]> git.saurik.com Git - apple/xnu.git/blob - osfmk/ppc/cpu.c
xnu-517.tar.gz
[apple/xnu.git] / osfmk / ppc / cpu.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /*
26 * File: ppc/cpu.c
27 *
28 * cpu specific routines
29 */
30
31 #include <kern/machine.h>
32 #include <kern/misc_protos.h>
33 #include <kern/thread.h>
34 #include <kern/processor.h>
35 #include <mach/machine.h>
36 #include <mach/processor_info.h>
37 #include <mach/mach_types.h>
38 #include <ppc/proc_reg.h>
39 #include <ppc/misc_protos.h>
40 #include <ppc/machine_routines.h>
41 #include <ppc/machine_cpu.h>
42 #include <ppc/exception.h>
43 #include <ppc/asm.h>
44 #include <ppc/hw_perfmon.h>
45 #include <pexpert/pexpert.h>
46 #include <kern/cpu_data.h>
47 #include <ppc/mappings.h>
48 #include <ppc/Diagnostics.h>
49 #include <ppc/trap.h>
50
51 /* TODO: BOGUS TO BE REMOVED */
52 int real_ncpus = 1;
53
54 int wncpu = NCPUS;
55 resethandler_t resethandler_target;
56
57 #define MMCR0_SUPPORT_MASK 0xf83f1fff
58 #define MMCR1_SUPPORT_MASK 0xffc00000
59 #define MMCR2_SUPPORT_MASK 0x80000000
60
61 extern int debugger_pending[NCPUS];
62 extern int debugger_is_slave[NCPUS];
63 extern int debugger_holdoff[NCPUS];
64 extern int debugger_sync;
65
66 struct SIGtimebase {
67 boolean_t avail;
68 boolean_t ready;
69 boolean_t done;
70 uint64_t abstime;
71 };
72
73 struct per_proc_info *pper_proc_info = per_proc_info;
74
75 extern struct SIGtimebase syncClkSpot;
76
77 void cpu_sync_timebase(void);
78
79 kern_return_t
80 cpu_control(
81 int slot_num,
82 processor_info_t info,
83 unsigned int count)
84 {
85 cpu_type_t cpu_type;
86 cpu_subtype_t cpu_subtype;
87 processor_pm_regs_t perf_regs;
88 processor_control_cmd_t cmd;
89 boolean_t oldlevel;
90
91 cpu_type = machine_slot[slot_num].cpu_type;
92 cpu_subtype = machine_slot[slot_num].cpu_subtype;
93 cmd = (processor_control_cmd_t) info;
94
95 if (count < PROCESSOR_CONTROL_CMD_COUNT)
96 return(KERN_FAILURE);
97
98 if ( cpu_type != cmd->cmd_cpu_type ||
99 cpu_subtype != cmd->cmd_cpu_subtype)
100 return(KERN_FAILURE);
101
102 if (perfmon_acquire_facility(current_task()) != KERN_SUCCESS) {
103 return(KERN_RESOURCE_SHORTAGE); /* cpu performance facility in use by another task */
104 }
105
106 switch (cmd->cmd_op)
107 {
108 case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */
109 switch (cpu_subtype)
110 {
111 case CPU_SUBTYPE_POWERPC_750:
112 case CPU_SUBTYPE_POWERPC_7400:
113 case CPU_SUBTYPE_POWERPC_7450:
114 {
115 oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
116 mtpmc1(0x0);
117 mtpmc2(0x0);
118 mtpmc3(0x0);
119 mtpmc4(0x0);
120 ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
121 return(KERN_SUCCESS);
122 }
123 default:
124 return(KERN_FAILURE);
125 } /* cpu_subtype */
126 case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */
127 switch (cpu_subtype)
128 {
129 case CPU_SUBTYPE_POWERPC_750:
130 if (count < (PROCESSOR_CONTROL_CMD_COUNT +
131 PROCESSOR_PM_REGS_COUNT_POWERPC_750))
132 return(KERN_FAILURE);
133 else
134 {
135 perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
136 oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
137 mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
138 mtpmc1(PERFMON_PMC1(perf_regs));
139 mtpmc2(PERFMON_PMC2(perf_regs));
140 mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
141 mtpmc3(PERFMON_PMC3(perf_regs));
