]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_clock.c
xnu-517.tar.gz
[apple/xnu.git] / bsd / kern / kern_clock.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
26 /*-
27 * Copyright (c) 1982, 1986, 1991, 1993
28 * The Regents of the University of California. All rights reserved.
29 * (c) UNIX System Laboratories, Inc.
30 * All or some portions of this file are derived from material licensed
31 * to the University of California by American Telephone and Telegraph
32 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
33 * the permission of UNIX System Laboratories, Inc.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the University of
46 * California, Berkeley and its contributors.
47 * 4. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
64 */
65 /*
66 * HISTORY
67 */
68
69 #include <machine/spl.h>
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/time.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/resource.h>
77 #include <sys/proc.h>
78 #include <sys/vm.h>
79
80 #ifdef GPROF
81 #include <sys/gmon.h>
82 #endif
83
84 #include <kern/thread.h>
85 #include <kern/ast.h>
86 #include <kern/assert.h>
87 #include <mach/boolean.h>
88
89 #include <kern/thread_call.h>
90
91 /*
92 * Clock handling routines.
93 *
94 * This code is written to operate with two timers which run
95 * independently of each other. The main clock, running at hz
96 * times per second, is used to do scheduling and timeout calculations.
97 * The second timer does resource utilization estimation statistically
98 * based on the state of the machine phz times a second. Both functions
99 * can be performed by a single clock (ie hz == phz), however the
100 * statistics will be much more prone to errors. Ideally a machine
101 * would have separate clocks measuring time spent in user state, system
102 * state, interrupt state, and idle state. These clocks would allow a non-
103 * approximate measure of resource utilization.
104 */
105
106 /*
107 * The hz hardware interval timer.
108 * We update the events relating to real time.
109 * If this timer is also being used to gather statistics,
110 * we run through the statistics gathering routine as well.
111 */
112
113 int bsd_hardclockinit = 0;
114 /*ARGSUSED*/
115 void
116 bsd_hardclock(usermode, pc, numticks)
117 boolean_t usermode;
118 caddr_t pc;
119 int numticks;
120 {
121 register struct proc *p;
122 register thread_t thread;
123 int nusecs = numticks * tick;
124 struct timeval tv;
125
126 if (!bsd_hardclockinit)
127 return;
128
129 /*
130 * Increment the time-of-day.
131 */
132 microtime(&tv);
133 time = tv;
134
135 if (bsd_hardclockinit < 0) {
136 return;
137 }
138
139 thread = current_act();
140 /*
141 * Charge the time out based on the mode the cpu is in.
142 * Here again we fudge for the lack of proper interval timers
143 * assuming that the current state has been around at least
144 * one tick.
145 */
146 p = (struct proc *)current_proc();
147 if (p && ((p->p_flag & P_WEXIT) == NULL)) {
148 if (usermode) {
149 if (p->p_stats && p->p_stats->p_prof.pr_scale) {
150 p->p_flag |= P_OWEUPC;
151 astbsd_on();
152 }
153
154 /*
155 * CPU was in user state. Increment
156 * user time counter, and process process-virtual time
157 * interval timer.
158 */
159 if (p->p_stats &&
160 timerisset(&p->p_stats->p_timer[ITIMER_VIRTUAL].it_value) &&
161 !itimerdecr(&p->p_stats->p_timer[ITIMER_VIRTUAL], nusecs)) {
162 extern void psignal_vtalarm(struct proc *);
163
164 /* does psignal(p, SIGVTALRM) in a thread context */
165 thread_call_func((thread_call_func_t)psignal_vtalarm, p, FALSE);
166 }
167 }
168
169 /*
170 * If the cpu is currently scheduled to a process, then
171 * charge it with resource utilization for a tick, updating
172 * statistics which run in (user+system) virtual time,
173 * such as the cpu time limit and profiling timers.
174 * This assumes that the current process has been running
175 * the entire last tick.
