]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/clock.c
xnu-4570.41.2.tar.gz
[apple/xnu.git] / osfmk / kern / clock.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 */
33 /*-
34 * Copyright (c) 1982, 1986, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)time.h 8.5 (Berkeley) 5/4/95
62 * $FreeBSD$
63 */
64
65 #include <mach/mach_types.h>
66
67 #include <kern/spl.h>
68 #include <kern/sched_prim.h>
69 #include <kern/thread.h>
70 #include <kern/clock.h>
71 #include <kern/host_notify.h>
72 #include <kern/thread_call.h>
73 #include <libkern/OSAtomic.h>
74
75 #include <IOKit/IOPlatformExpert.h>
76
77 #include <machine/commpage.h>
78 #include <machine/config.h>
79 #include <machine/machine_routines.h>
80
81 #include <mach/mach_traps.h>
82 #include <mach/mach_time.h>
83
84 #include <sys/kdebug.h>
85 #include <sys/timex.h>
86 #include <kern/arithmetic_128.h>
87 #include <os/log.h>
88
89 uint32_t hz_tick_interval = 1;
90 static uint64_t has_monotonic_clock = 0;
91
92 decl_simple_lock_data(,clock_lock)
93 lck_grp_attr_t * settime_lock_grp_attr;
94 lck_grp_t * settime_lock_grp;
95 lck_attr_t * settime_lock_attr;
96 lck_mtx_t settime_lock;
97
98 #define clock_lock() \
99 simple_lock(&clock_lock)
100
101 #define clock_unlock() \
102 simple_unlock(&clock_lock)
103
104 #define clock_lock_init() \
105 simple_lock_init(&clock_lock, 0)
106
107 #ifdef kdp_simple_lock_is_acquired
108 boolean_t kdp_clock_is_locked()
109 {
110 return kdp_simple_lock_is_acquired(&clock_lock);
111 }
112 #endif
113
114 struct bintime {
115 time_t sec;
116 uint64_t frac;
117 };
118
119 static __inline void
120 bintime_addx(struct bintime *_bt, uint64_t _x)
121 {
122 uint64_t _u;
123
124 _u = _bt->frac;
125 _bt->frac += _x;
126 if (_u > _bt->frac)
127 _bt->sec++;
128 }
129
130 static __inline void
131 bintime_subx(struct bintime *_bt, uint64_t _x)
132 {
133 uint64_t _u;
134
135 _u = _bt->frac;
136 _bt->frac -= _x;
137 if (_u < _bt->frac)
138 _bt->sec--;
139 }
140
141 static __inline void
142 bintime_addns(struct bintime *bt, uint64_t ns)
143 {
144 bt->sec += ns/ (uint64_t)NSEC_PER_SEC;
145 ns = ns % (uint64_t)NSEC_PER_SEC;
146 if (ns) {
147 /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
148 ns = ns * (uint64_t)18446744073LL;
149 bintime_addx(bt, ns);
150 }
151 }
152
153 static __inline void
154 bintime_subns(struct bintime *bt, uint64_t ns)
155 {
156 bt->sec -= ns/ (uint64_t)NSEC_PER_SEC;
157 ns = ns % (uint64_t)NSEC_PER_SEC;
158 if (ns) {
159 /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
160 ns = ns * (uint64_t)18446744073LL;
161 bintime_subx(bt, ns);
162 }
163 }
164
165 static __inline void
166 bintime_addxns(struct bintime *bt, uint64_t a, int64_t xns)
167 {
168 uint64_t uxns = (xns > 0)?(uint64_t )xns:(uint64_t)-xns;
169 uint64_t ns = multi_overflow(a, uxns);
170 if (xns > 0) {
171 if (ns)
172 bintime_addns(bt, ns);
173 ns = (a * uxns) / (uint64_t)NSEC_PER_SEC;
174 bintime_addx(bt, ns);
175 }
176 else{
177 if (ns)
178 bintime_subns(bt, ns);
179 ns = (a * uxns) / (uint64_t)NSEC_PER_SEC;
180 bintime_subx(bt,ns);
181 }
182 }
183
184
185 static __inline void
186 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
187 {
188 uint64_t _u;
189
190 _u = _bt->frac;
191 _bt->frac += _bt2->frac;
192 if (_u > _bt->frac)
193 _bt->sec++;
194 _bt->sec += _bt2->sec;
195 }
196
197 static __inline void
198 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
199 {
200 uint64_t _u;
201
202 _u = _bt->frac;
203 _bt->frac -= _bt2->frac;
204 if (_u < _bt->frac)
205 _bt->sec--;
206 _bt->sec -= _bt2->sec;
207 }
208
209 static __inline void
210 clock2bintime(const clock_sec_t *secs, const clock_usec_t *microsecs, struct bintime *_bt)
211 {
212
213 _bt->sec = *secs;
214 /* 18446744073709 = int(2^64 / 1000000) */
215 _bt->frac = *microsecs * (uint64_t)18446744073709LL;
216 }
217
218 static __inline void
219 bintime2usclock(const struct bintime *_bt, clock_sec_t *secs, clock_usec_t *microsecs)
220 {
221
222 *secs = _bt->sec;
223 *microsecs = ((uint64_t)USEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32;
224 }
225
226 static __inline void
227 bintime2nsclock(const struct bintime *_bt, clock_sec_t *secs, clock_usec_t *nanosecs)
228 {
229
230 *secs = _bt->sec;
231 *nanosecs = ((uint64_t)NSEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32;
232 }
233
234 static __inline void
235 bintime2absolutetime(const struct bintime *_bt, uint64_t *abs)
236 {
237 uint64_t nsec;
238 nsec = (uint64_t) _bt->sec * (uint64_t)NSEC_PER_SEC + (((uint64_t)NSEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32);
239 nanoseconds_to_absolutetime(nsec, abs);
240 }
241
242 struct latched_time {
243 uint64_t monotonic_time_usec;
244 uint64_t mach_time;
245 };
246
247 extern int
248 kernel_sysctlbyname(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
249
250 /*
251 * Time of day (calendar) variables.
252 *
253 * Algorithm:
254 *
255 * TOD <- bintime + delta*scale
256 *
257 * where :
258 * bintime is a cumulative offset that includes bootime and scaled time elapsed betweed bootime and last scale update.
259 * delta is ticks elapsed since last scale update.
260 * scale is computed according to an adjustment provided by ntp_kern.
261 */
262 static struct clock_calend {
263 uint64_t s_scale_ns; /* scale to apply for each second elapsed, it converts in ns */
264 int64_t s_adj_nsx; /* additional adj to apply for each second elapsed, it is expressed in 64 bit frac of ns */
265 uint64_t tick_scale_x; /* scale to apply for each tick elapsed, it converts in 64 bit frac of s */
266 uint64_t offset_count; /* abs time from which apply current scales */
267 struct bintime offset; /* cumulative offset expressed in (sec, 64 bits frac of a second) */
268 struct bintime bintime; /* cumulative offset (it includes bootime) expressed in (sec, 64 bits frac of a second) */
269 struct bintime boottime; /* boot time expressed in (sec, 64 bits frac of a second) */
270 struct bintime basesleep;
271 } clock_calend;
272
273 static uint64_t ticks_per_sec; /* ticks in a second (expressed in abs time) */
274
275 #if DEVELOPMENT || DEBUG
276 clock_sec_t last_utc_sec = 0;
277 clock_usec_t last_utc_usec = 0;
278 clock_sec_t max_utc_sec = 0;
279 clock_sec_t last_sys_sec = 0;
280 clock_usec_t last_sys_usec = 0;
281 #endif
282
283 #if DEVELOPMENT || DEBUG
284 extern int g_should_log_clock_adjustments;
285
286 static void print_all_clock_variables(const char*, clock_sec_t* pmu_secs, clock_usec_t* pmu_usec, clock_sec_t* sys_secs, clock_usec_t* sys_usec, struct clock_calend* calend_cp);
287 static void print_all_clock_variables_internal(const char *, struct clock_calend* calend_cp);
288 #else
289 #define print_all_clock_variables(...) do { } while (0)
290 #define print_all_clock_variables_internal(...) do { } while (0)
291 #endif
292
293 #if CONFIG_DTRACE
294
295
296 /*
297 * Unlocked calendar flipflop; this is used to track a clock_calend such
298 * that we can safely access a snapshot of a valid clock_calend structure
299 * without needing to take any locks to do it.
