2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1991, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mcache.h>
76 #include <sys/kauth.h>
78 #include <sys/proc_uuid_policy.h>
79 #include <sys/syslog.h>
83 #include <libkern/OSAtomic.h>
84 #include <kern/locks.h>
86 #include <machine/limits.h>
88 #include <kern/zalloc.h>
91 #include <net/if_types.h>
92 #include <net/route.h>
93 #include <net/flowhash.h>
94 #include <net/flowadv.h>
95 #include <net/ntstat.h>
97 #include <netinet/in.h>
98 #include <netinet/in_pcb.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip_var.h>
102 #include <netinet/ip6.h>
103 #include <netinet6/ip6_var.h>
106 #include <sys/kdebug.h>
107 #include <sys/random.h>
109 #include <dev/random/randomdev.h>
110 #include <mach/boolean.h>
112 #include <pexpert/pexpert.h>
115 #include <net/necp.h>
118 #include <sys/stat.h>
120 #include <sys/vnode.h>
122 static lck_grp_t
*inpcb_lock_grp
;
123 static lck_attr_t
*inpcb_lock_attr
;
124 static lck_grp_attr_t
*inpcb_lock_grp_attr
;
125 decl_lck_mtx_data(static, inpcb_lock
); /* global INPCB lock */
126 decl_lck_mtx_data(static, inpcb_timeout_lock
);
128 static TAILQ_HEAD(, inpcbinfo
) inpcb_head
= TAILQ_HEAD_INITIALIZER(inpcb_head
);
130 static u_int16_t inpcb_timeout_run
= 0; /* INPCB timer is scheduled to run */
131 static boolean_t inpcb_garbage_collecting
= FALSE
; /* gc timer is scheduled */
132 static boolean_t inpcb_ticking
= FALSE
; /* "slow" timer is scheduled */
133 static boolean_t inpcb_fast_timer_on
= FALSE
;
135 extern char *proc_best_name(proc_t
);
137 #define INPCB_GCREQ_THRESHOLD 50000
139 static thread_call_t inpcb_thread_call
, inpcb_fast_thread_call
;
140 static void inpcb_sched_timeout(void);
141 static void inpcb_sched_lazy_timeout(void);
142 static void _inpcb_sched_timeout(unsigned int);
143 static void inpcb_timeout(void *, void *);
144 const int inpcb_timeout_lazy
= 10; /* 10 seconds leeway for lazy timers */
145 extern int tvtohz(struct timeval
*);
147 #if CONFIG_PROC_UUID_POLICY
148 static void inp_update_cellular_policy(struct inpcb
*, boolean_t
);
150 static void inp_update_necp_want_app_policy(struct inpcb
*, boolean_t
);
152 #endif /* !CONFIG_PROC_UUID_POLICY */
154 #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8))
155 #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1))
158 * These configure the range of local port addresses assigned to
159 * "unspecified" outgoing connections/packets/whatever.
161 int ipport_lowfirstauto
= IPPORT_RESERVED
- 1; /* 1023 */
162 int ipport_lowlastauto
= IPPORT_RESERVEDSTART
; /* 600 */
163 int ipport_firstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
164 int ipport_lastauto
= IPPORT_HILASTAUTO
; /* 65535 */
165 int ipport_hifirstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
166 int ipport_hilastauto
= IPPORT_HILASTAUTO
; /* 65535 */
168 #define RANGECHK(var, min, max) \
169 if ((var) < (min)) { (var) = (min); } \
170 else if ((var) > (max)) { (var) = (max); }
173 sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
175 #pragma unused(arg1, arg2)
178 error
= sysctl_handle_int(oidp
, oidp
->oid_arg1
, oidp
->oid_arg2
, req
);
180 RANGECHK(ipport_lowfirstauto
, 1, IPPORT_RESERVED
- 1);
181 RANGECHK(ipport_lowlastauto
, 1, IPPORT_RESERVED
- 1);
182 RANGECHK(ipport_firstauto
, IPPORT_RESERVED
, USHRT_MAX
);
183 RANGECHK(ipport_lastauto
, IPPORT_RESERVED
, USHRT_MAX
);
184 RANGECHK(ipport_hifirstauto
, IPPORT_RESERVED
, USHRT_MAX
);
185 RANGECHK(ipport_hilastauto
, IPPORT_RESERVED
, USHRT_MAX
);
192 SYSCTL_NODE(_net_inet_ip
, IPPROTO_IP
, portrange
,
193 CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "IP Ports");
195 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowfirst
,
196 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
197 &ipport_lowfirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
198 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowlast
,
199 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
200 &ipport_lowlastauto
, 0, &sysctl_net_ipport_check
, "I", "");
201 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, first
,
202 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
203 &ipport_firstauto
, 0, &sysctl_net_ipport_check
, "I", "");
204 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, last
,
205 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
206 &ipport_lastauto
, 0, &sysctl_net_ipport_check
, "I", "");
207 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hifirst
,
208 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
209 &ipport_hifirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
210 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hilast
,
211 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
212 &ipport_hilastauto
, 0, &sysctl_net_ipport_check
, "I", "");
214 static uint32_t apn_fallbk_debug
= 0;
215 #define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0)
218 static boolean_t apn_fallbk_enabled
= TRUE
;
220 SYSCTL_DECL(_net_inet
);
221 SYSCTL_NODE(_net_inet
, OID_AUTO
, apn_fallback
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "APN Fallback");
222 SYSCTL_UINT(_net_inet_apn_fallback
, OID_AUTO
, debug
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
223 &apn_fallbk_debug
, 0, "APN fallback debug enable");
225 static boolean_t apn_fallbk_enabled
= FALSE
;
228 extern int udp_use_randomport
;
229 extern int tcp_use_randomport
;
231 /* Structs used for flowhash computation */
232 struct inp_flowhash_key_addr
{
242 struct inp_flowhash_key
{
243 struct inp_flowhash_key_addr infh_laddr
;
244 struct inp_flowhash_key_addr infh_faddr
;
245 u_int32_t infh_lport
;
246 u_int32_t infh_fport
;
248 u_int32_t infh_proto
;
249 u_int32_t infh_rand1
;
250 u_int32_t infh_rand2
;
253 static u_int32_t inp_hash_seed
= 0;
255 static int infc_cmp(const struct inpcb
*, const struct inpcb
*);
257 /* Flags used by inp_fc_getinp */
258 #define INPFC_SOLOCKED 0x1
259 #define INPFC_REMOVE 0x2
260 static struct inpcb
*inp_fc_getinp(u_int32_t
, u_int32_t
);
262 static void inp_fc_feedback(struct inpcb
*);
263 extern void tcp_remove_from_time_wait(struct inpcb
*inp
);
265 decl_lck_mtx_data(static, inp_fc_lck
);
267 RB_HEAD(inp_fc_tree
, inpcb
) inp_fc_tree
;
268 RB_PROTOTYPE(inp_fc_tree
, inpcb
, infc_link
, infc_cmp
);
269 RB_GENERATE(inp_fc_tree
, inpcb
, infc_link
, infc_cmp
);
272 * Use this inp as a key to find an inp in the flowhash tree.
273 * Accesses to it are protected by inp_fc_lck.
275 struct inpcb key_inp
;
278 * in_pcb.c: manage the Protocol Control Blocks.
284 static int inpcb_initialized
= 0;
286 VERIFY(!inpcb_initialized
);
287 inpcb_initialized
= 1;
289 inpcb_lock_grp_attr
= lck_grp_attr_alloc_init();
290 inpcb_lock_grp
= lck_grp_alloc_init("inpcb", inpcb_lock_grp_attr
);
291 inpcb_lock_attr
= lck_attr_alloc_init();
292 lck_mtx_init(&inpcb_lock
, inpcb_lock_grp
, inpcb_lock_attr
);
293 lck_mtx_init(&inpcb_timeout_lock
, inpcb_lock_grp
, inpcb_lock_attr
);
294 inpcb_thread_call
= thread_call_allocate_with_priority(inpcb_timeout
,
295 NULL
, THREAD_CALL_PRIORITY_KERNEL
);
296 inpcb_fast_thread_call
= thread_call_allocate_with_priority(
297 inpcb_timeout
, NULL
, THREAD_CALL_PRIORITY_KERNEL
);
298 if (inpcb_thread_call
== NULL
|| inpcb_fast_thread_call
== NULL
)
299 panic("unable to alloc the inpcb thread call");
302 * Initialize data structures required to deliver
305 lck_mtx_init(&inp_fc_lck
, inpcb_lock_grp
, inpcb_lock_attr
);
306 lck_mtx_lock(&inp_fc_lck
);
307 RB_INIT(&inp_fc_tree
);
308 bzero(&key_inp
, sizeof(key_inp
));
309 lck_mtx_unlock(&inp_fc_lck
);
312 #define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \
313 ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0))
315 inpcb_timeout(void *arg0
, void *arg1
)
317 #pragma unused(arg0, arg1)
318 struct inpcbinfo
*ipi
;
320 struct intimercount gccnt
, tmcnt
;
323 * Update coarse-grained networking timestamp (in sec.); the idea
324 * is to piggy-back on the timeout callout to update the counter
325 * returnable via net_uptime().
329 bzero(&gccnt
, sizeof(gccnt
));
330 bzero(&tmcnt
, sizeof(tmcnt
));
332 lck_mtx_lock_spin(&inpcb_timeout_lock
);
333 gc
= inpcb_garbage_collecting
;
334 inpcb_garbage_collecting
= FALSE
;
337 inpcb_ticking
= FALSE
;
340 lck_mtx_unlock(&inpcb_timeout_lock
);
342 lck_mtx_lock(&inpcb_lock
);
343 TAILQ_FOREACH(ipi
, &inpcb_head
, ipi_entry
) {
344 if (INPCB_HAVE_TIMER_REQ(ipi
->ipi_gc_req
)) {
345 bzero(&ipi
->ipi_gc_req
,
346 sizeof(ipi
->ipi_gc_req
));
347 if (gc
&& ipi
->ipi_gc
!= NULL
) {
349 gccnt
.intimer_lazy
+=
350 ipi
->ipi_gc_req
.intimer_lazy
;
351 gccnt
.intimer_fast
+=
352 ipi
->ipi_gc_req
.intimer_fast
;
353 gccnt
.intimer_nodelay
+=
354 ipi
->ipi_gc_req
.intimer_nodelay
;
357 if (INPCB_HAVE_TIMER_REQ(ipi
->ipi_timer_req
)) {
358 bzero(&ipi
->ipi_timer_req
,
359 sizeof(ipi
->ipi_timer_req
));
360 if (t
&& ipi
->ipi_timer
!= NULL
) {
362 tmcnt
.intimer_lazy
+=
363 ipi
->ipi_timer_req
.intimer_lazy
;
364 tmcnt
.intimer_fast
+=
365 ipi
->ipi_timer_req
.intimer_fast
;
366 tmcnt
.intimer_nodelay
+=
367 ipi
->ipi_timer_req
.intimer_nodelay
;
371 lck_mtx_unlock(&inpcb_lock
);
372 lck_mtx_lock_spin(&inpcb_timeout_lock
);
375 /* lock was dropped above, so check first before overriding */
376 if (!inpcb_garbage_collecting
)
377 inpcb_garbage_collecting
= INPCB_HAVE_TIMER_REQ(gccnt
);
379 inpcb_ticking
= INPCB_HAVE_TIMER_REQ(tmcnt
);
381 /* re-arm the timer if there's work to do */
383 VERIFY(inpcb_timeout_run
>= 0 && inpcb_timeout_run
< 2);
385 if (gccnt
.intimer_nodelay
> 0 || tmcnt
.intimer_nodelay
> 0)
386 inpcb_sched_timeout();
387 else if ((gccnt
.intimer_fast
+ tmcnt
.intimer_fast
) <= 5)
388 /* be lazy when idle with little activity */
389 inpcb_sched_lazy_timeout();
391 inpcb_sched_timeout();
393 lck_mtx_unlock(&inpcb_timeout_lock
);
397 inpcb_sched_timeout(void)
399 _inpcb_sched_timeout(0);
403 inpcb_sched_lazy_timeout(void)
405 _inpcb_sched_timeout(inpcb_timeout_lazy
);
409 _inpcb_sched_timeout(unsigned int offset
)
411 uint64_t deadline
, leeway
;
413 clock_interval_to_deadline(1, NSEC_PER_SEC
, &deadline
);
414 LCK_MTX_ASSERT(&inpcb_timeout_lock
, LCK_MTX_ASSERT_OWNED
);
415 if (inpcb_timeout_run
== 0 &&
416 (inpcb_garbage_collecting
|| inpcb_ticking
)) {
417 lck_mtx_convert_spin(&inpcb_timeout_lock
);
420 inpcb_fast_timer_on
= TRUE
;
421 thread_call_enter_delayed(inpcb_thread_call
,
424 inpcb_fast_timer_on
= FALSE
;
425 clock_interval_to_absolutetime_interval(offset
,
426 NSEC_PER_SEC
, &leeway
);
427 thread_call_enter_delayed_with_leeway(
428 inpcb_thread_call
, NULL
, deadline
, leeway
,
429 THREAD_CALL_DELAY_LEEWAY
);
431 } else if (inpcb_timeout_run
== 1 &&
432 offset
== 0 && !inpcb_fast_timer_on
) {
434 * Since the request was for a fast timer but the
435 * scheduled timer is a lazy timer, try to schedule
436 * another instance of fast timer also.
