]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_synch.c
xnu-517.tar.gz
[apple/xnu.git] / bsd / kern / kern_synch.c
1 /*
2 * Copyright (c) 2000-2001 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /*
26 * Mach Operating System
27 * Copyright (c) 1987 Carnegie-Mellon University
28 * All rights reserved. The CMU software License Agreement specifies
29 * the terms and conditions for use and redistribution.
30 */
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/proc.h>
35 #include <sys/user.h>
36 #include <sys/file.h>
37 #include <sys/vnode.h>
38 #include <sys/kernel.h>
39 #include <sys/buf.h>
40
41 #include <machine/spl.h>
42
43 #include <kern/queue.h>
44 #include <sys/lock.h>
45 #include <kern/thread.h>
46 #include <kern/sched_prim.h>
47 #include <kern/ast.h>
48
49 #include <kern/cpu_number.h>
50 #include <vm/vm_kern.h>
51
52 #include <kern/task.h>
53 #include <mach/time_value.h>
54
55 #if KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59
60 static void
61 _sleep_continue(void)
62 {
63 register struct proc *p;
64 register thread_t self = current_act();
65 struct uthread * ut;
66 int sig, catch;
67 int error = 0;
68
69 ut = get_bsdthread_info(self);
70 catch = ut->uu_pri & PCATCH;
71 p = current_proc();
72
73 switch (get_thread_waitresult(self)) {
74 case THREAD_TIMED_OUT:
75 error = EWOULDBLOCK;
76 break;
77 case THREAD_AWAKENED:
78 /*
79 * Posix implies any signal should be delivered
80 * first, regardless of whether awakened due
81 * to receiving event.
82 */
83 if (!catch)
84 break;
85 /* else fall through */
86 case THREAD_INTERRUPTED:
87 if (catch) {
88 if (thread_should_abort(self)) {
89 error = EINTR;
90 } else if (SHOULDissignal(p,ut)) {
91 if (sig = CURSIG(p)) {
92 if (p->p_sigacts->ps_sigintr & sigmask(sig))
93 error = EINTR;
94 else
95 error = ERESTART;
96 }
97 if (thread_should_abort(self)) {
98 error = EINTR;
99 }
100 }
101 } else
102 error = EINTR;
103 break;
104 }
105
106 if (error == EINTR || error == ERESTART)
107 act_set_astbsd(self);
108
109 if (ut->uu_timo)
110 thread_cancel_timer();
111
112 #if KTRACE
113 if (KTRPOINT(p, KTR_CSW))
114 ktrcsw(p->p_tracep, 0, 0, -1);
115 #endif
116
117 unix_syscall_return((*ut->uu_continuation)(error));
118 }
119
120 /*
121 * Give up the processor till a wakeup occurs
122 * on chan, at which time the process
123 * enters the scheduling queue at priority pri.
124 * The most important effect of pri is that when
125 * pri<=PZERO a signal cannot disturb the sleep;
126 * if pri>PZERO signals will be processed.
127 * If pri&PCATCH is set, signals will cause sleep
128 * to return 1, rather than longjmp.
129 * Callers of this routine must be prepared for
130 * premature return, and check that the reason for
131 * sleeping has gone away.
132 */
133
134 static int
135 _sleep(
136 caddr_t chan,
137 int pri,
138 char *wmsg,
139 u_int64_t abstime,
140 int (*continuation)(int))
141 {
142 register struct proc *p;
143 register thread_t self = current_act();
144 struct uthread * ut;
145 int sig, catch = pri & PCATCH;
146 int sigttblock = pri & PTTYBLOCK;
147 int wait_result;
148 int error = 0;
149 spl_t s;
150
151 s = splhigh();
152
153 ut = get_bsdthread_info(self);
154
155 p = current_proc();
156 #if KTRACE
157 if (KTRPOINT(p, KTR_CSW))
158 ktrcsw(p->p_tracep, 1, 0, -1);
159 #endif
160 p->p_priority = pri & PRIMASK;
161
162 if (chan != NULL)
163 assert_wait_prim(chan, NULL, abstime,
164 (catch) ? THREAD_ABORTSAFE : THREAD_UNINT);
165 else
166 if (abstime != 0)
167 thread_set_timer_deadline(abstime);
168
169 /*
170 * We start our timeout
171 * before calling CURSIG, as we could stop there, and a wakeup
172 * or a SIGCONT (or both) could occur while we were stopped.
173 * A SIGCONT would cause us to be marked as SSLEEP
174 * without resuming us, thus we must be ready for sleep
175 * when CURSIG is called. If the wakeup happens while we're
176 * stopped, p->p_wchan will be 0 upon return from CURSIG.
