise.
3177 * Called with `ktrace_lock` locked and interrupts enabled.
3180 kdbg_wait(uint64_t timeout_ms
, boolean_t locked_wait
)
3182 int wait_result
= THREAD_AWAKENED
;
3183 uint64_t abstime
= 0;
3185 ktrace_assert_lock_held();
3187 if (timeout_ms
!= 0) {
3188 uint64_t ns
= timeout_ms
* NSEC_PER_MSEC
;
3189 nanoseconds_to_absolutetime(ns
, &abstime
);
3190 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
3193 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
3195 panic("kdbg_wait() called with interrupts disabled");
3197 lck_spin_lock(kdw_spin_lock
);
3200 /* drop the mutex to allow others to access trace */
3204 while (wait_result
== THREAD_AWAKENED
&&
3205 kd_ctrl_page
.kds_inuse_count
< n_storage_threshold
)
3210 wait_result
= lck_spin_sleep_deadline(kdw_spin_lock
, 0, &kds_waiter
, THREAD_ABORTSAFE
, abstime
);
3212 wait_result
= lck_spin_sleep(kdw_spin_lock
, 0, &kds_waiter
, THREAD_ABORTSAFE
);
3218 /* check the count under the spinlock */
3219 boolean_t threshold_exceeded
= (kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
);
3221 lck_spin_unlock(kdw_spin_lock
);
3222 ml_set_interrupts_enabled(s
);
3225 /* pick the mutex back up again */
3229 /* write out whether we've exceeded the threshold */
3230 return threshold_exceeded
;
3234 * Wakeup a thread waiting using `kdbg_wait` if there are at least
3235 * `n_storage_threshold` storage units in use.
3240 boolean_t need_kds_wakeup
= FALSE
;
3243 * Try to take the lock here to synchronize with the waiter entering
3244 * the blocked state. Use the try mode to prevent deadlocks caused by
3245 * re-entering this routine due to various trace points triggered in the
3246 * lck_spin_sleep_xxxx routines used to actually enter one of our 2 wait
3247 * conditions. No problem if we fail, there will be lots of additional
3248 * events coming in that will eventually succeed in grabbing this lock.
3250 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
3252 if (lck_spin_try_lock(kdw_spin_lock
)) {
3254 (kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
))
3257 need_kds_wakeup
= TRUE
;
3259 lck_spin_unlock(kdw_spin_lock
);
3262 ml_set_interrupts_enabled(s
);
3264 if (need_kds_wakeup
== TRUE
) {
3265 wakeup(&kds_waiter
);
3270 kdbg_control(int *name
, u_int namelen
, user_addr_t where
, size_t *sizep
)
3273 size_t size
= *sizep
;
3274 unsigned int value
= 0;
3276 kbufinfo_t kd_bufinfo
;
3279 if (name
[0] == KERN_KDWRITETR
||
3280 name
[0] == KERN_KDWRITETR_V3
||
3281 name
[0] == KERN_KDWRITEMAP
||
3282 name
[0] == KERN_KDWRITEMAP_V3
||
3283 name
[0] == KERN_KDEFLAGS
||
3284 name
[0] == KERN_KDDFLAGS
||
3285 name
[0] == KERN_KDENABLE
||
3286 name
[0] == KERN_KDSETBUF
)
3295 assert(kd_ctrl_page
.kdebug_flags
& KDBG_LOCKINIT
);
3300 * Some requests only require "read" access to kdebug trace. Regardless,
3301 * tell ktrace that a configuration or read is occurring (and see if it's
3304 if (name
[0] != KERN_KDGETBUF
&&
3305 name
[0] != KERN_KDGETREG
&&
3306 name
[0] != KERN_KDREADCURTHRMAP
)
3308 if ((ret
= ktrace_configure(KTRACE_KDEBUG
))) {
3312 if ((ret
= ktrace_read_check())) {
3319 if (size
< sizeof(kd_bufinfo
.nkdbufs
)) {
3321 * There is not enough room to return even
3322 * the first element of the info structure.
