2 * Copyright (c) 2012-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * A note on the MPTCP/NECP-interactions:
32 * MPTCP uses NECP-callbacks to get notified of interface/policy events.
33 * MPTCP registers to these events at the MPTCP-layer for interface-events
34 * through a call to necp_client_register_multipath_cb.
35 * To get per-flow events (aka per TCP-subflow), we register to it with
36 * necp_client_register_socket_flow. Both registrations happen by using the
37 * necp-client-uuid that comes from the app.
39 * The locking is rather tricky. In general, we expect the lock-ordering to
40 * happen from necp-fd -> necp->client -> mpp_lock.
42 * There are however some subtleties.
44 * 1. When registering the multipath_cb, we are holding the mpp_lock. This is
45 * safe, because it is the very first time this MPTCP-connection goes into NECP.
46 * As we go into NECP we take the NECP-locks and thus are guaranteed that no
47 * NECP-locks will deadlock us. Because these NECP-events will also first take
48 * the NECP-locks. Either they win the race and thus won't find our
49 * MPTCP-connection. Or, MPTCP wins the race and thus it will safely install
50 * the callbacks while holding the NECP lock.
52 * 2. When registering the subflow-callbacks we must unlock the mpp_lock. This,
53 * because we have already registered callbacks and we might race against an
54 * NECP-event that will match on our socket. So, we have to unlock to be safe.
56 * 3. When removing the multipath_cb, we do it in mp_pcbdispose(). The
57 * so_usecount has reached 0. We must be careful to not remove the mpp_socket
58 * pointers before we unregistered the callback. Because, again we might be
59 * racing against an NECP-event. Unregistering must happen with an unlocked
60 * mpp_lock, because of the lock-ordering constraint. It could be that
61 * before we had a chance to unregister an NECP-event triggers. That's why
62 * we need to check for the so_usecount in mptcp_session_necp_cb. If we get
63 * there while the socket is being garbage-collected, the use-count will go
64 * down to 0 and we exit. Removal of the multipath_cb again happens by taking
65 * the NECP-locks so any running NECP-events will finish first and exit cleanly.
67 * 4. When removing the subflow-callback, we do it in in_pcbdispose(). Again,
68 * the socket-lock must be unlocked for lock-ordering constraints. This gets a
69 * bit tricky here, as in tcp_garbage_collect we hold the mp_so and so lock.
70 * So, we drop the mp_so-lock as soon as the subflow is unlinked with
71 * mptcp_subflow_del. Then, in in_pcbdispose we drop the subflow-lock.
72 * If an NECP-event was waiting on the lock in mptcp_subflow_necp_cb, when it
73 * gets it, it will realize that the subflow became non-MPTCP and retry (see
74 * tcp_lock). Then it waits again on the subflow-lock. When we drop this lock
75 * in in_pcbdispose, and enter necp_inpcb_dispose, this one will have to wait
76 * for the NECP-lock (held by the other thread that is taking care of the NECP-
77 * event). So, the event now finally gets the subflow-lock and then hits an
78 * so_usecount that is 0 and exits. Eventually, we can remove the subflow from
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
86 #include <sys/mcache.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/syslog.h>
90 #include <sys/protosw.h>
92 #include <kern/zalloc.h>
93 #include <kern/locks.h>
98 #include <netinet/in.h>
99 #include <netinet/in_var.h>
100 #include <netinet/tcp.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/mptcp_var.h>
105 #include <netinet/mptcp.h>
106 #include <netinet/mptcp_seq.h>
107 #include <netinet/mptcp_opt.h>
108 #include <netinet/mptcp_timer.h>
110 int mptcp_enable
= 1;
111 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, enable
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
112 &mptcp_enable
, 0, "Enable Multipath TCP Support");
114 /* Number of times to try negotiating MPTCP on SYN retransmissions */
115 int mptcp_mpcap_retries
= MPTCP_CAPABLE_RETRIES
;
116 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, mptcp_cap_retr
,
117 CTLFLAG_RW
| CTLFLAG_LOCKED
,
118 &mptcp_mpcap_retries
, 0, "Number of MP Capable SYN Retries");
121 * By default, DSS checksum is turned off, revisit if we ever do
122 * MPTCP for non SSL Traffic.
124 int mptcp_dss_csum
= 0;
125 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, dss_csum
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
126 &mptcp_dss_csum
, 0, "Enable DSS checksum");
129 * When mptcp_fail_thresh number of retransmissions are sent, subflow failover
130 * is attempted on a different path.
132 int mptcp_fail_thresh
= 1;
133 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, fail
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
134 &mptcp_fail_thresh
, 0, "Failover threshold");
138 * MPTCP subflows have TCP keepalives set to ON. Set a conservative keeptime
139 * as carrier networks mostly have a 30 minute to 60 minute NAT Timeout.
140 * Some carrier networks have a timeout of 10 or 15 minutes.
142 int mptcp_subflow_keeptime
= 60*14;
143 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, keepalive
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
144 &mptcp_subflow_keeptime
, 0, "Keepalive in seconds");
146 int mptcp_rtthist_rtthresh
= 600;
147 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, rtthist_thresh
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
148 &mptcp_rtthist_rtthresh
, 0, "Rtt threshold");
151 * Use RTO history for sending new data
153 int mptcp_use_rto
= 1;
154 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, userto
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
155 &mptcp_use_rto
, 0, "Disable RTO for subflow selection");
157 int mptcp_rtothresh
= 1500;
158 SYSCTL_INT(_net_inet_mptcp
, OID_AUTO
, rto_thresh
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
159 &mptcp_rtothresh
, 0, "RTO threshold");
162 * Probe the preferred path, when it is not in use
164 uint32_t mptcp_probeto
= 1000;
165 SYSCTL_UINT(_net_inet_mptcp
, OID_AUTO
, probeto
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
166 &mptcp_probeto
, 0, "Disable probing by setting to 0");
168 uint32_t mptcp_probecnt
= 5;
169 SYSCTL_UINT(_net_inet_mptcp
, OID_AUTO
, probecnt
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
170 &mptcp_probecnt
, 0, "Number of probe writes");
173 * Static declarations
175 static uint16_t mptcp_input_csum(struct tcpcb
*, struct mbuf
*, uint64_t,
176 uint32_t, uint16_t, uint16_t, uint16_t);
179 mptcp_reass_present(struct socket
*mp_so
)
181 struct mptcb
*mp_tp
= mpsotomppcb(mp_so
)->mpp_pcbe
->mpte_mptcb
;
187 * Present data to user, advancing rcv_nxt through
188 * completed sequence space.