438 lck_mtx_convert_spin(&inpcb_timeout_lock
);
440 inpcb_fast_timer_on
= TRUE
;
441 thread_call_enter_delayed(inpcb_fast_thread_call
, deadline
);
446 inpcb_gc_sched(struct inpcbinfo
*ipi
, u_int32_t type
)
450 lck_mtx_lock_spin(&inpcb_timeout_lock
);
451 inpcb_garbage_collecting
= TRUE
;
452 gccnt
= ipi
->ipi_gc_req
.intimer_nodelay
+
453 ipi
->ipi_gc_req
.intimer_fast
;
455 if (gccnt
> INPCB_GCREQ_THRESHOLD
) {
456 type
= INPCB_TIMER_FAST
;
460 case INPCB_TIMER_NODELAY
:
461 atomic_add_32(&ipi
->ipi_gc_req
.intimer_nodelay
, 1);
462 inpcb_sched_timeout();
464 case INPCB_TIMER_FAST
:
465 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
466 inpcb_sched_timeout();
469 atomic_add_32(&ipi
->ipi_gc_req
.intimer_lazy
, 1);
470 inpcb_sched_lazy_timeout();
473 lck_mtx_unlock(&inpcb_timeout_lock
);
477 inpcb_timer_sched(struct inpcbinfo
*ipi
, u_int32_t type
)
480 lck_mtx_lock_spin(&inpcb_timeout_lock
);
481 inpcb_ticking
= TRUE
;
483 case INPCB_TIMER_NODELAY
:
484 atomic_add_32(&ipi
->ipi_timer_req
.intimer_nodelay
, 1);
485 inpcb_sched_timeout();
487 case INPCB_TIMER_FAST
:
488 atomic_add_32(&ipi
->ipi_timer_req
.intimer_fast
, 1);
489 inpcb_sched_timeout();
492 atomic_add_32(&ipi
->ipi_timer_req
.intimer_lazy
, 1);
493 inpcb_sched_lazy_timeout();
496 lck_mtx_unlock(&inpcb_timeout_lock
);
500 in_pcbinfo_attach(struct inpcbinfo
*ipi
)
502 struct inpcbinfo
*ipi0
;
504 lck_mtx_lock(&inpcb_lock
);
505 TAILQ_FOREACH(ipi0
, &inpcb_head
, ipi_entry
) {
507 panic("%s: ipi %p already in the list\n",
512 TAILQ_INSERT_TAIL(&inpcb_head
, ipi
, ipi_entry
);
513 lck_mtx_unlock(&inpcb_lock
);
517 in_pcbinfo_detach(struct inpcbinfo
*ipi
)
519 struct inpcbinfo
*ipi0
;
522 lck_mtx_lock(&inpcb_lock
);
523 TAILQ_FOREACH(ipi0
, &inpcb_head
, ipi_entry
) {
528 TAILQ_REMOVE(&inpcb_head
, ipi0
, ipi_entry
);
531 lck_mtx_unlock(&inpcb_lock
);
537 * Allocate a PCB and associate it with the socket.
544 in_pcballoc(struct socket
*so
, struct inpcbinfo
*pcbinfo
, struct proc
*p
)
551 #endif /* CONFIG_MACF_NET */
553 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
554 inp
= (struct inpcb
*)zalloc(pcbinfo
->ipi_zone
);
557 bzero((caddr_t
)inp
, sizeof (*inp
));
559 inp
= (struct inpcb
*)(void *)so
->so_saved_pcb
;
560 temp
= inp
->inp_saved_ppcb
;
561 bzero((caddr_t
)inp
, sizeof (*inp
));
562 inp
->inp_saved_ppcb
= temp
;
565 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
566 inp
->inp_pcbinfo
= pcbinfo
;
567 inp
->inp_socket
= so
;
569 mac_error
= mac_inpcb_label_init(inp
, M_WAITOK
);
570 if (mac_error
!= 0) {
571 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0)
572 zfree(pcbinfo
->ipi_zone
, inp
);
575 mac_inpcb_label_associate(so
, inp
);
576 #endif /* CONFIG_MACF_NET */
577 /* make sure inp_stat is always 64-bit aligned */
578 inp
->inp_stat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_stat_store
,
580 if (((uintptr_t)inp
->inp_stat
- (uintptr_t)inp
->inp_stat_store
) +
581 sizeof (*inp
->inp_stat
) > sizeof (inp
->inp_stat_store
)) {
582 panic("%s: insufficient space to align inp_stat", __func__
);
586 /* make sure inp_cstat is always 64-bit aligned */
587 inp
->inp_cstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_cstat_store
,
589 if (((uintptr_t)inp
->inp_cstat
- (uintptr_t)inp
->inp_cstat_store
) +
590 sizeof (*inp
->inp_cstat
) > sizeof (inp
->inp_cstat_store
)) {
591 panic("%s: insufficient space to align inp_cstat", __func__
);
595 /* make sure inp_wstat is always 64-bit aligned */
596 inp
->inp_wstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_wstat_store
,
598 if (((uintptr_t)inp
->inp_wstat
- (uintptr_t)inp
->inp_wstat_store
) +
599 sizeof (*inp
->inp_wstat
) > sizeof (inp
->inp_wstat_store
)) {
600 panic("%s: insufficient space to align inp_wstat", __func__
);
604 /* make sure inp_Wstat is always 64-bit aligned */
605 inp
->inp_Wstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_Wstat_store
,
607 if (((uintptr_t)inp
->inp_Wstat
- (uintptr_t)inp
->inp_Wstat_store
) +
608 sizeof (*inp
->inp_Wstat
) > sizeof (inp
->inp_Wstat_store
)) {
609 panic("%s: insufficient space to align inp_Wstat", __func__
);
613 so
->so_pcb
= (caddr_t
)inp
;
615 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
616 lck_mtx_init(&inp
->inpcb_mtx
, pcbinfo
->ipi_lock_grp
,
617 pcbinfo
->ipi_lock_attr
);
621 if (SOCK_DOM(so
) == PF_INET6
&& !ip6_mapped_addr_on
)
622 inp
->inp_flags
|= IN6P_IPV6_V6ONLY
;
624 if (ip6_auto_flowlabel
)
625 inp
->inp_flags
|= IN6P_AUTOFLOWLABEL
;
627 if (intcoproc_unrestricted
)
628 inp
->inp_flags2
|= INP2_INTCOPROC_ALLOWED
;
630 (void) inp_update_policy(inp
);
632 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
633 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
634 LIST_INSERT_HEAD(pcbinfo
->ipi_listhead
, inp
, inp_list
);
635 pcbinfo
->ipi_count
++;
636 lck_rw_done(pcbinfo
->ipi_lock
);
641 * in_pcblookup_local_and_cleanup does everything
642 * in_pcblookup_local does but it checks for a socket
643 * that's going away. Since we know that the lock is
644 * held read+write when this funciton is called, we
645 * can safely dispose of this socket like the slow
646 * timer would usually do and return NULL. This is
650 in_pcblookup_local_and_cleanup(struct inpcbinfo
*pcbinfo
, struct in_addr laddr
,
651 u_int lport_arg
, int wild_okay
)
655 /* Perform normal lookup */
656 inp
= in_pcblookup_local(pcbinfo
, laddr
, lport_arg
, wild_okay
);
658 /* Check if we found a match but it's waiting to be disposed */
659 if (inp
!= NULL
&& inp
->inp_wantcnt
== WNT_STOPUSING
) {
660 struct socket
*so
= inp
->inp_socket
;
664 if (so
->so_usecount
== 0) {
665 if (inp
->inp_state
!= INPCB_STATE_DEAD
)
667 in_pcbdispose(inp
); /* will unlock & destroy */
670 socket_unlock(so
, 0);
678 in_pcb_conflict_post_msg(u_int16_t port
)
681 * Radar 5523020 send a kernel event notification if a
682 * non-participating socket tries to bind the port a socket
683 * who has set SOF_NOTIFYCONFLICT owns.
685 struct kev_msg ev_msg
;
686 struct kev_in_portinuse in_portinuse
;
688 bzero(&in_portinuse
, sizeof (struct kev_in_portinuse
));
689 bzero(&ev_msg
, sizeof (struct kev_msg
));
690 in_portinuse
.port
= ntohs(port
); /* port in host order */
691 in_portinuse
.req_pid
= proc_selfpid();
692 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
693 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
694 ev_msg
.kev_subclass
= KEV_INET_SUBCLASS
;
695 ev_msg
.event_code
= KEV_INET_PORTINUSE
;
696 ev_msg
.dv
[0].data_ptr
= &in_portinuse
;
697 ev_msg
.dv
[0].data_length
= sizeof (struct kev_in_portinuse
);
698 ev_msg
.dv
[1].data_length
= 0;
699 dlil_post_complete_msg(NULL
, &ev_msg
);
703 * Bind an INPCB to an address and/or port. This routine should not alter
704 * the caller-supplied local address "nam".
707 * EADDRNOTAVAIL Address not available.
708 * EINVAL Invalid argument
709 * EAFNOSUPPORT Address family not supported [notdef]
710 * EACCES Permission denied
711 * EADDRINUSE Address in use
712 * EAGAIN Resource unavailable, try again
713 * priv_check_cred:EPERM Operation not permitted
716 in_pcbbind(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
)
718 struct socket
*so
= inp
->inp_socket
;
719 unsigned short *lastport
;
720 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
721 u_short lport
= 0, rand_port
= 0;
722 int wild
= 0, reuseport
= (so
->so_options
& SO_REUSEPORT
);
723 int error
, randomport
, conflict
= 0;
724 boolean_t anonport
= FALSE
;
726 struct in_addr laddr
;
727 struct ifnet
*outif
= NULL
;
729 if (TAILQ_EMPTY(&in_ifaddrhead
)) /* XXX broken! */
730 return (EADDRNOTAVAIL
);
731 if (inp
->inp_lport
!= 0 || inp
->inp_laddr
.s_addr
!= INADDR_ANY
)
733 if (!(so
->so_options
& (SO_REUSEADDR
|SO_REUSEPORT
)))
736 bzero(&laddr
, sizeof(laddr
));
738 socket_unlock(so
, 0); /* keep reference on socket */
739 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
743 if (nam
->sa_len
!= sizeof (struct sockaddr_in
)) {
744 lck_rw_done(pcbinfo
->ipi_lock
);
750 * We should check the family, but old programs
751 * incorrectly fail to initialize it.
753 if (nam
->sa_family
!= AF_INET
) {
754 lck_rw_done(pcbinfo
->ipi_lock
);
756 return (EAFNOSUPPORT
);
759 lport
= SIN(nam
)->sin_port
;
761 if (IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
))) {
763 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
764 * allow complete duplication of binding if
765 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
766 * and a multicast address is bound on both
767 * new and duplicated sockets.
769 if (so
->so_options
& SO_REUSEADDR
)
770 reuseport
= SO_REUSEADDR
|SO_REUSEPORT
;
771 } else if (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
) {
772 struct sockaddr_in sin
;
775 /* Sanitized for interface address searches */
776 bzero(&sin
, sizeof (sin
));
777 sin
.sin_family
= AF_INET
;
778 sin
.sin_len
= sizeof (struct sockaddr_in
);
779 sin
.sin_addr
.s_addr
= SIN(nam
)->sin_addr
.s_addr
;
781 ifa
= ifa_ifwithaddr(SA(&sin
));
783 lck_rw_done(pcbinfo
->ipi_lock
);
785 return (EADDRNOTAVAIL
);
788 * Opportunistically determine the outbound
789 * interface that may be used; this may not
790 * hold true if we end up using a route
791 * going over a different interface, e.g.
792 * when sending to a local address. This
793 * will get updated again after sending.
796 outif
= ifa
->ifa_ifp
;
806 if (ntohs(lport
) < IPPORT_RESERVED
) {
807 cred
= kauth_cred_proc_ref(p
);
808 error
= priv_check_cred(cred
,
809 PRIV_NETINET_RESERVEDPORT
, 0);
810 kauth_cred_unref(&cred
);
812 lck_rw_done(pcbinfo
->ipi_lock
);
817 #endif /* !CONFIG_EMBEDDED */
818 if (!IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
)) &&
819 (u
= kauth_cred_getuid(so
->so_cred
)) != 0 &&
820 (t
= in_pcblookup_local_and_cleanup(
821 inp
->inp_pcbinfo
, SIN(nam
)->sin_addr
, lport
,
822 INPLOOKUP_WILDCARD
)) != NULL
&&
823 (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
824 t
->inp_laddr
.s_addr
!= INADDR_ANY
||
825 !(t
->inp_socket
->so_options
& SO_REUSEPORT
)) &&
826 (u
!= kauth_cred_getuid(t
->inp_socket
->so_cred
)) &&
827 !(t
->inp_socket
->so_flags
& SOF_REUSESHAREUID
) &&
828 (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
829 t
->inp_laddr
.s_addr
!= INADDR_ANY
)) {
830 if ((t
->inp_socket
->so_flags
&
831 SOF_NOTIFYCONFLICT
) &&
832 !(so
->so_flags
& SOF_NOTIFYCONFLICT
))
835 lck_rw_done(pcbinfo
->ipi_lock
);
838 in_pcb_conflict_post_msg(lport
);
843 t
= in_pcblookup_local_and_cleanup(pcbinfo
,
844 SIN(nam
)->sin_addr
, lport
, wild
);
846 (reuseport
& t
->inp_socket
->so_options
) == 0) {
848 if (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
849 t
->inp_laddr
.s_addr
!= INADDR_ANY
||
850 SOCK_DOM(so
) != PF_INET6
||
851 SOCK_DOM(t
->inp_socket
) != PF_INET6
)
855 if ((t
->inp_socket
->so_flags
&
856 SOF_NOTIFYCONFLICT
) &&
857 !(so
->so_flags
& SOF_NOTIFYCONFLICT
))
860 lck_rw_done(pcbinfo
->ipi_lock
);
863 in_pcb_conflict_post_msg(lport
);
869 laddr
= SIN(nam
)->sin_addr
;
876 randomport
= (so
->so_flags
& SOF_BINDRANDOMPORT
) ||
877 (so
->so_type
== SOCK_STREAM
? tcp_use_randomport
:
881 * Even though this looks similar to the code in
882 * in6_pcbsetport, the v6 vs v4 checks are different.
