2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
34 * Copyright (c) 1982, 1986, 1993
35 * The Regents of the University of California. All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)time.h 8.5 (Berkeley) 5/4/95
65 #include <mach/mach_types.h>
68 #include <kern/sched_prim.h>
69 #include <kern/thread.h>
70 #include <kern/clock.h>
71 #include <kern/host_notify.h>
72 #include <kern/thread_call.h>
73 #include <libkern/OSAtomic.h>
75 #include <IOKit/IOPlatformExpert.h>
77 #include <machine/commpage.h>
78 #include <machine/config.h>
79 #include <machine/machine_routines.h>
81 #include <mach/mach_traps.h>
82 #include <mach/mach_time.h>
84 #include <sys/kdebug.h>
85 #include <sys/timex.h>
86 #include <kern/arithmetic_128.h>
89 uint32_t hz_tick_interval
= 1;
90 static uint64_t has_monotonic_clock
= 0;
92 decl_simple_lock_data(,clock_lock
)
93 lck_grp_attr_t
* settime_lock_grp_attr
;
94 lck_grp_t
* settime_lock_grp
;
95 lck_attr_t
* settime_lock_attr
;
96 lck_mtx_t settime_lock
;
98 #define clock_lock() \
99 simple_lock(&clock_lock)
101 #define clock_unlock() \
102 simple_unlock(&clock_lock)
104 #define clock_lock_init() \
105 simple_lock_init(&clock_lock, 0)
107 #ifdef kdp_simple_lock_is_acquired
108 boolean_t
kdp_clock_is_locked()
110 return kdp_simple_lock_is_acquired(&clock_lock
);
120 bintime_addx(struct bintime
*_bt
, uint64_t _x
)
131 bintime_subx(struct bintime
*_bt
, uint64_t _x
)
142 bintime_addns(struct bintime
*bt
, uint64_t ns
)
144 bt
->sec
+= ns
/ (uint64_t)NSEC_PER_SEC
;
145 ns
= ns
% (uint64_t)NSEC_PER_SEC
;
147 /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
148 ns
= ns
* (uint64_t)18446744073LL;
149 bintime_addx(bt
, ns
);
154 bintime_subns(struct bintime
*bt
, uint64_t ns
)
156 bt
->sec
-= ns
/ (uint64_t)NSEC_PER_SEC
;
157 ns
= ns
% (uint64_t)NSEC_PER_SEC
;
159 /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
160 ns
= ns
* (uint64_t)18446744073LL;
161 bintime_subx(bt
, ns
);
166 bintime_addxns(struct bintime
*bt
, uint64_t a
, int64_t xns
)
168 uint64_t uxns
= (xns
> 0)?(uint64_t )xns
:(uint64_t)-xns
;
169 uint64_t ns
= multi_overflow(a
, uxns
);
172 bintime_addns(bt
, ns
);
173 ns
= (a
* uxns
) / (uint64_t)NSEC_PER_SEC
;
174 bintime_addx(bt
, ns
);
178 bintime_subns(bt
, ns
);
179 ns
= (a
* uxns
) / (uint64_t)NSEC_PER_SEC
;
186 bintime_add(struct bintime
*_bt
, const struct bintime
*_bt2
)
191 _bt
->frac
+= _bt2
->frac
;
194 _bt
->sec
+= _bt2
->sec
;
198 bintime_sub(struct bintime
*_bt
, const struct bintime
*_bt2
)
203 _bt
->frac
-= _bt2
->frac
;
206 _bt
->sec
-= _bt2
->sec
;
210 clock2bintime(const clock_sec_t
*secs
, const clock_usec_t
*microsecs
, struct bintime
*_bt
)
214 /* 18446744073709 = int(2^64 / 1000000) */
215 _bt
->frac
= *microsecs
* (uint64_t)18446744073709LL;
219 bintime2usclock(const struct bintime
*_bt
, clock_sec_t
*secs
, clock_usec_t
*microsecs
)
223 *microsecs
= ((uint64_t)USEC_PER_SEC
* (uint32_t)(_bt
->frac
>> 32)) >> 32;
227 bintime2nsclock(const struct bintime
*_bt
, clock_sec_t
*secs
, clock_usec_t
*nanosecs
)
231 *nanosecs
= ((uint64_t)NSEC_PER_SEC
* (uint32_t)(_bt
->frac
>> 32)) >> 32;
235 bintime2absolutetime(const struct bintime
*_bt
, uint64_t *abs
)
238 nsec
= (uint64_t) _bt
->sec
* (uint64_t)NSEC_PER_SEC
+ (((uint64_t)NSEC_PER_SEC
* (uint32_t)(_bt
->frac
>> 32)) >> 32);
239 nanoseconds_to_absolutetime(nsec
, abs
);
242 struct latched_time
{
243 uint64_t monotonic_time_usec
;
248 kernel_sysctlbyname(const char *name
, void *oldp
, size_t *oldlenp
, void *newp
, size_t newlen
);
251 * Time of day (calendar) variables.
255 * TOD <- bintime + delta*scale
258 * bintime is a cumulative offset that includes bootime and scaled time elapsed betweed bootime and last scale update.
259 * delta is ticks elapsed since last scale update.
260 * scale is computed according to an adjustment provided by ntp_kern.
262 static struct clock_calend
{
263 uint64_t s_scale_ns
; /* scale to apply for each second elapsed, it converts in ns */
264 int64_t s_adj_nsx
; /* additional adj to apply for each second elapsed, it is expressed in 64 bit frac of ns */
265 uint64_t tick_scale_x
; /* scale to apply for each tick elapsed, it converts in 64 bit frac of s */
266 uint64_t offset_count
; /* abs time from which apply current scales */
267 struct bintime offset
; /* cumulative offset expressed in (sec, 64 bits frac of a second) */
268 struct bintime bintime
; /* cumulative offset (it includes bootime) expressed in (sec, 64 bits frac of a second) */
269 struct bintime boottime
; /* boot time expressed in (sec, 64 bits frac of a second) */
270 struct bintime basesleep
;
273 static uint64_t ticks_per_sec
; /* ticks in a second (expressed in abs time) */
275 #if DEVELOPMENT || DEBUG
276 clock_sec_t last_utc_sec
= 0;
277 clock_usec_t last_utc_usec
= 0;
278 clock_sec_t max_utc_sec
= 0;
279 clock_sec_t last_sys_sec
= 0;
280 clock_usec_t last_sys_usec
= 0;
283 #if DEVELOPMENT || DEBUG
284 extern int g_should_log_clock_adjustments
;
286 static void print_all_clock_variables(const char*, clock_sec_t
* pmu_secs
, clock_usec_t
* pmu_usec
, clock_sec_t
* sys_secs
, clock_usec_t
* sys_usec
, struct clock_calend
* calend_cp
);
287 static void print_all_clock_variables_internal(const char *, struct clock_calend
* calend_cp
);
289 #define print_all_clock_variables(...) do { } while (0)
290 #define print_all_clock_variables_internal(...) do { } while (0)
297 * Unlocked calendar flipflop; this is used to track a clock_calend such
298 * that we can safely access a snapshot of a valid clock_calend structure
299 * without needing to take any locks to do it.