190 if (mp_tp
->mpt_state
< MPTCPS_ESTABLISHED
)
192 q
= LIST_FIRST(&mp_tp
->mpt_segq
);
193 if (!q
|| q
->tqe_m
->m_pkthdr
.mp_dsn
!= mp_tp
->mpt_rcvnxt
)
197 * If there is already another thread doing reassembly for this
198 * connection, it is better to let it finish the job --
201 if (mp_tp
->mpt_flags
& MPTCPF_REASS_INPROG
)
204 mp_tp
->mpt_flags
|= MPTCPF_REASS_INPROG
;
207 mp_tp
->mpt_rcvnxt
+= q
->tqe_len
;
208 LIST_REMOVE(q
, tqe_q
);
209 if (mp_so
->so_state
& SS_CANTRCVMORE
) {
212 flags
= !!(q
->tqe_m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP_DFIN
);
213 if (sbappendstream_rcvdemux(mp_so
, q
->tqe_m
, 0, 0))
216 zfree(tcp_reass_zone
, q
);
217 mp_tp
->mpt_reassqlen
--;
218 q
= LIST_FIRST(&mp_tp
->mpt_segq
);
219 } while (q
&& q
->tqe_m
->m_pkthdr
.mp_dsn
== mp_tp
->mpt_rcvnxt
);
220 mp_tp
->mpt_flags
&= ~MPTCPF_REASS_INPROG
;
223 sorwakeup(mp_so
); /* done with socket lock held */
229 mptcp_reass(struct socket
*mp_so
, struct pkthdr
*phdr
, int *tlenp
, struct mbuf
*m
)
231 struct mptcb
*mp_tp
= mpsotomppcb(mp_so
)->mpp_pcbe
->mpte_mptcb
;
232 u_int64_t mb_dsn
= phdr
->mp_dsn
;
234 struct tseg_qent
*p
= NULL
;
235 struct tseg_qent
*nq
;
236 struct tseg_qent
*te
= NULL
;
240 * Limit the number of segments in the reassembly queue to prevent
241 * holding on to too many segments (and thus running out of mbufs).
242 * Make sure to let the missing segment through which caused this
243 * queue. Always keep one global queue entry spare to be able to
244 * process the missing segment.
246 qlimit
= min(max(100, mp_so
->so_rcv
.sb_hiwat
>> 10),
247 (tcp_autorcvbuf_max
>> 10));
248 if (mb_dsn
!= mp_tp
->mpt_rcvnxt
&&
249 (mp_tp
->mpt_reassqlen
+ 1) >= qlimit
) {
250 tcpstat
.tcps_mptcp_rcvmemdrop
++;
256 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
257 te
= (struct tseg_qent
*) zalloc(tcp_reass_zone
);
259 tcpstat
.tcps_mptcp_rcvmemdrop
++;
264 mp_tp
->mpt_reassqlen
++;
267 * Find a segment which begins after this one does.
269 LIST_FOREACH(q
, &mp_tp
->mpt_segq
, tqe_q
) {
270 if (MPTCP_SEQ_GT(q
->tqe_m
->m_pkthdr
.mp_dsn
, mb_dsn
))
276 * If there is a preceding segment, it may provide some of
277 * our data already. If so, drop the data from the incoming
278 * segment. If it provides all of our data, drop us.
282 /* conversion to int (in i) handles seq wraparound */
283 i
= p
->tqe_m
->m_pkthdr
.mp_dsn
+ p
->tqe_len
- mb_dsn
;
286 tcpstat
.tcps_mptcp_rcvduppack
++;
288 zfree(tcp_reass_zone
, te
);
290 mp_tp
->mpt_reassqlen
--;
292 * Try to present any queued data
293 * at the left window edge to the user.
294 * This is needed after the 3-WHS
305 tcpstat
.tcps_mp_oodata
++;
308 * While we overlap succeeding segments trim them or,
309 * if they are completely covered, dequeue them.
312 int64_t i
= (mb_dsn
+ *tlenp
) - q
->tqe_m
->m_pkthdr
.mp_dsn
;
316 if (i
< q
->tqe_len
) {
317 q
->tqe_m
->m_pkthdr
.mp_dsn
+= i
;
323 nq
= LIST_NEXT(q
, tqe_q
);
324 LIST_REMOVE(q
, tqe_q
);
326 zfree(tcp_reass_zone
, q
);
327 mp_tp
->mpt_reassqlen
--;
331 /* Insert the new segment queue entry into place. */
334 te
->tqe_len
= *tlenp
;
337 LIST_INSERT_HEAD(&mp_tp
->mpt_segq
, te
, tqe_q
);
339 LIST_INSERT_AFTER(p
, te
, tqe_q
);
343 return (mptcp_reass_present(mp_so
));
347 * MPTCP input, called when data has been read from a subflow socket.
350 mptcp_input(struct mptses
*mpte
, struct mbuf
*m
)
352 struct socket
*mp_so
;
353 struct mptcb
*mp_tp
= NULL
;
354 int count
= 0, wakeup
= 0;
355 struct mbuf
*save
= NULL
, *prev
= NULL
;
356 struct mbuf
*freelist
= NULL
, *tail
= NULL
;
358 VERIFY(m
->m_flags
& M_PKTHDR
);
360 mpte_lock_assert_held(mpte
); /* same as MP socket lock */
362 mp_so
= mptetoso(mpte
);
363 mp_tp
= mpte
->mpte_mptcb
;
367 mp_tp
->mpt_rcvwnd
= mptcp_sbspace(mp_tp
);
370 * Each mbuf contains MPTCP Data Sequence Map
371 * Process the data for reassembly, delivery to MPTCP socket
375 count
= mp_so
->so_rcv
.sb_cc
;
378 * In the degraded fallback case, data is accepted without DSS map
380 if (mp_tp
->mpt_flags
& MPTCPF_FALLBACK_TO_TCP
) {
384 mptcp_sbrcv_grow(mp_tp
);
386 for (iter
= m
; iter
; iter
= iter
->m_next
) {
387 if ((iter
->m_flags
& M_PKTHDR
) &&
388 (iter
->m_pkthdr
.pkt_flags
& PKTF_MPTCP_DFIN
)) {
395 * assume degraded flow as this may be the first packet
396 * without DSS, and the subflow state is not updated yet.
398 if (sbappendstream_rcvdemux(mp_so
, m
, 0, 0))
401 DTRACE_MPTCP5(receive__degraded
, struct mbuf
*, m
,
402 struct socket
*, mp_so
,
403 struct sockbuf
*, &mp_so
->so_rcv
,
404 struct sockbuf
*, &mp_so
->so_snd
,
405 struct mptses
*, mpte
);
406 count
= mp_so
->so_rcv
.sb_cc
- count
;
408 mp_tp
->mpt_rcvnxt
+= count
;
411 mptcp_close_fsm(mp_tp
, MPCE_RECV_DATA_FIN
);
412 socantrcvmore(mp_so
);
415 mptcplog((LOG_DEBUG
, "%s: Fallback read %d bytes\n", __func__
,
416 count
), MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_VERBOSE
);
426 /* If fallback occurs, mbufs will not have PKTF_MPTCP set */
427 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP
))
432 * A single TCP packet formed of multiple mbufs
433 * holds DSS mapping in the first mbuf of the chain.