142 mtpmc4(PERFMON_PMC4(perf_regs));
143 ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
144 return(KERN_SUCCESS);
145 }
146 case CPU_SUBTYPE_POWERPC_7400:
147 case CPU_SUBTYPE_POWERPC_7450:
148 if (count < (PROCESSOR_CONTROL_CMD_COUNT +
149 PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
150 return(KERN_FAILURE);
151 else
152 {
153 perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
154 oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
155 mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
156 mtpmc1(PERFMON_PMC1(perf_regs));
157 mtpmc2(PERFMON_PMC2(perf_regs));
158 mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
159 mtpmc3(PERFMON_PMC3(perf_regs));
160 mtpmc4(PERFMON_PMC4(perf_regs));
161 mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
162 ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
163 return(KERN_SUCCESS);
164 }
165 default:
166 return(KERN_FAILURE);
167 } /* switch cpu_subtype */
168 case PROCESSOR_PM_SET_MMCR:
169 switch (cpu_subtype)
170 {
171 case CPU_SUBTYPE_POWERPC_750:
172 if (count < (PROCESSOR_CONTROL_CMD_COUNT +
173 PROCESSOR_PM_REGS_COUNT_POWERPC_750))
174 return(KERN_FAILURE);
175 else
176 {
177 perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
178 oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
179 mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
180 mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
181 ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
182 return(KERN_SUCCESS);
183 }
184 case CPU_SUBTYPE_POWERPC_7400:
185 case CPU_SUBTYPE_POWERPC_7450:
186 if (count < (PROCESSOR_CONTROL_CMD_COUNT +
187 PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
188 return(KERN_FAILURE);
189 else
190 {
191 perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
192 oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
193 mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
194 mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
195 mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
196 ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
197 return(KERN_SUCCESS);
198 }
199 default:
200 return(KERN_FAILURE);
201 } /* cpu_subtype */
202 default:
203 return(KERN_FAILURE);
204 } /* switch cmd_op */
205 }
206
207 kern_return_t
208 cpu_info_count(
209 processor_flavor_t flavor,
210 unsigned int *count)
211 {
212 cpu_subtype_t cpu_subtype;
213
214 /*
215 * For now, we just assume that all CPUs are of the same type
216 */
217 cpu_subtype = machine_slot[0].cpu_subtype;
218 switch (flavor) {
219 case PROCESSOR_PM_REGS_INFO:
220 switch (cpu_subtype) {
221 case CPU_SUBTYPE_POWERPC_750:
222
223 *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
224 return(KERN_SUCCESS);
225
226 case CPU_SUBTYPE_POWERPC_7400:
227 case CPU_SUBTYPE_POWERPC_7450:
228
229 *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
230 return(KERN_SUCCESS);
231
232 default:
233 *count = 0;
234 return(KERN_INVALID_ARGUMENT);
235 } /* switch cpu_subtype */
236
237 case PROCESSOR_TEMPERATURE:
238 *count = PROCESSOR_TEMPERATURE_COUNT;
239 return (KERN_SUCCESS);
240
241 default:
242 *count = 0;
243 return(KERN_INVALID_ARGUMENT);
244
245 }
246 }
247
248 kern_return_t
249 cpu_info(
250 processor_flavor_t flavor,
251 int slot_num,
252 processor_info_t info,
253 unsigned int *count)
254 {
255 cpu_subtype_t cpu_subtype;
256 processor_pm_regs_t perf_regs;