301 * The trick is to use a generation count and set the low bit when it is
302 * being updated/read; by doing this, we guarantee, through use of the
303 * hw_atomic functions, that the generation is incremented when the bit
304 * is cleared atomically (by using a 1 bit add).
306 static struct unlocked_clock_calend
{
307 struct clock_calend calend
; /* copy of calendar */
308 uint32_t gen
; /* generation count */
311 static void clock_track_calend_nowait(void);
315 void _clock_delay_until_deadline(uint64_t interval
, uint64_t deadline
);
316 void _clock_delay_until_deadline_with_leeway(uint64_t interval
, uint64_t deadline
, uint64_t leeway
);
318 /* Boottime variables*/
319 static uint64_t clock_boottime
;
320 static uint32_t clock_boottime_usec
;
322 #define TIME_ADD(rsecs, secs, rfrac, frac, unit) \
324 if (((rfrac) += (frac)) >= (unit)) { \
331 #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \
333 if ((int)((rfrac) -= (frac)) < 0) { \
343 * Called once at boot to configure the clock subsystem.
351 settime_lock_grp_attr
= lck_grp_attr_alloc_init();
352 settime_lock_grp
= lck_grp_alloc_init("settime grp", settime_lock_grp_attr
);
353 settime_lock_attr
= lck_attr_alloc_init();
354 lck_mtx_init(&settime_lock
, settime_lock_grp
, settime_lock_attr
);
360 nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC
, &ticks_per_sec
);
366 * Called on a processor each time started.
375 * clock_timebase_init:
377 * Called by machine dependent code
378 * to initialize areas dependent on the
379 * timebase value. May be called multiple
380 * times during start up.
383 clock_timebase_init(void)
387 nanoseconds_to_absolutetime(NSEC_PER_SEC
/ 100, &abstime
);
388 hz_tick_interval
= (uint32_t)abstime
;
390 sched_timebase_init();
394 * mach_timebase_info_trap:
396 * User trap returns timebase constant.
399 mach_timebase_info_trap(
400 struct mach_timebase_info_trap_args
*args
)
402 mach_vm_address_t out_info_addr
= args
->info
;
403 mach_timebase_info_data_t info
= {};
405 clock_timebase_info(&info
);
407 copyout((void *)&info
, out_info_addr
, sizeof (info
));
409 return (KERN_SUCCESS
);
417 * clock_get_calendar_microtime:
419 * Returns the current calendar value,
420 * microseconds as the fraction.
423 clock_get_calendar_microtime(
425 clock_usec_t
*microsecs
)
427 clock_get_calendar_absolute_and_microtime(secs
, microsecs
, NULL
);
431 * get_scale_factors_from_adj:
433 * computes scale factors from the value given in adjustment.
435 * Part of the code has been taken from tc_windup of FreeBSD
436 * written by Poul-Henning Kamp <phk@FreeBSD.ORG>, Julien Ridoux and
437 * Konstantin Belousov.
438 * https://github.com/freebsd/freebsd/blob/master/sys/kern/kern_tc.c
441 get_scale_factors_from_adj(int64_t adjustment
, uint64_t* tick_scale_x
, uint64_t* s_scale_ns
, int64_t* s_adj_nsx
)
447 * Calculating the scaling factor. We want the number of 1/2^64
448 * fractions of a second per period of the hardware counter, taking
449 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
450 * processing provides us with.
452 * The th_adjustment is nanoseconds per second with 32 bit binary
453 * fraction and we want 64 bit binary fraction of second:
455 * x = a * 2^32 / 10^9 = a * 4.294967296
457 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
458 * we can only multiply by about 850 without overflowing, that
459 * leaves no suitably precise fractions for multiply before divide.
461 * Divide before multiply with a fraction of 2199/512 results in a
462 * systematic undercompensation of 10PPM of th_adjustment. On a
463 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
465 * We happily sacrifice the lowest of the 64 bits of our result
466 * to the goddess of code clarity.
469 scale
= (uint64_t)1 << 63;
470 scale
+= (adjustment
/ 1024) * 2199;
471 scale
/= ticks_per_sec
;
472 *tick_scale_x
= scale
* 2;
476 * it contains ns (without fraction) to add to the next sec.
477 * Get ns scale factor for the next sec.
479 nano
= (adjustment
> 0)? adjustment
>> 32 : -((-adjustment
) >> 32);
480 scale
= (uint64_t) NSEC_PER_SEC
;
486 * it contains 32 bit frac of ns to add to the next sec.
487 * Keep it as additional adjustment for the next sec.
489 frac
= (adjustment
> 0)? ((uint32_t) adjustment
) : -((uint32_t) (-adjustment
));
490 *s_adj_nsx
= (frac
>0)? frac
<< 32 : -( (-frac
) << 32);
498 * returns a bintime struct representing delta scaled accordingly to the
499 * scale factors provided to this function.
501 static struct bintime
502 scale_delta(uint64_t delta
, uint64_t tick_scale_x
, uint64_t s_scale_ns
, int64_t s_adj_nsx
)
504 uint64_t sec
, new_ns
, over
;
511 * If more than one second is elapsed,
512 * scale fully elapsed seconds using scale factors for seconds.
513 * s_scale_ns -> scales sec to ns.
514 * s_adj_nsx -> additional adj expressed in 64 bit frac of ns to apply to each sec.