885 if (inp
->inp_flags
& INP_HIGHPORT
) {
886 first
= ipport_hifirstauto
; /* sysctl */
887 last
= ipport_hilastauto
;
888 lastport
= &pcbinfo
->ipi_lasthi
;
889 } else if (inp
->inp_flags
& INP_LOWPORT
) {
890 cred
= kauth_cred_proc_ref(p
);
891 error
= priv_check_cred(cred
,
892 PRIV_NETINET_RESERVEDPORT
, 0);
893 kauth_cred_unref(&cred
);
895 lck_rw_done(pcbinfo
->ipi_lock
);
899 first
= ipport_lowfirstauto
; /* 1023 */
900 last
= ipport_lowlastauto
; /* 600 */
901 lastport
= &pcbinfo
->ipi_lastlow
;
903 first
= ipport_firstauto
; /* sysctl */
904 last
= ipport_lastauto
;
905 lastport
= &pcbinfo
->ipi_lastport
;
907 /* No point in randomizing if only one port is available */
912 * Simple check to ensure all ports are not used up causing
915 * We split the two cases (up and down) so that the direction
916 * is not being tested on each round of the loop.
919 struct in_addr lookup_addr
;
925 read_frandom(&rand_port
, sizeof (rand_port
));
927 first
- (rand_port
% (first
- last
));
929 count
= first
- last
;
931 lookup_addr
= (laddr
.s_addr
!= INADDR_ANY
) ? laddr
:
936 if (count
-- < 0) { /* completely used? */
937 lck_rw_done(pcbinfo
->ipi_lock
);
939 return (EADDRNOTAVAIL
);
942 if (*lastport
> first
|| *lastport
< last
)
944 lport
= htons(*lastport
);
946 found
= in_pcblookup_local_and_cleanup(pcbinfo
,
947 lookup_addr
, lport
, wild
) == NULL
;
950 struct in_addr lookup_addr
;
956 read_frandom(&rand_port
, sizeof (rand_port
));
958 first
+ (rand_port
% (first
- last
));
960 count
= last
- first
;
962 lookup_addr
= (laddr
.s_addr
!= INADDR_ANY
) ? laddr
:
967 if (count
-- < 0) { /* completely used? */
968 lck_rw_done(pcbinfo
->ipi_lock
);
970 return (EADDRNOTAVAIL
);
973 if (*lastport
< first
|| *lastport
> last
)
975 lport
= htons(*lastport
);
977 found
= in_pcblookup_local_and_cleanup(pcbinfo
,
978 lookup_addr
, lport
, wild
) == NULL
;
985 * We unlocked socket's protocol lock for a long time.
986 * The socket might have been dropped/defuncted.
987 * Checking if world has changed since.
989 if (inp
->inp_state
== INPCB_STATE_DEAD
) {
990 lck_rw_done(pcbinfo
->ipi_lock
);
991 return (ECONNABORTED
);
994 if (inp
->inp_lport
!= 0 || inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
995 lck_rw_done(pcbinfo
->ipi_lock
);
999 if (laddr
.s_addr
!= INADDR_ANY
) {
1000 inp
->inp_laddr
= laddr
;
1001 inp
->inp_last_outifp
= outif
;
1003 inp
->inp_lport
= lport
;
1005 inp
->inp_flags
|= INP_ANONPORT
;
1007 if (in_pcbinshash(inp
, 1) != 0) {
1008 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
1009 inp
->inp_last_outifp
= NULL
;
1013 inp
->inp_flags
&= ~INP_ANONPORT
;
1014 lck_rw_done(pcbinfo
->ipi_lock
);
1017 lck_rw_done(pcbinfo
->ipi_lock
);
1018 sflt_notify(so
, sock_evt_bound
, NULL
);
1022 #define APN_FALLBACK_IP_FILTER(a) \
1023 (IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \
1024 IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \
1025 IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \
1026 IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \
1027 IN_PRIVATE(ntohl((a)->sin_addr.s_addr)))
1029 #define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */
1030 static uint64_t last_apn_fallback
= 0;
1033 apn_fallback_required (proc_t proc
, struct socket
*so
, struct sockaddr_in
*p_dstv4
)
1036 struct sockaddr_storage lookup_default_addr
;
1037 struct rtentry
*rt
= NULL
;
1039 VERIFY(proc
!= NULL
);
1041 if (apn_fallbk_enabled
== FALSE
)
1044 if (proc
== kernproc
)
1047 if (so
&& (so
->so_options
& SO_NOAPNFALLBK
))
1050 timenow
= net_uptime();
1051 if ((timenow
- last_apn_fallback
) < APN_FALLBACK_NOTIF_INTERVAL
) {
1052 apn_fallbk_log((LOG_INFO
, "APN fallback notification throttled.\n"));
1056 if (p_dstv4
&& APN_FALLBACK_IP_FILTER(p_dstv4
))
1059 /* Check if we have unscoped IPv6 default route through cellular */
1060 bzero(&lookup_default_addr
, sizeof(lookup_default_addr
));
1061 lookup_default_addr
.ss_family
= AF_INET6
;
1062 lookup_default_addr
.ss_len
= sizeof(struct sockaddr_in6
);
1064 rt
= rtalloc1((struct sockaddr
*)&lookup_default_addr
, 0, 0);
1066 apn_fallbk_log((LOG_INFO
, "APN fallback notification could not find "
1067 "unscoped default IPv6 route.\n"));
1071 if (!IFNET_IS_CELLULAR(rt
->rt_ifp
)) {
1073 apn_fallbk_log((LOG_INFO
, "APN fallback notification could not find "
1074 "unscoped default IPv6 route through cellular interface.\n"));
1079 * We have a default IPv6 route, ensure that
1080 * we do not have IPv4 default route before triggering
1086 bzero(&lookup_default_addr
, sizeof(lookup_default_addr
));
1087 lookup_default_addr
.ss_family
= AF_INET
;
1088 lookup_default_addr
.ss_len
= sizeof(struct sockaddr_in
);
1090 rt
= rtalloc1((struct sockaddr
*)&lookup_default_addr
, 0, 0);
1095 apn_fallbk_log((LOG_INFO
, "APN fallback notification found unscoped "
1096 "IPv4 default route!\n"));
1102 * We disable APN fallback if the binary is not a third-party app.
1103 * Note that platform daemons use their process name as a
1104 * bundle ID so we filter out bundle IDs without dots.
1106 const char *bundle_id
= cs_identity_get(proc
);
1107 if (bundle_id
== NULL
||
1108 bundle_id
[0] == '\0' ||
1109 strchr(bundle_id
, '.') == NULL
||
1110 strncmp(bundle_id
, "com.apple.", sizeof("com.apple.") - 1) == 0) {
1111 apn_fallbk_log((LOG_INFO
, "Abort: APN fallback notification found first-"
1112 "party bundle ID \"%s\"!\n", (bundle_id
? bundle_id
: "NULL")));
1119 * The Apple App Store IPv6 requirement started on
1120 * June 1st, 2016 at 12:00:00 AM PDT.
1121 * We disable APN fallback if the binary is more recent than that.
1122 * We check both atime and birthtime since birthtime is not always supported.
1124 static const long ipv6_start_date
= 1464764400L;
1125 vfs_context_t context
;
1129 bzero(&sb
, sizeof(struct stat64
));
1130 context
= vfs_context_create(NULL
);
1131 vn_stat_error
= vn_stat(proc
->p_textvp
, &sb
, NULL
, 1, context
);
1132 (void)vfs_context_rele(context
);
1134 if (vn_stat_error
!= 0 ||
1135 sb
.st_atimespec
.tv_sec
>= ipv6_start_date
||
1136 sb
.st_birthtimespec
.tv_sec
>= ipv6_start_date
) {
1137 apn_fallbk_log((LOG_INFO
, "Abort: APN fallback notification found binary "
1138 "too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n",
1139 vn_stat_error
, sb
.st_atimespec
.tv_sec
, sb
.st_mtimespec
.tv_sec
,
1140 sb
.st_ctimespec
.tv_sec
, sb
.st_birthtimespec
.tv_sec
));
1148 apn_fallback_trigger(proc_t proc
)
1151 struct kev_msg ev_msg
;
1152 struct kev_netevent_apnfallbk_data apnfallbk_data
;
1154 last_apn_fallback
= net_uptime();
1155 pid
= proc_pid(proc
);
1156 uuid_t application_uuid
;
1157 uuid_clear(application_uuid
);
1158 proc_getexecutableuuid(proc
, application_uuid
,
1159 sizeof(application_uuid
));
1161 bzero(&ev_msg
, sizeof (struct kev_msg
));
1162 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
1163 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
1164 ev_msg
.kev_subclass
= KEV_NETEVENT_SUBCLASS
;
1165 ev_msg
.event_code
= KEV_NETEVENT_APNFALLBACK
;
1167 bzero(&apnfallbk_data
, sizeof(apnfallbk_data
));
1168 apnfallbk_data
.epid
= pid
;
1169 uuid_copy(apnfallbk_data
.euuid
, application_uuid
);
1171 ev_msg
.dv
[0].data_ptr
= &apnfallbk_data
;
1172 ev_msg
.dv
[0].data_length
= sizeof(apnfallbk_data
);
1173 kev_post_msg(&ev_msg
);
1174 apn_fallbk_log((LOG_INFO
, "APN fallback notification issued.\n"));
1178 * Transform old in_pcbconnect() into an inner subroutine for new
1179 * in_pcbconnect(); do some validity-checking on the remote address
1180 * (in "nam") and then determine local host address (i.e., which
1181 * interface) to use to access that remote host.
1183 * This routine may alter the caller-supplied remote address "nam".
1185 * The caller may override the bound-to-interface setting of the socket
1186 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1188 * This routine might return an ifp with a reference held if the caller
1189 * provides a non-NULL outif, even in the error case. The caller is
1190 * responsible for releasing its reference.
1192 * Returns: 0 Success
1193 * EINVAL Invalid argument
1194 * EAFNOSUPPORT Address family not supported
1195 * EADDRNOTAVAIL Address not available
1198 in_pcbladdr(struct inpcb
*inp
, struct sockaddr
*nam
, struct in_addr
*laddr
,
1199 unsigned int ifscope
, struct ifnet
**outif
, int raw
)
1201 struct route
*ro
= &inp
->inp_route
;
1202 struct in_ifaddr
*ia
= NULL
;
1203 struct sockaddr_in sin
;
1205 boolean_t restricted
= FALSE
;
1209 if (nam
->sa_len
!= sizeof (struct sockaddr_in
))
1211 if (SIN(nam
)->sin_family
!= AF_INET
)
1212 return (EAFNOSUPPORT
);
1213 if (raw
== 0 && SIN(nam
)->sin_port
== 0)
1214 return (EADDRNOTAVAIL
);
1217 * If the destination address is INADDR_ANY,
1218 * use the primary local address.
1219 * If the supplied address is INADDR_BROADCAST,
1220 * and the primary interface supports broadcast,
1221 * choose the broadcast address for that interface.
1223 if (raw
== 0 && (SIN(nam
)->sin_addr
.s_addr
== INADDR_ANY
||
1224 SIN(nam
)->sin_addr
.s_addr
== (u_int32_t
)INADDR_BROADCAST
)) {
1225 lck_rw_lock_shared(in_ifaddr_rwlock
);
1226 if (!TAILQ_EMPTY(&in_ifaddrhead
)) {
1227 ia
= TAILQ_FIRST(&in_ifaddrhead
);
1228 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1229 if (SIN(nam
)->sin_addr
.s_addr
== INADDR_ANY
) {
1230 SIN(nam
)->sin_addr
= IA_SIN(ia
)->sin_addr
;
1231 } else if (ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
1232 SIN(nam
)->sin_addr
=
1233 SIN(&ia
->ia_broadaddr
)->sin_addr
;
1235 IFA_UNLOCK(&ia
->ia_ifa
);
1238 lck_rw_done(in_ifaddr_rwlock
);
1241 * Otherwise, if the socket has already bound the source, just use it.
1243 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
1245 *laddr
= inp
->inp_laddr
;
1250 * If the ifscope is specified by the caller (e.g. IP_PKTINFO)
1251 * then it overrides the sticky ifscope set for the socket.
1253 if (ifscope
== IFSCOPE_NONE
&& (inp
->inp_flags
& INP_BOUND_IF
))
1254 ifscope
= inp
->inp_boundifp
->if_index
;
1257 * If route is known or can be allocated now,
1258 * our src addr is taken from the i/f, else punt.
1259 * Note that we should check the address family of the cached
1260 * destination, in case of sharing the cache with IPv6.