3328 memset(&kd_bufinfo
, 0, sizeof(kd_bufinfo
));
3330 kd_bufinfo
.nkdbufs
= nkdbufs
;
3331 kd_bufinfo
.nkdthreads
= kd_mapcount
;
3333 if ( (kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) )
3334 kd_bufinfo
.nolog
= 1;
3336 kd_bufinfo
.nolog
= 0;
3338 kd_bufinfo
.flags
= kd_ctrl_page
.kdebug_flags
;
3339 #if defined(__LP64__)
3340 kd_bufinfo
.flags
|= KDBG_LP64
;
3343 int pid
= ktrace_get_owning_pid();
3344 kd_bufinfo
.bufid
= (pid
== 0 ? -1 : pid
);
3347 if (size
>= sizeof(kd_bufinfo
)) {
3349 * Provide all the info we have
3351 if (copyout(&kd_bufinfo
, where
, sizeof(kd_bufinfo
)))
3355 * For backwards compatibility, only provide
3356 * as much info as there is room for.
3358 if (copyout(&kd_bufinfo
, where
, size
))
3363 case KERN_KDREADCURTHRMAP
:
3364 ret
= kdbg_readcurthrmap(where
, sizep
);
3368 value
&= KDBG_USERFLAGS
;
3369 kd_ctrl_page
.kdebug_flags
|= value
;
3373 value
&= KDBG_USERFLAGS
;
3374 kd_ctrl_page
.kdebug_flags
&= ~value
;
3379 * Enable tracing mechanism. Two types:
3380 * KDEBUG_TRACE is the standard one,
3381 * and KDEBUG_PPT which is a carefully
3382 * chosen subset to avoid performance impact.
3386 * enable only if buffer is initialized
3388 if (!(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) ||
3389 !(value
== KDEBUG_ENABLE_TRACE
|| value
== KDEBUG_ENABLE_PPT
)) {
3395 kdbg_set_tracing_enabled(TRUE
, value
);
3399 if (!kdebug_enable
) {
3403 kernel_debug_disable();
3408 kdbg_set_nkdbufs(value
);
3412 ret
= kdbg_reinit(FALSE
);
3416 ktrace_reset(KTRACE_KDEBUG
);
3420 if(size
< sizeof(kd_regtype
)) {
3424 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3429 ret
= kdbg_setreg(&kd_Reg
);
3437 ret
= kdbg_read(where
, sizep
, NULL
, NULL
, RAW_VERSION1
);
3440 case KERN_KDWRITETR
:
3441 case KERN_KDWRITETR_V3
:
3442 case KERN_KDWRITEMAP
:
3443 case KERN_KDWRITEMAP_V3
:
3445 struct vfs_context context
;
3446 struct fileproc
*fp
;
3451 if (name
[0] == KERN_KDWRITETR
|| name
[0] == KERN_KDWRITETR_V3
) {
3452 (void)kdbg_wait(size
, TRUE
);
3458 if ( (ret
= fp_lookup(p
, fd
, &fp
, 1)) ) {
3462 context
.vc_thread
= current_thread();
3463 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
3465 if (FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_VNODE
) {
3466 fp_drop(p
, fd
, fp
, 1);
3472 vp
= (struct vnode
*)fp
->f_fglob
->fg_data
;
3475 if ((ret
= vnode_getwithref(vp
)) == 0) {
3476 RAW_file_offset
= fp
->f_fglob
->fg_offset
;
3477 if (name
[0] == KERN_KDWRITETR
|| name
[0] == KERN_KDWRITETR_V3
) {
3478 number
= nkdbufs
* sizeof(kd_buf
);
3480 KDBG(TRACE_WRITING_EVENTS
| DBG_FUNC_START
);
3481 if (name
[0] == KERN_KDWRITETR_V3
)
3482 ret
= kdbg_read(0, &number
, vp
, &context
, RAW_VERSION3
);
3484 ret
= kdbg_read(0, &number
, vp
, &context
, RAW_VERSION1
);
3485 KDBG(TRACE_WRITING_EVENTS
| DBG_FUNC_END
, number
);
3489 number
= kd_mapcount
* sizeof(kd_threadmap
);
3490 if (name
[0] == KERN_KDWRITEMAP_V3
) {
3491 ret
= kdbg_readthrmap_v3(0, number
, fd
);
3493 ret
= kdbg_write_thread_map(vp
, &context
);
3496 fp
->f_fglob
->fg_offset
= RAW_file_offset
;
3499 fp_drop(p
, fd
, fp
, 0);
3503 case KERN_KDBUFWAIT
:
3504 *sizep
= kdbg_wait(size
, FALSE
);
3508 if (size
< sizeof(kd_regtype
)) {
3512 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3517 ret
= kdbg_setpid(&kd_Reg
);
3521 if (size
< sizeof(kd_regtype
)) {
3525 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3530 ret
= kdbg_setpidex(&kd_Reg
);
3534 ret
= kdbg_readcpumap(where
, sizep
);
3538 ret
= kdbg_copyout_thread_map(where
, sizep
);
3541 case KERN_KDSET_TYPEFILTER
: {
3542 ret
= kdbg_copyin_typefilter(where
, size
);
3547 ret
= kdbg_test(size
);
3562 * This code can run for the most part concurrently with kernel_debug_internal()...