300 *
301 * The trick is to use a generation count and set the low bit when it is
302 * being updated/read; by doing this, we guarantee, through use of the
303 * hw_atomic functions, that the generation is incremented when the bit
304 * is cleared atomically (by using a 1 bit add).
305 */
306 static struct unlocked_clock_calend {
307 struct clock_calend calend; /* copy of calendar */
308 uint32_t gen; /* generation count */
309 } flipflop[ 2];
310
311 static void clock_track_calend_nowait(void);
312
313 #endif
314
315 void _clock_delay_until_deadline(uint64_t interval, uint64_t deadline);
316 void _clock_delay_until_deadline_with_leeway(uint64_t interval, uint64_t deadline, uint64_t leeway);
317
318 /* Boottime variables*/
319 static uint64_t clock_boottime;
320 static uint32_t clock_boottime_usec;
321
322 #define TIME_ADD(rsecs, secs, rfrac, frac, unit) \
323 MACRO_BEGIN \
324 if (((rfrac) += (frac)) >= (unit)) { \
325 (rfrac) -= (unit); \
326 (rsecs) += 1; \
327 } \
328 (rsecs) += (secs); \
329 MACRO_END
330
331 #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \
332 MACRO_BEGIN \
333 if ((int)((rfrac) -= (frac)) < 0) { \
334 (rfrac) += (unit); \
335 (rsecs) -= 1; \
336 } \
337 (rsecs) -= (secs); \
338 MACRO_END
339
340 /*
341 * clock_config:
342 *
343 * Called once at boot to configure the clock subsystem.
344 */
345 void
346 clock_config(void)
347 {
348
349 clock_lock_init();
350
351 settime_lock_grp_attr = lck_grp_attr_alloc_init();
352 settime_lock_grp = lck_grp_alloc_init("settime grp", settime_lock_grp_attr);
353 settime_lock_attr = lck_attr_alloc_init();
354 lck_mtx_init(&settime_lock, settime_lock_grp, settime_lock_attr);
355
356 clock_oldconfig();
357
358 ntp_init();
359
360 nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC, &ticks_per_sec);
361 }
362
363 /*
364 * clock_init:
365 *
366 * Called on a processor each time started.
367 */
368 void
369 clock_init(void)
370 {
371 clock_oldinit();
372 }
373
374 /*
375 * clock_timebase_init:
376 *
377 * Called by machine dependent code
378 * to initialize areas dependent on the
379 * timebase value. May be called multiple
380 * times during start up.
381 */
382 void
383 clock_timebase_init(void)
384 {
385 uint64_t abstime;
386
387 nanoseconds_to_absolutetime(NSEC_PER_SEC / 100, &abstime);
388 hz_tick_interval = (uint32_t)abstime;
389
390 sched_timebase_init();
391 }
392
393 /*
394 * mach_timebase_info_trap:
395 *
396 * User trap returns timebase constant.
397 */
398 kern_return_t
399 mach_timebase_info_trap(
400 struct mach_timebase_info_trap_args *args)
401 {
402 mach_vm_address_t out_info_addr = args->info;
403 mach_timebase_info_data_t info = {};
404
405 clock_timebase_info(&info);
406
407 copyout((void *)&info, out_info_addr, sizeof (info));
408
409 return (KERN_SUCCESS);
410 }
411
412 /*
413 * Calendar routines.
414 */
415
416 /*
417 * clock_get_calendar_microtime:
418 *
419 * Returns the current calendar value,
420 * microseconds as the fraction.
421 */
422 void
423 clock_get_calendar_microtime(
424 clock_sec_t *secs,
425 clock_usec_t *microsecs)
426 {
427 clock_get_calendar_absolute_and_microtime(secs, microsecs, NULL);
428 }
429
430 /*
431 * get_scale_factors_from_adj:
432 *
433 * computes scale factors from the value given in adjustment.
434 *
435 * Part of the code has been taken from tc_windup of FreeBSD
436 * written by Poul-Henning Kamp <phk@FreeBSD.ORG>, Julien Ridoux and
437 * Konstantin Belousov.
438 * https://github.com/freebsd/freebsd/blob/master/sys/kern/kern_tc.c
439 */
440 static void
441 get_scale_factors_from_adj(int64_t adjustment, uint64_t* tick_scale_x, uint64_t* s_scale_ns, int64_t* s_adj_nsx)
442 {
443 uint64_t scale;
444 int64_t nano, frac;
445
446 /*-
447 * Calculating the scaling factor. We want the number of 1/2^64
448 * fractions of a second per period of the hardware counter, taking
449 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
450 * processing provides us with.
451 *
452 * The th_adjustment is nanoseconds per second with 32 bit binary
453 * fraction and we want 64 bit binary fraction of second:
454 *
455 * x = a * 2^32 / 10^9 = a * 4.294967296
456 *
457 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
458 * we can only multiply by about 850 without overflowing, that
459 * leaves no suitably precise fractions for multiply before divide.
460 *
461 * Divide before multiply with a fraction of 2199/512 results in a
462 * systematic undercompensation of 10PPM of th_adjustment. On a
463 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
464 *
465 * We happily sacrifice the lowest of the 64 bits of our result
466 * to the goddess of code clarity.
467 *
468 */
469 scale = (uint64_t)1 << 63;
470 scale += (adjustment / 1024) * 2199;
471 scale /= ticks_per_sec;
472 *tick_scale_x = scale * 2;
473
474 /*
475 * hi part of adj
476 * it contains ns (without fraction) to add to the next sec.
477 * Get ns scale factor for the next sec.
478 */
479 nano = (adjustment > 0)? adjustment >> 32 : -((-adjustment) >> 32);
480 scale = (uint64_t) NSEC_PER_SEC;
481 scale += nano;
482 *s_scale_ns = scale;
483
484 /*
485 * lo part of adj
486 * it contains 32 bit frac of ns to add to the next sec.
487 * Keep it as additional adjustment for the next sec.
488 */
489 frac = (adjustment > 0)? ((uint32_t) adjustment) : -((uint32_t) (-adjustment));
490 *s_adj_nsx = (frac>0)? frac << 32 : -( (-frac) << 32);
491
492 return;
493 }
494
495 /*
496 * scale_delta:
497 *
498 * returns a bintime struct representing delta scaled accordingly to the
499 * scale factors provided to this function.
500 */
501 static struct bintime
502 scale_delta(uint64_t delta, uint64_t tick_scale_x, uint64_t s_scale_ns, int64_t s_adj_nsx)
503 {
504 uint64_t sec, new_ns, over;
505 struct bintime bt;
506
507 bt.sec = 0;
508 bt.frac = 0;
509
510 /*
511 * If more than one second is elapsed,
512 * scale fully elapsed seconds using scale factors for seconds.