257 boolean_t oldlevel;
258 unsigned int temp[2];
259
260 cpu_subtype = machine_slot[slot_num].cpu_subtype;
261
262 switch (flavor) {
263 case PROCESSOR_PM_REGS_INFO:
264
265 perf_regs = (processor_pm_regs_t) info;
266
267 switch (cpu_subtype) {
268 case CPU_SUBTYPE_POWERPC_750:
269
270 if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750)
271 return(KERN_FAILURE);
272
273 oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
274 PERFMON_MMCR0(perf_regs) = mfmmcr0();
275 PERFMON_PMC1(perf_regs) = mfpmc1();
276 PERFMON_PMC2(perf_regs) = mfpmc2();
277 PERFMON_MMCR1(perf_regs) = mfmmcr1();
278 PERFMON_PMC3(perf_regs) = mfpmc3();
279 PERFMON_PMC4(perf_regs) = mfpmc4();
280 ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
281
282 *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
283 return(KERN_SUCCESS);
284
285 case CPU_SUBTYPE_POWERPC_7400:
286 case CPU_SUBTYPE_POWERPC_7450:
287
288 if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400)
289 return(KERN_FAILURE);
290
291 oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
292 PERFMON_MMCR0(perf_regs) = mfmmcr0();
293 PERFMON_PMC1(perf_regs) = mfpmc1();
294 PERFMON_PMC2(perf_regs) = mfpmc2();
295 PERFMON_MMCR1(perf_regs) = mfmmcr1();
296 PERFMON_PMC3(perf_regs) = mfpmc3();
297 PERFMON_PMC4(perf_regs) = mfpmc4();
298 PERFMON_MMCR2(perf_regs) = mfmmcr2();
299 ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
300
301 *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
302 return(KERN_SUCCESS);
303
304 default:
305 return(KERN_FAILURE);
306 } /* switch cpu_subtype */
307
308 case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */
309
310 disable_preemption(); /* Don't move me now */
311
312 if(slot_num == cpu_number()) { /* Is this for the local CPU? */
313 *info = ml_read_temp(); /* Get the temperature */
314 }
315 else { /* For another CPU */
316 temp[0] = -1; /* Set sync flag */
317 eieio();
318 sync();
319 temp[1] = -1; /* Set invalid temperature */
320 (void)cpu_signal(slot_num, SIGPcpureq, CPRQtemp ,(unsigned int)&temp); /* Ask him to take his temperature */
321 (void)hw_cpu_sync(temp, LockTimeOut); /* Wait for the other processor to get its temperature */
322 *info = temp[1]; /* Pass it back */
323 }
324
325 enable_preemption(); /* Ok to move now */
326 return(KERN_SUCCESS);
327
328 default:
329 return(KERN_INVALID_ARGUMENT);
330
331 } /* flavor */
332 }
333
334 void
335 cpu_init(
336 void)
337 {
338 int cpu;
339
340 cpu = cpu_number();
341
342 machine_slot[cpu].running = TRUE;
343 machine_slot[cpu].cpu_type = CPU_TYPE_POWERPC;
344 machine_slot[cpu].cpu_subtype = (cpu_subtype_t)per_proc_info[cpu].pf.rptdProc;
345
346 }
347
348 void
349 cpu_machine_init(
350 void)
351 {
352 struct per_proc_info *tproc_info;
353 volatile struct per_proc_info *mproc_info;
354 int cpu;
355
356 /* TODO: realese mutex lock reset_handler_lock */
357
358 cpu = cpu_number();
359 tproc_info = &per_proc_info[cpu];
360 mproc_info = &per_proc_info[master_cpu];
361 PE_cpu_machine_init(tproc_info->cpu_id, !(tproc_info->cpu_flags & BootDone));
362 if (cpu != master_cpu) {
363 while (!((mproc_info->cpu_flags) & SignalReady))
364 continue;
365 cpu_sync_timebase();
366 }
367 ml_init_interrupt();
368 tproc_info->cpu_flags |= BootDone|SignalReady;
369 }
370
371 kern_return_t
372 cpu_register(
373 int *target_cpu
374 )
375 {
376 int cpu;
377
378 /*