3563 * 'release_storage_unit' will take the kds_spin_lock which may cause us to briefly
3564 * synchronize with the recording side of this puzzle... otherwise, we are able to
3565 * move through the lists w/o use of any locks
3568 kdbg_read(user_addr_t buffer
, size_t *number
, vnode_t vp
, vfs_context_t ctx
, uint32_t file_version
)
3571 unsigned int cpu
, min_cpu
;
3572 uint64_t barrier_min
= 0, barrier_max
= 0, t
, earliest_time
;
3578 bool traced_retrograde
= false;
3579 struct kd_storage
*kdsp_actual
;
3580 struct kd_bufinfo
*kdbp
;
3581 struct kd_bufinfo
*min_kdbp
;
3582 uint32_t tempbuf_count
;
3583 uint32_t tempbuf_number
;
3584 uint32_t old_kdebug_flags
;
3585 uint32_t old_kdebug_slowcheck
;
3586 boolean_t lostevents
= FALSE
;
3587 boolean_t out_of_events
= FALSE
;
3588 boolean_t wrapped
= FALSE
;
3591 count
= *number
/sizeof(kd_buf
);
3594 ktrace_assert_lock_held();
3596 if (count
== 0 || !(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) || kdcopybuf
== 0)
3599 thread_set_eager_preempt(current_thread());
3601 memset(&lostevent
, 0, sizeof(lostevent
));
3602 lostevent
.debugid
= TRACE_LOST_EVENTS
;
3605 * Capture the current time. Only sort events that have occured
3606 * before now. Since the IOPs are being flushed here, it is possible
3607 * that events occur on the AP while running live tracing. If we are
3608 * disabled, no new events should occur on the AP.
3610 if (kd_ctrl_page
.enabled
) {
3611 barrier_max
= kdbg_timestamp() & KDBG_TIMESTAMP_MASK
;
3615 * Request each IOP to provide us with up to date entries before merging
3618 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_SYNC_FLUSH
, NULL
);
3621 * Disable wrap so storage units cannot be stolen out from underneath us
3622 * while merging events.
3624 * Because we hold ktrace_lock, no other control threads can be playing
3625 * with kdebug_flags. The code that emits new events could be running,
3626 * but it grabs kds_spin_lock if it needs to acquire a new storage
3627 * chunk, which is where it examines kdebug_flags. If it is adding to
3628 * the same chunk we're reading from, check for that below.
3630 wrapped
= disable_wrap(&old_kdebug_slowcheck
, &old_kdebug_flags
);
3632 if (count
> nkdbufs
)
3635 if ((tempbuf_count
= count
) > KDCOPYBUF_COUNT
) {
3636 tempbuf_count
= KDCOPYBUF_COUNT
;
3640 * If the buffers have wrapped, capture the earliest time where there
3641 * are events for all CPUs and do not emit additional lost events for
3642 * oldest storage units.
