]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_event.c
xnu-517.tar.gz
[apple/xnu.git] / bsd / kern / kern_event.c
1 /*
2 * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 *
25 */
26 /*-
27 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
28 * All rights reserved.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
43 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
44 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
45 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
47 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
48 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
49 * SUCH DAMAGE.
50 */
51 /*
52 * @(#)kern_event.c 1.0 (3/31/2000)
53 */
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/filedesc.h>
58 #include <sys/kernel.h>
59 #include <sys/proc.h>
60 #include <sys/malloc.h>
61 #include <sys/unistd.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/select.h>
65 #include <sys/queue.h>
66 #include <sys/event.h>
67 #include <sys/eventvar.h>
68 #include <sys/protosw.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/stat.h>
72 #include <sys/sysctl.h>
73 #include <sys/uio.h>
74
75 #include <kern/zalloc.h>
76
77 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
78
79 static int kqueue_scan(struct file *fp, int maxevents,
80 struct kevent *ulistp, const struct timespec *timeout,
81 register_t *retval, struct proc *p);
82 static void kqueue_wakeup(struct kqueue *kq);
83
84 static int kqueue_read __P((struct file *fp, struct uio *uio,
85 struct ucred *cred, int flags, struct proc *p));
86 static int kqueue_write __P((struct file *fp, struct uio *uio,
87 struct ucred *cred, int flags, struct proc *p));
88 static int kqueue_ioctl __P((struct file *fp, u_long com, caddr_t data,
89 struct proc *p));
90 static int kqueue_select __P((struct file *fp, int which, void *wql,
91 struct proc *p));
92 static int kqueue_close __P((struct file *fp, struct proc *p));
93 static int kqueue_kqfilter __P((struct file *fp, struct knote *kn, struct proc *p));
94
95 static struct fileops kqueueops = {
96 kqueue_read,
97 kqueue_write,
98 kqueue_ioctl,
99 kqueue_select,
100 kqueue_close,
101 kqueue_kqfilter
102 };
103
104 static void knote_fdpattach(struct knote *kn, struct filedesc *fdp);
105 static void knote_drop(struct knote *kn, struct proc *p);
106 static void knote_enqueue(struct knote *kn);
107 static void knote_dequeue(struct knote *kn);
108 static struct knote *knote_alloc(void);
109 static void knote_free(struct knote *kn);
110
111 static int filt_fileattach(struct knote *kn);
112 static struct filterops file_filtops =
113 { 1, filt_fileattach, NULL, NULL };
114
115 static void filt_kqdetach(struct knote *kn);
116 static int filt_kqueue(struct knote *kn, long hint);
117 static struct filterops kqread_filtops =
118 { 1, NULL, filt_kqdetach, filt_kqueue };
119
120 /*
121 * JMM - placeholder for not-yet-implemented filters
122 */
123 static int filt_badattach(struct knote *kn);
124 static struct filterops bad_filtops =
125 { 0, filt_badattach, 0 , 0 };
126
127 static int filt_procattach(struct knote *kn);
128 static void filt_procdetach(struct knote *kn);
129 static int filt_proc(struct knote *kn, long hint);
130
131 static struct filterops proc_filtops =
132 { 0, filt_procattach, filt_procdetach, filt_proc };
133
134 extern struct filterops fs_filtops;
135
136 extern struct filterops sig_filtops;
137
138 #if 0
139 /* JMM - We don't implement these now */
140 static void filt_timerexpire(void *knx);
141 static int filt_timerattach(struct knote *kn);
142 static void filt_timerdetach(struct knote *kn);
143 static int filt_timer(struct knote *kn, long hint);
144
145 static struct filterops timer_filtops =
146 { 0, filt_timerattach, filt_timerdetach, filt_timer };
147
148 static int kq_ncallouts = 0;
149 static int kq_calloutmax = (4 * 1024);
150
151 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
152 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
153 #endif /* 0 */
154
155 static zone_t knote_zone;
156
157 #define KNOTE_ACTIVATE(kn) do { \
158 kn->kn_status |= KN_ACTIVE; \
159 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
160 knote_enqueue(kn); \
161 } while(0)
162
163 #define KN_HASHSIZE 64 /* XXX should be tunable */
164 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
165
166 #if 0
167 extern struct filterops aio_filtops;
168 #endif
169
170 /*
171 * Table for for all system-defined filters.