176 */
177 if (!is_thread_idle(thread)) {
178 if (p->p_limit &&
179 p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
180 time_value_t sys_time, user_time;
181
182 thread_read_times(thread, &user_time, &sys_time);
183 if ((sys_time.seconds + user_time.seconds + 1) >
184 p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur) {
185 extern void psignal_xcpu(struct proc *);
186
187 /* does psignal(p, SIGXCPU) in a thread context */
188 thread_call_func((thread_call_func_t)psignal_xcpu, p, FALSE);
189
190 if (p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur <
191 p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_max)
192 p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur += 5;
193 }
194 }
195 if (timerisset(&p->p_stats->p_timer[ITIMER_PROF].it_value) &&
196 !itimerdecr(&p->p_stats->p_timer[ITIMER_PROF], nusecs)) {
197 extern void psignal_sigprof(struct proc *);
198
199 /* does psignal(p, SIGPROF) in a thread context */
200 thread_call_func((thread_call_func_t)psignal_sigprof, p, FALSE);
201 }
202 }
203 }
204
205 #ifdef GPROF
206 /*
207 * Gather some statistics.
208 */
209 gatherstats(usermode, pc);
210 #endif
211 }
212
213 /*
214 * Gather some statistics.
215 */
216 /*ARGSUSED*/
217 void
218 gatherstats(
219 boolean_t usermode,
220 caddr_t pc)
221 {
222 #ifdef GPROF
223 if (!usermode) {
224 struct gmonparam *p = &_gmonparam;
225
226 if (p->state == GMON_PROF_ON) {
227 register int s;
228
229 s = pc - p->lowpc;
230 if (s < p->textsize) {
231 s /= (HISTFRACTION * sizeof(*p->kcount));
232 p->kcount[s]++;
233 }
234 }
235 }
236 #endif
237 }
238
239
240 /*
241 * Kernel timeout services.
242 */
243
244 /*
245 * Set a timeout.
246 *
247 * fcn: function to call
248 * param: parameter to pass to function
249 * interval: timeout interval, in hz.
250 */
251 void
252 timeout(
253 timeout_fcn_t fcn,
254 void *param,
255 int interval)
256 {
257 uint64_t deadline;
258
259 clock_interval_to_deadline(interval, NSEC_PER_SEC / hz, &deadline);
260 thread_call_func_delayed((thread_call_func_t)fcn, param, deadline);
261 }
262
263 /*
264 * Cancel a timeout.
265 */
266 void
267 untimeout(
268 register timeout_fcn_t fcn,
269 register void *param)
270 {
271 thread_call_func_cancel((thread_call_func_t)fcn, param, FALSE);
272 }
273
274
275
276 /*
277 * Compute number of hz until specified time.
278 * Used to compute third argument to timeout() from an
279 * absolute time.
280 */
281 hzto(tv)
282 struct timeval *tv;
283 {
284 struct timeval now;
285 register long ticks;
286 register long sec;
287
288 microtime(&now);
289 /*
290 * If number of milliseconds will fit in 32 bit arithmetic,
291 * then compute number of milliseconds to time and scale to
292 * ticks. Otherwise just compute number of hz in time, rounding
293 * times greater than representible to maximum value.
294 *
295 * Delta times less than 25 days can be computed ``exactly''.
296 * Maximum value for any timeout in 10ms ticks is 250 days.
297 */
298 sec = tv->tv_sec - now.tv_sec;
299 if (sec <= 0x7fffffff / 1000 - 1000)
300 ticks = ((tv->tv_sec - now.tv_sec) * 1000 +
301 (tv->tv_usec - now.tv_usec) / 1000)
302 / (tick / 1000);
303 else if (sec <= 0x7fffffff / hz)
304 ticks = sec * hz;
305 else
306 ticks = 0x7fffffff;
307
308 return (ticks);
309 }
310
311 /*
312 * Return information about system clocks.
313 */
314 int
315 sysctl_clockrate(where, sizep)
316 register char *where;
317 size_t *sizep;
318 {
319 struct clockinfo clkinfo;
320
321 /*
322 * Construct clockinfo structure.