3645 barrier_min
= kd_ctrl_page
.oldest_time
;
3646 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
3647 kd_ctrl_page
.oldest_time
= 0;
3649 for (cpu
= 0, kdbp
= &kdbip
[0]; cpu
< kd_ctrl_page
.kdebug_cpus
; cpu
++, kdbp
++) {
3650 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3653 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3654 kdsp_actual
->kds_lostevents
= FALSE
;
3659 tempbuf
= kdcopybuf
;
3663 /* Trace a single lost events event for wrapping. */
3664 kdbg_set_timestamp_and_cpu(&lostevent
, barrier_min
, 0);
3665 *tempbuf
= lostevent
;
3670 /* While space left in merged events scratch buffer. */
3671 while (tempbuf_count
) {
3672 earliest_time
= UINT64_MAX
;
3676 /* Check each CPU's buffers. */
3677 for (cpu
= 0, kdbp
= &kdbip
[0]; cpu
< kd_ctrl_page
.kdebug_cpus
; cpu
++, kdbp
++) {
3678 /* Skip CPUs without data. */
3679 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3683 /* Debugging aid: maintain a copy of the "kdsp"
3686 volatile union kds_ptr kdsp_shadow
;
3690 /* From CPU data to buffer header to buffer. */
3691 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3693 volatile struct kd_storage
*kdsp_actual_shadow
;
3695 kdsp_actual_shadow
= kdsp_actual
;
3697 /* Skip buffer if there are no events left. */
3698 rcursor
= kdsp_actual
->kds_readlast
;
3700 if (rcursor
== kdsp_actual
->kds_bufindx
) {
3704 t
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[rcursor
]);
3706 /* Ignore events that have aged out due to wrapping. */
3707 while (t
< barrier_min
) {
3708 rcursor
= ++kdsp_actual
->kds_readlast
;
3710 if (rcursor
>= EVENTS_PER_STORAGE_UNIT
) {
3711 release_storage_unit(cpu
, kdsp
.raw
);
3713 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3717 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3718 kdsp_actual_shadow
= kdsp_actual
;
3719 rcursor
= kdsp_actual
->kds_readlast
;
3722 t
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[rcursor
]);
3725 if ((t
> barrier_max
) && (barrier_max
> 0)) {
3727 * Need to flush IOPs again before we
3728 * can sort any more data from the
3731 out_of_events
= TRUE
;
3734 if (t
< kdsp_actual
->kds_timestamp
) {
3736 * indicates we've not yet completed filling
3738 * this should only occur when we're looking
3739 * at the buf that the record head is utilizing
3740 * we'll pick these events up on the next
3742 * we bail at this point so that we don't
3743 * get an out-of-order timestream by continuing
3744 * to read events from the other CPUs' timestream(s)
3746 out_of_events
= TRUE
;
3749 if (t
< earliest_time
) {
3755 if (min_kdbp
== NULL
|| out_of_events
== TRUE
) {
3757 * all buffers ran empty
3759 out_of_events
= TRUE
;
3763 kdsp
= min_kdbp
->kd_list_head
;
3764 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3766 /* Copy earliest event into merged events scratch buffer. */
3767 *tempbuf
= kdsp_actual
->kds_records
[kdsp_actual
->kds_readlast
++];
3769 if (kdsp_actual
->kds_readlast
== EVENTS_PER_STORAGE_UNIT
)
3770 release_storage_unit(min_cpu
, kdsp
.raw
);
3773 * Watch for out of order timestamps
3775 if (earliest_time
< min_kdbp
->kd_prev_timebase
) {
3777 * If we haven't already, emit a retrograde events event.