513 * s_scale_ns -> scales sec to ns.
514 * s_adj_nsx -> additional adj expressed in 64 bit frac of ns to apply to each sec.
515 */
516 if (delta > ticks_per_sec) {
517 sec = (delta/ticks_per_sec);
518 new_ns = sec * s_scale_ns;
519 bintime_addns(&bt, new_ns);
520 if (s_adj_nsx) {
521 if (sec == 1) {
522 /* shortcut, no overflow can occur */
523 if (s_adj_nsx > 0)
524 bintime_addx(&bt, (uint64_t)s_adj_nsx/ (uint64_t)NSEC_PER_SEC);
525 else
526 bintime_subx(&bt, (uint64_t)-s_adj_nsx/ (uint64_t)NSEC_PER_SEC);
527 }
528 else{
529 /*
530 * s_adj_nsx is 64 bit frac of ns.
531 * sec*s_adj_nsx might overflow in int64_t.
532 * use bintime_addxns to not lose overflowed ns.
533 */
534 bintime_addxns(&bt, sec, s_adj_nsx);
535 }
536 }
537 delta = (delta % ticks_per_sec);
538 }
539
540 over = multi_overflow(tick_scale_x, delta);
541 if(over){
542 bt.sec += over;
543 }
544
545 /*
546 * scale elapsed ticks using the scale factor for ticks.
547 */
548 bintime_addx(&bt, delta * tick_scale_x);
549
550 return bt;
551 }
552
553 /*
554 * get_scaled_time:
555 *
556 * returns the scaled time of the time elapsed from the last time
557 * scale factors were updated to now.
558 */
559 static struct bintime
560 get_scaled_time(uint64_t now)
561 {
562 uint64_t delta;
563
564 /*
565 * Compute ticks elapsed since last scale update.
566 * This time will be scaled according to the value given by ntp kern.
567 */
568 delta = now - clock_calend.offset_count;
569
570 return scale_delta(delta, clock_calend.tick_scale_x, clock_calend.s_scale_ns, clock_calend.s_adj_nsx);
571 }
572
573 static void
574 clock_get_calendar_absolute_and_microtime_locked(
575 clock_sec_t *secs,
576 clock_usec_t *microsecs,
577 uint64_t *abstime)
578 {
579 uint64_t now;
580 struct bintime bt;
581
582 now = mach_absolute_time();
583 if (abstime)
584 *abstime = now;
585
586 bt = get_scaled_time(now);
587 bintime_add(&bt, &clock_calend.bintime);
588 bintime2usclock(&bt, secs, microsecs);
589 }
590
591 static void
592 clock_get_calendar_absolute_and_nanotime_locked(
593 clock_sec_t *secs,
594 clock_usec_t *nanosecs,
595 uint64_t *abstime)
596 {
597 uint64_t now;
598 struct bintime bt;
599
600 now = mach_absolute_time();
601 if (abstime)
602 *abstime = now;
603
604 bt = get_scaled_time(now);
605 bintime_add(&bt, &clock_calend.bintime);
606 bintime2nsclock(&bt, secs, nanosecs);
607 }
608
609 /*
610 * clock_get_calendar_absolute_and_microtime:
611 *
612 * Returns the current calendar value,
613 * microseconds as the fraction. Also
614 * returns mach_absolute_time if abstime
615 * is not NULL.
616 */
617 void
618 clock_get_calendar_absolute_and_microtime(
619 clock_sec_t *secs,
620 clock_usec_t *microsecs,
621 uint64_t *abstime)
622 {
623 spl_t s;
624
625 s = splclock();
626 clock_lock();
627
628 clock_get_calendar_absolute_and_microtime_locked(secs, microsecs, abstime);
629
630 clock_unlock();
631 splx(s);
632 }
633
634 /*
635 * clock_get_calendar_nanotime:
636 *
637 * Returns the current calendar value,
638 * nanoseconds as the fraction.
639 *
640 * Since we do not have an interface to
641 * set the calendar with resolution greater
642 * than a microsecond, we honor that here.
643 */
644 void
645 clock_get_calendar_nanotime(
646 clock_sec_t *secs,
647 clock_nsec_t *nanosecs)
648 {
649 spl_t s;
650
651 s = splclock();
652 clock_lock();
653
654 clock_get_calendar_absolute_and_nanotime_locked(secs, nanosecs, NULL);
655
656 clock_unlock();
657 splx(s);
658 }
659
660 /*
661 * clock_gettimeofday:
662 *
663 * Kernel interface for commpage implementation of
664 * gettimeofday() syscall.
665 *
666 * Returns the current calendar value, and updates the
667 * commpage info as appropriate. Because most calls to
668 * gettimeofday() are handled in user mode by the commpage,
669 * this routine should be used infrequently.
670 */
671 void
672 clock_gettimeofday(
673 clock_sec_t *secs,
674 clock_usec_t *microsecs)
675 {
676 clock_gettimeofday_and_absolute_time(secs, microsecs, NULL);
677 }
678
679 void
680 clock_gettimeofday_and_absolute_time(
681 clock_sec_t *secs,
682 clock_usec_t *microsecs,
683 uint64_t *mach_time)
684 {
685 uint64_t now;
686 spl_t s;
687 struct bintime bt;
688
689 s = splclock();
690 clock_lock();
691
692 now = mach_absolute_time();
693 bt = get_scaled_time(now);
694 bintime_add(&bt, &clock_calend.bintime);
695 bintime2usclock(&bt, secs, microsecs);
696
697 clock_gettimeofday_set_commpage(now, bt.sec, bt.frac, clock_calend.tick_scale_x, ticks_per_sec);
698
699 clock_unlock();
700 splx(s);
701
702 if (mach_time) {
703 *mach_time = now;
704 }
705 }
706
707 static void
708 update_basesleep(struct bintime delta, bool forward)
709 {
710 /*
711 * Update basesleep only if the platform does not have monotonic clock.
712 * In that case the sleep time computation will use the PMU time
713 * which offset gets modified by settimeofday.
714 * We don't need this for mononic clock because in that case the sleep
715 * time computation is independent from the offset value of the PMU.
716 */
717 if (!has_monotonic_clock) {
718 if (forward)
719 bintime_add(&clock_calend.basesleep, &delta);
720 else
721 bintime_sub(&clock_calend.basesleep, &delta);
722 }
723 }
724
725 /*
726 * clock_set_calendar_microtime:
727 *
728 * Sets the current calendar value by
729 * recalculating the epoch and offset
730 * from the system clock.
731 *
732 * Also adjusts the boottime to keep the
733 * value consistent, writes the new
734 * calendar value to the platform clock,
735 * and sends calendar change notifications.
736 */
737 void
738 clock_set_calendar_microtime(
739 clock_sec_t secs,
740 clock_usec_t microsecs)
741 {
742 uint64_t absolutesys;
743 clock_sec_t newsecs;
744 clock_sec_t oldsecs;
745 clock_usec_t newmicrosecs;
746 clock_usec_t oldmicrosecs;
747 uint64_t commpage_value;
748 spl_t s;
749 struct bintime bt;
750 clock_sec_t deltasecs;
751 clock_usec_t deltamicrosecs;
752
753 newsecs = secs;
754 newmicrosecs = microsecs;
755
756 /*
757 * settime_lock mtx is used to avoid that racing settimeofdays update the wall clock and
758 * the platform clock concurrently.
759 *
760 * clock_lock cannot be used for this race because it is acquired from interrupt context
761 * and it needs interrupts disabled while instead updating the platform clock needs to be
762 * called with interrupts enabled.