434 * Other mbufs in the chain may have M_PKTHDR set
435 * even though they belong to the same TCP packet
436 * and therefore use the DSS mapping stored in the
437 * first mbuf of the mbuf chain. mptcp_input() can
438 * get an mbuf chain with multiple TCP packets.
440 while (save
&& (!(save
->m_flags
& M_PKTHDR
) ||
441 !(save
->m_pkthdr
.pkt_flags
& PKTF_MPTCP
))) {
450 mb_dsn
= m
->m_pkthdr
.mp_dsn
;
451 mb_datalen
= m
->m_pkthdr
.mp_rlen
;
453 todrop
= (mb_dsn
+ mb_datalen
) - (mp_tp
->mpt_rcvnxt
+ mp_tp
->mpt_rcvwnd
);
455 tcpstat
.tcps_mptcp_rcvpackafterwin
++;
457 if (todrop
>= mb_datalen
) {
458 if (freelist
== NULL
)
473 mb_datalen
-= todrop
;
477 * We drop from the right edge of the mbuf, thus the
478 * DATA_FIN is dropped as well
480 m
->m_pkthdr
.pkt_flags
&= ~PKTF_MPTCP_DFIN
;
483 if (MPTCP_SEQ_GT(mb_dsn
, mp_tp
->mpt_rcvnxt
) ||
484 !LIST_EMPTY(&mp_tp
->mpt_segq
)) {
485 mb_dfin
= mptcp_reass(mp_so
, &m
->m_pkthdr
, &mb_datalen
, m
);
489 mb_dfin
= !!(m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP_DFIN
);
491 if (MPTCP_SEQ_LT(mb_dsn
, mp_tp
->mpt_rcvnxt
)) {
492 if (MPTCP_SEQ_LEQ((mb_dsn
+ mb_datalen
),
493 mp_tp
->mpt_rcvnxt
)) {
494 if (freelist
== NULL
)
508 m_adj(m
, (mp_tp
->mpt_rcvnxt
- mb_dsn
));
510 mptcplog((LOG_INFO
, "%s: Left Edge %llu\n", __func__
,
512 MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_VERBOSE
);
515 mptcp_sbrcv_grow(mp_tp
);
517 if (sbappendstream_rcvdemux(mp_so
, m
, 0, 0))
520 DTRACE_MPTCP6(receive
, struct mbuf
*, m
, struct socket
*, mp_so
,
521 struct sockbuf
*, &mp_so
->so_rcv
,
522 struct sockbuf
*, &mp_so
->so_snd
,
523 struct mptses
*, mpte
,
524 struct mptcb
*, mp_tp
);
525 count
= mp_so
->so_rcv
.sb_cc
- count
;
526 tcpstat
.tcps_mp_rcvtotal
++;
527 tcpstat
.tcps_mp_rcvbytes
+= count
;
528 mptcplog((LOG_DEBUG
, "%s: Read %d bytes\n", __func__
, count
),
529 MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_VERBOSE
);
531 mp_tp
->mpt_rcvnxt
+= count
;
535 mptcp_close_fsm(mp_tp
, MPCE_RECV_DATA_FIN
);
536 socantrcvmore(mp_so
);
540 count
= mp_so
->so_rcv
.sb_cc
;
551 mptcp_can_send_more(struct mptcb
*mp_tp
)
553 struct socket
*mp_so
= mptetoso(mp_tp
->mpt_mpte
);
556 * Always send if there is data in the reinject-queue.
558 if (mp_tp
->mpt_mpte
->mpte_reinjectq
)
564 * 1. snd_nxt >= snd_max : Means, basically everything has been sent.
565 * Except when using TFO, we might be doing a 0-byte write.
566 * 2. snd_una + snd_wnd <= snd_nxt: No space in the receiver's window
567 * 3. snd_nxt + 1 == snd_max and we are closing: A DATA_FIN is scheduled.
570 if (!(mp_so
->so_flags1
& SOF1_PRECONNECT_DATA
) && MPTCP_SEQ_GEQ(mp_tp
->mpt_sndnxt
, mp_tp
->mpt_sndmax
))
573 if (MPTCP_SEQ_LEQ(mp_tp
->mpt_snduna
+ mp_tp
->mpt_sndwnd
, mp_tp
->mpt_sndnxt
))
576 if (mp_tp
->mpt_sndnxt
+ 1 == mp_tp
->mpt_sndmax
&& mp_tp
->mpt_state
> MPTCPS_CLOSE_WAIT
)
579 if (mp_tp
->mpt_state
>= MPTCPS_FIN_WAIT_2
)
589 mptcp_output(struct mptses
*mpte
)
593 struct mptsub
*mpts_tried
= NULL
;
594 struct socket
*mp_so
;
595 struct mptsub
*preferred_mpts
= NULL
;
596 uint64_t old_snd_nxt
;
599 mpte_lock_assert_held(mpte
);
600 mp_so
= mptetoso(mpte
);
601 mp_tp
= mpte
->mpte_mptcb
;
603 VERIFY(!(mpte
->mpte_mppcb
->mpp_flags
& MPP_WUPCALL
));
604 mpte
->mpte_mppcb
->mpp_flags
|= MPP_WUPCALL
;
606 mptcplog((LOG_DEBUG
, "%s: snxt %u sndmax %u suna %u swnd %u reinjectq %u state %u\n",
607 __func__
, (uint32_t)mp_tp
->mpt_sndnxt
, (uint32_t)mp_tp
->mpt_sndmax
,
608 (uint32_t)mp_tp
->mpt_snduna
, mp_tp
->mpt_sndwnd
,
609 mpte
->mpte_reinjectq
? 1 : 0,
611 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_VERBOSE
);
613 old_snd_nxt
= mp_tp
->mpt_sndnxt
;
614 while (mptcp_can_send_more(mp_tp
)) {
615 /* get the "best" subflow to be used for transmission */
616 mpts
= mptcp_get_subflow(mpte
, NULL
, &preferred_mpts
);
618 mptcplog((LOG_INFO
, "%s: no subflow\n", __func__
),
619 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_LOG
);
623 mptcplog((LOG_DEBUG
, "%s: using id %u\n", __func__
, mpts
->mpts_connid
),
624 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_VERBOSE
);
626 /* In case there's just one flow, we reattempt later */
627 if (mpts_tried
!= NULL
&&
628 (mpts
== mpts_tried
|| (mpts
->mpts_flags
& MPTSF_FAILINGOVER
))) {
629 mpts_tried
->mpts_flags
&= ~MPTSF_FAILINGOVER
;
630 mpts_tried
->mpts_flags
|= MPTSF_ACTIVE
;
631 mptcp_start_timer(mpte