172 */
173 static struct filterops *sysfilt_ops[] = {
174 &file_filtops, /* EVFILT_READ */
175 &file_filtops, /* EVFILT_WRITE */
176 #if 0
177 &aio_filtops, /* EVFILT_AIO */
178 #else
179 &bad_filtops, /* EVFILT_AIO */
180 #endif
181 &file_filtops, /* EVFILT_VNODE */
182 &proc_filtops, /* EVFILT_PROC */
183 &sig_filtops, /* EVFILT_SIGNAL */
184 #if 0
185 &timer_filtops, /* EVFILT_TIMER */
186 #else
187 &bad_filtops, /* EVFILT_TIMER */
188 #endif
189 &bad_filtops, /* EVFILT_MACHPORT */
190 &fs_filtops /* EVFILT_FS */
191 };
192
193 static int
194 filt_fileattach(struct knote *kn)
195 {
196
197 return (fo_kqfilter(kn->kn_fp, kn, current_proc()));
198 }
199
200 static void
201 filt_kqdetach(struct knote *kn)
202 {
203 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
204
205 if (kq->kq_state & KQ_SEL)
206 return;
207
208 KNOTE_DETACH(&kq->kq_sel.si_note, kn);
209 }
210
211 /*ARGSUSED*/
212 static int
213 filt_kqueue(struct knote *kn, long hint)
214 {
215 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
216
217 kn->kn_data = kq->kq_count;
218 return (kn->kn_data > 0);
219 }
220
221 static int
222 filt_procattach(struct knote *kn)
223 {
224 struct proc *p;
225
226 p = pfind(kn->kn_id);
227 if (p == NULL)
228 return (ESRCH);
229 if (! PRISON_CHECK(current_proc(), p))
230 return (EACCES);
231
232 kn->kn_ptr.p_proc = p;
233 kn->kn_flags |= EV_CLEAR; /* automatically set */
234
235 /*
236 * internal flag indicating registration done by kernel
237 */
238 if (kn->kn_flags & EV_FLAG1) {
239 kn->kn_data = kn->kn_sdata; /* ppid */
240 kn->kn_fflags = NOTE_CHILD;
241 kn->kn_flags &= ~EV_FLAG1;
242 }
243
244 /* XXX lock the proc here while adding to the list? */
245 KNOTE_ATTACH(&p->p_klist, kn);
246
247 return (0);
248 }
249
250 /*
251 * The knote may be attached to a different process, which may exit,
252 * leaving nothing for the knote to be attached to. So when the process
253 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
254 * it will be deleted when read out. However, as part of the knote deletion,
255 * this routine is called, so a check is needed to avoid actually performing
256 * a detach, because the original process does not exist any more.
257 */
258 static void
259 filt_procdetach(struct knote *kn)
260 {
261 struct proc *p = kn->kn_ptr.p_proc;
262
263 if (kn->kn_status & KN_DETACHED)
264 return;
265
266 /* XXX locking? this might modify another process. */
267 KNOTE_DETACH(&p->p_klist, kn);
268 }
269
270 static int
271 filt_proc(struct knote *kn, long hint)
272 {
273 u_int event;
274
275 /*
276 * mask off extra data
277 */
278 event = (u_int)hint & NOTE_PCTRLMASK;
279
280 /*
281 * if the user is interested in this event, record it.
282 */
283 if (kn->kn_sfflags & event)
284 kn->kn_fflags |= event;
285
286 /*
287 * process is gone, so flag the event as finished.
288 */
289 if (event == NOTE_EXIT) {
290 kn->kn_status |= KN_DETACHED;
291 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
292 return (1);
293 }
294
295 /*
296 * process forked, and user wants to track the new process,
297 * so attach a new knote to it, and immediately report an
298 * event with the parent's pid.
299 */
300 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
301 struct kevent kev;
302 int error;
303
304 /*
305 * register knote with new process.
306 */
307 kev.ident = hint & NOTE_PDATAMASK; /* pid */
308 kev.filter = kn->kn_filter;
309 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
310 kev.fflags = kn->kn_sfflags;
311 kev.data = kn->kn_id; /* parent */
312 kev.udata = kn->kn_kevent.udata; /* preserve udata */
313 error = kqueue_register(kn->kn_kq, &kev, NULL);
314 if (error)
315 kn->kn_fflags |= NOTE_TRACKERR;
316 }
317
318 return (kn->kn_fflags != 0);
319 }
320
321 #if 0
322 static void
323 filt_timerexpire(void *knx)
324 {
325 struct knote *kn = knx;
326 struct callout *calloutp;
327 struct timeval tv;
328 int tticks;
329
330 kn->kn_data++;
331 KNOTE_ACTIVATE(kn);
332
333 if ((kn->kn_flags & EV_ONESHOT) == 0) {
334 tv.tv_sec = kn->kn_sdata / 1000;
335 tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
336 tticks = tvtohz(&tv);
337 calloutp = (struct callout *)kn->kn_hook;
338 callout_reset(calloutp, tticks, filt_timerexpire, kn);
339 }
340 }
341
342 /*
343 * data contains amount of time to sleep, in milliseconds
344 */
345 static int
346 filt_timerattach(struct knote *kn)
347 {
348 struct callout *calloutp;
349 struct timeval tv;
350 int tticks;
351
352 if (kq_ncallouts >= kq_calloutmax)
353 return (ENOMEM);
354 kq_ncallouts++;
355
356 tv.tv_sec = kn->kn_sdata / 1000;
357 tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