3779 if (traced_retrograde
) {
3783 kdbg_set_timestamp_and_cpu(tempbuf
, min_kdbp
->kd_prev_timebase
, kdbg_get_cpu(tempbuf
));
3784 tempbuf
->arg1
= tempbuf
->debugid
;
3785 tempbuf
->arg2
= earliest_time
;
3788 tempbuf
->debugid
= TRACE_RETROGRADE_EVENTS
;
3789 traced_retrograde
= true;
3791 min_kdbp
->kd_prev_timebase
= earliest_time
;
3798 if ((RAW_file_written
+= sizeof(kd_buf
)) >= RAW_FLUSH_SIZE
)
3801 if (tempbuf_number
) {
3802 if (file_version
== RAW_VERSION3
) {
3803 if ( !(kdbg_write_v3_event_chunk_header(buffer
, V3_RAW_EVENTS
, (tempbuf_number
* sizeof(kd_buf
)), vp
, ctx
))) {
3808 buffer
+= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3810 assert(count
>= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t)));
3811 count
-= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3812 *number
+= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3815 size_t write_size
= tempbuf_number
* sizeof(kd_buf
);
3816 error
= kdbg_write_to_vnode((caddr_t
)kdcopybuf
, write_size
, vp
, ctx
, RAW_file_offset
);
3818 RAW_file_offset
+= write_size
;
3820 if (RAW_file_written
>= RAW_FLUSH_SIZE
) {
3821 error
= VNOP_FSYNC(vp
, MNT_NOWAIT
, ctx
);
3823 RAW_file_written
= 0;
3826 error
= copyout(kdcopybuf
, buffer
, tempbuf_number
* sizeof(kd_buf
));
3827 buffer
+= (tempbuf_number
* sizeof(kd_buf
));
3835 count
-= tempbuf_number
;
3836 *number
+= tempbuf_number
;
3838 if (out_of_events
== TRUE
)
3840 * all trace buffers are empty
3844 if ((tempbuf_count
= count
) > KDCOPYBUF_COUNT
)
3845 tempbuf_count
= KDCOPYBUF_COUNT
;
3847 if ( !(old_kdebug_flags
& KDBG_NOWRAP
)) {
3848 enable_wrap(old_kdebug_slowcheck
, lostevents
);
3850 thread_clear_eager_preempt(current_thread());
3855 kdbg_test(size_t flavor
)
3860 #define KDEBUG_TEST_CODE(code) BSDDBG_CODE(DBG_BSD_KDEBUG_TEST, (code))
3863 /* try each macro */
3864 KDBG(KDEBUG_TEST_CODE(code
)); code
++;
3865 KDBG(KDEBUG_TEST_CODE(code
), 1); code
++;
3866 KDBG(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3867 KDBG(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3868 KDBG(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3870 KDBG_RELEASE(KDEBUG_TEST_CODE(code
)); code
++;
3871 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1); code
++;
3872 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3873 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3874 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3876 KDBG_FILTERED(KDEBUG_TEST_CODE(code
)); code
++;
3877 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1); code
++;
3878 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3879 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3880 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3882 KDBG_DEBUG(KDEBUG_TEST_CODE(code
)); code
++;
3883 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1); code
++;
3884 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3885 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3886 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3890 if (kd_ctrl_page
.kdebug_iops
) {
3891 /* avoid the assertion in kernel_debug_enter for a valid IOP */
3892 dummy_iop
= kd_ctrl_page
.kdebug_iops
[0].cpu_id
;
3895 /* ensure old timestamps are not emitted from kernel_debug_enter */
3896 kernel_debug_enter(dummy_iop
, KDEBUG_TEST_CODE(code
),
3897 100 /* very old timestamp */, 0, 0, 0,
3898 0, (uintptr_t)thread_tid(current_thread()));
3900 kernel_debug_enter(dummy_iop
, KDEBUG_TEST_CODE(code
),
3901 kdbg_timestamp(), 0, 0, 0, 0,
3902 (uintptr_t)thread_tid(current_thread()));
3908 #undef KDEBUG_TEST_CODE
3914 kdebug_init(unsigned int n_events
, char *filter_desc
)
3916 assert(filter_desc
!= NULL
);
3918 #if defined(__x86_64__)
3919 /* only trace MACH events when outputting kdebug to serial */
3920 if (kdebug_serial
) {