177 */
178 if (catch) {
179 if (SHOULDissignal(p,ut)) {
180 if (sig = CURSIG(p)) {
181 if (clear_wait(self, THREAD_INTERRUPTED) == KERN_FAILURE)
182 goto block;
183 /* if SIGTTOU or SIGTTIN then block till SIGCONT */
184 if (sigttblock && ((sig == SIGTTOU) || (sig == SIGTTIN))) {
185 p->p_flag |= P_TTYSLEEP;
186 /* reset signal bits */
187 clear_procsiglist(p, sig);
188 assert_wait(&p->p_siglist, THREAD_ABORTSAFE);
189 /* assert wait can block and SIGCONT should be checked */
190 if (p->p_flag & P_TTYSLEEP)
191 thread_block(THREAD_CONTINUE_NULL);
192 /* return with success */
193 error = 0;
194 goto out;
195 }
196 if (p->p_sigacts->ps_sigintr & sigmask(sig))
197 error = EINTR;
198 else
199 error = ERESTART;
200 goto out;
201 }
202 }
203 if (thread_should_abort(self)) {
204 if (clear_wait(self, THREAD_INTERRUPTED) == KERN_FAILURE)
205 goto block;
206 error = EINTR;
207 goto out;
208 }
209 if (get_thread_waitresult(self) != THREAD_WAITING) {
210 /*already happened */
211 goto out;
212 }
213 }
214
215 block:
216
217 splx(s);
218 p->p_stats->p_ru.ru_nvcsw++;
219
220 if ((thread_continue_t)continuation != THREAD_CONTINUE_NULL ) {
221 ut->uu_continuation = continuation;
222 ut->uu_pri = pri;
223 ut->uu_timo = abstime? 1: 0;
224 (void) thread_block(_sleep_continue);
225 /* NOTREACHED */
226 }
227
228 wait_result = thread_block(THREAD_CONTINUE_NULL);
229
230 switch (wait_result) {
231 case THREAD_TIMED_OUT:
232 error = EWOULDBLOCK;
233 break;
234 case THREAD_AWAKENED:
235 /*
236 * Posix implies any signal should be delivered
237 * first, regardless of whether awakened due
238 * to receiving event.
239 */
240 if (!catch)
241 break;
242 /* else fall through */
243 case THREAD_INTERRUPTED:
244 if (catch) {
245 if (thread_should_abort(self)) {
246 error = EINTR;
247 } else if (SHOULDissignal(p,ut)) {
248 if (sig = CURSIG(p)) {
249 if (p->p_sigacts->ps_sigintr & sigmask(sig))
250 error = EINTR;
251 else
252 error = ERESTART;
253 }
254 if (thread_should_abort(self)) {
255 error = EINTR;
256 }
257 }
258 } else
259 error = EINTR;
260 break;
261 }
262 out:
263 if (error == EINTR || error == ERESTART)
264 act_set_astbsd(self);
265 if (abstime)
266 thread_cancel_timer();
267 (void) splx(s);
268 #if KTRACE
269 if (KTRPOINT(p, KTR_CSW))
270 ktrcsw(p->p_tracep, 0, 0, -1);
271 #endif
272 return (error);
273 }
274
275 int
276 sleep(
277 void *chan,
278 int pri)
279 {
280 return _sleep((caddr_t)chan, pri, (char *)NULL, 0, (int (*)(int))0);
281 }
282
283 int
284 tsleep(
285 void *chan,
286 int pri,
287 char *wmsg,
288 int timo)
289 {
290 u_int64_t abstime = 0;
291
292 if (timo)
293 clock_interval_to_deadline(timo, NSEC_PER_SEC / hz, &abstime);
294 return _sleep((caddr_t)chan, pri, wmsg, abstime, (int (*)(int))0);
295 }
296
297 int
298 tsleep0(
299 void *chan,
300 int pri,
301 char *wmsg,
302 int timo,
303 int (*continuation)(int))
304 {
305 u_int64_t abstime = 0;
306
307 if (timo)
308 clock_interval_to_deadline(timo, NSEC_PER_SEC / hz, &abstime);
309 return _sleep((caddr_t)chan, pri, wmsg, abstime, continuation);
310 }
311
312 int
313 tsleep1(
314 void *chan,
315 int pri,
316 char *wmsg,
317 u_int64_t abstime,
318 int (*continuation)(int))
319 {
320 return _sleep((caddr_t)chan, pri, wmsg, abstime, continuation);
321 }
322
323 /*
324 * Wake up all processes sleeping on chan.
325 */
326 void
327 wakeup(chan)
328 register void *chan;
329 {
330 thread_wakeup_prim((caddr_t)chan, FALSE, THREAD_AWAKENED);
331 }
332
333 /*
334 * Wake up the first process sleeping on chan.
335 *
336 * Be very sure that the first process is really
337 * the right one to wakeup.
338 */
339 void
340 wakeup_one(chan)
341 register caddr_t chan;
342 {
343 thread_wakeup_prim((caddr_t)chan, TRUE, THREAD_AWAKENED);
344 }
345
346 /*
347 * Compute the priority of a process when running in user mode.
348 * Arrange to reschedule if the resulting priority is better
349 * than that of the current process.
350 */
351 void
352 resetpriority(p)
353 register struct proc *p;
354 {
355 (void)task_importance(p->task, -p->p_nice);
356 }
357
358 struct loadavg averunnable =
359 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
360 /*
361 * Constants for averages over 1, 5, and 15 minutes
362 * when sampling at 5 second intervals.
363 */
364 static fixpt_t cexp[3] = {
365 (fixpt_t)(0.9200444146293232 * FSCALE), /* exp(-1/12) */
366 (fixpt_t)(0.9834714538216174 * FSCALE), /* exp(-1/60) */
367 (fixpt_t)(0.9944598480048967 * FSCALE), /* exp(-1/180) */
368 };
369
370 void
371 compute_averunnable(
372 register int nrun)
373 {
374 register int i;
375 struct loadavg *avg = &averunnable;
376
377 for (i = 0; i < 3; i++)
378 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
379 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
380 }