358 tticks = tvtohz(&tv);
359
360 kn->kn_flags |= EV_CLEAR; /* automatically set */
361 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
362 M_KQUEUE, M_WAITOK);
363 callout_init(calloutp);
364 callout_reset(calloutp, tticks, filt_timerexpire, kn);
365 kn->kn_hook = (caddr_t)calloutp;
366
367 return (0);
368 }
369
370 static void
371 filt_timerdetach(struct knote *kn)
372 {
373 struct callout *calloutp;
374
375 calloutp = (struct callout *)kn->kn_hook;
376 callout_stop(calloutp);
377 FREE(calloutp, M_KQUEUE);
378 kq_ncallouts--;
379 }
380
381 static int
382 filt_timer(struct knote *kn, long hint)
383 {
384
385 return (kn->kn_data != 0);
386 }
387 #endif /* 0 */
388
389 /*
390 * JMM - placeholder for not-yet-implemented filters
391 */
392 static int
393 filt_badattach(struct knote *kn)
394 {
395 return(EOPNOTSUPP);
396 }
397
398 #ifndef _SYS_SYSPROTO_H_
399 struct kqueue_args {
400 int dummy;
401 };
402 #endif
403
404 int
405 kqueue(struct proc *p, struct kqueue_args *uap, register_t *retval)
406 {
407 struct filedesc *fdp = p->p_fd;
408 struct kqueue *kq;
409 struct file *fp;
410 int fd, error;
411
412 error = falloc(p, &fp, &fd);
413 if (error)
414 return (error);
415 fp->f_flag = FREAD | FWRITE;
416 fp->f_type = DTYPE_KQUEUE;
417 fp->f_ops = &kqueueops;
418 kq = (struct kqueue *)_MALLOC(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
419 TAILQ_INIT(&kq->kq_head);
420 fp->f_data = (caddr_t)kq;
421 *retval = fd;
422 if (fdp->fd_knlistsize < 0)
423 fdp->fd_knlistsize = 0; /* this process has a kq */
424 kq->kq_fdp = fdp;
425 return (error);
426 }
427
428 #ifndef _SYS_SYSPROTO_H_
429 struct kqueue_portset_np_args {
430 int fd;
431 };
432 #endif
433 int
434 kqueue_portset_np(struct proc *p, struct kqueue_portset_np_args *uap, register_t *retval)
435 {
436 /* JMM - Placeholder for now */
437 return (EOPNOTSUPP);
438 }
439
440 #ifndef _SYS_SYSPROTO_H_
441 struct kqueue_from_portset_np_args {
442 int fd;
443 };
444 #endif
445 int
446 kqueue_from_portset_np(struct proc *p, struct kqueue_from_portset_np_args *uap, register_t *retval)
447 {
448 /* JMM - Placeholder for now */
449 return (EOPNOTSUPP);
450 }
451
452 #if !0
453 /* JMM - We don't implement this yet */
454 #define fhold(fp)
455 #define fdrop(fp, p)
456 #endif /* !0 */
457
458 #ifndef _SYS_SYSPROTO_H_
459 struct kevent_args {
460 int fd;
461 const struct kevent *changelist;
462 int nchanges;
463 struct kevent *eventlist;
464 int nevents;
465 const struct timespec *timeout;
466 };
467 #endif
468 int
469 kevent(struct proc *p, struct kevent_args *uap, register_t *retval)
470 {
471 struct filedesc* fdp = p->p_fd;
472 struct kqueue *kq;
473 struct file *fp = NULL;
474 struct timespec ts;
475 int i, nerrors, error;
476
477 if (uap->timeout != NULL) {
478 error = copyin((caddr_t)uap->timeout, (caddr_t)&ts, sizeof(ts));
479 if (error)
480 goto done;
481 uap->timeout = &ts;
482 }
483
484 if (((u_int)uap->fd) >= fdp->fd_nfiles ||
485 (fp = fdp->fd_ofiles[uap->fd]) == NULL ||
486 (fp->f_type != DTYPE_KQUEUE))
487 return (EBADF);
488
489 fhold(fp);
490
491 kq = (struct kqueue *)fp->f_data;
492 nerrors = 0;
493
494 while (uap->nchanges > 0) {
495 int i;
496 int n = uap->nchanges > KQ_NEVENTS ? KQ_NEVENTS : uap->nchanges;
497 struct kevent kq_kev[n];
498
499 error = copyin((caddr_t)uap->changelist, (caddr_t)kq_kev,
500 n * sizeof(struct kevent));
501 if (error)
502 goto done;
503 for (i = 0; i < n; i++) {
504 struct kevent *kevp = &kq_kev[i];
505
506 kevp->flags &= ~EV_SYSFLAGS;
507 error = kqueue_register(kq, kevp, p);
508 if (error) {
509 if (uap->nevents != 0) {
510 kevp->flags = EV_ERROR;
511 kevp->data = error;
512 (void) copyout((caddr_t)kevp,
513 (caddr_t)uap->eventlist,
514 sizeof(*kevp));
515 uap->eventlist++;
516 uap->nevents--;
517 nerrors++;
518 } else {
519 goto done;
520 }
521 }
522 }
523 uap->nchanges -= n;
524 uap->changelist += n;
525 }
526 if (nerrors) {
527 *retval = nerrors;
528 error = 0;
529 goto done;
530 }
531
532 error = kqueue_scan(fp, uap->nevents, uap->eventlist, uap->timeout, retval, p);
533 done:
534 if (fp != NULL)
535 fdrop(fp, p);
536 return (error);
537 }
538
539 int
540 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
541 {
542 struct filedesc *fdp = kq->kq_fdp;
543 struct filterops *fops;
544 struct file *fp = NULL;
545 struct knote *kn = NULL;
546 int s, error = 0;
547
548 if (kev->filter < 0) {
549 if (kev->filter + EVFILT_SYSCOUNT < 0)
550 return (EINVAL);
551 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
552 } else {
553 /*
554 * XXX
555 * filter attach routine is responsible for insuring that
556 * the identifier can be attached to it.