, MPTT_REXMT
);
632 mptcplog((LOG_DEBUG
, "%s: retry later\n", __func__
),
633 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_VERBOSE
);
638 * Automatic sizing of send socket buffer. Increase the send
639 * socket buffer size if all of the following criteria are met
640 * 1. the receiver has enough buffer space for this data
641 * 2. send buffer is filled to 7/8th with data (so we actually
642 * have data to make use of it);
644 if (tcp_do_autosendbuf
== 1 &&
645 (mp_so
->so_snd
.sb_flags
& (SB_AUTOSIZE
| SB_TRIM
)) == SB_AUTOSIZE
&&
646 tcp_cansbgrow(&mp_so
->so_snd
)) {
647 if ((mp_tp
->mpt_sndwnd
/ 4 * 5) >= mp_so
->so_snd
.sb_hiwat
&&
648 mp_so
->so_snd
.sb_cc
>= (mp_so
->so_snd
.sb_hiwat
/ 8 * 7)) {
649 if (sbreserve(&mp_so
->so_snd
,
650 min(mp_so
->so_snd
.sb_hiwat
+ tcp_autosndbuf_inc
,
651 tcp_autosndbuf_max
)) == 1) {
652 mp_so
->so_snd
.sb_idealsize
= mp_so
->so_snd
.sb_hiwat
;
654 mptcplog((LOG_DEBUG
, "%s: increased snd hiwat to %u lowat %u\n",
655 __func__
, mp_so
->so_snd
.sb_hiwat
,
656 mp_so
->so_snd
.sb_lowat
),
657 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_VERBOSE
);
662 DTRACE_MPTCP3(output
, struct mptses
*, mpte
, struct mptsub
*, mpts
,
663 struct socket
*, mp_so
);
664 error
= mptcp_subflow_output(mpte
, mpts
, 0);
666 /* can be a temporary loss of source address or other error */
667 mpts
->mpts_flags
|= MPTSF_FAILINGOVER
;
668 mpts
->mpts_flags
&= ~MPTSF_ACTIVE
;
670 mptcplog((LOG_ERR
, "%s: Error = %d mpts_flags %#x\n", __func__
,
671 error
, mpts
->mpts_flags
),
672 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_ERR
);
675 /* The model is to have only one active flow at a time */
676 mpts
->mpts_flags
|= MPTSF_ACTIVE
;
677 mpts
->mpts_probesoon
= mpts
->mpts_probecnt
= 0;
679 /* Allows us to update the smoothed rtt */
680 if (mptcp_probeto
&& mpts
!= preferred_mpts
&& preferred_mpts
!= NULL
) {
681 if (preferred_mpts
->mpts_probesoon
) {
682 if ((tcp_now
- preferred_mpts
->mpts_probesoon
) > mptcp_probeto
) {
683 mptcp_subflow_output(mpte
, preferred_mpts
, MPTCP_SUBOUT_PROBING
);
684 if (preferred_mpts
->mpts_probecnt
>= mptcp_probecnt
) {
685 preferred_mpts
->mpts_probesoon
= 0;
686 preferred_mpts
->mpts_probecnt
= 0;
690 preferred_mpts
->mpts_probesoon
= tcp_now
;
691 preferred_mpts
->mpts_probecnt
= 0;
695 if (mpte
->mpte_active_sub
== NULL
) {
696 mpte
->mpte_active_sub
= mpts
;
697 } else if (mpte
->mpte_active_sub
!= mpts
) {
698 struct tcpcb
*tp
= sototcpcb(mpts
->mpts_socket
);
699 struct tcpcb
*acttp
= sototcpcb(mpte
->mpte_active_sub
->mpts_socket
);
701 mptcplog((LOG_DEBUG
, "%s: switch [%u, srtt %d] to [%u, srtt %d]\n", __func__
,
702 mpte
->mpte_active_sub
->mpts_connid
, acttp
->t_srtt
>> TCP_RTT_SHIFT
,
703 mpts
->mpts_connid
, tp
->t_srtt
>> TCP_RTT_SHIFT
),
704 (MPTCP_SENDER_DBG
| MPTCP_SOCKET_DBG
), MPTCP_LOGLVL_LOG
);
706 mpte
->mpte_active_sub
->mpts_flags
&= ~MPTSF_ACTIVE
;
707 mpte
->mpte_active_sub
= mpts
;
709 mptcpstats_inc_switch(mpte
, mpts
);
713 mptcp_handle_deferred_upcalls(mpte
->mpte_mppcb
, MPP_WUPCALL
);
715 /* subflow errors should not be percolated back up */
720 static struct mptsub
*
721 mptcp_choose_subflow(struct mptsub
*mpts
, struct mptsub
*curbest
, int *currtt
)
723 struct tcpcb
*tp
= sototcpcb(mpts
->mpts_socket
);
726 * Lower RTT? Take it, if it's our first one, or
727 * it doesn't has any loss, or the current one has
730 if (tp
->t_srtt
&& *currtt
> tp
->t_srtt
&&
731 (curbest
== NULL
|| tp
->t_rxtshift
== 0 ||
732 sototcpcb(curbest
->mpts_socket
)->t_rxtshift
)) {
733 *currtt
= tp
->t_srtt
;
738 * If we find a subflow without loss, take it always!
741 sototcpcb(curbest
->mpts_socket
)->t_rxtshift
&&
742 tp
->t_rxtshift
== 0) {
743 *currtt
= tp
->t_srtt
;
747 return (curbest
!= NULL
? curbest
: mpts
);
750 static struct mptsub
*
751 mptcp_return_subflow(struct mptsub
*mpts
)
753 if (mpts
&& mptcp_subflow_cwnd_space(mpts
->mpts_socket
) <= 0)
760 * Return the most eligible subflow to be used for sending data.
763 mptcp_get_subflow(struct mptses
*mpte
, struct mptsub
*ignore
, struct mptsub
**preferred
)
765 struct tcpcb
*besttp
, *secondtp
;
766 struct inpcb
*bestinp
, *secondinp
;
768 struct mptsub
*best
= NULL
;
769 struct mptsub
*second_best
= NULL
;
770 int exp_rtt
= INT_MAX
, cheap_rtt
= INT_MAX
;
774 * Choose the best subflow for cellular and non-cellular interfaces.