763 */
764 lck_mtx_lock(&settime_lock);
765
766 s = splclock();
767 clock_lock();
768
769 #if DEVELOPMENT || DEBUG
770 struct clock_calend clock_calend_cp = clock_calend;
771 #endif
772 commpage_disable_timestamp();
773
774 /*
775 * Adjust the boottime based on the delta.
776 */
777 clock_get_calendar_absolute_and_microtime_locked(&oldsecs, &oldmicrosecs, &absolutesys);
778
779 #if DEVELOPMENT || DEBUG
780 if (g_should_log_clock_adjustments) {
781 os_log(OS_LOG_DEFAULT, "%s wall %lu s %d u computed with %llu abs\n",
782 __func__, (unsigned long)oldsecs, oldmicrosecs, absolutesys);
783 os_log(OS_LOG_DEFAULT, "%s requested %lu s %d u\n",
784 __func__, (unsigned long)secs, microsecs );
785 }
786 #endif
787
788 if (oldsecs < secs || (oldsecs == secs && oldmicrosecs < microsecs)) {
789 // moving forwards
790 deltasecs = secs;
791 deltamicrosecs = microsecs;
792
793 TIME_SUB(deltasecs, oldsecs, deltamicrosecs, oldmicrosecs, USEC_PER_SEC);
794
795 #if DEVELOPMENT || DEBUG
796 if (g_should_log_clock_adjustments) {
797 os_log(OS_LOG_DEFAULT, "%s delta requested %lu s %d u\n",
798 __func__, (unsigned long)deltasecs, deltamicrosecs);
799 }
800 #endif
801
802 TIME_ADD(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC);
803 clock2bintime(&deltasecs, &deltamicrosecs, &bt);
804 bintime_add(&clock_calend.boottime, &bt);
805 update_basesleep(bt, TRUE);
806 } else {
807 // moving backwards
808 deltasecs = oldsecs;
809 deltamicrosecs = oldmicrosecs;
810
811 TIME_SUB(deltasecs, secs, deltamicrosecs, microsecs, USEC_PER_SEC);
812 #if DEVELOPMENT || DEBUG
813 if (g_should_log_clock_adjustments) {
814 os_log(OS_LOG_DEFAULT, "%s negative delta requested %lu s %d u\n",
815 __func__, (unsigned long)deltasecs, deltamicrosecs);
816 }
817 #endif
818
819 TIME_SUB(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC);
820 clock2bintime(&deltasecs, &deltamicrosecs, &bt);
821 bintime_sub(&clock_calend.boottime, &bt);
822 update_basesleep(bt, FALSE);
823 }
824
825 clock_calend.bintime = clock_calend.boottime;
826 bintime_add(&clock_calend.bintime, &clock_calend.offset);
827
828 clock2bintime((clock_sec_t *) &secs, (clock_usec_t *) &microsecs, &bt);
829
830 clock_gettimeofday_set_commpage(absolutesys, bt.sec, bt.frac, clock_calend.tick_scale_x, ticks_per_sec);
831
832 #if DEVELOPMENT || DEBUG
833 struct clock_calend clock_calend_cp1 = clock_calend;
834 #endif
835
836 commpage_value = clock_boottime * USEC_PER_SEC + clock_boottime_usec;
837
838 clock_unlock();
839 splx(s);
840
841 /*
842 * Set the new value for the platform clock.
843 * This call might block, so interrupts must be enabled.
844 */
845 #if DEVELOPMENT || DEBUG
846 uint64_t now_b = mach_absolute_time();
847 #endif
848
849 PESetUTCTimeOfDay(newsecs, newmicrosecs);
850
851 #if DEVELOPMENT || DEBUG
852 uint64_t now_a = mach_absolute_time();
853 if (g_should_log_clock_adjustments) {
854 os_log(OS_LOG_DEFAULT, "%s mach bef PESet %llu mach aft %llu \n", __func__, now_b, now_a);
855 }
856 #endif
857
858 print_all_clock_variables_internal(__func__, &clock_calend_cp);
859 print_all_clock_variables_internal(__func__, &clock_calend_cp1);
860
861 commpage_update_boottime(commpage_value);
862
863 /*
864 * Send host notifications.
865 */
866 host_notify_calendar_change();
867 host_notify_calendar_set();
868
869 #if CONFIG_DTRACE
870 clock_track_calend_nowait();
871 #endif
872
873 lck_mtx_unlock(&settime_lock);
874 }
875
876 uint64_t mach_absolutetime_asleep = 0;
877 uint64_t mach_absolutetime_last_sleep = 0;
878
879 void
880 clock_get_calendar_uptime(clock_sec_t *secs)
881 {
882 uint64_t now;
883 spl_t s;
884 struct bintime bt;
885
886 s = splclock();
887 clock_lock();
888
889 now = mach_absolute_time();
890
891 bt = get_scaled_time(now);
892 bintime_add(&bt, &clock_calend.offset);
893
894 *secs = bt.sec;
895
896 clock_unlock();
897 splx(s);
898 }
899
900
901 /*
902 * clock_update_calendar:
903 *
904 * called by ntp timer to update scale factors.
905 */
906 void
907 clock_update_calendar(void)
908 {
909
910 uint64_t now, delta;
911 struct bintime bt;
912 spl_t s;
913 int64_t adjustment;
914
915 s = splclock();
916 clock_lock();
917
918 now = mach_absolute_time();
919
920 /*
921 * scale the time elapsed since the last update and
922 * add it to offset.
923 */
924 bt = get_scaled_time(now);
925 bintime_add(&clock_calend.offset, &bt);
926
927 /*
928 * update the base from which apply next scale factors.
929 */
930 delta = now - clock_calend.offset_count;
931 clock_calend.offset_count += delta;
932
933 clock_calend.bintime = clock_calend.offset;
934 bintime_add(&clock_calend.bintime, &clock_calend.boottime);
935
936 /*
937 * recompute next adjustment.
938 */
939 ntp_update_second(&adjustment, clock_calend.bintime.sec);
940
941 #if DEVELOPMENT || DEBUG
942 if (g_should_log_clock_adjustments) {
943 os_log(OS_LOG_DEFAULT, "%s adjustment %lld\n", __func__, adjustment);
944 }
945 #endif
946
947 /*
948 * recomputing scale factors.