516 if (delta
> ticks_per_sec
) {
517 sec
= (delta
/ticks_per_sec
);
518 new_ns
= sec
* s_scale_ns
;
519 bintime_addns(&bt
, new_ns
);
522 /* shortcut, no overflow can occur */
524 bintime_addx(&bt
, (uint64_t)s_adj_nsx
/ (uint64_t)NSEC_PER_SEC
);
526 bintime_subx(&bt
, (uint64_t)-s_adj_nsx
/ (uint64_t)NSEC_PER_SEC
);
530 * s_adj_nsx is 64 bit frac of ns.
531 * sec*s_adj_nsx might overflow in int64_t.
532 * use bintime_addxns to not lose overflowed ns.
534 bintime_addxns(&bt
, sec
, s_adj_nsx
);
537 delta
= (delta
% ticks_per_sec
);
540 over
= multi_overflow(tick_scale_x
, delta
);
546 * scale elapsed ticks using the scale factor for ticks.
548 bintime_addx(&bt
, delta
* tick_scale_x
);
556 * returns the scaled time of the time elapsed from the last time
557 * scale factors were updated to now.
559 static struct bintime
560 get_scaled_time(uint64_t now
)
565 * Compute ticks elapsed since last scale update.
566 * This time will be scaled according to the value given by ntp kern.
568 delta
= now
- clock_calend
.offset_count
;
570 return scale_delta(delta
, clock_calend
.tick_scale_x
, clock_calend
.s_scale_ns
, clock_calend
.s_adj_nsx
);
574 clock_get_calendar_absolute_and_microtime_locked(
576 clock_usec_t
*microsecs
,
582 now
= mach_absolute_time();
586 bt
= get_scaled_time(now
);
587 bintime_add(&bt
, &clock_calend
.bintime
);
588 bintime2usclock(&bt
, secs
, microsecs
);
592 clock_get_calendar_absolute_and_nanotime_locked(
594 clock_usec_t
*nanosecs
,
600 now
= mach_absolute_time();
604 bt
= get_scaled_time(now
);
605 bintime_add(&bt
, &clock_calend
.bintime
);
606 bintime2nsclock(&bt
, secs
, nanosecs
);
610 * clock_get_calendar_absolute_and_microtime:
612 * Returns the current calendar value,
613 * microseconds as the fraction. Also
614 * returns mach_absolute_time if abstime
618 clock_get_calendar_absolute_and_microtime(
620 clock_usec_t
*microsecs
,
628 clock_get_calendar_absolute_and_microtime_locked(secs
, microsecs
, abstime
);
635 * clock_get_calendar_nanotime:
637 * Returns the current calendar value,
638 * nanoseconds as the fraction.
640 * Since we do not have an interface to
641 * set the calendar with resolution greater
642 * than a microsecond, we honor that here.
645 clock_get_calendar_nanotime(
647 clock_nsec_t
*nanosecs
)
654 clock_get_calendar_absolute_and_nanotime_locked(secs
, nanosecs
, NULL
);
661 * clock_gettimeofday:
663 * Kernel interface for commpage implementation of
664 * gettimeofday() syscall.
666 * Returns the current calendar value, and updates the
667 * commpage info as appropriate. Because most calls to
668 * gettimeofday() are handled in user mode by the commpage,
669 * this routine should be used infrequently.
674 clock_usec_t
*microsecs
)
676 clock_gettimeofday_and_absolute_time(secs
, microsecs
, NULL
);
680 clock_gettimeofday_and_absolute_time(
682 clock_usec_t
*microsecs
,
692 now
= mach_absolute_time();
693 bt
= get_scaled_time(now
);
694 bintime_add(&bt
, &clock_calend
.bintime
);
695 bintime2usclock(&bt
, secs
, microsecs
);
697 clock_gettimeofday_set_commpage(now
, bt
.sec
, bt
.frac
, clock_calend
.tick_scale_x
, ticks_per_sec
);
708 update_basesleep(struct bintime delta
, bool forward
)
711 * Update basesleep only if the platform does not have monotonic clock.
712 * In that case the sleep time computation will use the PMU time
713 * which offset gets modified by settimeofday.
714 * We don't need this for mononic clock because in that case the sleep
715 * time computation is independent from the offset value of the PMU.
717 if (!has_monotonic_clock
) {
719 bintime_add(&clock_calend
.basesleep
, &delta
);
721 bintime_sub(&clock_calend
.basesleep
, &delta
);
726 * clock_set_calendar_microtime:
728 * Sets the current calendar value by
729 * recalculating the epoch and offset
730 * from the system clock.
732 * Also adjusts the boottime to keep the
733 * value consistent, writes the new
734 * calendar value to the platform clock,
735 * and sends calendar change notifications.
738 clock_set_calendar_microtime(
740 clock_usec_t microsecs
)
742 uint64_t absolutesys
;
745 clock_usec_t newmicrosecs
;
746 clock_usec_t oldmicrosecs
;
747 uint64_t commpage_value
;
750 clock_sec_t deltasecs
;
751 clock_usec_t deltamicrosecs
;
754 newmicrosecs
= microsecs
;
757 * settime_lock mtx is used to avoid that racing settimeofdays update the wall clock and
758 * the platform clock concurrently.
760 * clock_lock cannot be used for this race because it is acquired from interrupt context
761 * and it needs interrupts disabled while instead updating the platform clock needs to be
762 * called with interrupts enabled.
764 lck_mtx_lock(&settime_lock
);
769 #if DEVELOPMENT || DEBUG
770 struct clock_calend clock_calend_cp
= clock_calend
;
772 commpage_disable_timestamp();
775 * Adjust the boottime based on the delta.