379 * TODO:
380 * - Run cpu_register() in exclusion mode
381 */
382
383 *target_cpu = -1;
384 for(cpu=0; cpu < wncpu; cpu++) {
385 if(!machine_slot[cpu].is_cpu) {
386 machine_slot[cpu].is_cpu = TRUE;
387 *target_cpu = cpu;
388 break;
389 }
390 }
391 if (*target_cpu != -1) {
392 real_ncpus++;
393 return KERN_SUCCESS;
394 } else
395 return KERN_FAILURE;
396 }
397
398 kern_return_t
399 cpu_start(
400 int cpu)
401 {
402 struct per_proc_info *proc_info;
403 kern_return_t ret;
404 mapping *mp;
405
406 extern vm_offset_t intstack;
407 extern vm_offset_t debstack;
408
409 proc_info = &per_proc_info[cpu];
410
411 if (cpu == cpu_number()) {
412 PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone));
413 ml_init_interrupt();
414 proc_info->cpu_flags |= BootDone|SignalReady;
415
416 return KERN_SUCCESS;
417 } else {
418 extern void _start_cpu(void);
419
420 proc_info->cpu_number = cpu;
421 proc_info->cpu_flags &= BootDone;
422 proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE;
423 proc_info->intstack_top_ss = proc_info->istackptr;
424 #if MACH_KDP || MACH_KDB
425 proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE;
426 proc_info->debstack_top_ss = proc_info->debstackptr;
427 #endif /* MACH_KDP || MACH_KDB */
428 proc_info->interrupts_enabled = 0;
429 proc_info->need_ast = (unsigned int)&need_ast[cpu];
430 proc_info->FPU_owner = 0;
431 proc_info->VMX_owner = 0;
432 mp = (mapping *)(&proc_info->ppCIOmp);
433 mp->mpFlags = 0x01000000 | mpSpecial | 1;
434 mp->mpSpace = invalSpace;
435
436 if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
437
438 /* TODO: get mutex lock reset_handler_lock */
439
440 resethandler_target.type = RESET_HANDLER_START;
441 resethandler_target.call_paddr = (vm_offset_t)_start_cpu; /* Note: these routines are always V=R */
442 resethandler_target.arg__paddr = (vm_offset_t)proc_info; /* Note: these routines are always V=R */
443
444 ml_phys_write((vm_offset_t)&ResetHandler + 0,
445 resethandler_target.type);
446 ml_phys_write((vm_offset_t)&ResetHandler + 4,
447 resethandler_target.call_paddr);
448 ml_phys_write((vm_offset_t)&ResetHandler + 8,
449 resethandler_target.arg__paddr);
450
451 }
452 /*
453 * Note: we pass the current time to the other processor here. He will load it
454 * as early as possible so that there is a chance that it is close to accurate.
455 * After the machine is up a while, we will officially resync the clocks so
456 * that all processors are the same. This is just to get close.
457 */
458
459 ml_get_timebase((unsigned long long *)&proc_info->ruptStamp); /* Pass our current time to the other guy */
460
461 __asm__ volatile("sync"); /* Commit to storage */
462 __asm__ volatile("isync"); /* Wait a second */
463 ret = PE_cpu_start(proc_info->cpu_id,
464 proc_info->start_paddr, (vm_offset_t)proc_info);
465
466 if (ret != KERN_SUCCESS &&
467 proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
468
469 /* TODO: realese mutex lock reset_handler_lock */
470 }
471 return(ret);
472 }
473 }
474
475 perfTrap perfCpuSigHook = 0; /* Pointer to CHUD cpu signal hook routine */
476
477 /*
478 * Here is where we implement the receiver of the signaling protocol.
479 * We wait for the signal status area to be passed to us. Then we snarf
480 * up the status, the sender, and the 3 potential parms. Next we release
481 * the lock and signal the other guy.