949 */
950 get_scale_factors_from_adj(adjustment, &clock_calend.tick_scale_x, &clock_calend.s_scale_ns, &clock_calend.s_adj_nsx);
951
952 clock_gettimeofday_set_commpage(now, clock_calend.bintime.sec, clock_calend.bintime.frac, clock_calend.tick_scale_x, ticks_per_sec);
953
954 #if DEVELOPMENT || DEBUG
955 struct clock_calend calend_cp = clock_calend;
956 #endif
957
958 clock_unlock();
959 splx(s);
960
961 print_all_clock_variables(__func__, NULL,NULL,NULL,NULL, &calend_cp);
962 }
963
964
965 #if DEVELOPMENT || DEBUG
966
967 void print_all_clock_variables_internal(const char* func, struct clock_calend* clock_calend_cp)
968 {
969 clock_sec_t offset_secs;
970 clock_usec_t offset_microsecs;
971 clock_sec_t bintime_secs;
972 clock_usec_t bintime_microsecs;
973 clock_sec_t bootime_secs;
974 clock_usec_t bootime_microsecs;
975
976 if (!g_should_log_clock_adjustments)
977 return;
978
979 bintime2usclock(&clock_calend_cp->offset, &offset_secs, &offset_microsecs);
980 bintime2usclock(&clock_calend_cp->bintime, &bintime_secs, &bintime_microsecs);
981 bintime2usclock(&clock_calend_cp->boottime, &bootime_secs, &bootime_microsecs);
982
983 os_log(OS_LOG_DEFAULT, "%s s_scale_ns %llu s_adj_nsx %lld tick_scale_x %llu offset_count %llu\n",
984 func , clock_calend_cp->s_scale_ns, clock_calend_cp->s_adj_nsx,
985 clock_calend_cp->tick_scale_x, clock_calend_cp->offset_count);
986 os_log(OS_LOG_DEFAULT, "%s offset.sec %ld offset.frac %llu offset_secs %lu offset_microsecs %d\n",
987 func, clock_calend_cp->offset.sec, clock_calend_cp->offset.frac,
988 (unsigned long)offset_secs, offset_microsecs);
989 os_log(OS_LOG_DEFAULT, "%s bintime.sec %ld bintime.frac %llu bintime_secs %lu bintime_microsecs %d\n",
990 func, clock_calend_cp->bintime.sec, clock_calend_cp->bintime.frac,
991 (unsigned long)bintime_secs, bintime_microsecs);
992 os_log(OS_LOG_DEFAULT, "%s bootime.sec %ld bootime.frac %llu bootime_secs %lu bootime_microsecs %d\n",
993 func, clock_calend_cp->boottime.sec, clock_calend_cp->boottime.frac,
994 (unsigned long)bootime_secs, bootime_microsecs);
995
996 clock_sec_t basesleep_secs;
997 clock_usec_t basesleep_microsecs;
998
999 bintime2usclock(&clock_calend_cp->basesleep, &basesleep_secs, &basesleep_microsecs);
1000 os_log(OS_LOG_DEFAULT, "%s basesleep.sec %ld basesleep.frac %llu basesleep_secs %lu basesleep_microsecs %d\n",
1001 func, clock_calend_cp->basesleep.sec, clock_calend_cp->basesleep.frac,
1002 (unsigned long)basesleep_secs, basesleep_microsecs);
1003
1004 }
1005
1006
1007 void print_all_clock_variables(const char* func, clock_sec_t* pmu_secs, clock_usec_t* pmu_usec, clock_sec_t* sys_secs, clock_usec_t* sys_usec, struct clock_calend* clock_calend_cp)
1008 {
1009 if (!g_should_log_clock_adjustments)
1010 return;
1011
1012 struct bintime bt;
1013 clock_sec_t wall_secs;
1014 clock_usec_t wall_microsecs;
1015 uint64_t now;
1016 uint64_t delta;
1017
1018 if (pmu_secs) {
1019 os_log(OS_LOG_DEFAULT, "%s PMU %lu s %d u \n", func, (unsigned long)*pmu_secs, *pmu_usec);
1020 }
1021 if (sys_secs) {
1022 os_log(OS_LOG_DEFAULT, "%s sys %lu s %d u \n", func, (unsigned long)*sys_secs, *sys_usec);
1023 }
1024
1025 print_all_clock_variables_internal(func, clock_calend_cp);
1026
1027 now = mach_absolute_time();
1028 delta = now - clock_calend_cp->offset_count;
1029
1030 bt = scale_delta(delta, clock_calend_cp->tick_scale_x, clock_calend_cp->s_scale_ns, clock_calend_cp->s_adj_nsx);
1031 bintime_add(&bt, &clock_calend_cp->bintime);
1032 bintime2usclock(&bt, &wall_secs, &wall_microsecs);
1033
1034 os_log(OS_LOG_DEFAULT, "%s wall %lu s %d u computed with %llu abs\n",
1035 func, (unsigned long)wall_secs, wall_microsecs, now);
1036 }
1037
1038
1039 #endif /* DEVELOPMENT || DEBUG */
1040
1041
1042 /*
1043 * clock_initialize_calendar:
1044 *
1045 * Set the calendar and related clocks
1046 * from the platform clock at boot.
1047 *
1048 * Also sends host notifications.
1049 */
1050 void
1051 clock_initialize_calendar(void)
1052 {
1053 clock_sec_t sys; // sleepless time since boot in seconds
1054 clock_sec_t secs; // Current UTC time
1055 clock_sec_t utc_offset_secs; // Difference in current UTC time and sleepless time since boot
1056 clock_usec_t microsys;
1057 clock_usec_t microsecs;
1058 clock_usec_t utc_offset_microsecs;
1059 spl_t s;
1060 struct bintime bt;
1061 struct bintime monotonic_bt;
1062 struct latched_time monotonic_time;
1063 uint64_t monotonic_usec_total;
1064 clock_sec_t sys2, monotonic_sec;
1065 clock_usec_t microsys2, monotonic_usec;
1066 size_t size;
1067
1068 //Get PMU time with offset and corresponding sys time
1069 PEGetUTCTimeOfDay(&secs, &microsecs);
1070 clock_get_system_microtime(&sys, &microsys);
1071
1072 /*
1073 * If the platform has a monotonic clock, use kern.monotonicclock_usecs
1074 * to estimate the sleep/wake time, otherwise use the PMU and adjustments
1075 * provided through settimeofday to estimate the sleep time.
1076 * NOTE: the latter case relies that the kernel is the only component
1077 * to set the PMU offset.
1078 */
1079 size = sizeof(monotonic_time);
1080 if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time, &size, NULL, 0) != 0) {
1081 has_monotonic_clock = 0;
1082 os_log(OS_LOG_DEFAULT, "%s system does not have monotonic clock.\n", __func__);
1083 } else {
1084 has_monotonic_clock = 1;
1085 monotonic_usec_total = monotonic_time.monotonic_time_usec;
1086 absolutetime_to_microtime(monotonic_time.mach_time, &sys2, &microsys2);
1087 os_log(OS_LOG_DEFAULT, "%s system has monotonic clock.\n", __func__);
1088 }
1089
1090 s = splclock();
1091 clock_lock();
1092
1093 commpage_disable_timestamp();
1094
1095 utc_offset_secs = secs;
1096 utc_offset_microsecs = microsecs;
1097
1098 #if DEVELOPMENT || DEBUG
1099 last_utc_sec = secs;
1100 last_utc_usec = microsecs;
1101 last_sys_sec = sys;
1102 last_sys_usec = microsys;
1103 if (secs > max_utc_sec)
1104 max_utc_sec = secs;
1105 #endif
1106
1107 /*
1108 * We normally expect the UTC clock to be always-on and produce
1109 * greater readings than the tick counter. There may be corner cases
1110 * due to differing clock resolutions (UTC clock is likely lower) and
1111 * and errors reading the UTC clock (some implementations return 0
1112 * on error) in which that doesn't hold true. Bring the UTC measurements
1113 * in-line with the tick counter measurements as a best effort in that case.
1114 */
1115 //FIXME if the current time is prior than 1970 secs will be negative
1116 if ((sys > secs) || ((sys == secs) && (microsys > microsecs))) {
1117 os_log(OS_LOG_DEFAULT, "%s WARNING: PMU offset is less then sys PMU %lu s %d u sys %lu s %d u\n",
1118 __func__, (unsigned long) secs, microsecs, (unsigned long)sys, microsys);
1119 secs = utc_offset_secs = sys;
1120 microsecs = utc_offset_microsecs = microsys;
1121 }
1122
1123 // PMU time with offset - sys
1124 // This macro stores the subtraction result in utc_offset_secs and utc_offset_microsecs
1125 TIME_SUB(utc_offset_secs, sys, utc_offset_microsecs, microsys, USEC_PER_SEC);
1126
1127 clock2bintime(&utc_offset_secs, &utc_offset_microsecs, &bt);
1128
1129 /*
1130 * Initialize the boot time based on the platform clock.