323 */
324 clkinfo.hz = hz;
325 clkinfo.tick = tick;
326 clkinfo.profhz = hz;
327 clkinfo.stathz = hz;
328 return sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo));
329 }
330
331
332 /*
333 * Compute number of ticks in the specified amount of time.
334 */
335 int
336 tvtohz(tv)
337 struct timeval *tv;
338 {
339 register unsigned long ticks;
340 register long sec, usec;
341
342 /*
343 * If the number of usecs in the whole seconds part of the time
344 * difference fits in a long, then the total number of usecs will
345 * fit in an unsigned long. Compute the total and convert it to
346 * ticks, rounding up and adding 1 to allow for the current tick
347 * to expire. Rounding also depends on unsigned long arithmetic
348 * to avoid overflow.
349 *
350 * Otherwise, if the number of ticks in the whole seconds part of
351 * the time difference fits in a long, then convert the parts to
352 * ticks separately and add, using similar rounding methods and
353 * overflow avoidance. This method would work in the previous
354 * case but it is slightly slower and assumes that hz is integral.
355 *
356 * Otherwise, round the time difference down to the maximum
357 * representable value.
358 *
359 * If ints have 32 bits, then the maximum value for any timeout in
360 * 10ms ticks is 248 days.
361 */
362 sec = tv->tv_sec;
363 usec = tv->tv_usec;
364 if (usec < 0) {
365 sec--;
366 usec += 1000000;
367 }
368 if (sec < 0) {
369 #ifdef DIAGNOSTIC
370 if (usec > 0) {
371 sec++;
372 usec -= 1000000;
373 }
374 printf("tvotohz: negative time difference %ld sec %ld usec\n",
375 sec, usec);
376 #endif
377 ticks = 1;
378 } else if (sec <= LONG_MAX / 1000000)
379 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
380 / tick + 1;
381 else if (sec <= LONG_MAX / hz)
382 ticks = sec * hz
383 + ((unsigned long)usec + (tick - 1)) / tick + 1;
384 else
385 ticks = LONG_MAX;
386 if (ticks > INT_MAX)
387 ticks = INT_MAX;
388 return ((int)ticks);
389 }
390
391
392 /*
393 * Start profiling on a process.
394 *
395 * Kernel profiling passes kernel_proc which never exits and hence
396 * keeps the profile clock running constantly.
397 */
398 void
399 startprofclock(p)
400 register struct proc *p;
401 {
402 if ((p->p_flag & P_PROFIL) == 0)
403 p->p_flag |= P_PROFIL;
404 }
405
406 /*
407 * Stop profiling on a process.
408 */
409 void
410 stopprofclock(p)
411 register struct proc *p;
412 {
413 if (p->p_flag & P_PROFIL)
414 p->p_flag &= ~P_PROFIL;
415 }
416
417 void
418 bsd_uprofil(struct time_value *syst, unsigned int pc)
419 {
420 struct proc *p = current_proc();
421 int ticks;
422 struct timeval *tv;
423 struct timeval st;
424
425 if (p == NULL)
426 return;
427 if ( !(p->p_flag & P_PROFIL))
428 return;
429
430 st.tv_sec = syst->seconds;
431 st.tv_usec = syst->microseconds;
432
433 tv = &(p->p_stats->p_ru.ru_stime);
434
435 ticks = ((tv->tv_sec - st.tv_sec) * 1000 +
436 (tv->tv_usec - st.tv_usec) / 1000) /
437 (tick / 1000);
438 if (ticks)
439 addupc_task(p, pc, ticks);
440 }
441
442 void
443 get_procrustime(time_value_t *tv)
444 {
445 struct proc *p = current_proc();
446 struct timeval st;
447
448 if (p == NULL)
449 return;
450 if ( !(p->p_flag & P_PROFIL))
451 return;
452
453 st = p->p_stats->p_ru.ru_stime;
454
455 tv->seconds = st.tv_sec;
456 tv->microseconds = st.tv_usec;
457 }