777 clock_get_calendar_absolute_and_microtime_locked(&oldsecs
, &oldmicrosecs
, &absolutesys
);
779 #if DEVELOPMENT || DEBUG
780 if (g_should_log_clock_adjustments
) {
781 os_log(OS_LOG_DEFAULT
, "%s wall %lu s %d u computed with %llu abs\n",
782 __func__
, (unsigned long)oldsecs
, oldmicrosecs
, absolutesys
);
783 os_log(OS_LOG_DEFAULT
, "%s requested %lu s %d u\n",
784 __func__
, (unsigned long)secs
, microsecs
);
788 if (oldsecs
< secs
|| (oldsecs
== secs
&& oldmicrosecs
< microsecs
)) {
791 deltamicrosecs
= microsecs
;
793 TIME_SUB(deltasecs
, oldsecs
, deltamicrosecs
, oldmicrosecs
, USEC_PER_SEC
);
795 #if DEVELOPMENT || DEBUG
796 if (g_should_log_clock_adjustments
) {
797 os_log(OS_LOG_DEFAULT
, "%s delta requested %lu s %d u\n",
798 __func__
, (unsigned long)deltasecs
, deltamicrosecs
);
802 TIME_ADD(clock_boottime
, deltasecs
, clock_boottime_usec
, deltamicrosecs
, USEC_PER_SEC
);
803 clock2bintime(&deltasecs
, &deltamicrosecs
, &bt
);
804 bintime_add(&clock_calend
.boottime
, &bt
);
805 update_basesleep(bt
, TRUE
);
809 deltamicrosecs
= oldmicrosecs
;
811 TIME_SUB(deltasecs
, secs
, deltamicrosecs
, microsecs
, USEC_PER_SEC
);
812 #if DEVELOPMENT || DEBUG
813 if (g_should_log_clock_adjustments
) {
814 os_log(OS_LOG_DEFAULT
, "%s negative delta requested %lu s %d u\n",
815 __func__
, (unsigned long)deltasecs
, deltamicrosecs
);
819 TIME_SUB(clock_boottime
, deltasecs
, clock_boottime_usec
, deltamicrosecs
, USEC_PER_SEC
);
820 clock2bintime(&deltasecs
, &deltamicrosecs
, &bt
);
821 bintime_sub(&clock_calend
.boottime
, &bt
);
822 update_basesleep(bt
, FALSE
);
825 clock_calend
.bintime
= clock_calend
.boottime
;
826 bintime_add(&clock_calend
.bintime
, &clock_calend
.offset
);
828 clock2bintime((clock_sec_t
*) &secs
, (clock_usec_t
*) µsecs
, &bt
);
830 clock_gettimeofday_set_commpage(absolutesys
, bt
.sec
, bt
.frac
, clock_calend
.tick_scale_x
, ticks_per_sec
);
832 #if DEVELOPMENT || DEBUG
833 struct clock_calend clock_calend_cp1
= clock_calend
;
836 commpage_value
= clock_boottime
* USEC_PER_SEC
+ clock_boottime_usec
;
842 * Set the new value for the platform clock.
843 * This call might block, so interrupts must be enabled.
845 #if DEVELOPMENT || DEBUG
846 uint64_t now_b
= mach_absolute_time();
849 PESetUTCTimeOfDay(newsecs
, newmicrosecs
);
851 #if DEVELOPMENT || DEBUG
852 uint64_t now_a
= mach_absolute_time();
853 if (g_should_log_clock_adjustments
) {
854 os_log(OS_LOG_DEFAULT
, "%s mach bef PESet %llu mach aft %llu \n", __func__
, now_b
, now_a
);
858 print_all_clock_variables_internal(__func__
, &clock_calend_cp
);
859 print_all_clock_variables_internal(__func__
, &clock_calend_cp1
);
861 commpage_update_boottime(commpage_value
);
864 * Send host notifications.
866 host_notify_calendar_change();
867 host_notify_calendar_set();
870 clock_track_calend_nowait();
873 lck_mtx_unlock(&settime_lock
);
876 uint64_t mach_absolutetime_asleep
= 0;
877 uint64_t mach_absolutetime_last_sleep
= 0;
880 clock_get_calendar_uptime(clock_sec_t
*secs
)
889 now
= mach_absolute_time();
891 bt
= get_scaled_time(now
);
892 bintime_add(&bt
, &clock_calend
.offset
);
902 * clock_update_calendar:
904 * called by ntp timer to update scale factors.
907 clock_update_calendar(void)
918 now
= mach_absolute_time();
921 * scale the time elapsed since the last update and
924 bt
= get_scaled_time(now
);
925 bintime_add(&clock_calend
.offset
, &bt
);
928 * update the base from which apply next scale factors.
930 delta
= now
- clock_calend
.offset_count
;
931 clock_calend
.offset_count
+= delta
;
933 clock_calend
.bintime
= clock_calend
.offset
;
934 bintime_add(&clock_calend
.bintime
, &clock_calend
.boottime
);
937 * recompute next adjustment.
939 ntp_update_second(&adjustment
, clock_calend
.bintime
.sec
);
941 #if DEVELOPMENT || DEBUG
942 if (g_should_log_clock_adjustments
) {
943 os_log(OS_LOG_DEFAULT
, "%s adjustment %lld\n", __func__
, adjustment
);
948 * recomputing scale factors.
950 get_scale_factors_from_adj(adjustment
, &clock_calend
.tick_scale_x
, &clock_calend
.s_scale_ns
, &clock_calend
.s_adj_nsx
);
952 clock_gettimeofday_set_commpage(now
, clock_calend
.bintime
.sec
, clock_calend
.bintime
.frac
, clock_calend
.tick_scale_x
, ticks_per_sec
);
954 #if DEVELOPMENT || DEBUG
955 struct clock_calend calend_cp
= clock_calend
;
961 print_all_clock_variables(__func__
, NULL
,NULL
,NULL
,NULL
, &calend_cp
);
965 #if DEVELOPMENT || DEBUG
967 void print_all_clock_variables_internal(const char* func
, struct clock_calend
* clock_calend_cp
)
969 clock_sec_t offset_secs
;
970 clock_usec_t offset_microsecs
;
971 clock_sec_t bintime_secs
;
972 clock_usec_t bintime_microsecs
;
973 clock_sec_t bootime_secs
;
974 clock_usec_t bootime_microsecs
;
976 if (!g_should_log_clock_adjustments
)
979 bintime2usclock(&clock_calend_cp
->offset
, &offset_secs
, &offset_microsecs
);
980 bintime2usclock(&clock_calend_cp
->bintime
, &bintime_secs
, &bintime_microsecs
);
981 bintime2usclock(&clock_calend_cp
->boottime
, &bootime_secs
, &bootime_microsecs
);
983 os_log(OS_LOG_DEFAULT
, "%s s_scale_ns %llu s_adj_nsx %lld tick_scale_x %llu offset_count %llu\n",
984 func
, clock_calend_cp
->s_scale_ns
, clock_calend_cp
->s_adj_nsx
,
985 clock_calend_cp
->tick_scale_x
, clock_calend_cp
->offset_count
);
986 os_log(OS_LOG_DEFAULT