777 TAILQ_FOREACH(mpts
, &mpte
->mpte_subflows
, mpts_entry
) {
778 struct socket
*so
= mpts
->mpts_socket
;
779 struct tcpcb
*tp
= sototcpcb(so
);
780 struct inpcb
*inp
= sotoinpcb(so
);
782 mptcplog((LOG_DEBUG
, "%s mpts %u ignore %d, mpts_flags %#x, suspended %u sostate %#x tpstate %u cellular %d rtt %u rxtshift %u cheap %u exp %u cwnd %d\n",
783 __func__
, mpts
->mpts_connid
, ignore
? ignore
->mpts_connid
: -1, mpts
->mpts_flags
,
784 INP_WAIT_FOR_IF_FEEDBACK(inp
), so
->so_state
, tp
->t_state
,
785 inp
->inp_last_outifp
? IFNET_IS_CELLULAR(inp
->inp_last_outifp
) : -1,
786 tp
->t_srtt
, tp
->t_rxtshift
, cheap_rtt
, exp_rtt
,
787 mptcp_subflow_cwnd_space(so
)),
788 MPTCP_SOCKET_DBG
, MPTCP_LOGLVL_VERBOSE
);
791 * First, the hard conditions to reject subflows
792 * (e.g., not connected,...)
794 if (mpts
== ignore
|| inp
->inp_last_outifp
== NULL
)
797 if (INP_WAIT_FOR_IF_FEEDBACK(inp
))
800 /* There can only be one subflow in degraded state */
801 if (mpts
->mpts_flags
& MPTSF_MP_DEGRADED
) {
807 * If this subflow is waiting to finally send, do it!
809 if (so
->so_flags1
& SOF1_PRECONNECT_DATA
)
810 return (mptcp_return_subflow(mpts
));
813 * Only send if the subflow is MP_CAPABLE. The exceptions to
814 * this rule (degraded or TFO) have been taken care of above.
816 if (!(mpts
->mpts_flags
& MPTSF_MP_CAPABLE
))
819 if ((so
->so_state
& SS_ISDISCONNECTED
) ||
820 !(so
->so_state
& SS_ISCONNECTED
) ||
821 !TCPS_HAVEESTABLISHED(tp
->t_state
) ||
822 tp
->t_state
> TCPS_CLOSE_WAIT
)
826 * Second, the soft conditions to find the subflow with best
827 * conditions for each set (aka cellular vs non-cellular)
829 if (IFNET_IS_CELLULAR(inp
->inp_last_outifp
))
830 second_best
= mptcp_choose_subflow(mpts
, second_best
,
833 best
= mptcp_choose_subflow(mpts
, best
, &cheap_rtt
);
837 * If there is no preferred or backup subflow, and there is no active
838 * subflow use the last usable subflow.
841 return (mptcp_return_subflow(second_best
));
843 if (second_best
== NULL
)
844 return (mptcp_return_subflow(best
));
846 besttp
= sototcpcb(best
->mpts_socket
);
847 bestinp
= sotoinpcb(best
->mpts_socket
);
848 secondtp
= sototcpcb(second_best
->mpts_socket
);
849 secondinp
= sotoinpcb(second_best
->mpts_socket
);
851 if (preferred
!= NULL
)
852 *preferred
= mptcp_return_subflow(best
);
855 * Second Step: Among best and second_best. Choose the one that is
856 * most appropriate for this particular service-type.
858 if (mpte
->mpte_svctype
== MPTCP_SVCTYPE_HANDOVER
) {
860 * Only handover if Symptoms tells us to do so.
862 if (IFNET_IS_WIFI(bestinp
->inp_last_outifp
) &&
863 mptcp_is_wifi_unusable() &&
864 besttp
->t_rxtshift
>= mptcp_fail_thresh
)
865 return (mptcp_return_subflow(second_best
));
867 return (mptcp_return_subflow(best
));
868 } else if (mpte
->mpte_svctype
== MPTCP_SVCTYPE_INTERACTIVE
) {
869 int rtt_thresh
= mptcp_rtthist_rtthresh
<< TCP_RTT_SHIFT
;
870 int rto_thresh
= mptcp_rtothresh
;
872 /* Adjust with symptoms information */
873 if (IFNET_IS_WIFI(bestinp
->inp_last_outifp
) &&
874 mptcp_is_wifi_unusable()) {
879 if (besttp
->t_srtt
&& secondtp
->t_srtt
&&
880 besttp
->t_srtt
>= rtt_thresh
&&
881 secondtp
->t_srtt
< rtt_thresh
) {
882 tcpstat
.tcps_mp_sel_rtt
++;
883 mptcplog((LOG_DEBUG
, "%s: best cid %d at rtt %d, second cid %d at rtt %d\n", __func__
,
884 best
->mpts_connid
, besttp
->t_srtt
>> TCP_RTT_SHIFT
,
885 second_best
->mpts_connid
,
886 secondtp
->t_srtt
>> TCP_RTT_SHIFT
),
887 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_LOG
);
888 return (mptcp_return_subflow(second_best
));
891 if (besttp
->t_rxtshift
>= mptcp_fail_thresh
&&
892 secondtp
->t_rxtshift
== 0) {
893 return (mptcp_return_subflow(second_best
));
896 /* Compare RTOs, select second_best if best's rto exceeds rtothresh */
897 if (besttp
->t_rxtcur
&& secondtp
->t_rxtcur
&&
898 besttp
->t_rxtcur
>= rto_thresh
&&
899 secondtp
->t_rxtcur
< rto_thresh
) {
900 tcpstat
.tcps_mp_sel_rto
++;
901 mptcplog((LOG_DEBUG
, "%s: best cid %d at rto %d, second cid %d at rto %d\n", __func__
,
902 best
->mpts_connid
, besttp
->t_rxtcur
,
903 second_best
->mpts_connid
, secondtp
->t_rxtcur
),
904 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_LOG
);
906 return (mptcp_return_subflow(second_best
));
910 * None of the above conditions for sending on the secondary
911 * were true. So, let's schedule on the best one, if he still
912 * has some space in the congestion-window.