3922 if (filter_desc
[0] == '\0') {
3923 filter_desc
[0] = 'C';
3924 filter_desc
[1] = '1';
3925 filter_desc
[2] = '\0';
3928 #endif /* defined(__x86_64__) */
3930 if (log_leaks
&& n_events
== 0) {
3934 kdebug_trace_start(n_events
, filter_desc
, FALSE
);
3938 kdbg_set_typefilter_string(const char *filter_desc
)
3942 ktrace_assert_lock_held();
3944 assert(filter_desc
!= NULL
);
3946 typefilter_reject_all(kdbg_typefilter
);
3947 typefilter_allow_class(kdbg_typefilter
, DBG_TRACE
);
3949 /* if the filter description starts with a number, assume it's a csc */
3950 if (filter_desc
[0] >= '0' && filter_desc
[0] <= '9'){
3951 unsigned long csc
= strtoul(filter_desc
, NULL
, 0);
3952 if (filter_desc
!= end
&& csc
<= KDBG_CSC_MAX
) {
3953 typefilter_allow_csc(kdbg_typefilter
, csc
);
3958 while (filter_desc
[0] != '\0') {
3959 unsigned long allow_value
;
3961 char filter_type
= filter_desc
[0];
3962 if (filter_type
!= 'C' && filter_type
!= 'S') {
3967 allow_value
= strtoul(filter_desc
, &end
, 0);
3968 if (filter_desc
== end
) {
3969 /* cannot parse as integer */
3973 switch (filter_type
) {
3975 if (allow_value
<= KDBG_CLASS_MAX
) {
3976 typefilter_allow_class(kdbg_typefilter
, allow_value
);
3983 if (allow_value
<= KDBG_CSC_MAX
) {
3984 typefilter_allow_csc(kdbg_typefilter
, allow_value
);
3986 /* illegal class subclass */
3994 /* advance to next filter entry */
3996 if (filter_desc
[0] == ',') {
4003 * This function is meant to be called from the bootstrap thread or coming out
4004 * of acpi_idle_kernel.
4007 kdebug_trace_start(unsigned int n_events
, const char *filter_desc
,
4010 uint32_t old1
, old2
;
4013 kd_early_done
= true;
4017 ktrace_start_single_threaded();
4021 ktrace_kernel_configure(KTRACE_KDEBUG
);
4023 kdbg_set_nkdbufs(n_events
);
4025 kernel_debug_string_early("start_kern_tracing");
4027 if (kdbg_reinit(TRUE
)) {
4028 printf("error from kdbg_reinit, kernel tracing not started\n");
4033 * Wrapping is disabled because boot and wake tracing is interested in
4034 * the earliest events, at the expense of later ones.
4036 (void)disable_wrap(&old1
, &old2
);
4038 if (filter_desc
&& filter_desc
[0] != '\0') {
4039 if (kdbg_initialize_typefilter(NULL
) == KERN_SUCCESS
) {
4040 kdbg_set_typefilter_string(filter_desc
);
4041 kdbg_enable_typefilter();
4046 * Hold off interrupts between getting a thread map and enabling trace
4047 * and until the early traces are recorded.
4049 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
4055 kdbg_set_tracing_enabled(TRUE
, KDEBUG_ENABLE_TRACE
| (kdebug_serial
?
4056 KDEBUG_ENABLE_SERIAL
: 0));
4060 * Transfer all very early events from the static buffer into the real
4063 kernel_debug_early_end();
4066 ml_set_interrupts_enabled(s
);
4068 printf("kernel tracing started with %u events\n", n_events
);
4070 #if KDEBUG_MOJO_TRACE
4071 if (kdebug_serial
) {
4072 printf("serial output enabled with %lu named events\n",
4073 sizeof(kd_events
)/sizeof(kd_event_t
));
4075 #endif /* KDEBUG_MOJO_TRACE */
4078 ktrace_end_single_threaded();
4082 kdbg_dump_trace_to_file(const char *filename
)
4091 if (!(kdebug_enable
& KDEBUG_ENABLE_TRACE
)) {
4095 if (ktrace_get_owning_pid() != 0) {
4097 * Another process owns ktrace and is still active, disable tracing to
4101 kd_ctrl_page
.enabled
= 0;
4102 commpage_update_kdebug_state();
4106 KDBG(TRACE_WRITING_EVENTS
| DBG_FUNC_START
);
4109 kd_ctrl_page
.enabled
= 0;
4110 commpage_update_kdebug_state();
4112 ctx
= vfs_context_kernel();
4114 if (vnode_open(filename
, (O_CREAT
| FWRITE
| O_NOFOLLOW
), 0600, 0, &vp
, ctx
)) {
4118 kdbg_write_thread_map(vp
, ctx
);
4120 write_size
= nkdbufs
* sizeof(kd_buf
);
4121 ret
= kdbg_read(0, &write_size
, vp
, ctx
, RAW_VERSION1
);
4127 * Wait to synchronize the file to capture the I/O in the
4128 * TRACE_WRITING_EVENTS interval.