, "%s offset.sec %ld offset.frac %llu offset_secs %lu offset_microsecs %d\n",
987 func
, clock_calend_cp
->offset
.sec
, clock_calend_cp
->offset
.frac
,
988 (unsigned long)offset_secs
, offset_microsecs
);
989 os_log(OS_LOG_DEFAULT
, "%s bintime.sec %ld bintime.frac %llu bintime_secs %lu bintime_microsecs %d\n",
990 func
, clock_calend_cp
->bintime
.sec
, clock_calend_cp
->bintime
.frac
,
991 (unsigned long)bintime_secs
, bintime_microsecs
);
992 os_log(OS_LOG_DEFAULT
, "%s bootime.sec %ld bootime.frac %llu bootime_secs %lu bootime_microsecs %d\n",
993 func
, clock_calend_cp
->boottime
.sec
, clock_calend_cp
->boottime
.frac
,
994 (unsigned long)bootime_secs
, bootime_microsecs
);
996 clock_sec_t basesleep_secs
;
997 clock_usec_t basesleep_microsecs
;
999 bintime2usclock(&clock_calend_cp
->basesleep
, &basesleep_secs
, &basesleep_microsecs
);
1000 os_log(OS_LOG_DEFAULT
, "%s basesleep.sec %ld basesleep.frac %llu basesleep_secs %lu basesleep_microsecs %d\n",
1001 func
, clock_calend_cp
->basesleep
.sec
, clock_calend_cp
->basesleep
.frac
,
1002 (unsigned long)basesleep_secs
, basesleep_microsecs
);
1007 void print_all_clock_variables(const char* func
, clock_sec_t
* pmu_secs
, clock_usec_t
* pmu_usec
, clock_sec_t
* sys_secs
, clock_usec_t
* sys_usec
, struct clock_calend
* clock_calend_cp
)
1009 if (!g_should_log_clock_adjustments
)
1013 clock_sec_t wall_secs
;
1014 clock_usec_t wall_microsecs
;
1019 os_log(OS_LOG_DEFAULT
, "%s PMU %lu s %d u \n", func
, (unsigned long)*pmu_secs
, *pmu_usec
);
1022 os_log(OS_LOG_DEFAULT
, "%s sys %lu s %d u \n", func
, (unsigned long)*sys_secs
, *sys_usec
);
1025 print_all_clock_variables_internal(func
, clock_calend_cp
);
1027 now
= mach_absolute_time();
1028 delta
= now
- clock_calend_cp
->offset_count
;
1030 bt
= scale_delta(delta
, clock_calend_cp
->tick_scale_x
, clock_calend_cp
->s_scale_ns
, clock_calend_cp
->s_adj_nsx
);
1031 bintime_add(&bt
, &clock_calend_cp
->bintime
);
1032 bintime2usclock(&bt
, &wall_secs
, &wall_microsecs
);
1034 os_log(OS_LOG_DEFAULT
, "%s wall %lu s %d u computed with %llu abs\n",
1035 func
, (unsigned long)wall_secs
, wall_microsecs
, now
);
1039 #endif /* DEVELOPMENT || DEBUG */
1043 * clock_initialize_calendar:
1045 * Set the calendar and related clocks
1046 * from the platform clock at boot.
1048 * Also sends host notifications.
1051 clock_initialize_calendar(void)
1053 clock_sec_t sys
; // sleepless time since boot in seconds
1054 clock_sec_t secs
; // Current UTC time
1055 clock_sec_t utc_offset_secs
; // Difference in current UTC time and sleepless time since boot
1056 clock_usec_t microsys
;
1057 clock_usec_t microsecs
;
1058 clock_usec_t utc_offset_microsecs
;
1061 struct bintime monotonic_bt
;
1062 struct latched_time monotonic_time
;
1063 uint64_t monotonic_usec_total
;
1064 clock_sec_t sys2
, monotonic_sec
;
1065 clock_usec_t microsys2
, monotonic_usec
;
1068 //Get PMU time with offset and corresponding sys time
1069 PEGetUTCTimeOfDay(&secs
, µsecs
);
1070 clock_get_system_microtime(&sys
, µsys
);
1073 * If the platform has a monotonic clock, use kern.monotonicclock_usecs
1074 * to estimate the sleep/wake time, otherwise use the PMU and adjustments
1075 * provided through settimeofday to estimate the sleep time.
1076 * NOTE: the latter case relies that the kernel is the only component
1077 * to set the PMU offset.
1079 size
= sizeof(monotonic_time
);
1080 if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time
, &size
, NULL
, 0) != 0) {
1081 has_monotonic_clock
= 0;
1082 os_log(OS_LOG_DEFAULT
, "%s system does not have monotonic clock.\n", __func__
);
1084 has_monotonic_clock
= 1;
1085 monotonic_usec_total
= monotonic_time
.monotonic_time_usec
;
1086 absolutetime_to_microtime(monotonic_time
.mach_time
, &sys2
, µsys2
);
1087 os_log(OS_LOG_DEFAULT
, "%s system has monotonic clock.\n", __func__
);
1093 commpage_disable_timestamp();
1095 utc_offset_secs
= secs
;
1096 utc_offset_microsecs
= microsecs
;
1098 #if DEVELOPMENT || DEBUG
1099 last_utc_sec
= secs
;
1100 last_utc_usec
= microsecs
;
1102 last_sys_usec
= microsys
;
1103 if (secs
> max_utc_sec
)
1108 * We normally expect the UTC clock to be always-on and produce
1109 * greater readings than the tick counter. There may be corner cases
1110 * due to differing clock resolutions (UTC clock is likely lower) and
1111 * and errors reading the UTC clock (some implementations return 0
1112 * on error) in which that doesn't hold true. Bring the UTC measurements
1113 * in-line with the tick counter measurements as a best effort in that case.
1115 //FIXME if the current time is prior than 1970 secs will be negative
1116 if ((sys
> secs
) || ((sys
== secs
) && (microsys
> microsecs
))) {
1117 os_log(OS_LOG_DEFAULT
, "%s WARNING: PMU offset is less then sys PMU %lu s %d u sys %lu s %d u\n",
1118 __func__
, (unsigned long) secs
, microsecs
, (unsigned long)sys
, microsys
);
1119 secs
= utc_offset_secs
= sys
;
1120 microsecs
= utc_offset_microsecs
= microsys
;
1123 // PMU time with offset - sys
1124 // This macro stores the subtraction result in utc_offset_secs and utc_offset_microsecs
1125 TIME_SUB(utc_offset_secs
, sys
, utc_offset_microsecs
, microsys
, USEC_PER_SEC
);
1127 clock2bintime(&utc_offset_secs
, &utc_offset_microsecs
, &bt
);
1130 * Initialize the boot time based on the platform clock.