1262 if (ro
->ro_rt
!= NULL
)
1263 RT_LOCK_SPIN(ro
->ro_rt
);
1264 if (ROUTE_UNUSABLE(ro
) || ro
->ro_dst
.sa_family
!= AF_INET
||
1265 SIN(&ro
->ro_dst
)->sin_addr
.s_addr
!= SIN(nam
)->sin_addr
.s_addr
||
1266 (inp
->inp_socket
->so_options
& SO_DONTROUTE
)) {
1267 if (ro
->ro_rt
!= NULL
)
1268 RT_UNLOCK(ro
->ro_rt
);
1271 if (!(inp
->inp_socket
->so_options
& SO_DONTROUTE
) &&
1272 (ro
->ro_rt
== NULL
|| ro
->ro_rt
->rt_ifp
== NULL
)) {
1273 if (ro
->ro_rt
!= NULL
)
1274 RT_UNLOCK(ro
->ro_rt
);
1276 /* No route yet, so try to acquire one */
1277 bzero(&ro
->ro_dst
, sizeof (struct sockaddr_in
));
1278 ro
->ro_dst
.sa_family
= AF_INET
;
1279 ro
->ro_dst
.sa_len
= sizeof (struct sockaddr_in
);
1280 SIN(&ro
->ro_dst
)->sin_addr
= SIN(nam
)->sin_addr
;
1281 rtalloc_scoped(ro
, ifscope
);
1282 if (ro
->ro_rt
!= NULL
)
1283 RT_LOCK_SPIN(ro
->ro_rt
);
1285 /* Sanitized local copy for interface address searches */
1286 bzero(&sin
, sizeof (sin
));
1287 sin
.sin_family
= AF_INET
;
1288 sin
.sin_len
= sizeof (struct sockaddr_in
);
1289 sin
.sin_addr
.s_addr
= SIN(nam
)->sin_addr
.s_addr
;
1291 * If we did not find (or use) a route, assume dest is reachable
1292 * on a directly connected network and try to find a corresponding
1293 * interface to take the source address from.
1295 if (ro
->ro_rt
== NULL
) {
1296 proc_t proc
= current_proc();
1299 ia
= ifatoia(ifa_ifwithdstaddr(SA(&sin
)));
1301 ia
= ifatoia(ifa_ifwithnet_scoped(SA(&sin
), ifscope
));
1302 error
= ((ia
== NULL
) ? ENETUNREACH
: 0);
1304 if (apn_fallback_required(proc
, inp
->inp_socket
,
1306 apn_fallback_trigger(proc
);
1310 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
1312 * If the outgoing interface on the route found is not
1313 * a loopback interface, use the address from that interface.
1315 if (!(ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
1318 * If the route points to a cellular interface and the
1319 * caller forbids our using interfaces of such type,
1320 * pretend that there is no route.
1321 * Apply the same logic for expensive interfaces.
1323 if (inp_restricted_send(inp
, ro
->ro_rt
->rt_ifp
)) {
1324 RT_UNLOCK(ro
->ro_rt
);
1326 error
= EHOSTUNREACH
;
1329 /* Become a regular mutex */
1330 RT_CONVERT_LOCK(ro
->ro_rt
);
1331 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1332 IFA_ADDREF(&ia
->ia_ifa
);
1333 RT_UNLOCK(ro
->ro_rt
);
1338 VERIFY(ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
);
1339 RT_UNLOCK(ro
->ro_rt
);
1341 * The outgoing interface is marked with 'loopback net', so a route
1342 * to ourselves is here.
1343 * Try to find the interface of the destination address and then
1344 * take the address from there. That interface is not necessarily
1345 * a loopback interface.
1348 ia
= ifatoia(ifa_ifwithdstaddr(SA(&sin
)));
1350 ia
= ifatoia(ifa_ifwithaddr_scoped(SA(&sin
), ifscope
));
1352 ia
= ifatoia(ifa_ifwithnet_scoped(SA(&sin
), ifscope
));
1355 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1357 IFA_ADDREF(&ia
->ia_ifa
);
1358 RT_UNLOCK(ro
->ro_rt
);
1360 error
= ((ia
== NULL
) ? ENETUNREACH
: 0);
1364 * If the destination address is multicast and an outgoing
1365 * interface has been set as a multicast option, use the
1366 * address of that interface as our source address.
1368 if (IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
)) &&
1369 inp
->inp_moptions
!= NULL
) {
1370 struct ip_moptions
*imo
;
1373 imo
= inp
->inp_moptions
;
1375 if (imo
->imo_multicast_ifp
!= NULL
&& (ia
== NULL
||
1376 ia
->ia_ifp
!= imo
->imo_multicast_ifp
)) {
1377 ifp
= imo
->imo_multicast_ifp
;
1379 IFA_REMREF(&ia
->ia_ifa
);
1380 lck_rw_lock_shared(in_ifaddr_rwlock
);
1381 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
1382 if (ia
->ia_ifp
== ifp
)
1386 IFA_ADDREF(&ia
->ia_ifa
);
1387 lck_rw_done(in_ifaddr_rwlock
);
1389 error
= EADDRNOTAVAIL
;
1396 * Don't do pcblookup call here; return interface in laddr
1397 * and exit to caller, that will do the lookup.
1401 * If the source address belongs to a cellular interface
1402 * and the socket forbids our using interfaces of such
1403 * type, pretend that there is no source address.
1404 * Apply the same logic for expensive interfaces.
1406 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1407 if (inp_restricted_send(inp
, ia
->ia_ifa
.ifa_ifp
)) {
1408 IFA_UNLOCK(&ia
->ia_ifa
);
1409 error
= EHOSTUNREACH
;
1411 } else if (error
== 0) {
1412 *laddr
= ia
->ia_addr
.sin_addr
;
1413 if (outif
!= NULL
) {
1416 if (ro
->ro_rt
!= NULL
)
1417 ifp
= ro
->ro_rt
->rt_ifp
;
1421 VERIFY(ifp
!= NULL
);
1422 IFA_CONVERT_LOCK(&ia
->ia_ifa
);
1423 ifnet_reference(ifp
); /* for caller */
1425 ifnet_release(*outif
);
1428 IFA_UNLOCK(&ia
->ia_ifa
);
1430 IFA_UNLOCK(&ia
->ia_ifa
);
1432 IFA_REMREF(&ia
->ia_ifa
);
1436 if (restricted
&& error
== EHOSTUNREACH
) {
1437 soevent(inp
->inp_socket
, (SO_FILT_HINT_LOCKED
|
1438 SO_FILT_HINT_IFDENIED
));
1446 * Connect from a socket to a specified address.
1447 * Both address and port must be specified in argument sin.
1448 * If don't have a local address for this socket yet,
1451 * The caller may override the bound-to-interface setting of the socket
1452 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1455 in_pcbconnect(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
,
1456 unsigned int ifscope
, struct ifnet
**outif
)
1458 struct in_addr laddr
;
1459 struct sockaddr_in
*sin
= (struct sockaddr_in
*)(void *)nam
;
1462 struct socket
*so
= inp
->inp_socket
;
1465 * Call inner routine, to assign local interface address.
1467 if ((error
= in_pcbladdr(inp
, nam
, &laddr
, ifscope
, outif
, 0)) != 0)
1470 socket_unlock(so
, 0);
1471 pcb
= in_pcblookup_hash(inp
->inp_pcbinfo
, sin
->sin_addr
, sin
->sin_port
,
1472 inp
->inp_laddr
.s_addr
? inp
->inp_laddr
: laddr
,
1473 inp
->inp_lport
, 0, NULL
);
1477 * Check if the socket is still in a valid state. When we unlock this
1478 * embryonic socket, it can get aborted if another thread is closing
1479 * the listener (radar 7947600).
1481 if ((so
->so_flags
& SOF_ABORTED
) != 0)
1482 return (ECONNREFUSED
);
1485 in_pcb_checkstate(pcb
, WNT_RELEASE
, pcb
== inp
? 1 : 0);
1486 return (EADDRINUSE
);
1488 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
1489 if (inp
->inp_lport
== 0) {
1490 error
= in_pcbbind(inp
, NULL
, p
);
1494 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1496 * Lock inversion issue, mostly with udp
1497 * multicast packets.
1499 socket_unlock(so
, 0);
1500 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1503 inp
->inp_laddr
= laddr
;
1504 /* no reference needed */
1505 inp
->inp_last_outifp
= (outif
!= NULL
) ? *outif
: NULL
;
1506 inp
->inp_flags
|= INP_INADDR_ANY
;
1509 * Usage of IP_PKTINFO, without local port already
1510 * speficified will cause kernel to panic,
1511 * see rdar://problem/18508185.
1512 * For now returning error to avoid a kernel panic
1513 * This routines can be refactored and handle this better
1516 if (inp
->inp_lport
== 0)
1518 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1520 * Lock inversion issue, mostly with udp
1521 * multicast packets.
1523 socket_unlock(so
, 0);
1524 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1528 inp
->inp_faddr
= sin
->sin_addr
;
1529 inp
->inp_fport
= sin
->sin_port
;
1530 if (nstat_collect
&& SOCK_PROTO(so
) == IPPROTO_UDP
)
1531 nstat_pcb_invalidate_cache(inp
);
1533 lck_rw_done(inp
->inp_pcbinfo
->ipi_lock
);
1538 in_pcbdisconnect(struct inpcb
*inp
)
1540 struct socket
*so
= inp
->inp_socket
;
1542 if (nstat_collect
&& SOCK_PROTO(so
) == IPPROTO_UDP
)
1543 nstat_pcb_cache(inp
);
1545 inp
->inp_faddr
.s_addr
= INADDR_ANY
;
1548 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1549 /* lock inversion issue, mostly with udp multicast packets */
1550 socket_unlock(so
, 0);
1551 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1556 lck_rw_done(inp
->inp_pcbinfo
->ipi_lock
);
1558 * A multipath subflow socket would have its SS_NOFDREF set by default,
1559 * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB;
1560 * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared.
1562 if (!(so
->so_flags
& SOF_MP_SUBFLOW
) && (so
->so_state
& SS_NOFDREF
))
1567 in_pcbdetach(struct inpcb
*inp
)
1569 struct socket
*so
= inp
->inp_socket
;
1571 if (so
->so_pcb
== NULL
) {
1572 /* PCB has been disposed */
1573 panic("%s: inp=%p so=%p proto=%d so_pcb is null!\n", __func__
,
1574 inp
, so
, SOCK_PROTO(so
));
1579 if (inp
->inp_sp
!= NULL
) {
1580 (void) ipsec4_delete_pcbpolicy(inp
);
1584 if (inp
->inp_stat
!= NULL
&& SOCK_PROTO(so
) == IPPROTO_UDP
) {
1585 if (inp
->inp_stat
->rxpackets
== 0 && inp
->inp_stat
->txpackets
== 0) {
1586 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_no_data
);
1591 * Let NetworkStatistics know this PCB is going away
1592 * before we detach it.
1594 if (nstat_collect
&&
1595 (SOCK_PROTO(so
) == IPPROTO_TCP
|| SOCK_PROTO(so
) == IPPROTO_UDP
))
1596 nstat_pcb_detach(inp
);
1598 /* Free memory buffer held for generating keep alives */
1599 if (inp
->inp_keepalive_data
!= NULL
) {
1600 FREE(inp
->inp_keepalive_data
, M_TEMP
);
1601 inp
->inp_keepalive_data
= NULL
;
1604 /* mark socket state as dead */
1605 if (in_pcb_checkstate(inp
, WNT_STOPUSING
, 1) != WNT_STOPUSING
) {
1606 panic("%s: so=%p proto=%d couldn't set to STOPUSING\n",
1607 __func__
, so
, SOCK_PROTO(so
));
1611 if (!(so
->so_flags
& SOF_PCBCLEARING
)) {
1612 struct ip_moptions
*imo
;
1615 if (inp
->inp_options
!= NULL
) {
1616 (void) m_free(inp
->inp_options
);
1617 inp
->inp_options
= NULL
;
1619 ROUTE_RELEASE(&inp
->inp_route
);
1620 imo
= inp
->inp_moptions
;
1621 inp
->inp_moptions
= NULL
;
1622 sofreelastref(so
, 0);
1623 inp
->inp_state
= INPCB_STATE_DEAD
;
1624 /* makes sure we're not called twice from so_close */
1625 so
->so_flags
|= SOF_PCBCLEARING
;
1627 inpcb_gc_sched(inp
->inp_pcbinfo
, INPCB_TIMER_FAST
);
1630 * See inp_join_group() for why we need to unlock
1633 socket_unlock(so
, 0);
1642 in_pcbdispose(struct inpcb
*inp
)
1644 struct socket
*so
= inp
->inp_socket
;
1645 struct inpcbinfo
*ipi
= inp
->inp_pcbinfo
;
1647 if (so
!= NULL
&& so
->so_usecount
!= 0) {
1648 panic("%s: so %p [%d,%d] usecount %d lockhistory %s\n",
1649 __func__
, so
, SOCK_DOM(so
), SOCK_TYPE(so
), so
->so_usecount
,
1650 solockhistory_nr(so
));
1652 } else if (inp
->inp_wantcnt
!= WNT_STOPUSING
) {
1654 panic_plain("%s: inp %p invalid wantcnt %d, so %p "
1655 "[%d,%d] usecount %d retaincnt %d state 0x%x "
1656 "flags 0x%x lockhistory %s\n", __func__
, inp
,
1657 inp
->inp_wantcnt
, so
, SOCK_DOM(so
), SOCK_TYPE(so
),
1658 so
->so_usecount
, so
->so_retaincnt
, so
->so_state
,
1659 so
->so_flags
, solockhistory_nr(so
));
1662 panic("%s: inp %p invalid wantcnt %d no socket\n",
1663 __func__
, inp
, inp
->inp_wantcnt
);
1668 LCK_RW_ASSERT(ipi
->ipi_lock
, LCK_RW_ASSERT_EXCLUSIVE
);
1670 inp
->inp_gencnt
= ++ipi
->ipi_gencnt
;
1671 /* access ipi in in_pcbremlists */
1672 in_pcbremlists(inp
);
1675 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
1676 sofreelastref(so
, 0);
1677 if (so
->so_rcv
.sb_cc
> 0 || so
->so_snd
.sb_cc
> 0) {
1679 * selthreadclear() already called
1680 * during sofreelastref() above.