482 */
483
484 void
485 cpu_signal_handler(
486 void)
487 {
488
489 unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype;
490 unsigned int *parmAddr;
491 struct per_proc_info *pproc; /* Area for my per_proc address */
492 int cpu;
493 struct SIGtimebase *timebaseAddr;
494 natural_t tbu, tbu2, tbl;
495
496 cpu = cpu_number(); /* Get the CPU number */
497 pproc = &per_proc_info[cpu]; /* Point to our block */
498
499 /*
500 * Since we've been signaled, wait about 31 ms for the signal lock to pass
501 */
502 if(!hw_lock_mbits(&pproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass),
503 (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.timebase_frequency_hz >> 5))) {
504 panic("cpu_signal_handler: Lock pass timed out\n");
505 }
506
507 holdStat = pproc->MPsigpStat; /* Snarf stat word */
508 holdParm0 = pproc->MPsigpParm0; /* Snarf parameter */
509 holdParm1 = pproc->MPsigpParm1; /* Snarf parameter */
510 holdParm2 = pproc->MPsigpParm2; /* Snarf parameter */
511
512 __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */
513
514 pproc->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */
515
516 switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */
517
518 case MPsigpIdle: /* Was function cancelled? */
519 return; /* Yup... */
520
521 case MPsigpSigp: /* Signal Processor message? */
522
523 switch (holdParm0) { /* Decode SIGP message order */
524
525 case SIGPast: /* Should we do an AST? */
526 pproc->hwCtr.numSIGPast++; /* Count this one */
527 #if 0
528 kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number());
529 #endif
530 ast_check(cpu_to_processor(cpu));
531 return; /* All done... */
532
533 case SIGPcpureq: /* CPU specific function? */
534
535 pproc->hwCtr.numSIGPcpureq++; /* Count this one */
536 switch (holdParm1) { /* Select specific function */
537
538 case CPRQtemp: /* Get the temperature */
539 parmAddr = (unsigned int *)holdParm2; /* Get the destination address */
540 parmAddr[1] = ml_read_temp(); /* Get the core temperature */
541 eieio(); /* Force order */
542 sync(); /* Force to memory */
543 parmAddr[0] = 0; /* Show we're done */
544 return;
545
546 case CPRQtimebase:
547
548 timebaseAddr = (struct SIGtimebase *)holdParm2;
549
550 if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
551 pproc->time_base_enable(pproc->cpu_id, FALSE);
552
553 timebaseAddr->abstime = 0; /* Touch to force into cache */
554 sync();
555
556 do {
557 asm volatile(" mftbu %0" : "=r" (tbu));
558 asm volatile(" mftb %0" : "=r" (tbl));
559 asm volatile(" mftbu %0" : "=r" (tbu2));
560 } while (tbu != tbu2);
561
562 timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl;
563 sync(); /* Force order */
564
565 timebaseAddr->avail = TRUE;
566
567 while (*(volatile int *)&(syncClkSpot.ready) == FALSE);
568
569 if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
570 pproc->time_base_enable(pproc->cpu_id, TRUE);
571
572 timebaseAddr->done = TRUE;
573
574 return;
575
576 case CPRQsegload:
577 return;
578
579 case CPRQchud:
580 parmAddr = (unsigned int *)holdParm2; /* Get the destination address */
581 if(perfCpuSigHook) {
582 struct savearea *ssp = current_act()->mact.pcb;
583 if(ssp) {
584 (perfCpuSigHook)(parmAddr[1] /* request */, ssp, 0, 0);
585 }
586 }
587 parmAddr[1] = 0;
588 parmAddr[0] = 0; /* Show we're done */
589 return;
590
591 case CPRQscom:
592 fwSCOM((scomcomm *)holdParm2); /* Do the function */
593 return;
594
595 default:
596 panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1);
597 return;
598 }
599
600
601 case SIGPdebug: /* Enter the debugger? */
602
603 pproc->hwCtr.numSIGPdebug++; /* Count this one */
604 debugger_is_slave[cpu]++; /* Bump up the count to show we're here */
605 hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */
606 __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */
607 return; /* All done now... */
608
609 case SIGPwake: /* Wake up CPU */
610 pproc->hwCtr.numSIGPwake++; /* Count this one */
611 return; /* No need to do anything, the interrupt does it all... */
612
613 default:
614 panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0);
615 return;
616
617 }
618
619 default:
620 panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8);
621 return;
622
623 }
624 panic("cpu_signal_handler: we should never get here\n");
625 }
626
627 /*
628 * Here is where we send a message to another processor. So far we only have two:
629 * SIGPast and SIGPdebug. SIGPast is used to preempt and kick off threads (this is
630 * currently disabled). SIGPdebug is used to enter the debugger.