1132 clock_boottime
= secs
;
1133 clock_boottime_usec
= microsecs
;
1134 commpage_update_boottime(clock_boottime
* USEC_PER_SEC
+ clock_boottime_usec
);
1136 nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC
, &ticks_per_sec
);
1137 clock_calend
.boottime
= bt
;
1138 clock_calend
.bintime
= bt
;
1139 clock_calend
.offset
.sec
= 0;
1140 clock_calend
.offset
.frac
= 0;
1142 clock_calend
.tick_scale_x
= (uint64_t)1 << 63;
1143 clock_calend
.tick_scale_x
/= ticks_per_sec
;
1144 clock_calend
.tick_scale_x
*= 2;
1146 clock_calend
.s_scale_ns
= NSEC_PER_SEC
;
1147 clock_calend
.s_adj_nsx
= 0;
1149 if (has_monotonic_clock
) {
1151 monotonic_sec
= monotonic_usec_total
/ (clock_sec_t
)USEC_PER_SEC
;
1152 monotonic_usec
= monotonic_usec_total
% (clock_usec_t
)USEC_PER_SEC
;
1154 // PMU time without offset - sys
1155 // This macro stores the subtraction result in monotonic_sec and monotonic_usec
1156 TIME_SUB(monotonic_sec
, sys2
, monotonic_usec
, microsys2
, USEC_PER_SEC
);
1157 clock2bintime(&monotonic_sec
, &monotonic_usec
, &monotonic_bt
);
1159 // set the baseleep as the difference between monotonic clock - sys
1160 clock_calend
.basesleep
= monotonic_bt
;
1162 // set the baseleep as the difference between PMU clock - sys
1163 clock_calend
.basesleep
= bt
;
1165 commpage_update_mach_continuous_time(mach_absolutetime_asleep
);
1167 #if DEVELOPMENT || DEBUG
1168 struct clock_calend clock_calend_cp
= clock_calend
;
1174 print_all_clock_variables(__func__
, &secs
, µsecs
, &sys
, µsys
, &clock_calend_cp
);
1177 * Send host notifications.
1179 host_notify_calendar_change();
1182 clock_track_calend_nowait();
1188 clock_wakeup_calendar(void)
1192 clock_usec_t microsys
;
1193 clock_usec_t microsecs
;
1195 struct bintime bt
, last_sleep_bt
;
1196 clock_sec_t basesleep_s
, last_sleep_sec
;
1197 clock_usec_t basesleep_us
, last_sleep_usec
;
1198 struct latched_time monotonic_time
;
1199 uint64_t monotonic_usec_total
;
1201 clock_sec_t secs_copy
;
1202 clock_usec_t microsecs_copy
;
1203 #if DEVELOPMENT || DEBUG
1204 clock_sec_t utc_sec
;
1205 clock_usec_t utc_usec
;
1206 PEGetUTCTimeOfDay(&utc_sec
, &utc_usec
);
1210 * If the platform has the monotonic clock use that to
1211 * compute the sleep time. The monotonic clock does not have an offset
1212 * that can be modified, so nor kernel or userspace can change the time
1213 * of this clock, it can only monotonically increase over time.
1214 * During sleep mach_absolute_time does not tick,
1215 * so the sleep time is the difference betwen the current monotonic time
1216 * less the absolute time and the previous difference stored at wake time.
1218 * basesleep = monotonic - sys ---> computed at last wake
1219 * sleep_time = (monotonic - sys) - basesleep
1221 * If the platform does not support monotonic time we use the PMU time
1222 * to compute the last sleep.
1223 * The PMU time is the monotonic clock + an offset that can be set
1227 * We assume that only the kernel is setting the offset of the PMU and that
1228 * it is doing it only througth the settimeofday interface.
1230 * basesleep is the different between the PMU time and the mach_absolute_time
1232 * During awake time settimeofday can change the PMU offset by a delta,
1233 * and basesleep is shifted by the same delta applyed to the PMU. So the sleep
1234 * time computation becomes:
1236 * PMU = monotonic + PMU_offset
1237 * basesleep = PMU - sys ---> computed at last wake
1238 * basesleep += settimeofday_delta
1239 * PMU_offset += settimeofday_delta
1240 * sleep_time = (PMU - sys) - basesleep
1242 if (has_monotonic_clock
) {
1243 //Get monotonic time with corresponding sys time
1244 size
= sizeof(monotonic_time
);
1245 if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time
, &size
, NULL
, 0) != 0) {
1246 panic("%s: could not call kern.monotonicclock_usecs", __func__
);
1248 monotonic_usec_total
= monotonic_time
.monotonic_time_usec
;
1249 absolutetime_to_microtime(monotonic_time
.mach_time
, &sys
, µsys
);
1251 secs
= monotonic_usec_total
/ (clock_sec_t
)USEC_PER_SEC
;
1252 microsecs
= monotonic_usec_total
% (clock_usec_t
)USEC_PER_SEC
;
1254 //Get PMU time with offset and corresponding sys time
1255 PEGetUTCTimeOfDay(&secs
, µsecs
);
1256 clock_get_system_microtime(&sys
, µsys
);
1263 commpage_disable_timestamp();
1266 microsecs_copy
= microsecs
;
1268 #if DEVELOPMENT || DEBUG
1269 struct clock_calend clock_calend_cp1
= clock_calend
;
1270 #endif /* DEVELOPMENT || DEBUG */
1272 #if DEVELOPMENT || DEBUG
1273 last_utc_sec
= secs
;
1274 last_utc_usec
= microsecs
;
1276 last_sys_usec
= microsys
;
1277 if (secs
> max_utc_sec
)
1281 * We normally expect the UTC clock to be always-on and produce
1282 * greater readings than the tick counter. There may be corner cases
1283 * due to differing clock resolutions (UTC clock is likely lower) and
1284 * and errors reading the UTC clock (some implementations return 0
1285 * on error) in which that doesn't hold true. Bring the UTC measurements
1286 * in-line with the tick counter measurements as a best effort in that case.