1131 */
1132 clock_boottime = secs;
1133 clock_boottime_usec = microsecs;
1134 commpage_update_boottime(clock_boottime * USEC_PER_SEC + clock_boottime_usec);
1135
1136 nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC, &ticks_per_sec);
1137 clock_calend.boottime = bt;
1138 clock_calend.bintime = bt;
1139 clock_calend.offset.sec = 0;
1140 clock_calend.offset.frac = 0;
1141
1142 clock_calend.tick_scale_x = (uint64_t)1 << 63;
1143 clock_calend.tick_scale_x /= ticks_per_sec;
1144 clock_calend.tick_scale_x *= 2;
1145
1146 clock_calend.s_scale_ns = NSEC_PER_SEC;
1147 clock_calend.s_adj_nsx = 0;
1148
1149 if (has_monotonic_clock) {
1150
1151 monotonic_sec = monotonic_usec_total / (clock_sec_t)USEC_PER_SEC;
1152 monotonic_usec = monotonic_usec_total % (clock_usec_t)USEC_PER_SEC;
1153
1154 // PMU time without offset - sys
1155 // This macro stores the subtraction result in monotonic_sec and monotonic_usec
1156 TIME_SUB(monotonic_sec, sys2, monotonic_usec, microsys2, USEC_PER_SEC);
1157 clock2bintime(&monotonic_sec, &monotonic_usec, &monotonic_bt);
1158
1159 // set the baseleep as the difference between monotonic clock - sys
1160 clock_calend.basesleep = monotonic_bt;
1161 } else {
1162 // set the baseleep as the difference between PMU clock - sys
1163 clock_calend.basesleep = bt;
1164 }
1165 commpage_update_mach_continuous_time(mach_absolutetime_asleep);
1166
1167 #if DEVELOPMENT || DEBUG
1168 struct clock_calend clock_calend_cp = clock_calend;
1169 #endif
1170
1171 clock_unlock();
1172 splx(s);
1173
1174 print_all_clock_variables(__func__, &secs, &microsecs, &sys, &microsys, &clock_calend_cp);
1175
1176 /*
1177 * Send host notifications.
1178 */
1179 host_notify_calendar_change();
1180
1181 #if CONFIG_DTRACE
1182 clock_track_calend_nowait();
1183 #endif
1184 }
1185
1186
1187 void
1188 clock_wakeup_calendar(void)
1189 {
1190 clock_sec_t sys;
1191 clock_sec_t secs;
1192 clock_usec_t microsys;
1193 clock_usec_t microsecs;
1194 spl_t s;
1195 struct bintime bt, last_sleep_bt;
1196 clock_sec_t basesleep_s, last_sleep_sec;
1197 clock_usec_t basesleep_us, last_sleep_usec;
1198 struct latched_time monotonic_time;
1199 uint64_t monotonic_usec_total;
1200 size_t size;
1201 clock_sec_t secs_copy;
1202 clock_usec_t microsecs_copy;
1203 #if DEVELOPMENT || DEBUG
1204 clock_sec_t utc_sec;
1205 clock_usec_t utc_usec;
1206 PEGetUTCTimeOfDay(&utc_sec, &utc_usec);
1207 #endif
1208
1209 /*
1210 * If the platform has the monotonic clock use that to
1211 * compute the sleep time. The monotonic clock does not have an offset
1212 * that can be modified, so nor kernel or userspace can change the time
1213 * of this clock, it can only monotonically increase over time.
1214 * During sleep mach_absolute_time does not tick,
1215 * so the sleep time is the difference betwen the current monotonic time
1216 * less the absolute time and the previous difference stored at wake time.
1217 *
1218 * basesleep = monotonic - sys ---> computed at last wake
1219 * sleep_time = (monotonic - sys) - basesleep
1220 *
1221 * If the platform does not support monotonic time we use the PMU time
1222 * to compute the last sleep.
1223 * The PMU time is the monotonic clock + an offset that can be set
1224 * by kernel.
1225 *
1226 * IMPORTANT:
1227 * We assume that only the kernel is setting the offset of the PMU and that
1228 * it is doing it only througth the settimeofday interface.
1229 *
1230 * basesleep is the different between the PMU time and the mach_absolute_time
1231 * at wake.
1232 * During awake time settimeofday can change the PMU offset by a delta,
1233 * and basesleep is shifted by the same delta applyed to the PMU. So the sleep
1234 * time computation becomes:
1235 *
1236 * PMU = monotonic + PMU_offset
1237 * basesleep = PMU - sys ---> computed at last wake
1238 * basesleep += settimeofday_delta
1239 * PMU_offset += settimeofday_delta
1240 * sleep_time = (PMU - sys) - basesleep
1241 */
1242 if (has_monotonic_clock) {
1243 //Get monotonic time with corresponding sys time
1244 size = sizeof(monotonic_time);
1245 if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time, &size, NULL, 0) != 0) {
1246 panic("%s: could not call kern.monotonicclock_usecs", __func__);
1247 }
1248 monotonic_usec_total = monotonic_time.monotonic_time_usec;
1249 absolutetime_to_microtime(monotonic_time.mach_time, &sys, &microsys);
1250
1251 secs = monotonic_usec_total / (clock_sec_t)USEC_PER_SEC;
1252 microsecs = monotonic_usec_total % (clock_usec_t)USEC_PER_SEC;
1253 } else {
1254 //Get PMU time with offset and corresponding sys time
1255 PEGetUTCTimeOfDay(&secs, &microsecs);
1256 clock_get_system_microtime(&sys, &microsys);
1257
1258 }
1259
1260 s = splclock();
1261 clock_lock();
1262
1263 commpage_disable_timestamp();
1264
1265 secs_copy = secs;
1266 microsecs_copy = microsecs;
1267
1268 #if DEVELOPMENT || DEBUG
1269 struct clock_calend clock_calend_cp1 = clock_calend;
1270 #endif /* DEVELOPMENT || DEBUG */
1271
1272 #if DEVELOPMENT || DEBUG
1273 last_utc_sec = secs;
1274 last_utc_usec = microsecs;
1275 last_sys_sec = sys;
1276 last_sys_usec = microsys;
1277 if (secs > max_utc_sec)
1278 max_utc_sec = secs;
1279 #endif
1280 /*
1281 * We normally expect the UTC clock to be always-on and produce
1282 * greater readings than the tick counter. There may be corner cases
1283 * due to differing clock resolutions (UTC clock is likely lower) and
1284 * and errors reading the UTC clock (some implementations return 0
1285 * on error) in which that doesn't hold true. Bring the UTC measurements
1286 * in-line with the tick counter measurements as a best effort in that case.
1287 */
1288 //FIXME if the current time is prior than 1970 secs will be negative
1289 if ((sys > secs) || ((sys == secs) && (microsys > microsecs))) {
1290 os_log(OS_LOG_DEFAULT, "%s WARNING: %s is less then sys %s %lu s %d u sys %lu s %d u\n",
1291 __func__, (has_monotonic_clock)?"monotonic":"PMU", (has_monotonic_clock)?"monotonic":"PMU", (unsigned long)secs, microsecs, (unsigned long)sys, microsys);
1292 secs = sys;
1293 microsecs = microsys;
1294 }
1295
1296 // PMU or monotonic - sys
1297 // This macro stores the subtraction result in secs and microsecs
1298 TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC);
1299 clock2bintime(&secs, &microsecs, &bt);
1300
1301 /*
1302 * Safety belt: the UTC clock will likely have a lower resolution than the tick counter.