631 *
632 * We set up the SIGP function to indicate that this is a simple message and set the
633 * order code (MPsigpParm0) to SIGPast or SIGPdebug). After finding the per_processor
634 * block for the target, we lock the message block. Then we set the parameter(s).
635 * Next we change the lock (also called "busy") to "passing" and finally signal
636 * the other processor. Note that we only wait about 1ms to get the message lock.
637 * If we time out, we return failure to our caller. It is their responsibility to
638 * recover.
639 */
640
641 kern_return_t
642 cpu_signal(
643 int target,
644 int signal,
645 unsigned int p1,
646 unsigned int p2)
647 {
648
649 unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype;
650 struct per_proc_info *tpproc, *mpproc; /* Area for per_proc addresses */
651 int cpu;
652 int busybitset =0;
653
654 #if DEBUG
655 if(target > NCPUS) panic("cpu_signal: invalid target CPU - %08X\n", target);
656 #endif
657
658 cpu = cpu_number(); /* Get our CPU number */
659 if(target == cpu) return KERN_FAILURE; /* Don't play with ourselves */
660 if(!machine_slot[target].running) return KERN_FAILURE; /* These guys are too young */
661
662 mpproc = &per_proc_info[cpu]; /* Point to our block */
663 tpproc = &per_proc_info[target]; /* Point to the target's block */
664
665 if (!(tpproc->cpu_flags & SignalReady)) return KERN_FAILURE;
666
667 if((tpproc->MPsigpStat & MPsigpMsgp) == MPsigpMsgp) { /* Is there an unreceived message already pending? */
668
669 if(signal == SIGPwake) { /* SIGPwake can merge into all others... */
670 mpproc->hwCtr.numSIGPmwake++; /* Account for merged wakes */
671 return KERN_SUCCESS;
672 }
673
674 if((signal == SIGPast) && (tpproc->MPsigpParm0 == SIGPast)) { /* We can merge ASTs */
675 mpproc->hwCtr.numSIGPmast++; /* Account for merged ASTs */
676 return KERN_SUCCESS; /* Don't bother to send this one... */
677 }
678
679 if (tpproc->MPsigpParm0 == SIGPwake) {
680 if (hw_lock_mbits(&tpproc->MPsigpStat, (MPsigpMsgp | MPsigpAck),
681 (MPsigpBusy | MPsigpPass ), MPsigpBusy, 0)) {
682 busybitset = 1;
683 mpproc->hwCtr.numSIGPmwake++;
684 }
685 }
686 }
687
688 if((busybitset == 0) &&
689 (!hw_lock_mbits(&tpproc->MPsigpStat, MPsigpMsgp, 0, MPsigpBusy,
690 (gPEClockFrequencyInfo.timebase_frequency_hz >> 11)))) { /* Try to lock the message block with a .5ms timeout */
691 mpproc->hwCtr.numSIGPtimo++; /* Account for timeouts */
692 return KERN_FAILURE; /* Timed out, take your ball and go home... */
693 }
694
695 holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | cpu; /* Set up the signal status word */
696 tpproc->MPsigpParm0 = signal; /* Set message order */
697 tpproc->MPsigpParm1 = p1; /* Set additional parm */
698 tpproc->MPsigpParm2 = p2; /* Set additional parm */
699
700 __asm__ volatile("sync"); /* Make sure it's all there */
701
702 tpproc->MPsigpStat = holdStat; /* Set status and pass the lock */
703 __asm__ volatile("eieio"); /* I'm a paraniod freak */
704
705 if (busybitset == 0)
706 PE_cpu_signal(mpproc->cpu_id, tpproc->cpu_id); /* Kick the other processor */
707
708 return KERN_SUCCESS; /* All is goodness and rainbows... */
709 }
710
711 void
712 cpu_doshutdown(
713 void)