4130 ret
= VNOP_FSYNC(vp
, MNT_WAIT
, ctx
);
4133 * Balance the starting TRACE_WRITING_EVENTS tracepoint manually.
4135 kd_buf end_event
= {
4136 .debugid
= TRACE_WRITING_EVENTS
| DBG_FUNC_END
,
4139 .arg5
= thread_tid(current_thread()),
4141 kdbg_set_timestamp_and_cpu(&end_event
, kdbg_timestamp(),
4144 /* this is best effort -- ignore any errors */
4145 (void)kdbg_write_to_vnode((caddr_t
)&end_event
, sizeof(kd_buf
), vp
, ctx
,
4149 vnode_close(vp
, FWRITE
, ctx
);
4150 sync(current_proc(), (void *)NULL
, (int *)NULL
);
4156 /* Helper function for filling in the BSD name for an address space
4157 * Defined here because the machine bindings know only Mach threads
4158 * and nothing about BSD processes.
4160 * FIXME: need to grab a lock during this?
4162 void kdbg_get_task_name(char* name_buf
, int len
, task_t task
)
4166 /* Note: we can't use thread->task (and functions that rely on it) here
4167 * because it hasn't been initialized yet when this function is called.
4168 * We use the explicitly-passed task parameter instead.
4170 proc
= get_bsdtask_info(task
);
4171 if (proc
!= PROC_NULL
)
4172 snprintf(name_buf
, len
, "%s/%d", proc
->p_comm
, proc
->p_pid
);
4174 snprintf(name_buf
, len
, "%p [!bsd]", task
);
4178 kdbg_sysctl_continuous SYSCTL_HANDLER_ARGS
4180 #pragma unused(oidp, arg1, arg2)
4181 int value
= kdbg_continuous_time
;
4182 int ret
= sysctl_io_number(req
, value
, sizeof(value
), &value
, NULL
);
4184 if (ret
|| !req
->newptr
) {
4188 kdbg_continuous_time
= value
;
4192 SYSCTL_NODE(_kern
, OID_AUTO
, kdbg
, CTLFLAG_RD
| CTLFLAG_LOCKED
, 0,
4195 SYSCTL_PROC(_kern_kdbg
, OID_AUTO
, experimental_continuous
,
4196 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, 0,
4197 sizeof(int), kdbg_sysctl_continuous
, "I",
4198 "Set kdebug to use mach_continuous_time");
4200 SYSCTL_QUAD(_kern_kdbg
, OID_AUTO
, oldest_time
,
4201 CTLTYPE_QUAD
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
4202 &kd_ctrl_page
.oldest_time
,
4203 "Find the oldest timestamp still in trace");
4205 #if KDEBUG_MOJO_TRACE
4207 binary_search(uint32_t id
)
4212 high
= sizeof(kd_events
)/sizeof(kd_event_t
) - 1;
4216 mid
= (low
+ high
) / 2;
4219 return NULL
; /* failed */
4220 else if ( low
+ 1 >= high
) {
4221 /* We have a match */
4222 if (kd_events
[high
].id
== id
)
4223 return &kd_events
[high
];
4224 else if (kd_events
[low
].id
== id
)
4225 return &kd_events
[low
];
4227 return NULL
; /* search failed */
4229 else if (id
< kd_events
[mid
].id
)
4237 * Look up event id to get name string.
4238 * Using a per-cpu cache of a single entry
4239 * before resorting to a binary search of the full table.