1303 * It's also possible that the device didn't fully transition to the powered-off state on
1304 * the most recent sleep, so the tick counter may not have reset or may have only briefly
1305 * tured off. In that case it's possible for the difference between the UTC clock and the
1306 * tick counter to be less than the previously recorded value in clock.calend.basesleep.
1307 * In that case simply record that we slept for 0 ticks.
1308 */
1309 if ((bt.sec > clock_calend.basesleep.sec) ||
1310 ((bt.sec == clock_calend.basesleep.sec) && (bt.frac > clock_calend.basesleep.frac))) {
1311
1312 //last_sleep is the difference between current PMU or monotonic - abs and last wake PMU or monotonic - abs
1313 last_sleep_bt = bt;
1314 bintime_sub(&last_sleep_bt, &clock_calend.basesleep);
1315
1316 //set baseseep to current PMU or monotonic - abs
1317 clock_calend.basesleep = bt;
1318 bintime2usclock(&last_sleep_bt, &last_sleep_sec, &last_sleep_usec);
1319 bintime2absolutetime(&last_sleep_bt, &mach_absolutetime_last_sleep);
1320 mach_absolutetime_asleep += mach_absolutetime_last_sleep;
1321
1322 bintime_add(&clock_calend.offset, &last_sleep_bt);
1323 bintime_add(&clock_calend.bintime, &last_sleep_bt);
1324
1325 } else{
1326 mach_absolutetime_last_sleep = 0;
1327 last_sleep_sec = last_sleep_usec = 0;
1328 bintime2usclock(&clock_calend.basesleep, &basesleep_s, &basesleep_us);
1329 os_log(OS_LOG_DEFAULT, "%s WARNING: basesleep (%lu s %d u) > %s-sys (%lu s %d u) \n",
1330 __func__, (unsigned long) basesleep_s, basesleep_us, (has_monotonic_clock)?"monotonic":"PMU", (unsigned long) secs_copy, microsecs_copy );
1331 }
1332
1333 KERNEL_DEBUG_CONSTANT(
1334 MACHDBG_CODE(DBG_MACH_CLOCK,MACH_EPOCH_CHANGE) | DBG_FUNC_NONE,
1335 (uintptr_t) mach_absolutetime_last_sleep,
1336 (uintptr_t) mach_absolutetime_asleep,
1337 (uintptr_t) (mach_absolutetime_last_sleep >> 32),
1338 (uintptr_t) (mach_absolutetime_asleep >> 32),
1339 0);
1340
1341 commpage_update_mach_continuous_time(mach_absolutetime_asleep);
1342 adjust_cont_time_thread_calls();
1343
1344 #if DEVELOPMENT || DEBUG
1345 struct clock_calend clock_calend_cp = clock_calend;
1346 #endif
1347
1348 clock_unlock();
1349 splx(s);
1350
1351 #if DEVELOPMENT || DEBUG
1352 if (g_should_log_clock_adjustments) {
1353 os_log(OS_LOG_DEFAULT, "PMU was %lu s %d u\n",(unsigned long) utc_sec, utc_usec);
1354 os_log(OS_LOG_DEFAULT, "last sleep was %lu s %d u\n",(unsigned long) last_sleep_sec, last_sleep_usec);
1355 print_all_clock_variables("clock_wakeup_calendar:BEFORE",
1356 &secs_copy, &microsecs_copy, &sys, &microsys, &clock_calend_cp1);
1357 print_all_clock_variables("clock_wakeup_calendar:AFTER", NULL, NULL, NULL, NULL, &clock_calend_cp);
1358 }
1359 #endif /* DEVELOPMENT || DEBUG */
1360
1361 host_notify_calendar_change();
1362
1363 #if CONFIG_DTRACE
1364 clock_track_calend_nowait();
1365 #endif
1366 }
1367
1368
1369 /*
1370 * clock_get_boottime_nanotime:
1371 *
1372 * Return the boottime, used by sysctl.
1373 */
1374 void
1375 clock_get_boottime_nanotime(
1376 clock_sec_t *secs,
1377 clock_nsec_t *nanosecs)
1378 {
1379 spl_t s;
1380
1381 s = splclock();
1382 clock_lock();
1383
1384 *secs = (clock_sec_t)clock_boottime;
1385 *nanosecs = (clock_nsec_t)clock_boottime_usec * NSEC_PER_USEC;
1386
1387 clock_unlock();
1388 splx(s);
1389 }
1390
1391 /*
1392 * clock_get_boottime_nanotime:
1393 *
1394 * Return the boottime, used by sysctl.
1395 */
1396 void
1397 clock_get_boottime_microtime(
1398 clock_sec_t *secs,
1399 clock_usec_t *microsecs)
1400 {
1401 spl_t s;
1402
1403 s = splclock();
1404 clock_lock();
1405
1406 *secs = (clock_sec_t)clock_boottime;
1407 *microsecs = (clock_nsec_t)clock_boottime_usec;
1408
1409 clock_unlock();
1410 splx(s);
1411 }
1412
1413
1414 /*
1415 * Wait / delay routines.
1416 */
1417 static void
1418 mach_wait_until_continue(
1419 __unused void *parameter,
1420 wait_result_t wresult)
1421 {
1422 thread_syscall_return((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS);
1423 /*NOTREACHED*/
1424 }
1425
1426 /*
1427 * mach_wait_until_trap: Suspend execution of calling thread until the specified time has passed
1428 *
1429 * Parameters: args->deadline Amount of time to wait
1430 *
1431 * Returns: 0 Success
1432 * !0 Not success
1433 *
1434 */
1435 kern_return_t
1436 mach_wait_until_trap(
1437 struct mach_wait_until_trap_args *args)
1438 {
1439 uint64_t deadline = args->deadline;
1440 wait_result_t wresult;
1441
1442 wresult = assert_wait_deadline_with_leeway((event_t)mach_wait_until_trap, THREAD_ABORTSAFE,
1443 TIMEOUT_URGENCY_USER_NORMAL, deadline, 0);
1444 if (wresult == THREAD_WAITING)
1445 wresult = thread_block(mach_wait_until_continue);
1446
1447 return ((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS);
1448 }
1449
1450 void
1451 clock_delay_until(
1452 uint64_t deadline)
1453 {
1454 uint64_t now = mach_absolute_time();
1455
1456 if (now >= deadline)
1457 return;
1458
1459 _clock_delay_until_deadline(deadline - now, deadline);
1460 }
1461
1462 /*
1463 * Preserve the original precise interval that the client
1464 * requested for comparison to the spin threshold.
1465 */
1466 void
1467 _clock_delay_until_deadline(
1468 uint64_t interval,
1469 uint64_t deadline)
1470 {
1471 _clock_delay_until_deadline_with_leeway(interval, deadline, 0);
1472 }
1473
1474 /*
1475 * Like _clock_delay_until_deadline, but it accepts a
1476 * leeway value.
1477 */
1478 void
1479 _clock_delay_until_deadline_with_leeway(
1480 uint64_t interval,
1481 uint64_t deadline,
1482 uint64_t leeway)
1483 {
1484
1485 if (interval == 0)
1486 return;
1487
1488 if ( ml_delay_should_spin(interval) ||
1489 get_preemption_level() != 0 ||
1490 ml_get_interrupts_enabled() == FALSE ) {
1491 machine_delay_until(interval, deadline);
1492 } else {
1493 /*
1494 * For now, assume a leeway request of 0 means the client does not want a leeway
1495 * value. We may want to change this interpretation in the future.