1288 //FIXME if the current time is prior than 1970 secs will be negative
1289 if ((sys
> secs
) || ((sys
== secs
) && (microsys
> microsecs
))) {
1290 os_log(OS_LOG_DEFAULT
, "%s WARNING: %s is less then sys %s %lu s %d u sys %lu s %d u\n",
1291 __func__
, (has_monotonic_clock
)?"monotonic":"PMU", (has_monotonic_clock
)?"monotonic":"PMU", (unsigned long)secs
, microsecs
, (unsigned long)sys
, microsys
);
1293 microsecs
= microsys
;
1296 // PMU or monotonic - sys
1297 // This macro stores the subtraction result in secs and microsecs
1298 TIME_SUB(secs
, sys
, microsecs
, microsys
, USEC_PER_SEC
);
1299 clock2bintime(&secs
, µsecs
, &bt
);
1302 * Safety belt: the UTC clock will likely have a lower resolution than the tick counter.
1303 * It's also possible that the device didn't fully transition to the powered-off state on
1304 * the most recent sleep, so the tick counter may not have reset or may have only briefly
1305 * tured off. In that case it's possible for the difference between the UTC clock and the
1306 * tick counter to be less than the previously recorded value in clock.calend.basesleep.
1307 * In that case simply record that we slept for 0 ticks.
1309 if ((bt
.sec
> clock_calend
.basesleep
.sec
) ||
1310 ((bt
.sec
== clock_calend
.basesleep
.sec
) && (bt
.frac
> clock_calend
.basesleep
.frac
))) {
1312 //last_sleep is the difference between current PMU or monotonic - abs and last wake PMU or monotonic - abs
1314 bintime_sub(&last_sleep_bt
, &clock_calend
.basesleep
);
1316 //set baseseep to current PMU or monotonic - abs
1317 clock_calend
.basesleep
= bt
;
1318 bintime2usclock(&last_sleep_bt
, &last_sleep_sec
, &last_sleep_usec
);
1319 bintime2absolutetime(&last_sleep_bt
, &mach_absolutetime_last_sleep
);
1320 mach_absolutetime_asleep
+= mach_absolutetime_last_sleep
;
1322 bintime_add(&clock_calend
.offset
, &last_sleep_bt
);
1323 bintime_add(&clock_calend
.bintime
, &last_sleep_bt
);
1326 mach_absolutetime_last_sleep
= 0;
1327 last_sleep_sec
= last_sleep_usec
= 0;
1328 bintime2usclock(&clock_calend
.basesleep
, &basesleep_s
, &basesleep_us
);
1329 os_log(OS_LOG_DEFAULT
, "%s WARNING: basesleep (%lu s %d u) > %s-sys (%lu s %d u) \n",
1330 __func__
, (unsigned long) basesleep_s
, basesleep_us
, (has_monotonic_clock
)?"monotonic":"PMU", (unsigned long) secs_copy
, microsecs_copy
);
1333 KERNEL_DEBUG_CONSTANT(
1334 MACHDBG_CODE(DBG_MACH_CLOCK
,MACH_EPOCH_CHANGE
) | DBG_FUNC_NONE
,
1335 (uintptr_t) mach_absolutetime_last_sleep
,
1336 (uintptr_t) mach_absolutetime_asleep
,
1337 (uintptr_t) (mach_absolutetime_last_sleep
>> 32),
1338 (uintptr_t) (mach_absolutetime_asleep
>> 32),
1341 commpage_update_mach_continuous_time(mach_absolutetime_asleep
);
1342 adjust_cont_time_thread_calls();
1344 #if DEVELOPMENT || DEBUG
1345 struct clock_calend clock_calend_cp
= clock_calend
;
1351 #if DEVELOPMENT || DEBUG
1352 if (g_should_log_clock_adjustments
) {
1353 os_log(OS_LOG_DEFAULT
, "PMU was %lu s %d u\n",(unsigned long) utc_sec
, utc_usec
);
1354 os_log(OS_LOG_DEFAULT
, "last sleep was %lu s %d u\n",(unsigned long) last_sleep_sec
, last_sleep_usec
);
1355 print_all_clock_variables("clock_wakeup_calendar:BEFORE",
1356 &secs_copy
, µsecs_copy
, &sys
, µsys
, &clock_calend_cp1
);
1357 print_all_clock_variables("clock_wakeup_calendar:AFTER", NULL
, NULL
, NULL
, NULL
, &clock_calend_cp
);
1359 #endif /* DEVELOPMENT || DEBUG */
1361 host_notify_calendar_change();
1364 clock_track_calend_nowait();
1370 * clock_get_boottime_nanotime:
1372 * Return the boottime, used by sysctl.
1375 clock_get_boottime_nanotime(
1377 clock_nsec_t
*nanosecs
)
1384 *secs
= (clock_sec_t
)clock_boottime
;
1385 *nanosecs
= (clock_nsec_t
)clock_boottime_usec
* NSEC_PER_USEC
;
1392 * clock_get_boottime_nanotime:
1394 * Return the boottime, used by sysctl.
1397 clock_get_boottime_microtime(
1399 clock_usec_t
*microsecs
)
1406 *secs
= (clock_sec_t
)clock_boottime
;
1407 *microsecs
= (clock_nsec_t
)clock_boottime_usec
;
1415 * Wait / delay routines.
1418 mach_wait_until_continue(
1419 __unused
void *parameter
,
1420 wait_result_t wresult
)
1422 thread_syscall_return((wresult
== THREAD_INTERRUPTED
)? KERN_ABORTED
: KERN_SUCCESS
);
1427 * mach_wait_until_trap: Suspend execution of calling thread until the specified time has passed
1429 * Parameters: args->deadline Amount of time to wait
1431 * Returns: 0 Success
1436 mach_wait_until_trap(
1437 struct mach_wait_until_trap_args
*args
)
1439 uint64_t deadline
= args
->deadline
;
1440 wait_result_t wresult
;
1442 wresult
= assert_wait_deadline_with_leeway((event_t
)mach_wait_until_trap
, THREAD_ABORTSAFE
,
1443 TIMEOUT_URGENCY_USER_NORMAL
, deadline
, 0);
1444 if (wresult
== THREAD_WAITING
)
1445 wresult
= thread_block(mach_wait_until_continue
);
1447 return ((wresult
== THREAD_INTERRUPTED
)? KERN_ABORTED
: KERN_SUCCESS
);
1454 uint64_t now
= mach_absolute_time();
1456 if (now
>= deadline
)
1459 _clock_delay_until_deadline(deadline
- now
, deadline
);
1463 * Preserve the original precise interval that the client
1464 * requested for comparison to the spin threshold.