4242 static kd_event_t
*last_hit
[MAX_CPUS
];
4244 event_lookup_cache(uint32_t cpu
, uint32_t id
)
4246 if (last_hit
[cpu
] == NULL
|| last_hit
[cpu
]->id
!= id
)
4247 last_hit
[cpu
] = binary_search(id
);
4248 return last_hit
[cpu
];
4251 static uint64_t kd_last_timstamp
;
4254 kdebug_serial_print(
4265 char kprintf_line
[192];
4267 uint64_t us
= timestamp
/ NSEC_PER_USEC
;
4268 uint64_t us_tenth
= (timestamp
% NSEC_PER_USEC
) / 100;
4269 uint64_t delta
= timestamp
- kd_last_timstamp
;
4270 uint64_t delta_us
= delta
/ NSEC_PER_USEC
;
4271 uint64_t delta_us_tenth
= (delta
% NSEC_PER_USEC
) / 100;
4272 uint32_t event_id
= debugid
& KDBG_EVENTID_MASK
;
4273 const char *command
;
4278 /* event time and delta from last */
4279 snprintf(kprintf_line
, sizeof(kprintf_line
),
4280 "%11llu.%1llu %8llu.%1llu ",
4281 us
, us_tenth
, delta_us
, delta_us_tenth
);
4284 /* event (id or name) - start prefixed by "[", end postfixed by "]" */
4285 bra
= (debugid
& DBG_FUNC_START
) ? "[" : " ";
4286 ket
= (debugid
& DBG_FUNC_END
) ? "]" : " ";
4287 ep
= event_lookup_cache(cpunum
, event_id
);
4289 if (strlen(ep
->name
) < sizeof(event
) - 3)
4290 snprintf(event
, sizeof(event
), "%s%s%s",
4291 bra
, ep
->name
, ket
);
4293 snprintf(event
, sizeof(event
), "%s%x(name too long)%s",
4294 bra
, event_id
, ket
);
4296 snprintf(event
, sizeof(event
), "%s%x%s",
4297 bra
, event_id
, ket
);
4299 snprintf(kprintf_line
+ strlen(kprintf_line
),
4300 sizeof(kprintf_line
) - strlen(kprintf_line
),
4303 /* arg1 .. arg4 with special cases for strings */
4306 case VFS_LOOKUP_DONE
:
4307 if (debugid
& DBG_FUNC_START
) {
4308 /* arg1 hex then arg2..arg4 chars */
4309 snprintf(kprintf_line
+ strlen(kprintf_line
),
4310 sizeof(kprintf_line
) - strlen(kprintf_line
),
4311 "%-16lx %-8s%-8s%-8s ",
4312 arg1
, (char*)&arg2
, (char*)&arg3
, (char*)&arg4
);
4315 /* else fall through for arg1..arg4 chars */
4316 case TRACE_STRING_EXEC
:
4317 case TRACE_STRING_NEWTHREAD
:
4318 case TRACE_INFO_STRING
:
4319 snprintf(kprintf_line
+ strlen(kprintf_line
),
4320 sizeof(kprintf_line
) - strlen(kprintf_line
),
4321 "%-8s%-8s%-8s%-8s ",
4322 (char*)&arg1
, (char*)&arg2
, (char*)&arg3
, (char*)&arg4
);
4325 snprintf(kprintf_line
+ strlen(kprintf_line
),
4326 sizeof(kprintf_line
) - strlen(kprintf_line
),
4327 "%-16lx %-16lx %-16lx %-16lx",
4328 arg1
, arg2
, arg3
, arg4
);
4331 /* threadid, cpu and command name */
4332 if (threadid
== (uintptr_t)thread_tid(current_thread()) &&
4334 current_proc()->p_comm
[0])
4335 command
= current_proc()->p_comm
;
4338 snprintf(kprintf_line
+ strlen(kprintf_line
),
4339 sizeof(kprintf_line
) - strlen(kprintf_line
),
4340 " %-16lx %-2d %s\n",
4341 threadid
, cpunum
, command
);
4343 kprintf("%s", kprintf_line
);
4344 kd_last_timstamp
= timestamp
;