914 return (mptcp_return_subflow(best
));
915 } else if (mpte
->mpte_svctype
== MPTCP_SVCTYPE_AGGREGATE
) {
919 * We only care about RTT when aggregating
921 if (besttp
->t_srtt
> secondtp
->t_srtt
) {
928 secondtp
= sototcpcb(second_best
->mpts_socket
);
929 secondinp
= sotoinpcb(second_best
->mpts_socket
);
932 /* Is there still space in the congestion window? */
933 if (mptcp_subflow_cwnd_space(bestinp
->inp_socket
) <= 0)
934 return (mptcp_return_subflow(second_best
));
936 return (mptcp_return_subflow(best
));
938 panic("Unknown service-type configured for MPTCP");
945 mptcp_event_to_str(uint32_t event
)
947 const char *c
= "UNDEFINED";
952 case MPCE_RECV_DATA_ACK
:
953 c
= "MPCE_RECV_DATA_ACK";
955 case MPCE_RECV_DATA_FIN
:
956 c
= "MPCE_RECV_DATA_FIN";
963 mptcp_state_to_str(mptcp_state_t state
)
965 const char *c
= "UNDEFINED";
973 case MPTCPS_ESTABLISHED
:
974 c
= "MPTCPS_ESTABLISHED";
976 case MPTCPS_CLOSE_WAIT
:
977 c
= "MPTCPS_CLOSE_WAIT";
979 case MPTCPS_FIN_WAIT_1
:
980 c
= "MPTCPS_FIN_WAIT_1";
983 c
= "MPTCPS_CLOSING";
985 case MPTCPS_LAST_ACK
:
986 c
= "MPTCPS_LAST_ACK";
988 case MPTCPS_FIN_WAIT_2
:
989 c
= "MPTCPS_FIN_WAIT_2";
991 case MPTCPS_TIME_WAIT
:
992 c
= "MPTCPS_TIME_WAIT";
994 case MPTCPS_TERMINATE
:
995 c
= "MPTCPS_TERMINATE";
1002 mptcp_close_fsm(struct mptcb
*mp_tp
, uint32_t event
)
1004 mpte_lock_assert_held(mp_tp
->mpt_mpte
);
1005 mptcp_state_t old_state
= mp_tp
->mpt_state
;
1007 DTRACE_MPTCP2(state__change
, struct mptcb
*, mp_tp
,
1010 switch (mp_tp
->mpt_state
) {
1013 mp_tp
->mpt_state
= MPTCPS_CLOSED
;
1016 case MPTCPS_ESTABLISHED
:
1017 if (event
== MPCE_CLOSE
) {
1018 mp_tp
->mpt_state
= MPTCPS_FIN_WAIT_1
;
1019 mp_tp
->mpt_sndmax
+= 1; /* adjust for Data FIN */
1020 } else if (event
== MPCE_RECV_DATA_FIN
) {
1021 mp_tp
->mpt_rcvnxt
+= 1; /* adj remote data FIN */
1022 mp_tp
->mpt_state
= MPTCPS_CLOSE_WAIT
;
1026 case MPTCPS_CLOSE_WAIT
:
1027 if (event
== MPCE_CLOSE
) {
1028 mp_tp
->mpt_state
= MPTCPS_LAST_ACK
;
1029 mp_tp
->mpt_sndmax
+= 1; /* adjust for Data FIN */
1033 case MPTCPS_FIN_WAIT_1
:
1034 if (event
== MPCE_RECV_DATA_ACK
) {
1035 mp_tp
->mpt_state
= MPTCPS_FIN_WAIT_2
;
1036 } else if (event
== MPCE_RECV_DATA_FIN
) {
1037 mp_tp
->mpt_rcvnxt
+= 1; /* adj remote data FIN */
1038 mp_tp
->mpt_state
= MPTCPS_CLOSING
;
1042 case MPTCPS_CLOSING
:
1043 if (event
== MPCE_RECV_DATA_ACK
)
1044 mp_tp
->mpt_state
= MPTCPS_TIME_WAIT
;
1047 case MPTCPS_LAST_ACK
:
1048 if (event
== MPCE_RECV_DATA_ACK
)
1049 mptcp_close(mp_tp
->mpt_mpte
, mp_tp
);
1052 case MPTCPS_FIN_WAIT_2
:
1053 if (event
== MPCE_RECV_DATA_FIN
) {
1054 mp_tp
->mpt_rcvnxt
+= 1; /* adj remote data FIN */
1055 mp_tp
->mpt_state
= MPTCPS_TIME_WAIT
;
1059 case MPTCPS_TIME_WAIT
:
1060 case MPTCPS_TERMINATE
:
1067 DTRACE_MPTCP2(state__change
, struct mptcb
*, mp_tp
,
1069 mptcplog((LOG_INFO
, "%s: %s to %s on event %s\n", __func__
,
1070 mptcp_state_to_str(old_state
),
1071 mptcp_state_to_str(mp_tp
->mpt_state
),
1072 mptcp_event_to_str(event
)),
1073 MPTCP_STATE_DBG
, MPTCP_LOGLVL_LOG
);
1076 /* If you change this function, match up mptcp_update_rcv_state_f */
1078 mptcp_update_dss_rcv_state(struct mptcp_dsn_opt
*dss_info
, struct tcpcb
*tp
,
1081 struct mptcb
*mp_tp
= tptomptp(tp
);
1082 u_int64_t full_dsn
= 0;
1084 NTOHL(dss_info
->mdss_dsn
);
1085 NTOHL(dss_info
->mdss_subflow_seqn
);
1086 NTOHS(dss_info
->mdss_data_len
);
1088 /* XXX for autosndbuf grow sb here */
1089 MPTCP_EXTEND_DSN(mp_tp
->mpt_rcvnxt
, dss_info
->mdss_dsn
, full_dsn
);
1090 mptcp_update_rcv_state_meat(mp_tp
, tp
,
1091 full_dsn
, dss_info
->mdss_subflow_seqn
, dss_info
->mdss_data_len
,
1097 mptcp_update_rcv_state_meat(struct mptcb
*mp_tp
, struct tcpcb
*tp
,
1098 u_int64_t full_dsn
, u_int32_t seqn
, u_int16_t mdss_data_len
,
1101 if (mdss_data_len
== 0) {
1102 mptcplog((LOG_INFO
, "%s: Infinite Mapping.\n", __func__
),
1103 MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_LOG
);
1105 if ((mp_tp
->mpt_flags
& MPTCPF_CHECKSUM
) && (csum
!= 0)) {
1106 mptcplog((LOG_ERR
, "%s: Bad checksum %x \n", __func__
,
1107 csum
), MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_ERR
);
1109 mptcp_notify_mpfail(tp
->t_inpcb
->inp_socket
);
1112 mptcplog((LOG_DEBUG
,
1113 "%s: seqn = %x len = %x full = %llx rcvnxt = %llu \n", __func__
,
1114 seqn
, mdss_data_len
, full_dsn
, mp_tp
->mpt_rcvnxt
),
1115 MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_VERBOSE
);
1117 mptcp_notify_mpready(tp
->t_inpcb
->inp_socket
);
1119 tp
->t_rcv_map
.mpt_dsn
= full_dsn
;
1120 tp
->t_rcv_map
.mpt_sseq
= seqn
;
1121 tp