1682 sbrelease(&so
->so_rcv
);
1683 sbrelease(&so
->so_snd
);
1685 if (so
->so_head
!= NULL
) {
1686 panic("%s: so=%p head still exist\n",
1690 lck_mtx_unlock(&inp
->inpcb_mtx
);
1693 necp_inpcb_remove_cb(inp
);
1696 lck_mtx_destroy(&inp
->inpcb_mtx
, ipi
->ipi_lock_grp
);
1698 /* makes sure we're not called twice from so_close */
1699 so
->so_flags
|= SOF_PCBCLEARING
;
1700 so
->so_saved_pcb
= (caddr_t
)inp
;
1702 inp
->inp_socket
= NULL
;
1704 mac_inpcb_label_destroy(inp
);
1705 #endif /* CONFIG_MACF_NET */
1707 necp_inpcb_dispose(inp
);
1710 * In case there a route cached after a detach (possible
1711 * in the tcp case), make sure that it is freed before
1712 * we deallocate the structure.
1714 ROUTE_RELEASE(&inp
->inp_route
);
1715 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
1716 zfree(ipi
->ipi_zone
, inp
);
1723 * The calling convention of in_getsockaddr() and in_getpeeraddr() was
1724 * modified to match the pru_sockaddr() and pru_peeraddr() entry points
1725 * in struct pr_usrreqs, so that protocols can just reference then directly
1726 * without the need for a wrapper function.
1729 in_getsockaddr(struct socket
*so
, struct sockaddr
**nam
)
1732 struct sockaddr_in
*sin
;
1735 * Do the malloc first in case it blocks.
1737 MALLOC(sin
, struct sockaddr_in
*, sizeof (*sin
), M_SONAME
, M_WAITOK
);
1740 bzero(sin
, sizeof (*sin
));
1741 sin
->sin_family
= AF_INET
;
1742 sin
->sin_len
= sizeof (*sin
);
1744 if ((inp
= sotoinpcb(so
)) == NULL
) {
1745 FREE(sin
, M_SONAME
);
1748 sin
->sin_port
= inp
->inp_lport
;
1749 sin
->sin_addr
= inp
->inp_laddr
;
1751 *nam
= (struct sockaddr
*)sin
;
1756 in_getsockaddr_s(struct socket
*so
, struct sockaddr_in
*ss
)
1758 struct sockaddr_in
*sin
= ss
;
1762 bzero(ss
, sizeof (*ss
));
1764 sin
->sin_family
= AF_INET
;
1765 sin
->sin_len
= sizeof (*sin
);
1767 if ((inp
= sotoinpcb(so
)) == NULL
)
1770 sin
->sin_port
= inp
->inp_lport
;
1771 sin
->sin_addr
= inp
->inp_laddr
;
1776 in_getpeeraddr(struct socket
*so
, struct sockaddr
**nam
)
1779 struct sockaddr_in
*sin
;
1782 * Do the malloc first in case it blocks.
1784 MALLOC(sin
, struct sockaddr_in
*, sizeof (*sin
), M_SONAME
, M_WAITOK
);
1787 bzero((caddr_t
)sin
, sizeof (*sin
));
1788 sin
->sin_family
= AF_INET
;
1789 sin
->sin_len
= sizeof (*sin
);
1791 if ((inp
= sotoinpcb(so
)) == NULL
) {
1792 FREE(sin
, M_SONAME
);
1795 sin
->sin_port
= inp
->inp_fport
;
1796 sin
->sin_addr
= inp
->inp_faddr
;
1798 *nam
= (struct sockaddr
*)sin
;
1803 in_pcbnotifyall(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
1804 int errno
, void (*notify
)(struct inpcb
*, int))
1808 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
1810 LIST_FOREACH(inp
, pcbinfo
->ipi_listhead
, inp_list
) {
1812 if (!(inp
->inp_vflag
& INP_IPV4
))
1815 if (inp
->inp_faddr
.s_addr
!= faddr
.s_addr
||
1816 inp
->inp_socket
== NULL
)
1818 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
)
1820 socket_lock(inp
->inp_socket
, 1);
1821 (*notify
)(inp
, errno
);
1822 (void) in_pcb_checkstate(inp
, WNT_RELEASE
, 1);
1823 socket_unlock(inp
->inp_socket
, 1);
1825 lck_rw_done(pcbinfo
->ipi_lock
);
1829 * Check for alternatives when higher level complains
1830 * about service problems. For now, invalidate cached
1831 * routing information. If the route was created dynamically
1832 * (by a redirect), time to try a default gateway again.
1835 in_losing(struct inpcb
*inp
)
1837 boolean_t release
= FALSE
;
1840 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1841 struct in_ifaddr
*ia
= NULL
;
1844 if (rt
->rt_flags
& RTF_DYNAMIC
) {
1846 * Prevent another thread from modifying rt_key,
1847 * rt_gateway via rt_setgate() after rt_lock is
1848 * dropped by marking the route as defunct.
1850 rt
->rt_flags
|= RTF_CONDEMNED
;
1852 (void) rtrequest(RTM_DELETE
, rt_key(rt
),
1853 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
1857 /* if the address is gone keep the old route in the pcb */
1858 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1859 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) != NULL
) {
1861 * Address is around; ditch the route. A new route
1862 * can be allocated the next time output is attempted.
1867 IFA_REMREF(&ia
->ia_ifa
);
1869 if (rt
== NULL
|| release
)
1870 ROUTE_RELEASE(&inp
->inp_route
);
1874 * After a routing change, flush old routing
1875 * and allocate a (hopefully) better one.
1878 in_rtchange(struct inpcb
*inp
, int errno
)
1880 #pragma unused(errno)
1881 boolean_t release
= FALSE
;
1884 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1885 struct in_ifaddr
*ia
= NULL
;
1887 /* if address is gone, keep the old route */
1888 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1889 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) != NULL
) {
1891 * Address is around; ditch the route. A new route
1892 * can be allocated the next time output is attempted.
1897 IFA_REMREF(&ia
->ia_ifa
);
1899 if (rt
== NULL
|| release
)
1900 ROUTE_RELEASE(&inp
->inp_route
);
1904 * Lookup a PCB based on the local address and port.
1907 in_pcblookup_local(struct inpcbinfo
*pcbinfo
, struct in_addr laddr
,
1908 unsigned int lport_arg
, int wild_okay
)
1911 int matchwild
= 3, wildcard
;
1912 u_short lport
= lport_arg
;
1914 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1917 struct inpcbhead
*head
;
1919 * Look for an unconnected (wildcard foreign addr) PCB that
1920 * matches the local address and port we're looking for.
1922 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
1923 pcbinfo
->ipi_hashmask
)];
1924 LIST_FOREACH(inp
, head
, inp_hash
) {
1926 if (!(inp
->inp_vflag
& INP_IPV4
))
1929 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
1930 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
1931 inp
->inp_lport
== lport
) {
1941 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
1944 struct inpcbporthead
*porthash
;
1945 struct inpcbport
*phd
;
1946 struct inpcb
*match
= NULL
;
1948 * Best fit PCB lookup.
1950 * First see if this local port is in use by looking on the
1953 porthash
= &pcbinfo
->ipi_porthashbase
[INP_PCBPORTHASH(lport
,
1954 pcbinfo
->ipi_porthashmask
)];
1955 LIST_FOREACH(phd
, porthash
, phd_hash
) {
1956 if (phd
->phd_port
== lport
)
1961 * Port is in use by one or more PCBs. Look for best
1964 LIST_FOREACH(inp
, &phd
->phd_pcblist
, inp_portlist
) {
1967 if (!(inp
->inp_vflag
& INP_IPV4
))
1970 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
)
1972 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
1973 if (laddr
.s_addr
== INADDR_ANY
)
1975 else if (inp
->inp_laddr
.s_addr
!=
1979 if (laddr
.s_addr
!= INADDR_ANY
)
1982 if (wildcard
< matchwild
) {
1984 matchwild
= wildcard
;
1985 if (matchwild
== 0) {
1991 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, match
,
1998 * Check if PCB exists in hash list.
2001 in_pcblookup_hash_exists(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
2002 u_int fport_arg
, struct in_addr laddr
, u_int lport_arg
, int wildcard
,
2003 uid_t
*uid
, gid_t
*gid
, struct ifnet
*ifp
)
2005 struct inpcbhead
*head
;
2007 u_short fport
= fport_arg
, lport
= lport_arg
;
2009 struct inpcb
*local_wild
= NULL
;
2011 struct inpcb
*local_wild_mapped
= NULL
;
2018 * We may have found the pcb in the last lookup - check this first.
2021 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
2024 * First look for an exact match.
2026 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(faddr
.s_addr
, lport
, fport
,
2027 pcbinfo
->ipi_hashmask
)];
2028 LIST_FOREACH(inp
, head
, inp_hash
) {
2030 if (!(inp
->inp_vflag
& INP_IPV4
))
2033 if (inp_restricted_recv(inp
, ifp
))
2036 if (inp
->inp_faddr
.s_addr
== faddr
.s_addr
&&
2037 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
2038 inp
->inp_fport
== fport
&&
2039 inp
->inp_lport
== lport
) {
2040 if ((found
= (inp
->inp_socket
!= NULL
))) {
2044 *uid
= kauth_cred_getuid(
2045 inp
->inp_socket
->so_cred
);
2046 *gid
= kauth_cred_getgid(
2047 inp
->inp_socket
->so_cred
);
2049 lck_rw_done(pcbinfo
->ipi_lock
);
2058 lck_rw_done(pcbinfo
->ipi_lock
);
2062 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
2063 pcbinfo
->ipi_hashmask
)];
2064 LIST_FOREACH(inp
, head
, inp_hash
) {
2066 if (!(inp
->inp_vflag
& INP_IPV4
))
2069 if (inp_restricted_recv(inp
, ifp
))
2072 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
2073 inp
->inp_lport
== lport
) {
2074 if (inp
->inp_laddr
.s_addr
== laddr
.s_addr
) {
2075 if ((found
= (inp
->inp_socket
!= NULL
))) {
2076 *uid
= kauth_cred_getuid(
2077 inp
->inp_socket
->so_cred
);
2078 *gid
= kauth_cred_getgid(
2079 inp
->inp_socket
->so_cred
);
2081 lck_rw_done(pcbinfo
->ipi_lock
);
2083 } else if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
2085 if (inp
->inp_socket
&&
2086 SOCK_CHECK_DOM(inp
->inp_socket
, PF_INET6
))
2087 local_wild_mapped
= inp
;
2094 if (local_wild
== NULL
) {
2096 if (local_wild_mapped
!= NULL
) {
2097 if ((found
= (local_wild_mapped
->inp_socket
!= NULL
))) {
2098 *uid
= kauth_cred_getuid(
2099 local_wild_mapped
->inp_socket
->so_cred
);
2100 *gid
= kauth_cred_getgid(
2101 local_wild_mapped
->inp_socket
->so_cred
);
2103 lck_rw_done(pcbinfo
->ipi_lock
);
2107 lck_rw_done(pcbinfo
->ipi_lock
);
2110 if ((found
= (local_wild
->inp_socket
!= NULL
))) {
2111 *uid
= kauth_cred_getuid(
2112 local_wild
->inp_socket
->so_cred
);
2113 *gid
= kauth_cred_getgid(
2114 local_wild
->inp_socket
->so_cred
);
2116 lck_rw_done(pcbinfo
->ipi_lock
);
2121 * Lookup PCB in hash list.
2124 in_pcblookup_hash(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
2125 u_int fport_arg
, struct in_addr laddr
, u_int lport_arg
, int wildcard
,
2128 struct inpcbhead
*head
;
2130 u_short fport
= fport_arg
, lport
= lport_arg
;
2131 struct inpcb
*local_wild
= NULL
;
2133 struct inpcb
*local_wild_mapped
= NULL
;
2137 * We may have found the pcb in the last lookup - check this first.
2140 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
2143 * First look for an exact match.
2145 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(faddr
.s_addr
, lport
, fport
,
2146 pcbinfo
->ipi_hashmask
)];
2147 LIST_FOREACH(inp
, head
, inp_hash
) {
2149 if (!(inp
->inp_vflag
& INP_IPV4
))
2152 if (inp_restricted_recv(inp
, ifp
))
2155 if (inp
->inp_faddr
.s_addr
== faddr
.s_addr
&&
2156 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
2157 inp
->inp_fport
== fport
&&
2158 inp
->inp_lport
== lport
) {
2162 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
2164 lck_rw_done(pcbinfo
->ipi_lock
);
2167 /* it's there but dead, say it isn't found */
2168 lck_rw_done(pcbinfo
->ipi_lock
);
2178 lck_rw_done(pcbinfo
->ipi_lock
);
2182 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
2183 pcbinfo
->ipi_hashmask
)];
2184 LIST_FOREACH(inp
, head
, inp_hash
) {
2186 if (!(inp
->inp_vflag
& INP_IPV4
))
2189 if (inp_restricted_recv(inp
, ifp
))
2192 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
2193 inp
->inp_lport
== lport
) {
2194 if (inp
->inp_laddr
.s_addr
== laddr
.s_addr
) {
2195 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
2197 lck_rw_done(pcbinfo
->ipi_lock
);
2200 /* it's dead; say it isn't found */
2201 lck_rw_done(pcbinfo
->ipi_lock
);
2204 } else if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
2206 if (SOCK_CHECK_DOM(inp
->inp_socket
, PF_INET6
))
2207 local_wild_mapped
= inp
;
2214 if (local_wild
== NULL
) {
2216 if (local_wild_mapped
!= NULL
) {
2217 if (in_pcb_checkstate(local_wild_mapped
,
2218 WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
2219 lck_rw_done(pcbinfo
->ipi_lock
);
2220 return (local_wild_mapped
);
2222 /* it's dead; say it isn't found */
2223 lck_rw_done(pcbinfo
->ipi_lock
);
2228 lck_rw_done(pcbinfo
->ipi_lock
);
2231 if (in_pcb_checkstate(local_wild
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
2232 lck_rw_done(pcbinfo
->ipi_lock
);
2233 return (local_wild
);
2236 * It's either not found or is already dead.