557 */
558 printf("unknown filter: %d\n", kev->filter);
559 return (EINVAL);
560 }
561
562 if (fops->f_isfd) {
563 /* validate descriptor */
564 if ((u_int)kev->ident >= fdp->fd_nfiles ||
565 (fp = fdp->fd_ofiles[kev->ident]) == NULL)
566 return (EBADF);
567 fhold(fp);
568
569 if (kev->ident < fdp->fd_knlistsize) {
570 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
571 if (kq == kn->kn_kq &&
572 kev->filter == kn->kn_filter)
573 break;
574 }
575 } else {
576 if (fdp->fd_knhashmask != 0) {
577 struct klist *list;
578
579 list = &fdp->fd_knhash[
580 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
581 SLIST_FOREACH(kn, list, kn_link)
582 if (kev->ident == kn->kn_id &&
583 kq == kn->kn_kq &&
584 kev->filter == kn->kn_filter)
585 break;
586 }
587 }
588
589 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
590 error = ENOENT;
591 goto done;
592 }
593
594 /*
595 * kn now contains the matching knote, or NULL if no match
596 */
597 if (kev->flags & EV_ADD) {
598
599 if (kn == NULL) {
600 kn = knote_alloc();
601 if (kn == NULL) {
602 error = ENOMEM;
603 goto done;
604 }
605 kn->kn_fp = fp;
606 kn->kn_kq = kq;
607 kn->kn_fop = fops;
608
609 /*
610 * apply reference count to knote structure, and
611 * do not release it at the end of this routine.
612 */
613 fp = NULL;
614
615 kn->kn_sfflags = kev->fflags;
616 kn->kn_sdata = kev->data;
617 kev->fflags = 0;
618 kev->data = 0;
619 kn->kn_kevent = *kev;
620
621 knote_fdpattach(kn, fdp);
622 if ((error = fops->f_attach(kn)) != 0) {
623 knote_drop(kn, p);
624 goto done;
625 }
626 } else {
627 /*
628 * The user may change some filter values after the
629 * initial EV_ADD, but doing so will not reset any
630 * filter which have already been triggered.
631 */
632 kn->kn_sfflags = kev->fflags;
633 kn->kn_sdata = kev->data;
634 kn->kn_kevent.udata = kev->udata;
635 }
636
637 s = splhigh();
638 if (kn->kn_fop->f_event(kn, 0))
639 KNOTE_ACTIVATE(kn);
640 splx(s);
641
642 } else if (kev->flags & EV_DELETE) {
643 kn->kn_fop->f_detach(kn);
644 knote_drop(kn, p);
645 goto done;
646 }
647
648 if ((kev->flags & EV_DISABLE) &&
649 ((kn->kn_status & KN_DISABLED) == 0)) {
650 s = splhigh();
651 kn->kn_status |= KN_DISABLED;
652 splx(s);
653 }
654
655 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
656 s = splhigh();
657 kn->kn_status &= ~KN_DISABLED;
658 if ((kn->kn_status & KN_ACTIVE) &&
659 ((kn->kn_status & KN_QUEUED) == 0))
660 knote_enqueue(kn);
661 splx(s);
662 }
663
664 done:
665 if (fp != NULL)
666 fdrop(fp, p);
667 return (error);
668 }
669
670 static int
671 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
672 const struct timespec *tsp, register_t *retval, struct proc *p)
673 {
674 struct kqueue *kq = (struct kqueue *)fp->f_data;
675 struct timeval atv, rtv, ttv;
676 int s, count, timeout, error = 0;
677 struct knote marker;
678
679 count = maxevents;
680 if (count == 0)
681 goto done;
682
683 if (tsp != NULL) {
684 TIMESPEC_TO_TIMEVAL(&atv, tsp);
685 if (itimerfix(&atv)) {
686 error = EINVAL;
687 goto done;
688 }
689 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
690 timeout = -1;
691 else
692 timeout = atv.tv_sec > 24 * 60 * 60 ?