->t_rcv_map
.mpt_len
= mdss_data_len
;
1122 tp
->t_rcv_map
.mpt_csum
= csum
;
1123 tp
->t_mpflags
|= TMPF_EMBED_DSN
;
1128 mptcp_validate_dss_map(struct socket
*so
, struct tcpcb
*tp
, struct mbuf
*m
,
1133 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP
))
1136 datalen
= m
->m_pkthdr
.mp_rlen
;
1138 /* unacceptable DSS option, fallback to TCP */
1139 if (m
->m_pkthdr
.len
> ((int) datalen
+ hdrlen
)) {
1140 mptcplog((LOG_ERR
, "%s: mbuf len %d, MPTCP expected %d",
1141 __func__
, m
->m_pkthdr
.len
, datalen
),
1142 MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_LOG
);
1146 tp
->t_mpflags
|= TMPF_SND_MPFAIL
;
1147 mptcp_notify_mpfail(so
);
1153 mptcp_input_preproc(struct tcpcb
*tp
, struct mbuf
*m
, struct tcphdr
*th
,
1156 mptcp_insert_rmap(tp
, m
, th
);
1157 if (mptcp_validate_dss_map(tp
->t_inpcb
->inp_socket
, tp
, m
,
1164 * MPTCP Checksum support
1165 * The checksum is calculated whenever the MPTCP DSS option is included
1166 * in the TCP packet. The checksum includes the sum of the MPTCP psuedo
1167 * header and the actual data indicated by the length specified in the
1172 mptcp_validate_csum(struct tcpcb
*tp
, struct mbuf
*m
, uint64_t dsn
,
1173 uint32_t sseq
, uint16_t dlen
, uint16_t csum
, uint16_t dfin
)
1175 uint16_t mptcp_csum
;
1177 mptcp_csum
= mptcp_input_csum(tp
, m
, dsn
, sseq
, dlen
, csum
, dfin
);
1179 tp
->t_mpflags
|= TMPF_SND_MPFAIL
;
1180 mptcp_notify_mpfail(tp
->t_inpcb
->inp_socket
);
1182 tcpstat
.tcps_mp_badcsum
++;
1189 mptcp_input_csum(struct tcpcb
*tp
, struct mbuf
*m
, uint64_t dsn
, uint32_t sseq
,
1190 uint16_t dlen
, uint16_t csum
, uint16_t dfin
)
1192 struct mptcb
*mp_tp
= tptomptp(tp
);
1193 uint16_t real_len
= dlen
- dfin
;
1199 if (!(mp_tp
->mpt_flags
& MPTCPF_CHECKSUM
))
1202 if (tp
->t_mpflags
& TMPF_TCP_FALLBACK
)
1206 * The remote side may send a packet with fewer bytes than the
1207 * claimed DSS checksum length.
1209 if ((int)m_length2(m
, NULL
) < real_len
) {
1214 sum
= m_sum16(m
, 0, real_len
);
1216 sum
+= in_pseudo64(htonll(dsn
), htonl(sseq
), htons(dlen
) + csum
);
1218 DTRACE_MPTCP3(checksum__result
, struct tcpcb
*, tp
, struct mbuf
*, m
,
1221 mptcplog((LOG_DEBUG
, "%s: sum = %x \n", __func__
, sum
),
1222 MPTCP_RECEIVER_DBG
, MPTCP_LOGLVL_VERBOSE
);
1223 return (~sum
& 0xffff);
1227 mptcp_output_csum(struct mbuf
*m
, uint64_t dss_val
, uint32_t sseq
, uint16_t dlen
)
1232 sum
= m_sum16(m
, 0, dlen
);
1234 dss_val
= mptcp_hton64(dss_val
);
1237 sum
+= in_pseudo64(dss_val
, sseq
, dlen
);
1240 sum
= ~sum
& 0xffff;
1241 DTRACE_MPTCP2(checksum__result
, struct mbuf
*, m
, uint32_t, sum
);
1242 mptcplog((LOG_DEBUG
, "%s: sum = %x \n", __func__
, sum
),
1243 MPTCP_SENDER_DBG
, MPTCP_LOGLVL_VERBOSE
);
1249 * When WiFi signal starts fading, there's more loss and RTT spikes.
1250 * Check if there has been a large spike by comparing against
1251 * a tolerable RTT spike threshold.
1254 mptcp_no_rto_spike(struct socket
*so
)
1256 struct tcpcb
*tp
= intotcpcb(sotoinpcb(so
));
1259 if (tp
->t_rxtcur
> mptcp_rtothresh
) {
1260 spike
= tp
->t_rxtcur
- mptcp_rtothresh
;
1262 mptcplog((LOG_DEBUG
, "%s: spike = %d rto = %d best = %d cur = %d\n",
1264 tp
->t_rxtcur
, tp
->t_rttbest
>> TCP_RTT_SHIFT
,
1266 (MPTCP_SOCKET_DBG
|MPTCP_SENDER_DBG
), MPTCP_LOGLVL_LOG
);
1278 mptcp_handle_deferred_upcalls(struct mppcb
*mpp
, uint32_t flag
)
1280 VERIFY(mpp
->mpp_flags
& flag
);
1281 mpp
->mpp_flags
&= ~flag
;
1283 if (mptcp_should_defer_upcall(mpp
))
1286 if (mpp
->mpp_flags
& MPP_SHOULD_WORKLOOP
) {
1287 mpp
->mpp_flags
&= ~MPP_SHOULD_WORKLOOP
;
1289 mptcp_subflow_workloop(mpp
->mpp_pcbe
);
1292 if (mpp
->mpp_flags
& MPP_SHOULD_RWAKEUP
) {
1293 mpp
->mpp_flags
&= ~MPP_SHOULD_RWAKEUP
;
1295 sorwakeup(mpp
->mpp_socket
);
1298 if (mpp
->mpp_flags
& MPP_SHOULD_WWAKEUP
) {
1299 mpp
->mpp_flags
&= ~MPP_SHOULD_WWAKEUP
;
1301 sowwakeup(mpp
->mpp_socket
);
1304 if (mpp
->mpp_flags
& MPP_SET_CELLICON
) {
1305 mpp
->mpp_flags
&= ~MPP_SET_CELLICON
;
1307 mptcp_set_cellicon(mpp
->mpp_pcbe
);
1310 if (mpp
->mpp_flags
& MPP_UNSET_CELLICON
) {
1311 mpp
->mpp_flags
&= ~MPP_UNSET_CELLICON
;
1313 mptcp_unset_cellicon();
1318 mptcp_ask_for_nat64(struct ifnet
*ifp
)
1320 in6_post_msg(ifp
, KEV_INET6_REQUEST_NAT64_PREFIX
, NULL
, NULL
);
1322 mptcplog((LOG_DEBUG
, "%s: asked for NAT64-prefix on %s\n",
1323 __func__
, ifp
->if_name
), MPTCP_SOCKET_DBG
, MPTCP_LOGLVL_VERBOSE
);
1327 mptcp_reset_itfinfo(struct mpt_itf_info
*info
)
1330 info
->has_v4_conn
= 0;
1331 info
->has_v6_conn
= 0;
1335 mptcp_session_necp_cb(void *handle
, int action
, struct necp_client_flow