2238 lck_rw_done(pcbinfo
->ipi_lock
);
2243 * @brief Insert PCB onto various hash lists.
2245 * @param inp Pointer to internet protocol control block
2246 * @param locked Implies if ipi_lock (protecting pcb list)
2247 * is already locked or not.
2249 * @return int error on failure and 0 on success
2252 in_pcbinshash(struct inpcb
*inp
, int locked
)
2254 struct inpcbhead
*pcbhash
;
2255 struct inpcbporthead
*pcbporthash
;
2256 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
2257 struct inpcbport
*phd
;
2258 u_int32_t hashkey_faddr
;
2261 if (!lck_rw_try_lock_exclusive(pcbinfo
->ipi_lock
)) {
2263 * Lock inversion issue, mostly with udp
2266 socket_unlock(inp
->inp_socket
, 0);
2267 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
2268 socket_lock(inp
->inp_socket
, 0);
2273 * This routine or its caller may have given up
2274 * socket's protocol lock briefly.
2275 * During that time the socket may have been dropped.
2276 * Safe-guarding against that.
2278 if (inp
->inp_state
== INPCB_STATE_DEAD
) {
2280 lck_rw_done(pcbinfo
->ipi_lock
);
2282 return (ECONNABORTED
);
2287 if (inp
->inp_vflag
& INP_IPV6
)
2288 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
2291 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
2293 inp
->inp_hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
,
2294 inp
->inp_fport
, pcbinfo
->ipi_hashmask
);
2296 pcbhash
= &pcbinfo
->ipi_hashbase
[inp
->inp_hash_element
];
2298 pcbporthash
= &pcbinfo
->ipi_porthashbase
[INP_PCBPORTHASH(inp
->inp_lport
,
2299 pcbinfo
->ipi_porthashmask
)];
2302 * Go through port list and look for a head for this lport.
2304 LIST_FOREACH(phd
, pcbporthash
, phd_hash
) {
2305 if (phd
->phd_port
== inp
->inp_lport
)
2310 * If none exists, malloc one and tack it on.
2313 MALLOC(phd
, struct inpcbport
*, sizeof (struct inpcbport
),
2317 lck_rw_done(pcbinfo
->ipi_lock
);
2318 return (ENOBUFS
); /* XXX */
2320 phd
->phd_port
= inp
->inp_lport
;
2321 LIST_INIT(&phd
->phd_pcblist
);
2322 LIST_INSERT_HEAD(pcbporthash
, phd
, phd_hash
);
2325 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2329 LIST_INSERT_HEAD(&phd
->phd_pcblist
, inp
, inp_portlist
);
2330 LIST_INSERT_HEAD(pcbhash
, inp
, inp_hash
);
2331 inp
->inp_flags2
|= INP2_INHASHLIST
;
2334 lck_rw_done(pcbinfo
->ipi_lock
);
2337 // This call catches the original setting of the local address
2338 inp_update_necp_policy(inp
, NULL
, NULL
, 0);
2345 * Move PCB to the proper hash bucket when { faddr, fport } have been
2346 * changed. NOTE: This does not handle the case of the lport changing (the
2347 * hashed port list would have to be updated as well), so the lport must
2348 * not change after in_pcbinshash() has been called.
2351 in_pcbrehash(struct inpcb
*inp
)
2353 struct inpcbhead
*head
;
2354 u_int32_t hashkey_faddr
;
2357 if (inp
->inp_vflag
& INP_IPV6
)
2358 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
2361 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
2363 inp
->inp_hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
,
2364 inp
->inp_fport
, inp
->inp_pcbinfo
->ipi_hashmask
);
2365 head
= &inp
->inp_pcbinfo
->ipi_hashbase
[inp
->inp_hash_element
];
2367 if (inp
->inp_flags2
& INP2_INHASHLIST
) {
2368 LIST_REMOVE(inp
, inp_hash
);
2369 inp
->inp_flags2
&= ~INP2_INHASHLIST
;
2372 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2373 LIST_INSERT_HEAD(head
, inp
, inp_hash
);
2374 inp
->inp_flags2
|= INP2_INHASHLIST
;
2377 // This call catches updates to the remote addresses
2378 inp_update_necp_policy(inp
, NULL
, NULL
, 0);
2383 * Remove PCB from various lists.
2384 * Must be called pcbinfo lock is held in exclusive mode.
2387 in_pcbremlists(struct inpcb
*inp
)
2389 inp
->inp_gencnt
= ++inp
->inp_pcbinfo
->ipi_gencnt
;
2392 * Check if it's in hashlist -- an inp is placed in hashlist when
2393 * it's local port gets assigned. So it should also be present
2396 if (inp
->inp_flags2
& INP2_INHASHLIST
) {
2397 struct inpcbport
*phd
= inp
->inp_phd
;
2399 VERIFY(phd
!= NULL
&& inp
->inp_lport
> 0);
2401 LIST_REMOVE(inp
, inp_hash
);
2402 inp
->inp_hash
.le_next
= NULL
;
2403 inp
->inp_hash
.le_prev
= NULL
;
2405 LIST_REMOVE(inp
, inp_portlist
);
2406 inp
->inp_portlist
.le_next
= NULL
;
2407 inp
->inp_portlist
.le_prev
= NULL
;
2408 if (LIST_EMPTY(&phd
->phd_pcblist
)) {
2409 LIST_REMOVE(phd
, phd_hash
);
2412 inp
->inp_phd
= NULL
;
2413 inp
->inp_flags2
&= ~INP2_INHASHLIST
;
2415 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2417 if (inp
->inp_flags2
& INP2_TIMEWAIT
) {
2418 /* Remove from time-wait queue */
2419 tcp_remove_from_time_wait(inp
);
2420 inp
->inp_flags2
&= ~INP2_TIMEWAIT
;
2421 VERIFY(inp
->inp_pcbinfo
->ipi_twcount
!= 0);
2422 inp
->inp_pcbinfo
->ipi_twcount
--;
2424 /* Remove from global inp list if it is not time-wait */
2425 LIST_REMOVE(inp
, inp_list
);
2428 if (inp
->inp_flags2
& INP2_IN_FCTREE
) {
2429 inp_fc_getinp(inp
->inp_flowhash
, (INPFC_SOLOCKED
|INPFC_REMOVE
));
2430 VERIFY(!(inp
->inp_flags2
& INP2_IN_FCTREE
));
2433 inp
->inp_pcbinfo
->ipi_count
--;
2437 * Mechanism used to defer the memory release of PCBs
2438 * The pcb list will contain the pcb until the reaper can clean it up if
2439 * the following conditions are met:
2441 * 2) wantcnt is STOPUSING
2443 * This function will be called to either mark the pcb as
2446 in_pcb_checkstate(struct inpcb
*pcb
, int mode
, int locked
)
2448 volatile UInt32
*wantcnt
= (volatile UInt32
*)&pcb
->inp_wantcnt
;
2455 * Try to mark the pcb as ready for recycling. CAS with
2456 * STOPUSING, if success we're good, if it's in use, will
2460 socket_lock(pcb
->inp_socket
, 1);
2461 pcb
->inp_state
= INPCB_STATE_DEAD
;
2464 if (pcb
->inp_socket
->so_usecount
< 0) {
2465 panic("%s: pcb=%p so=%p usecount is negative\n",
2466 __func__
, pcb
, pcb
->inp_socket
);
2470 socket_unlock(pcb
->inp_socket
, 1);
2472 inpcb_gc_sched(pcb
->inp_pcbinfo
, INPCB_TIMER_FAST
);
2474 origwant
= *wantcnt
;
2475 if ((UInt16
) origwant
== 0xffff) /* should stop using */
2476 return (WNT_STOPUSING
);
2478 if ((UInt16
) origwant
== 0) {
2479 /* try to mark it as unsuable now */
2480 OSCompareAndSwap(origwant
, newwant
, wantcnt
);
2482 return (WNT_STOPUSING
);
2486 * Try to increase reference to pcb. If WNT_STOPUSING
2487 * should bail out. If socket state DEAD, try to set count
2488 * to STOPUSING, return failed otherwise increase cnt.
2491 origwant
= *wantcnt
;
2492 if ((UInt16
) origwant
== 0xffff) {
2493 /* should stop using */
2494 return (WNT_STOPUSING
);
2496 newwant
= origwant
+ 1;
2497 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
2498 return (WNT_ACQUIRE
);
2502 * Release reference. If result is null and pcb state
2503 * is DEAD, set wanted bit to STOPUSING
2506 socket_lock(pcb
->inp_socket
, 1);
2509 origwant
= *wantcnt
;
2510 if ((UInt16
) origwant
== 0x0) {
2511 panic("%s: pcb=%p release with zero count",
2515 if ((UInt16
) origwant
== 0xffff) {
2516 /* should stop using */
2518 socket_unlock(pcb
->inp_socket
, 1);
2519 return (WNT_STOPUSING
);
2521 newwant
= origwant
- 1;
2522 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
2524 if (pcb
->inp_state
== INPCB_STATE_DEAD
)
2526 if (pcb
->inp_socket
->so_usecount
< 0) {
2527 panic("%s: RELEASE pcb=%p so=%p usecount is negative\n",
2528 __func__
, pcb
, pcb
->inp_socket
);
2533 socket_unlock(pcb
->inp_socket
, 1);
2534 return (WNT_RELEASE
);
2537 panic("%s: so=%p not a valid state =%x\n", __func__
,
2538 pcb
->inp_socket
, mode
);
2547 * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat.
2548 * The inpcb_compat data structure is passed to user space and must
2549 * not change. We intentionally avoid copying pointers.
2552 inpcb_to_compat(struct inpcb
*inp
, struct inpcb_compat
*inp_compat
)
2554 bzero(inp_compat
, sizeof (*inp_compat
));
2555 inp_compat
->inp_fport
= inp
->inp_fport
;
2556 inp_compat
->inp_lport
= inp
->inp_lport
;
2557 inp_compat
->nat_owner
= 0;
2558 inp_compat
->nat_cookie
= 0;
2559 inp_compat
->inp_gencnt
= inp
->inp_gencnt
;
2560 inp_compat
->inp_flags
= inp
->inp_flags
;
2561 inp_compat
->inp_flow
= inp
->inp_flow
;
2562 inp_compat
->inp_vflag
= inp
->inp_vflag
;
2563 inp_compat
->inp_ip_ttl
= inp
->inp_ip_ttl
;
2564 inp_compat
->inp_ip_p
= inp
->inp_ip_p
;
2565 inp_compat
->inp_dependfaddr
.inp6_foreign
=
2566 inp
->inp_dependfaddr
.inp6_foreign
;
2567 inp_compat
->inp_dependladdr
.inp6_local
=
2568 inp
->inp_dependladdr
.inp6_local
;
2569 inp_compat
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
2570 inp_compat
->inp_depend6
.inp6_hlim
= 0;
2571 inp_compat
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
2572 inp_compat
->inp_depend6
.inp6_ifindex
= 0;
2573 inp_compat
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
2576 #if !CONFIG_EMBEDDED
2578 inpcb_to_xinpcb64(struct inpcb
*inp
, struct xinpcb64
*xinp
)
2580 xinp
->inp_fport
= inp
->inp_fport
;
2581 xinp
->inp_lport
= inp
->inp_lport
;
2582 xinp
->inp_gencnt
= inp
->inp_gencnt
;
2583 xinp
->inp_flags
= inp
->inp_flags
;
2584 xinp
->inp_flow
= inp
->inp_flow
;
2585 xinp
->inp_vflag
= inp
->inp_vflag
;
2586 xinp
->inp_ip_ttl
= inp
->inp_ip_ttl
;
2587 xinp
->inp_ip_p
= inp
->inp_ip_p
;
2588 xinp
->inp_dependfaddr
.inp6_foreign
= inp
->inp_dependfaddr
.inp6_foreign
;
2589 xinp
->inp_dependladdr
.inp6_local
= inp
->inp_dependladdr
.inp6_local
;
2590 xinp
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
2591 xinp
->inp_depend6
.inp6_hlim
= 0;
2592 xinp
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
2593 xinp
->inp_depend6
.inp6_ifindex
= 0;
2594 xinp
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
2596 #endif /* !CONFIG_EMBEDDED */
2599 * The following routines implement this scheme:
2601 * Callers of ip_output() that intend to cache the route in the inpcb pass
2602 * a local copy of the struct route to ip_output(). Using a local copy of
2603 * the cached route significantly simplifies things as IP no longer has to
2604 * worry about having exclusive access to the passed in struct route, since
2605 * it's defined in the caller's stack; in essence, this allows for a lock-
2606 * less operation when updating the struct route at the IP level and below,
2607 * whenever necessary. The scheme works as follows:
2609 * Prior to dropping the socket's lock and calling ip_output(), the caller
2610 * copies the struct route from the inpcb into its stack, and adds a reference
2611 * to the cached route entry, if there was any. The socket's lock is then
2612 * dropped and ip_output() is called with a pointer to the copy of struct
2613 * route defined on the stack (not to the one in the inpcb.)