693 24 * 60 * 60 * hz : tvtohz(&atv);
694 getmicrouptime(&rtv);
695 timevaladd(&atv, &rtv);
696 } else {
697 atv.tv_sec = 0;
698 atv.tv_usec = 0;
699 timeout = 0;
700 }
701 goto start;
702
703 retry:
704 if (atv.tv_sec || atv.tv_usec) {
705 getmicrouptime(&rtv);
706 if (timevalcmp(&rtv, &atv, >=))
707 goto done;
708 ttv = atv;
709 timevalsub(&ttv, &rtv);
710 timeout = ttv.tv_sec > 24 * 60 * 60 ?
711 24 * 60 * 60 * hz : tvtohz(&ttv);
712 }
713
714 start:
715 s = splhigh();
716 if (kq->kq_count == 0) {
717 if (timeout < 0) {
718 error = EWOULDBLOCK;
719 } else {
720 kq->kq_state |= KQ_SLEEP;
721 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
722 }
723 splx(s);
724 if (error == 0)
725 goto retry;
726 /* don't restart after signals... */
727 if (error == ERESTART)
728 error = EINTR;
729 else if (error == EWOULDBLOCK)
730 error = 0;
731 goto done;
732 }
733
734 /* JMM - This marker trick doesn't work with multiple threads */
735 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
736 while (count) {
737 int maxkev = (count > KQ_NEVENTS) ? KQ_NEVENTS : count;
738 struct kevent kq_kev[maxkev];
739 struct kevent *kevp = kq_kev;
740 struct knote *kn;
741 int nkev = 0;
742
743 while (nkev < maxkev) {
744 kn = TAILQ_FIRST(&kq->kq_head);
745 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
746 if (kn == &marker) {
747 if (count == maxevents)
748 goto retry;
749 break;
750 } else if (kn->kn_status & KN_DISABLED) {
751 kn->kn_status &= ~KN_QUEUED;
752 kq->kq_count--;
753 continue;
754 } else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
755 kn->kn_fop->f_event(kn, 0) == 0) {
756 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
757 kq->kq_count--;
758 continue;
759 }
760
761 *kevp = kn->kn_kevent;
762 kevp++;
763 nkev++;
764 count--;
765
766 if (kn->kn_flags & EV_ONESHOT) {
767 kn->kn_status &= ~KN_QUEUED;
768 kq->kq_count--;
769 splx(s);
770 kn->kn_fop->f_detach(kn);
771 knote_drop(kn, p);
772 s = splhigh();
773 } else if (kn->kn_flags & EV_CLEAR) {
774 kn->kn_data = 0;
775 kn->kn_fflags = 0;
776 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
777 kq->kq_count--;
778 } else {
779 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
780 }
781 }
782 splx(s);
783 error = copyout((caddr_t)kq_kev, (caddr_t)ulistp,
784 sizeof(struct kevent) * nkev);
785 if (kn == &marker)
786 goto done;
787 ulistp += nkev;
788 s = splhigh();
789 if (error)
790 break;
791 }
792 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
793 splx(s);
794 done:
795 *retval = maxevents - count;
796 return (error);
797 }
798
799 /*
800 * XXX
801 * This could be expanded to call kqueue_scan, if desired.