*flow
)
1337 struct mppcb
*mp
= (struct mppcb
*)handle
;
1338 struct mptses
*mpte
= mptompte(mp
);
1339 struct socket
*mp_so
;
1340 struct mptcb
*mp_tp
;
1342 uint32_t i
, ifindex
;
1344 ifindex
= flow
->interface_index
;
1345 VERIFY(ifindex
!= IFSCOPE_NONE
);
1347 /* ToDo - remove after rdar://problem/32007628 */
1348 if (!IF_INDEX_IN_RANGE(ifindex
))
1349 printf("%s 1 ifindex %u not in range of flow %p action %d\n",
1350 __func__
, ifindex
, flow
, action
);
1352 /* About to be garbage-collected (see note about MPTCP/NECP interactions) */
1353 if (mp
->mpp_socket
->so_usecount
== 0)
1356 if (action
!= NECP_CLIENT_CBACTION_INITIAL
) {
1360 /* Check again, because it might have changed while waiting */
1361 if (mp
->mpp_socket
->so_usecount
== 0)
1365 mp_tp
= mpte
->mpte_mptcb
;
1366 mp_so
= mptetoso(mpte
);
1368 mptcplog((LOG_DEBUG
, "%s, action: %u ifindex %u usecount %u mpt_flags %#x state %u\n",
1369 __func__
, action
, ifindex
, mp
->mpp_socket
->so_usecount
, mp_tp
->mpt_flags
, mp_tp
->mpt_state
),
1370 MPTCP_SOCKET_DBG
, MPTCP_LOGLVL_VERBOSE
);
1372 /* No need on fallen back sockets */
1373 if (mp_tp
->mpt_flags
& MPTCPF_FALLBACK_TO_TCP
)
1376 if (action
== NECP_CLIENT_CBACTION_NONVIABLE
) {
1377 for (i
= 0; i
< mpte
->mpte_itfinfo_size
; i
++) {
1378 if (mpte
->mpte_itfinfo
[i
].ifindex
== ifindex
)
1379 mptcp_reset_itfinfo(&mpte
->mpte_itfinfo
[i
]);
1382 mptcp_sched_create_subflows(mpte
);
1383 } else if (action
== NECP_CLIENT_CBACTION_VIABLE
||
1384 action
== NECP_CLIENT_CBACTION_INITIAL
) {
1385 int found_empty
= 0, empty_index
= -1;
1388 /* ToDo - remove after rdar://problem/32007628 */
1389 if (!IF_INDEX_IN_RANGE(ifindex
))
1390 printf("%s 2 ifindex %u not in range of flow %p action %d\n",
1391 __func__
, ifindex
, flow
, action
);
1393 ifnet_head_lock_shared();
1394 ifp
= ifindex2ifnet
[ifindex
];
1397 /* ToDo - remove after rdar://problem/32007628 */
1398 if (!IF_INDEX_IN_RANGE(ifindex
))
1399 printf("%s 3 ifindex %u not in range of flow %p action %d\n",
1400 __func__
, ifindex
, flow
, action
);
1405 if (IFNET_IS_EXPENSIVE(ifp
) &&
1406 (mp_so
->so_restrictions
& SO_RESTRICT_DENY_EXPENSIVE
))
1409 if (IFNET_IS_CELLULAR(ifp
) &&
1410 (mp_so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
))
1413 for (i
= 0; i
< mpte
->mpte_itfinfo_size
; i
++) {
1414 if (mpte
->mpte_itfinfo
[i
].ifindex
== 0) {
1419 if (mpte
->mpte_itfinfo
[i
].ifindex
== ifindex
) {
1420 /* Ok, it's already there */
1425 if ((mpte
->mpte_dst
.sa_family
== AF_INET
|| mpte
->mpte_dst
.sa_family
== 0) &&
1426 !(flow
->necp_flow_flags
& NECP_CLIENT_RESULT_FLAG_HAS_IPV4
) &&
1427 ifnet_get_nat64prefix(ifp
, NULL
) == ENOENT
) {
1428 mptcp_ask_for_nat64(ifp
);
1432 if (found_empty
== 0) {
1433 int new_size
= mpte
->mpte_itfinfo_size
* 2;
1434 struct mpt_itf_info
*info
= _MALLOC(sizeof(*info
) * new_size
, M_TEMP
, M_ZERO
);
1437 mptcplog((LOG_ERR
, "%s malloc failed for %u\n", __func__
, new_size
),
1438 MPTCP_SOCKET_DBG
, MPTCP_LOGLVL_ERR
);
1442 memcpy(info
, mpte
->mpte_itfinfo
, mpte
->mpte_itfinfo_size
* sizeof(*info
));
1444 if (mpte
->mpte_itfinfo_size
> MPTE_ITFINFO_SIZE
)
1445 _FREE(mpte
->mpte_itfinfo
, M_TEMP
);
1447 /* We allocated a new one, thus the first must be empty */
1448 empty_index
= mpte
->mpte_itfinfo_size
;
1450 mpte
->mpte_itfinfo
= info
;
1451 mpte
->mpte_itfinfo_size
= new_size
;
1453 mptcplog((LOG_DEBUG
, "%s Needed to realloc to %u\n", __func__
, new_size
),
1454 MPTCP_SOCKET_DBG
, MPTCP_LOGLVL_VERBOSE
);
1457 VERIFY(empty_index
>= 0 && empty_index
< (int)mpte
->mpte_itfinfo_size
);
1458 mpte
->mpte_itfinfo
[empty_index
].ifindex
= ifindex
;
1459 mpte
->mpte_itfinfo
[empty_index
].has_v4_conn
= !!(flow
->necp_flow_flags
& NECP_CLIENT_RESULT_FLAG_HAS_IPV4
);
1460 mpte
->mpte_itfinfo
[empty_index
].has_v6_conn
= !!(flow
->necp_flow_flags
& NECP_CLIENT_RESULT_FLAG_HAS_IPV6
);
1462 mptcp_sched_create_subflows(mpte
);
1471 mptcp_set_restrictions(struct socket
*mp_so
)
1473 struct mptses
*mpte
= mpsotompte(mp_so
);
1476 mpte_lock_assert_held(mpte
);
1478 ifnet_head_lock_shared();
1480 for (i
= 0; i
< mpte
->mpte_itfinfo_size
; i
++) {
1481 struct mpt_itf_info
*info
= &mpte
->mpte_itfinfo
[i
];
1482 uint32_t ifindex
= info
->ifindex
;
1485 if (ifindex
== IFSCOPE_NONE
)
1488 ifp
= ifindex2ifnet
[ifindex
];
1490 if (IFNET_IS_EXPENSIVE(ifp
) &&
1491 (mp_so
->so_restrictions
& SO_RESTRICT_DENY_EXPENSIVE
))
1492 info
->ifindex
= IFSCOPE_NONE
;
1494 if (IFNET_IS_CELLULAR(ifp
) &&
1495 (mp_so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
))
1496 info
->ifindex
= IFSCOPE_NONE
;