2615 * Upon returning from ip_output(), the caller then acquires the socket's
2616 * lock and synchronizes the cache; if there is no route cached in the inpcb,
2617 * it copies the local copy of struct route (which may or may not contain any
2618 * route) back into the cache; otherwise, if the inpcb has a route cached in
2619 * it, the one in the local copy will be freed, if there's any. Trashing the
2620 * cached route in the inpcb can be avoided because ip_output() is single-
2621 * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
2622 * by the socket/transport layer.)
2625 inp_route_copyout(struct inpcb
*inp
, struct route
*dst
)
2627 struct route
*src
= &inp
->inp_route
;
2629 socket_lock_assert_owned(inp
->inp_socket
);
2632 * If the route in the PCB is stale or not for IPv4, blow it away;
2633 * this is possible in the case of IPv4-mapped address case.
2635 if (ROUTE_UNUSABLE(src
) || rt_key(src
->ro_rt
)->sa_family
!= AF_INET
)
2638 route_copyout(dst
, src
, sizeof (*dst
));
2642 inp_route_copyin(struct inpcb
*inp
, struct route
*src
)
2644 struct route
*dst
= &inp
->inp_route
;
2646 socket_lock_assert_owned(inp
->inp_socket
);
2648 /* Minor sanity check */
2649 if (src
->ro_rt
!= NULL
&& rt_key(src
->ro_rt
)->sa_family
!= AF_INET
)
2650 panic("%s: wrong or corrupted route: %p", __func__
, src
);
2652 route_copyin(src
, dst
, sizeof (*src
));
2656 * Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option.
2659 inp_bindif(struct inpcb
*inp
, unsigned int ifscope
, struct ifnet
**pifp
)
2661 struct ifnet
*ifp
= NULL
;
2663 ifnet_head_lock_shared();
2664 if ((ifscope
> (unsigned)if_index
) || (ifscope
!= IFSCOPE_NONE
&&
2665 (ifp
= ifindex2ifnet
[ifscope
]) == NULL
)) {
2671 VERIFY(ifp
!= NULL
|| ifscope
== IFSCOPE_NONE
);
2674 * A zero interface scope value indicates an "unbind".
2675 * Otherwise, take in whatever value the app desires;
2676 * the app may already know the scope (or force itself
2677 * to such a scope) ahead of time before the interface
2678 * gets attached. It doesn't matter either way; any
2679 * route lookup from this point on will require an
2680 * exact match for the embedded interface scope.
2682 inp
->inp_boundifp
= ifp
;
2683 if (inp
->inp_boundifp
== NULL
)
2684 inp
->inp_flags
&= ~INP_BOUND_IF
;
2686 inp
->inp_flags
|= INP_BOUND_IF
;
2688 /* Blow away any cached route in the PCB */
2689 ROUTE_RELEASE(&inp
->inp_route
);
2698 * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
2699 * as well as for setting PROC_UUID_NO_CELLULAR policy.
2702 inp_set_nocellular(struct inpcb
*inp
)
2704 inp
->inp_flags
|= INP_NO_IFT_CELLULAR
;
2706 /* Blow away any cached route in the PCB */
2707 ROUTE_RELEASE(&inp
->inp_route
);
2711 * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
2712 * as well as for clearing PROC_UUID_NO_CELLULAR policy.
2715 inp_clear_nocellular(struct inpcb
*inp
)
2717 struct socket
*so
= inp
->inp_socket
;
2720 * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket
2721 * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag
2722 * if and only if the socket is unrestricted.
2724 if (so
!= NULL
&& !(so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
)) {
2725 inp
->inp_flags
&= ~INP_NO_IFT_CELLULAR
;
2727 /* Blow away any cached route in the PCB */
2728 ROUTE_RELEASE(&inp
->inp_route
);
2733 inp_set_noexpensive(struct inpcb
*inp
)
2735 inp
->inp_flags2
|= INP2_NO_IFF_EXPENSIVE
;
2737 /* Blow away any cached route in the PCB */
2738 ROUTE_RELEASE(&inp
->inp_route
);
2742 inp_set_awdl_unrestricted(struct inpcb
*inp
)
2744 inp
->inp_flags2
|= INP2_AWDL_UNRESTRICTED
;
2746 /* Blow away any cached route in the PCB */
2747 ROUTE_RELEASE(&inp
->inp_route
);
2751 inp_get_awdl_unrestricted(struct inpcb
*inp
)
2753 return (inp
->inp_flags2
& INP2_AWDL_UNRESTRICTED
) ? TRUE
: FALSE
;
2757 inp_clear_awdl_unrestricted(struct inpcb
*inp
)
2759 inp
->inp_flags2
&= ~INP2_AWDL_UNRESTRICTED
;
2761 /* Blow away any cached route in the PCB */
2762 ROUTE_RELEASE(&inp
->inp_route
);
2766 inp_set_intcoproc_allowed(struct inpcb
*inp
)
2768 inp
->inp_flags2
|= INP2_INTCOPROC_ALLOWED
;
2770 /* Blow away any cached route in the PCB */
2771 ROUTE_RELEASE(&inp
->inp_route
);
2775 inp_get_intcoproc_allowed(struct inpcb
*inp
)
2777 return (inp
->inp_flags2
& INP2_INTCOPROC_ALLOWED
) ? TRUE
: FALSE
;
2781 inp_clear_intcoproc_allowed(struct inpcb
*inp
)
2783 inp
->inp_flags2
&= ~INP2_INTCOPROC_ALLOWED
;
2785 /* Blow away any cached route in the PCB */
2786 ROUTE_RELEASE(&inp
->inp_route
);
2791 * Called when PROC_UUID_NECP_APP_POLICY is set.
2794 inp_set_want_app_policy(struct inpcb
*inp
)
2796 inp
->inp_flags2
|= INP2_WANT_APP_POLICY
;
2800 * Called when PROC_UUID_NECP_APP_POLICY is cleared.
2803 inp_clear_want_app_policy(struct inpcb
*inp
)
2805 inp
->inp_flags2
&= ~INP2_WANT_APP_POLICY
;
2810 * Calculate flow hash for an inp, used by an interface to identify a
2811 * flow. When an interface provides flow control advisory, this flow
2812 * hash is used as an identifier.
2815 inp_calc_flowhash(struct inpcb
*inp
)
2817 struct inp_flowhash_key fh
__attribute__((aligned(8)));
2818 u_int32_t flowhash
= 0;
2819 struct inpcb
*tmp_inp
= NULL
;
2821 if (inp_hash_seed
== 0)
2822 inp_hash_seed
= RandomULong();
2824 bzero(&fh
, sizeof (fh
));
2826 bcopy(&inp
->inp_dependladdr
, &fh
.infh_laddr
, sizeof (fh
.infh_laddr
));
2827 bcopy(&inp
->inp_dependfaddr
, &fh
.infh_faddr
, sizeof (fh
.infh_faddr
));
2829 fh
.infh_lport
= inp
->inp_lport
;
2830 fh
.infh_fport
= inp
->inp_fport
;
2831 fh
.infh_af
= (inp
->inp_vflag
& INP_IPV6
) ? AF_INET6
: AF_INET
;
2832 fh
.infh_proto
= inp
->inp_ip_p
;
2833 fh
.infh_rand1
= RandomULong();
2834 fh
.infh_rand2
= RandomULong();
2837 flowhash
= net_flowhash(&fh
, sizeof (fh
), inp_hash_seed
);
2838 if (flowhash
== 0) {
2839 /* try to get a non-zero flowhash */
2840 inp_hash_seed
= RandomULong();
2844 inp
->inp_flowhash
= flowhash
;
2846 /* Insert the inp into inp_fc_tree */
2847 lck_mtx_lock_spin(&inp_fc_lck
);
2848 tmp_inp
= RB_FIND(inp_fc_tree
, &inp_fc_tree
, inp
);
2849 if (tmp_inp
!= NULL
) {
2851 * There is a different inp with the same flowhash.
2852 * There can be a collision on flow hash but the
2853 * probability is low. Let's recompute the
2856 lck_mtx_unlock(&inp_fc_lck
);
2857 /* recompute hash seed */
2858 inp_hash_seed
= RandomULong();
2862 RB_INSERT(inp_fc_tree
, &inp_fc_tree
, inp
);
2863 inp
->inp_flags2
|= INP2_IN_FCTREE
;
2864 lck_mtx_unlock(&inp_fc_lck
);
2870 inp_flowadv(uint32_t flowhash
)
2874 inp
= inp_fc_getinp(flowhash
, 0);
2878 inp_fc_feedback(inp
);
2882 * Function to compare inp_fc_entries in inp flow control tree
2885 infc_cmp(const struct inpcb
*inp1
, const struct inpcb
*inp2
)
2887 return (memcmp(&(inp1
->inp_flowhash
), &(inp2
->inp_flowhash
),
2888 sizeof(inp1
->inp_flowhash
)));
2891 static struct inpcb
*
2892 inp_fc_getinp(u_int32_t flowhash
, u_int32_t flags
)
2894 struct inpcb
*inp
= NULL
;
2895 int locked
= (flags
& INPFC_SOLOCKED
) ? 1 : 0;
2897 lck_mtx_lock_spin(&inp_fc_lck
);
2898 key_inp
.inp_flowhash
= flowhash
;
2899 inp
= RB_FIND(inp_fc_tree
, &inp_fc_tree
, &key_inp
);
2901 /* inp is not present, return */
2902 lck_mtx_unlock(&inp_fc_lck
);
2906 if (flags
& INPFC_REMOVE
) {
2907 RB_REMOVE(inp_fc_tree
, &inp_fc_tree
, inp
);
2908 lck_mtx_unlock(&inp_fc_lck
);
2910 bzero(&(inp
->infc_link
), sizeof (inp
->infc_link
));
2911 inp
->inp_flags2
&= ~INP2_IN_FCTREE
;
2915 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, locked
) == WNT_STOPUSING
)
2917 lck_mtx_unlock(&inp_fc_lck
);
2923 inp_fc_feedback(struct inpcb
*inp
)
2925 struct socket
*so
= inp
->inp_socket
;
2927 /* we already hold a want_cnt on this inp, socket can't be null */
2931 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
2932 socket_unlock(so
, 1);
2936 if (inp
->inp_sndinprog_cnt
> 0)
2937 inp
->inp_flags
|= INP_FC_FEEDBACK
;
2940 * Return if the connection is not in flow-controlled state.
2941 * This can happen if the connection experienced
2942 * loss while it was in flow controlled state
2944 if (!INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
2945 socket_unlock(so
, 1);
2948 inp_reset_fc_state(inp
);
2950 if (SOCK_TYPE(so
) == SOCK_STREAM
)
2951 inp_fc_unthrottle_tcp(inp
);
2953 socket_unlock(so
, 1);
2957 inp_reset_fc_state(struct inpcb
*inp
)
2959 struct socket
*so
= inp
->inp_socket
;
2960 int suspended
= (INP_IS_FLOW_SUSPENDED(inp
)) ? 1 : 0;
2961 int needwakeup
= (INP_WAIT_FOR_IF_FEEDBACK(inp
)) ? 1 : 0;
2963 inp
->inp_flags
&= ~(INP_FLOW_CONTROLLED
| INP_FLOW_SUSPENDED
);
2966 so
->so_flags
&= ~(SOF_SUSPENDED
);
2967 soevent(so
, (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_RESUME
));
2970 /* Give a write wakeup to unblock the socket */
2976 inp_set_fc_state(struct inpcb
*inp
, int advcode
)
2978 struct inpcb
*tmp_inp
= NULL
;
2980 * If there was a feedback from the interface when
2981 * send operation was in progress, we should ignore
2982 * this flow advisory to avoid a race between setting
2983 * flow controlled state and receiving feedback from
2986 if (inp
->inp_flags
& INP_FC_FEEDBACK
)
2989 inp
->inp_flags
&= ~(INP_FLOW_CONTROLLED
| INP_FLOW_SUSPENDED
);
2990 if ((tmp_inp
= inp_fc_getinp(inp
->inp_flowhash
,
2991 INPFC_SOLOCKED
)) != NULL
) {
2992 if (in_pcb_checkstate(tmp_inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
)
2994 VERIFY(tmp_inp
== inp
);
2996 case FADV_FLOW_CONTROLLED
:
2997 inp
->inp_flags
|= INP_FLOW_CONTROLLED
;
2999 case FADV_SUSPENDED
:
3000 inp
->inp_flags
|= INP_FLOW_SUSPENDED
;
3001 soevent(inp
->inp_socket
,
3002 (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_SUSPEND
));
3004 /* Record the fact that suspend event was sent */
3005 inp
->inp_socket
->so_flags
|= SOF_SUSPENDED
;
3014 * Handler for SO_FLUSH socket option.
3017 inp_flush(struct inpcb
*inp
, int optval
)
3019 u_int32_t flowhash
= inp
->inp_flowhash
;
3020 struct ifnet
*rtifp
, *oifp
;
3022 /* Either all classes or one of the valid ones */
3023 if (optval
!= SO_TC_ALL
&& !SO_VALID_TC(optval
))
3026 /* We need a flow hash for identification */
3030 /* Grab the interfaces from the route and pcb */
3031 rtifp
= ((inp
->inp_route
.ro_rt
!= NULL
) ?