802 */
803 /*ARGSUSED*/
804 static int
805 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred,
806 int flags, struct proc *p)
807 {
808 return (ENXIO);
809 }
810
811 /*ARGSUSED*/
812 static int
813 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred,
814 int flags, struct proc *p)
815 {
816 return (ENXIO);
817 }
818
819 /*ARGSUSED*/
820 static int
821 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
822 {
823 return (ENOTTY);
824 }
825
826 /*ARGSUSED*/
827 static int
828 kqueue_select(struct file *fp, int which, void *wql, struct proc *p)
829 {
830 struct kqueue *kq = (struct kqueue *)fp->f_data;
831 int retnum = 0;
832 int s = splnet();
833
834 if (which == FREAD) {
835 if (kq->kq_count) {
836 retnum = 1;
837 } else {
838 selrecord(p, &kq->kq_sel, wql);
839 kq->kq_state |= KQ_SEL;
840 }
841 }
842 splx(s);
843 return (retnum);
844 }
845
846 /*ARGSUSED*/
847 static int
848 kqueue_close(struct file *fp, struct proc *p)
849 {
850 struct kqueue *kq = (struct kqueue *)fp->f_data;
851 struct filedesc *fdp = p->p_fd;
852 struct knote **knp, *kn, *kn0;
853 int i;
854
855 for (i = 0; i < fdp->fd_knlistsize; i++) {
856 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
857 kn = *knp;
858 while (kn != NULL) {
859 kn0 = SLIST_NEXT(kn, kn_link);
860 if (kq == kn->kn_kq) {
861 kn->kn_fop->f_detach(kn);
862 fdrop(kn->kn_fp, p);
863 knote_free(kn);
864 *knp = kn0;
865 } else {
866 knp = &SLIST_NEXT(kn, kn_link);
867 }
868 kn = kn0;
869 }
870 }
871 if (fdp->fd_knhashmask != 0) {
872 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
873 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
874 kn = *knp;
875 while (kn != NULL) {
876 kn0 = SLIST_NEXT(kn, kn_link);
877 if (kq == kn->kn_kq) {
878 kn->kn_fop->f_detach(kn);
879 /* XXX non-fd release of kn->kn_ptr */
880 knote_free(kn);
881 *knp = kn0;
882 } else {
883 knp = &SLIST_NEXT(kn, kn_link);
884 }
885 kn = kn0;
886 }
887 }
888 }
889 _FREE(kq, M_KQUEUE);
890 fp->f_data = NULL;
891
892 return (0);
893 }
894
895 /*ARGSUSED*/
896 static int
897 kqueue_kqfilter(struct file *fp, struct knote *kn, struct proc *p)
898 {
899 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
900
901 if (kn->kn_filter != EVFILT_READ || (kq->kq_state & KQ_SEL))
902 return (1);
903
904 kn->kn_fop = &kqread_filtops;
905 KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
906 return (0);
907 }
908
909 /*ARGSUSED*/
910 int
911 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
912 {
913 struct kqueue *kq = (struct kqueue *)fp->f_data;
914
915 bzero((void *)st, sizeof(*st));
916 st->st_size = kq->kq_count;
917 st->st_blksize = sizeof(struct kevent);
918 st->st_mode = S_IFIFO;
919 return (0);
920 }
921
922 static void
923 kqueue_wakeup(struct kqueue *kq)
924 {
925
926 if (kq->kq_state & KQ_SLEEP) {
927 kq->kq_state &= ~KQ_SLEEP;
928 wakeup(kq);
929 }
930 if (kq->kq_state & KQ_SEL) {
931 // kq->kq_state &= ~KQ_SEL; /* remove for now */
932 selwakeup(&kq->kq_sel);
933 } else
934 KNOTE(&kq->kq_sel.si_note, 0);
935 }
936
937 void
938 klist_init(struct klist *list)
939 {
940 SLIST_INIT(list);
941 }
942
943 /*
944 * walk down a list of knotes, activating them if their event has triggered.
945 */
946 void
947 knote(struct klist *list, long hint)
948 {
949 struct knote *kn;
950
951 SLIST_FOREACH(kn, list, kn_selnext)
952 if (kn->kn_fop->f_event(kn, hint))
953 KNOTE_ACTIVATE(kn);
954 }
955
956 /*
957 * attach a knote to the specified list. Return true if this is the first entry.
958 */
959 int
960 knote_attach(struct klist *list, struct knote *kn)
961 {
962 int ret = SLIST_EMPTY(list);
963 SLIST_INSERT_HEAD(list, kn, kn_selnext);
964 return ret;
965 }
966
967 /*
968 * detach a knote from the specified list. Return true if that was the last entry.
969 */
970 int
971 knote_detach(struct klist *list, struct knote *kn)
972 {
973 SLIST_REMOVE(list, kn, knote, kn_selnext);
974 return SLIST_EMPTY(list);
975 }
976
977 /*
978 * remove all knotes from a specified klist
979 */
980 void
981 knote_remove(struct proc *p, struct klist *list)
982 {
983 struct knote *kn;
984
985 while ((kn = SLIST_FIRST(list)) != NULL) {
986 kn->kn_fop->f_detach(kn);
987 knote_drop(kn, p);
988 }
989 }
990
991 /*
992 * remove all knotes referencing a specified fd
993 */
994 void
995 knote_fdclose(struct proc *p, int fd)
996 {
997 struct filedesc *fdp = p->p_fd;
998 struct klist *list = &fdp->fd_knlist[fd];
999
1000 knote_remove(p, list);
1001 }
1002
1003 static void
1004 knote_fdpattach(struct knote *kn, struct filedesc *fdp)
1005 {
1006 struct klist *list;
1007 int size;
1008
1009 if (! kn->kn_fop->f_isfd) {
1010 if (fdp->fd_knhashmask == 0)
1011 fdp->fd_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1012 &fdp->fd_knhashmask);
1013 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1014 goto done;
1015 }
1016
1017 if (fdp->fd_knlistsize <= kn->kn_id) {
1018 size = fdp->fd_knlistsize;
1019 while (size <= kn->kn_id)
1020 size += KQEXTENT;
1021 MALLOC(list, struct klist *,
1022 size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
1023 bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
1024 fdp->fd_knlistsize * sizeof(struct klist *));
1025 bzero((caddr_t)list +
1026 fdp->fd_knlistsize * sizeof(struct klist *),
1027 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1028 if (fdp->fd_knlist != NULL)
1029 FREE(fdp->fd_knlist, M_KQUEUE);
1030 fdp->fd_knlistsize = size;
1031 fdp->fd_knlist = list;
1032 }
1033 list = &fdp->fd_knlist[kn->kn_id];
1034 done:
1035 SLIST_INSERT_HEAD(list, kn, kn_link);
1036 kn->kn_status = 0;
1037 }
1038
1039 /*
1040 * should be called at spl == 0, since we don't want to hold spl
1041 * while calling fdrop and free.