1467 _clock_delay_until_deadline(
1471 _clock_delay_until_deadline_with_leeway(interval
, deadline
, 0);
1475 * Like _clock_delay_until_deadline, but it accepts a
1479 _clock_delay_until_deadline_with_leeway(
1488 if ( ml_delay_should_spin(interval
) ||
1489 get_preemption_level() != 0 ||
1490 ml_get_interrupts_enabled() == FALSE
) {
1491 machine_delay_until(interval
, deadline
);
1494 * For now, assume a leeway request of 0 means the client does not want a leeway
1495 * value. We may want to change this interpretation in the future.
1499 assert_wait_deadline_with_leeway((event_t
)clock_delay_until
, THREAD_UNINT
, TIMEOUT_URGENCY_LEEWAY
, deadline
, leeway
);
1501 assert_wait_deadline((event_t
)clock_delay_until
, THREAD_UNINT
, deadline
);
1504 thread_block(THREAD_CONTINUE_NULL
);
1511 uint32_t scale_factor
)
1515 clock_interval_to_absolutetime_interval(interval
, scale_factor
, &abstime
);
1517 _clock_delay_until_deadline(abstime
, mach_absolute_time() + abstime
);
1521 delay_for_interval_with_leeway(
1524 uint32_t scale_factor
)
1526 uint64_t abstime_interval
;
1527 uint64_t abstime_leeway
;
1529 clock_interval_to_absolutetime_interval(interval
, scale_factor
, &abstime_interval
);
1530 clock_interval_to_absolutetime_interval(leeway
, scale_factor
, &abstime_leeway
);
1532 _clock_delay_until_deadline_with_leeway(abstime_interval
, mach_absolute_time() + abstime_interval
, abstime_leeway
);
1539 delay_for_interval((usec
< 0)? -usec
: usec
, NSEC_PER_USEC
);
1543 * Miscellaneous routines.
1546 clock_interval_to_deadline(
1548 uint32_t scale_factor
,
1553 clock_interval_to_absolutetime_interval(interval
, scale_factor
, &abstime
);
1555 *result
= mach_absolute_time() + abstime
;
1559 clock_absolutetime_interval_to_deadline(
1563 *result
= mach_absolute_time() + abstime
;
1567 clock_continuoustime_interval_to_deadline(
1571 *result
= mach_continuous_time() + conttime
;
1578 *result
= mach_absolute_time();
1582 clock_deadline_for_periodic_event(
1587 assert(interval
!= 0);
1589 *deadline
+= interval
;
1591 if (*deadline
<= abstime
) {
1592 *deadline
= abstime
+ interval
;
1593 abstime
= mach_absolute_time();
1595 if (*deadline
<= abstime
)
1596 *deadline
= abstime
+ interval
;
1601 mach_continuous_time(void)
1604 uint64_t read1
= mach_absolutetime_asleep
;
1605 uint64_t absolute
= mach_absolute_time();
1607 uint64_t read2
= mach_absolutetime_asleep
;
1609 if(__builtin_expect(read1
== read2
, 1)) {
1610 return absolute
+ read1
;
1616 mach_continuous_approximate_time(void)
1619 uint64_t read1
= mach_absolutetime_asleep
;
1620 uint64_t absolute
= mach_approximate_time();
1622 uint64_t read2
= mach_absolutetime_asleep
;
1624 if(__builtin_expect(read1
== read2
, 1)) {
1625 return absolute
+ read1
;
1631 * continuoustime_to_absolutetime
1632 * Must be called with interrupts disabled
1633 * Returned value is only valid until the next update to
1634 * mach_continuous_time
1637 continuoustime_to_absolutetime(uint64_t conttime
) {
1638 if (conttime
<= mach_absolutetime_asleep
)
1641 return conttime
- mach_absolutetime_asleep
;
1645 * absolutetime_to_continuoustime
1646 * Must be called with interrupts disabled
1647 * Returned value is only valid until the next update to
1648 * mach_continuous_time
1651 absolutetime_to_continuoustime(uint64_t abstime
) {
1652 return abstime
+ mach_absolutetime_asleep
;
1658 * clock_get_calendar_nanotime_nowait
1660 * Description: Non-blocking version of clock_get_calendar_nanotime()
1662 * Notes: This function operates by separately tracking calendar time
1663 * updates using a two element structure to copy the calendar
1664 * state, which may be asynchronously modified. It utilizes
1665 * barrier instructions in the tracking process and in the local
1666 * stable snapshot process in order to ensure that a consistent
1667 * snapshot is used to perform the calculation.
1670 clock_get_calendar_nanotime_nowait(
1672 clock_nsec_t
*nanosecs
)
1676 struct unlocked_clock_calend stable
;
1680 stable
= flipflop
[i
]; /* take snapshot */
1683 * Use a barrier instructions to ensure atomicity. We AND
1684 * off the "in progress" bit to get the current generation
1687 (void)hw_atomic_and(&stable
.gen
, ~(uint32_t)1);
1690 * If an update _is_ in progress, the generation count will be
1691 * off by one, if it _was_ in progress, it will be off by two,
1692 * and if we caught it at a good time, it will be equal (and
1693 * our snapshot is threfore stable).
1695 if (flipflop
[i
].gen
== stable
.gen
)
1698 /* Switch to the other element of the flipflop, and try again. */
1702 now
= mach_absolute_time();
1704 bt
= get_scaled_time(now
);
1706 bintime_add(&bt
, &clock_calend
.bintime
);
1708 bintime2nsclock(&bt
, secs
, nanosecs
);
1712 clock_track_calend_nowait(void)
1716 for (i
= 0; i
< 2; i
++) {
1717 struct clock_calend tmp
= clock_calend
;
1720 * Set the low bit if the generation count; since we use a
1721 * barrier instruction to do this, we are guaranteed that this
1722 * will flag an update in progress to an async caller trying
1723 * to examine the contents.
1725 (void)hw_atomic_or(&flipflop
[i
].gen
, 1);
1727 flipflop
[i
].calend
= tmp
;
1730 * Increment the generation count to clear the low bit to
1731 * signal completion. If a caller compares the generation
1732 * count after taking a copy while in progress, the count
1733 * will be off by two.
1735 (void)hw_atomic_add(&flipflop
[i
].gen
, 1);
1739 #endif /* CONFIG_DTRACE */