1496 */
1497
1498 if (leeway) {
1499 assert_wait_deadline_with_leeway((event_t)clock_delay_until, THREAD_UNINT, TIMEOUT_URGENCY_LEEWAY, deadline, leeway);
1500 } else {
1501 assert_wait_deadline((event_t)clock_delay_until, THREAD_UNINT, deadline);
1502 }
1503
1504 thread_block(THREAD_CONTINUE_NULL);
1505 }
1506 }
1507
1508 void
1509 delay_for_interval(
1510 uint32_t interval,
1511 uint32_t scale_factor)
1512 {
1513 uint64_t abstime;
1514
1515 clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
1516
1517 _clock_delay_until_deadline(abstime, mach_absolute_time() + abstime);
1518 }
1519
1520 void
1521 delay_for_interval_with_leeway(
1522 uint32_t interval,
1523 uint32_t leeway,
1524 uint32_t scale_factor)
1525 {
1526 uint64_t abstime_interval;
1527 uint64_t abstime_leeway;
1528
1529 clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime_interval);
1530 clock_interval_to_absolutetime_interval(leeway, scale_factor, &abstime_leeway);
1531
1532 _clock_delay_until_deadline_with_leeway(abstime_interval, mach_absolute_time() + abstime_interval, abstime_leeway);
1533 }
1534
1535 void
1536 delay(
1537 int usec)
1538 {
1539 delay_for_interval((usec < 0)? -usec: usec, NSEC_PER_USEC);
1540 }
1541
1542 /*
1543 * Miscellaneous routines.
1544 */
1545 void
1546 clock_interval_to_deadline(
1547 uint32_t interval,
1548 uint32_t scale_factor,
1549 uint64_t *result)
1550 {
1551 uint64_t abstime;
1552
1553 clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
1554
1555 *result = mach_absolute_time() + abstime;
1556 }
1557
1558 void
1559 clock_absolutetime_interval_to_deadline(
1560 uint64_t abstime,
1561 uint64_t *result)
1562 {
1563 *result = mach_absolute_time() + abstime;
1564 }
1565
1566 void
1567 clock_continuoustime_interval_to_deadline(
1568 uint64_t conttime,
1569 uint64_t *result)
1570 {
1571 *result = mach_continuous_time() + conttime;
1572 }
1573
1574 void
1575 clock_get_uptime(
1576 uint64_t *result)
1577 {
1578 *result = mach_absolute_time();
1579 }
1580
1581 void
1582 clock_deadline_for_periodic_event(
1583 uint64_t interval,
1584 uint64_t abstime,
1585 uint64_t *deadline)
1586 {
1587 assert(interval != 0);
1588
1589 *deadline += interval;
1590
1591 if (*deadline <= abstime) {
1592 *deadline = abstime + interval;
1593 abstime = mach_absolute_time();
1594
1595 if (*deadline <= abstime)
1596 *deadline = abstime + interval;
1597 }
1598 }
1599
1600 uint64_t
1601 mach_continuous_time(void)
1602 {
1603 while(1) {
1604 uint64_t read1 = mach_absolutetime_asleep;
1605 uint64_t absolute = mach_absolute_time();
1606 OSMemoryBarrier();
1607 uint64_t read2 = mach_absolutetime_asleep;
1608
1609 if(__builtin_expect(read1 == read2, 1)) {
1610 return absolute + read1;
1611 }
1612 }
1613 }
1614
1615 uint64_t
1616 mach_continuous_approximate_time(void)
1617 {
1618 while(1) {
1619 uint64_t read1 = mach_absolutetime_asleep;
1620 uint64_t absolute = mach_approximate_time();
1621 OSMemoryBarrier();
1622 uint64_t read2 = mach_absolutetime_asleep;
1623
1624 if(__builtin_expect(read1 == read2, 1)) {
1625 return absolute + read1;
1626 }
1627 }
1628 }
1629
1630 /*
1631 * continuoustime_to_absolutetime
1632 * Must be called with interrupts disabled
1633 * Returned value is only valid until the next update to
1634 * mach_continuous_time
1635 */
1636 uint64_t
1637 continuoustime_to_absolutetime(uint64_t conttime) {
1638 if (conttime <= mach_absolutetime_asleep)
1639 return 0;
1640 else
1641 return conttime - mach_absolutetime_asleep;
1642 }
1643
1644 /*
1645 * absolutetime_to_continuoustime
1646 * Must be called with interrupts disabled
1647 * Returned value is only valid until the next update to
1648 * mach_continuous_time
1649 */
1650 uint64_t
1651 absolutetime_to_continuoustime(uint64_t abstime) {
1652 return abstime + mach_absolutetime_asleep;
1653 }
1654
1655 #if CONFIG_DTRACE
1656
1657 /*
1658 * clock_get_calendar_nanotime_nowait
1659 *
1660 * Description: Non-blocking version of clock_get_calendar_nanotime()
1661 *
1662 * Notes: This function operates by separately tracking calendar time
1663 * updates using a two element structure to copy the calendar
1664 * state, which may be asynchronously modified. It utilizes
1665 * barrier instructions in the tracking process and in the local
1666 * stable snapshot process in order to ensure that a consistent
1667 * snapshot is used to perform the calculation.
1668 */
1669 void
1670 clock_get_calendar_nanotime_nowait(
1671 clock_sec_t *secs,
1672 clock_nsec_t *nanosecs)
1673 {
1674 int i = 0;
1675 uint64_t now;
1676 struct unlocked_clock_calend stable;
1677 struct bintime bt;
1678
1679 for (;;) {
1680 stable = flipflop[i]; /* take snapshot */
1681
1682 /*
1683 * Use a barrier instructions to ensure atomicity. We AND
1684 * off the "in progress" bit to get the current generation
1685 * count.
1686 */
1687 (void)hw_atomic_and(&stable.gen, ~(uint32_t)1);
1688
1689 /*
1690 * If an update _is_ in progress, the generation count will be
1691 * off by one, if it _was_ in progress, it will be off by two,
1692 * and if we caught it at a good time, it will be equal (and
1693 * our snapshot is threfore stable).
1694 */
1695 if (flipflop[i].gen == stable.gen)
1696 break;
1697
1698 /* Switch to the other element of the flipflop, and try again. */
1699 i ^= 1;
1700 }
1701
1702 now = mach_absolute_time();
1703
1704 bt = get_scaled_time(now);
1705
1706 bintime_add(&bt, &clock_calend.bintime);
1707
1708 bintime2nsclock(&bt, secs, nanosecs);
1709 }
1710
1711 static void
1712 clock_track_calend_nowait(void)
1713 {
1714 int i;
1715
1716 for (i = 0; i < 2; i++) {
1717 struct clock_calend tmp = clock_calend;
1718
1719 /*
1720 * Set the low bit if the generation count; since we use a
1721 * barrier instruction to do this, we are guaranteed that this
1722 * will flag an update in progress to an async caller trying
1723 * to examine the contents.
1724 */
1725 (void)hw_atomic_or(&flipflop[i].gen, 1);
1726
1727 flipflop[i].calend = tmp;
1728
1729 /*
1730 * Increment the generation count to clear the low bit to
1731 * signal completion. If a caller compares the generation
1732 * count after taking a copy while in progress, the count
1733 * will be off by two.
1734 */
1735 (void)hw_atomic_add(&flipflop[i].gen, 1);
1736 }
1737 }
1738
1739 #endif /* CONFIG_DTRACE */
1740