1042 */
1043 static void
1044 knote_drop(struct knote *kn, struct proc *p)
1045 {
1046 struct filedesc *fdp = p->p_fd;
1047 struct klist *list;
1048
1049 if (kn->kn_fop->f_isfd)
1050 list = &fdp->fd_knlist[kn->kn_id];
1051 else
1052 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1053
1054 SLIST_REMOVE(list, kn, knote, kn_link);
1055 if (kn->kn_status & KN_QUEUED)
1056 knote_dequeue(kn);
1057 if (kn->kn_fop->f_isfd)
1058 fdrop(kn->kn_fp, p);
1059 knote_free(kn);
1060 }
1061
1062
1063 static void
1064 knote_enqueue(struct knote *kn)
1065 {
1066 struct kqueue *kq = kn->kn_kq;
1067 int s = splhigh();
1068
1069 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1070
1071 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1072 kn->kn_status |= KN_QUEUED;
1073 kq->kq_count++;
1074 splx(s);
1075 kqueue_wakeup(kq);
1076 }
1077
1078 static void
1079 knote_dequeue(struct knote *kn)
1080 {
1081 struct kqueue *kq = kn->kn_kq;
1082 int s = splhigh();
1083
1084 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1085
1086 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1087 kn->kn_status &= ~KN_QUEUED;
1088 kq->kq_count--;
1089 splx(s);
1090 }
1091
1092 void
1093 knote_init(void)
1094 {
1095 knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), 8192, "knote zone");
1096 }
1097 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1098
1099 static struct knote *
1100 knote_alloc(void)
1101 {
1102 return ((struct knote *)zalloc(knote_zone));
1103 }
1104
1105 static void
1106 knote_free(struct knote *kn)
1107 {
1108 zfree(knote_zone, (vm_offset_t)kn);
1109 }
1110
1111 #include <sys/param.h>
1112 #include <sys/socket.h>
1113 #include <sys/protosw.h>
1114 #include <sys/domain.h>
1115 #include <sys/mbuf.h>
1116 #include <sys/kern_event.h>
1117 #include <sys/malloc.h>
1118 #include <sys/sys_domain.h>
1119 #include <sys/syslog.h>
1120
1121
1122 int raw_usrreq();
1123 struct pr_usrreqs event_usrreqs;
1124
1125 struct protosw eventsw[] = {
1126 {
1127 SOCK_RAW, &systemdomain, SYSPROTO_EVENT, PR_ATOMIC,
1128 0, 0, 0, 0,
1129 0,
1130 0, 0, 0, 0,
1131 0, &event_usrreqs
1132 }
1133 };
1134
1135 static
1136 struct kern_event_head kern_event_head;
1137
1138 static u_long static_event_id = 0;
1139
1140 /*
1141 * Install the protosw's for the NKE manager. Invoked at
1142 * extension load time
1143 */
1144 int
1145 kern_event_init(void)
1146 {
1147 int retval;
1148
1149 if ((retval = net_add_proto(eventsw, &systemdomain)) == 0)
1150 return(KERN_SUCCESS);
1151
1152 log(LOG_WARNING, "Can't install kernel events protocol (%d)\n", retval);
1153 return(retval);
1154 }
1155
1156 int kev_attach(struct socket *so, int proto, struct proc *p)
1157 {
1158 int error;
1159 struct kern_event_pcb *ev_pcb;
1160
1161 error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
1162 if (error)
1163 return error;
1164
1165 ev_pcb = _MALLOC(sizeof(struct kern_event_pcb), M_PCB, M_WAITOK);
1166 if (ev_pcb == 0)
1167 return ENOBUFS;
1168
1169 ev_pcb->ev_socket = so;
1170 ev_pcb->vendor_code_filter = 0xffffffff;
1171
1172 so->so_pcb = (caddr_t) ev_pcb;
1173 LIST_INSERT_HEAD(&kern_event_head, ev_pcb, ev_link);
1174
1175 return 0;
1176 }
1177
1178
1179 int kev_detach(struct socket *so)
1180 {
1181 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
1182
1183 if (ev_pcb != 0) {
1184 LIST_REMOVE(ev_pcb, ev_link);