714 {
715 enable_preemption();
716 processor_offline(current_processor());
717 }
718
719 void
720 cpu_sleep(
721 void)
722 {
723 struct per_proc_info *proc_info;
724 unsigned int cpu, i;
725 unsigned int wait_ncpus_sleep, ncpus_sleep;
726 facility_context *fowner;
727 extern vm_offset_t intstack;
728 extern vm_offset_t debstack;
729 extern void _restart_cpu(void);
730
731 cpu = cpu_number();
732
733 proc_info = &per_proc_info[cpu];
734
735 fowner = proc_info->FPU_owner; /* Cache this */
736 if(fowner) fpu_save(fowner); /* If anyone owns FPU, save it */
737 proc_info->FPU_owner = 0; /* Set no fpu owner now */
738
739 fowner = proc_info->VMX_owner; /* Cache this */
740 if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */
741 proc_info->VMX_owner = 0; /* Set no vector owner now */
742
743 if (proc_info->cpu_number == 0) {
744 proc_info->cpu_flags &= BootDone;
745 proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE;
746 proc_info->intstack_top_ss = proc_info->istackptr;
747 #if MACH_KDP || MACH_KDB
748 proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE;
749 proc_info->debstack_top_ss = proc_info->debstackptr;
750 #endif /* MACH_KDP || MACH_KDB */
751 proc_info->interrupts_enabled = 0;
752
753 if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
754 extern void _start_cpu(void);
755
756 resethandler_target.type = RESET_HANDLER_START;
757 resethandler_target.call_paddr = (vm_offset_t)_start_cpu; /* Note: these routines are always V=R */
758 resethandler_target.arg__paddr = (vm_offset_t)proc_info; /* Note: these routines are always V=R */
759
760 ml_phys_write((vm_offset_t)&ResetHandler + 0,
761 resethandler_target.type);
762 ml_phys_write((vm_offset_t)&ResetHandler + 4,
763 resethandler_target.call_paddr);
764 ml_phys_write((vm_offset_t)&ResetHandler + 8,
765 resethandler_target.arg__paddr);
766
767 __asm__ volatile("sync");
768 __asm__ volatile("isync");
769 }
770
771 wait_ncpus_sleep = real_ncpus-1;
772 ncpus_sleep = 0;
773 while (wait_ncpus_sleep != ncpus_sleep) {
774 ncpus_sleep = 0;
775 for(i=1; i < real_ncpus ; i++) {
776 if ((*(volatile short *)&per_proc_info[i].cpu_flags) & SleepState)
777 ncpus_sleep++;
778 }
779 }
780 }
781
782 PE_cpu_machine_quiesce(proc_info->cpu_id);
783 }
784
785 void
786 cpu_sync_timebase(
787 void)
788 {
789 natural_t tbu, tbl;
790 boolean_t intr;
791
792 intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */
793
794 /* Note that syncClkSpot is in a cache aligned area */
795 syncClkSpot.avail = FALSE;
796 syncClkSpot.ready = FALSE;
797 syncClkSpot.done = FALSE;
798
799 while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase,
800 (unsigned int)&syncClkSpot) != KERN_SUCCESS)
801 continue;
802
803 while (*(volatile int *)&(syncClkSpot.avail) == FALSE)
804 continue;
805
806 isync();
807
808 /*
809 * We do the following to keep the compiler from generating extra stuff
810 * in tb set part
811 */
812 tbu = syncClkSpot.abstime >> 32;
813 tbl = (uint32_t)syncClkSpot.abstime;
814
815 mttb(0);
816 mttbu(tbu);
817 mttb(tbl);
818
819 syncClkSpot.ready = TRUE;
820
821 while (*(volatile int *)&(syncClkSpot.done) == FALSE)
822 continue;
823
824 (void)ml_set_interrupts_enabled(intr);
825 }