3032 inp
->inp_route
.ro_rt
->rt_ifp
: NULL
);
3033 oifp
= inp
->inp_last_outifp
;
3036 if_qflush_sc(rtifp
, so_tc2msc(optval
), flowhash
, NULL
, NULL
, 0);
3037 if (oifp
!= NULL
&& oifp
!= rtifp
)
3038 if_qflush_sc(oifp
, so_tc2msc(optval
), flowhash
, NULL
, NULL
, 0);
3044 * Clear the INP_INADDR_ANY flag (special case for PPP only)
3047 inp_clear_INP_INADDR_ANY(struct socket
*so
)
3049 struct inpcb
*inp
= NULL
;
3052 inp
= sotoinpcb(so
);
3054 inp
->inp_flags
&= ~INP_INADDR_ANY
;
3056 socket_unlock(so
, 1);
3060 inp_get_soprocinfo(struct inpcb
*inp
, struct so_procinfo
*soprocinfo
)
3062 struct socket
*so
= inp
->inp_socket
;
3064 soprocinfo
->spi_pid
= so
->last_pid
;
3065 if (so
->last_pid
!= 0)
3066 uuid_copy(soprocinfo
->spi_uuid
, so
->last_uuid
);
3068 * When not delegated, the effective pid is the same as the real pid
3070 if (so
->so_flags
& SOF_DELEGATED
) {
3071 soprocinfo
->spi_delegated
= 1;
3072 soprocinfo
->spi_epid
= so
->e_pid
;
3073 uuid_copy(soprocinfo
->spi_euuid
, so
->e_uuid
);
3075 soprocinfo
->spi_delegated
= 0;
3076 soprocinfo
->spi_epid
= so
->last_pid
;
3081 inp_findinpcb_procinfo(struct inpcbinfo
*pcbinfo
, uint32_t flowhash
,
3082 struct so_procinfo
*soprocinfo
)
3084 struct inpcb
*inp
= NULL
;
3087 bzero(soprocinfo
, sizeof (struct so_procinfo
));
3092 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
3093 LIST_FOREACH(inp
, pcbinfo
->ipi_listhead
, inp_list
) {
3094 if (inp
->inp_state
!= INPCB_STATE_DEAD
&&
3095 inp
->inp_socket
!= NULL
&&
3096 inp
->inp_flowhash
== flowhash
) {
3098 inp_get_soprocinfo(inp
, soprocinfo
);
3102 lck_rw_done(pcbinfo
->ipi_lock
);
3107 #if CONFIG_PROC_UUID_POLICY
3109 inp_update_cellular_policy(struct inpcb
*inp
, boolean_t set
)
3111 struct socket
*so
= inp
->inp_socket
;
3115 VERIFY(inp
->inp_state
!= INPCB_STATE_DEAD
);
3117 before
= INP_NO_CELLULAR(inp
);
3119 inp_set_nocellular(inp
);
3121 inp_clear_nocellular(inp
);
3123 after
= INP_NO_CELLULAR(inp
);
3124 if (net_io_policy_log
&& (before
!= after
)) {
3125 static const char *ok
= "OK";
3126 static const char *nok
= "NOACCESS";
3127 uuid_string_t euuid_buf
;
3130 if (so
->so_flags
& SOF_DELEGATED
) {
3131 uuid_unparse(so
->e_uuid
, euuid_buf
);
3134 uuid_unparse(so
->last_uuid
, euuid_buf
);
3135 epid
= so
->last_pid
;
3138 /* allow this socket to generate another notification event */
3139 so
->so_ifdenied_notifies
= 0;
3141 log(LOG_DEBUG
, "%s: so 0x%llx [%d,%d] epid %d "
3142 "euuid %s%s %s->%s\n", __func__
,
3143 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
3144 SOCK_TYPE(so
), epid
, euuid_buf
,
3145 (so
->so_flags
& SOF_DELEGATED
) ?
3146 " [delegated]" : "",
3147 ((before
< after
) ? ok
: nok
),
3148 ((before
< after
) ? nok
: ok
));
3154 inp_update_necp_want_app_policy(struct inpcb
*inp
, boolean_t set
)
3156 struct socket
*so
= inp
->inp_socket
;
3160 VERIFY(inp
->inp_state
!= INPCB_STATE_DEAD
);
3162 before
= (inp
->inp_flags2
& INP2_WANT_APP_POLICY
);
3164 inp_set_want_app_policy(inp
);
3166 inp_clear_want_app_policy(inp
);
3168 after
= (inp
->inp_flags2
& INP2_WANT_APP_POLICY
);
3169 if (net_io_policy_log
&& (before
!= after
)) {
3170 static const char *wanted
= "WANTED";
3171 static const char *unwanted
= "UNWANTED";
3172 uuid_string_t euuid_buf
;
3175 if (so
->so_flags
& SOF_DELEGATED
) {
3176 uuid_unparse(so
->e_uuid
, euuid_buf
);
3179 uuid_unparse(so
->last_uuid
, euuid_buf
);
3180 epid
= so
->last_pid
;
3183 log(LOG_DEBUG
, "%s: so 0x%llx [%d,%d] epid %d "
3184 "euuid %s%s %s->%s\n", __func__
,
3185 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
3186 SOCK_TYPE(so
), epid
, euuid_buf
,
3187 (so
->so_flags
& SOF_DELEGATED
) ?
3188 " [delegated]" : "",
3189 ((before
< after
) ? unwanted
: wanted
),
3190 ((before
< after
) ? wanted
: unwanted
));
3194 #endif /* !CONFIG_PROC_UUID_POLICY */
3198 inp_update_necp_policy(struct inpcb
*inp
, struct sockaddr
*override_local_addr
, struct sockaddr
*override_remote_addr
, u_int override_bound_interface
)
3200 necp_socket_find_policy_match(inp
, override_local_addr
, override_remote_addr
, override_bound_interface
);
3201 if (necp_socket_should_rescope(inp
) &&
3202 inp
->inp_lport
== 0 &&
3203 inp
->inp_laddr
.s_addr
== INADDR_ANY
&&
3204 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
)) {
3205 // If we should rescope, and the socket is not yet bound
3206 inp_bindif(inp
, necp_socket_get_rescope_if_index(inp
), NULL
);
3212 inp_update_policy(struct inpcb
*inp
)
3214 #if CONFIG_PROC_UUID_POLICY
3215 struct socket
*so
= inp
->inp_socket
;
3216 uint32_t pflags
= 0;
3220 if (!net_io_policy_uuid
||
3221 so
== NULL
|| inp
->inp_state
== INPCB_STATE_DEAD
)
3225 * Kernel-created sockets that aren't delegating other sockets
3226 * are currently exempted from UUID policy checks.
3228 if (so
->last_pid
== 0 && !(so
->so_flags
& SOF_DELEGATED
))
3231 ogencnt
= so
->so_policy_gencnt
;
3232 err
= proc_uuid_policy_lookup(((so
->so_flags
& SOF_DELEGATED
) ?
3233 so
->e_uuid
: so
->last_uuid
), &pflags
, &so
->so_policy_gencnt
);
3236 * Discard cached generation count if the entry is gone (ENOENT),
3237 * so that we go thru the checks below.
3239 if (err
== ENOENT
&& ogencnt
!= 0)
3240 so
->so_policy_gencnt
= 0;
3243 * If the generation count has changed, inspect the policy flags
3244 * and act accordingly. If a policy flag was previously set and
3245 * the UUID is no longer present in the table (ENOENT), treat it
3246 * as if the flag has been cleared.
3248 if ((err
== 0 || err
== ENOENT
) && ogencnt
!= so
->so_policy_gencnt
) {
3249 /* update cellular policy for this socket */
3250 if (err
== 0 && (pflags
& PROC_UUID_NO_CELLULAR
)) {
3251 inp_update_cellular_policy(inp
, TRUE
);
3252 } else if (!(pflags
& PROC_UUID_NO_CELLULAR
)) {
3253 inp_update_cellular_policy(inp
, FALSE
);
3256 /* update necp want app policy for this socket */
3257 if (err
== 0 && (pflags
& PROC_UUID_NECP_APP_POLICY
)) {
3258 inp_update_necp_want_app_policy(inp
, TRUE
);
3259 } else if (!(pflags
& PROC_UUID_NECP_APP_POLICY
)) {
3260 inp_update_necp_want_app_policy(inp
, FALSE
);
3265 return ((err
== ENOENT
) ? 0 : err
);
3266 #else /* !CONFIG_PROC_UUID_POLICY */
3269 #endif /* !CONFIG_PROC_UUID_POLICY */
3272 static unsigned int log_restricted
;
3273 SYSCTL_DECL(_net_inet
);
3274 SYSCTL_INT(_net_inet
, OID_AUTO
, log_restricted
,
3275 CTLFLAG_RW
| CTLFLAG_LOCKED
, &log_restricted
, 0,
3276 "Log network restrictions");
3278 * Called when we need to enforce policy restrictions in the input path.
3280 * Returns TRUE if we're not allowed to receive data, otherwise FALSE.
3283 _inp_restricted_recv(struct inpcb
*inp
, struct ifnet
*ifp
)
3285 VERIFY(inp
!= NULL
);
3288 * Inbound restrictions.
3290 if (!sorestrictrecv
)
3296 if (IFNET_IS_CELLULAR(ifp
) && INP_NO_CELLULAR(inp
))
3299 if (IFNET_IS_EXPENSIVE(ifp
) && INP_NO_EXPENSIVE(inp
))
3302 if (IFNET_IS_AWDL_RESTRICTED(ifp
) && !INP_AWDL_UNRESTRICTED(inp
))
3305 if (!(ifp
->if_eflags
& IFEF_RESTRICTED_RECV
))
3308 if (inp
->inp_flags
& INP_RECV_ANYIF
)
3311 if ((inp
->inp_flags
& INP_BOUND_IF
) && inp
->inp_boundifp
== ifp
)
3314 if (IFNET_IS_INTCOPROC(ifp
) && !INP_INTCOPROC_ALLOWED(inp
))
3321 inp_restricted_recv(struct inpcb
*inp
, struct ifnet
*ifp
)
3325 ret
= _inp_restricted_recv(inp
, ifp
);
3326 if (ret
== TRUE
&& log_restricted
) {
3327 printf("pid %d (%s) is unable to receive packets on %s\n",
3328 current_proc()->p_pid
, proc_best_name(current_proc()),
3335 * Called when we need to enforce policy restrictions in the output path.
3337 * Returns TRUE if we're not allowed to send data out, otherwise FALSE.
3340 _inp_restricted_send(struct inpcb
*inp
, struct ifnet
*ifp
)
3342 VERIFY(inp
!= NULL
);
3345 * Outbound restrictions.
3347 if (!sorestrictsend
)
3353 if (IFNET_IS_CELLULAR(ifp
) && INP_NO_CELLULAR(inp
))
3356 if (IFNET_IS_EXPENSIVE(ifp
) && INP_NO_EXPENSIVE(inp
))
3359 if (IFNET_IS_AWDL_RESTRICTED(ifp
) && !INP_AWDL_UNRESTRICTED(inp
))
3362 if (IFNET_IS_INTCOPROC(ifp
) && !INP_INTCOPROC_ALLOWED(inp
))
3369 inp_restricted_send(struct inpcb
*inp
, struct ifnet
*ifp
)
3373 ret
= _inp_restricted_send(inp
, ifp
);
3374 if (ret
== TRUE
&& log_restricted
) {
3375 printf("pid %d (%s) is unable to transmit packets on %s\n",
3376 current_proc()->p_pid
, proc_best_name(current_proc()),
3383 inp_count_sndbytes(struct inpcb
*inp
, u_int32_t th_ack
)
3385 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3386 struct socket
*so
= inp
->inp_socket
;
3387 if (ifp
!= NULL
&& !(so
->so_flags
& SOF_MP_SUBFLOW
) &&
3388 (ifp
->if_type
== IFT_CELLULAR
||
3389 ifp
->if_subfamily
== IFNET_SUBFAMILY_WIFI
)) {
3392 so
->so_snd
.sb_flags
|= SB_SNDBYTE_CNT
;
3395 * There can be data outstanding before the connection
3396 * becomes established -- TFO case
3398 if (so
->so_snd
.sb_cc
> 0)
3399 inp_incr_sndbytes_total(so
, so
->so_snd
.sb_cc
);
3401 unsent
= inp_get_sndbytes_allunsent(so
, th_ack
);
3403 inp_incr_sndbytes_unsent(so
, unsent
);
3408 inp_incr_sndbytes_total(struct socket
*so
, int32_t len
)
3410 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3411 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3414 VERIFY(ifp
->if_sndbyte_total
>= 0);
3415 OSAddAtomic64(len
, &ifp
->if_sndbyte_total
);
3420 inp_decr_sndbytes_total(struct socket
*so
, int32_t len
)
3422 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3423 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3426 VERIFY(ifp
->if_sndbyte_total
>= len
);
3427 OSAddAtomic64(-len
, &ifp
->if_sndbyte_total
);
3432 inp_incr_sndbytes_unsent(struct socket
*so
, int32_t len
)
3434 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3435 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3438 VERIFY(ifp
->if_sndbyte_unsent
>= 0);
3439 OSAddAtomic64(len
, &ifp
->if_sndbyte_unsent
);
3444 inp_decr_sndbytes_unsent(struct socket
*so
, int32_t len
)
3446 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3447 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3449 if (so
== NULL
|| !(so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
))
3453 if (ifp
->if_sndbyte_unsent
>= len
)
3454 OSAddAtomic64(-len
, &ifp
->if_sndbyte_unsent
);
3456 ifp
->if_sndbyte_unsent
= 0;
3461 inp_decr_sndbytes_allunsent(struct socket
*so
, u_int32_t th_ack
)
3465 if (so
== NULL
|| !(so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
))
3468 len
= inp_get_sndbytes_allunsent(so
, th_ack
);
3469 inp_decr_sndbytes_unsent(so
, len
);
3474 inp_set_activity_bitmap(struct inpcb
*inp
)
3476 in_stat_set_activity_bitmap(&inp
->inp_nw_activity
, net_uptime());
3480 inp_get_activity_bitmap(struct inpcb
*inp
, activity_bitmap_t
*ab
)
3482 bcopy(&inp
->inp_nw_activity
, ab
, sizeof (*ab
));