1185 FREE(ev_pcb, M_PCB);
1186 so->so_pcb = 0;
1187 }
1188
1189 return 0;
1190 }
1191
1192
1193 int kev_post_msg(struct kev_msg *event_msg)
1194 {
1195 struct mbuf *m, *m2;
1196 struct kern_event_pcb *ev_pcb;
1197 struct kern_event_msg *ev;
1198 char *tmp;
1199 int total_size;
1200 int i;
1201
1202
1203 m = m_get(M_DONTWAIT, MT_DATA);
1204 if (m == 0)
1205 return ENOBUFS;
1206
1207 ev = mtod(m, struct kern_event_msg *);
1208 total_size = KEV_MSG_HEADER_SIZE;
1209
1210 tmp = (char *) &ev->event_data[0];
1211 for (i = 0; i < 5; i++) {
1212 if (event_msg->dv[i].data_length == 0)
1213 break;
1214
1215 total_size += event_msg->dv[i].data_length;
1216 bcopy(event_msg->dv[i].data_ptr, tmp,
1217 event_msg->dv[i].data_length);
1218 tmp += event_msg->dv[i].data_length;
1219 }
1220
1221
1222 ev->id = ++static_event_id;
1223 ev->total_size = total_size;
1224 ev->vendor_code = event_msg->vendor_code;
1225 ev->kev_class = event_msg->kev_class;
1226 ev->kev_subclass = event_msg->kev_subclass;
1227 ev->event_code = event_msg->event_code;
1228
1229 m->m_len = total_size;
1230 for (ev_pcb = LIST_FIRST(&kern_event_head);
1231 ev_pcb;
1232 ev_pcb = LIST_NEXT(ev_pcb, ev_link)) {
1233
1234 if (ev_pcb->vendor_code_filter != KEV_ANY_VENDOR) {
1235 if (ev_pcb->vendor_code_filter != ev->vendor_code)
1236 continue;
1237
1238 if (ev_pcb->class_filter != KEV_ANY_CLASS) {
1239 if (ev_pcb->class_filter != ev->kev_class)
1240 continue;
1241
1242 if ((ev_pcb->subclass_filter != KEV_ANY_SUBCLASS) &&
1243 (ev_pcb->subclass_filter != ev->kev_subclass))
1244 continue;
1245 }
1246 }
1247
1248 m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
1249 if (m2 == 0) {
1250 m_free(m);
1251 return ENOBUFS;
1252 }
1253
1254 sbappendrecord(&ev_pcb->ev_socket->so_rcv, m2);
1255 sorwakeup(ev_pcb->ev_socket);
1256 }
1257
1258
1259 m_free(m);
1260 return 0;
1261 }
1262
1263
1264 int kev_control(so, cmd, data, ifp, p)
1265 struct socket *so;
1266 u_long cmd;
1267 caddr_t data;
1268 register struct ifnet *ifp;
1269 struct proc *p;
1270 {
1271 struct kev_request *kev_req = (struct kev_request *) data;
1272 int stat = 0;
1273 struct kern_event_pcb *ev_pcb;
1274 u_long *id_value = (u_long *) data;
1275
1276
1277 switch (cmd) {
1278
1279 case SIOCGKEVID:
1280 *id_value = static_event_id;
1281 break;
1282
1283 case SIOCSKEVFILT:
1284 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
1285 ev_pcb->vendor_code_filter = kev_req->vendor_code;
1286 ev_pcb->class_filter = kev_req->kev_class;
1287 ev_pcb->subclass_filter = kev_req->kev_subclass;
1288 break;
1289
1290 case SIOCGKEVFILT:
1291 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
1292 kev_req->vendor_code = ev_pcb->vendor_code_filter;
1293 kev_req->kev_class = ev_pcb->class_filter;
1294 kev_req->kev_subclass = ev_pcb->subclass_filter;
1295 break;
1296
1297 default:
1298 return EOPNOTSUPP;
1299 }
1300
1301 return 0;
1302 }
1303
1304
1305 struct pr_usrreqs event_usrreqs = {
1306 pru_abort_notsupp, pru_accept_notsupp, kev_attach, pru_bind_notsupp, pru_connect_notsupp,
1307 pru_connect2_notsupp, kev_control, kev_detach, pru_disconnect_notsupp,
1308 pru_listen_notsupp, pru_peeraddr_notsupp, pru_rcvd_notsupp, pru_rcvoob_notsupp,
1309 pru_send_notsupp, pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp,
1310 pru_sosend_notsupp, soreceive, sopoll
1311 };
1312
1313
1314