]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/rtsock.c
xnu-4570.41.2.tar.gz
[apple/xnu.git] / bsd / net / rtsock.c
1 /*
2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1988, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)rtsock.c 8.5 (Berkeley) 11/2/94
61 */
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kauth.h>
66 #include <sys/kernel.h>
67 #include <sys/sysctl.h>
68 #include <sys/proc.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/domain.h>
74 #include <sys/protosw.h>
75 #include <sys/syslog.h>
76 #include <sys/mcache.h>
77 #include <kern/locks.h>
78 #include <sys/codesign.h>
79
80 #include <net/if.h>
81 #include <net/route.h>
82 #include <net/dlil.h>
83 #include <net/raw_cb.h>
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/in_arp.h>
87 #include <netinet6/nd6.h>
88
89 extern struct rtstat rtstat;
90 extern struct domain routedomain_s;
91 static struct domain *routedomain = NULL;
92
93 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
94
95 static struct sockaddr route_dst = { 2, PF_ROUTE, { 0, } };
96 static struct sockaddr route_src = { 2, PF_ROUTE, { 0, } };
97 static struct sockaddr sa_zero = { sizeof (sa_zero), AF_INET, { 0, } };
98
99 struct route_cb {
100 u_int32_t ip_count; /* attached w/ AF_INET */
101 u_int32_t ip6_count; /* attached w/ AF_INET6 */
102 u_int32_t any_count; /* total attached */
103 };
104
105 static struct route_cb route_cb;
106
107 struct walkarg {
108 int w_tmemsize;
109 int w_op, w_arg;
110 caddr_t w_tmem;
111 struct sysctl_req *w_req;
112 };
113
114 static void route_dinit(struct domain *);
115 static int rts_abort(struct socket *);
116 static int rts_attach(struct socket *, int, struct proc *);
117 static int rts_bind(struct socket *, struct sockaddr *, struct proc *);
118 static int rts_connect(struct socket *, struct sockaddr *, struct proc *);
119 static int rts_detach(struct socket *);
120 static int rts_disconnect(struct socket *);
121 static int rts_peeraddr(struct socket *, struct sockaddr **);
122 static int rts_send(struct socket *, int, struct mbuf *, struct sockaddr *,
123 struct mbuf *, struct proc *);
124 static int rts_shutdown(struct socket *);
125 static int rts_sockaddr(struct socket *, struct sockaddr **);
126
127 static int route_output(struct mbuf *, struct socket *);
128 static int rt_setmetrics(u_int32_t, struct rt_metrics *, struct rtentry *);
129 static void rt_getmetrics(struct rtentry *, struct rt_metrics *);
130 static void rt_setif(struct rtentry *, struct sockaddr *, struct sockaddr *,
131 struct sockaddr *, unsigned int);
132 static int rt_xaddrs(caddr_t, caddr_t, struct rt_addrinfo *);
133 static struct mbuf *rt_msg1(int, struct rt_addrinfo *);
134 static int rt_msg2(int, struct rt_addrinfo *, caddr_t, struct walkarg *,
135 kauth_cred_t *);
136 static int sysctl_dumpentry(struct radix_node *rn, void *vw);
137 static int sysctl_dumpentry_ext(struct radix_node *rn, void *vw);
138 static int sysctl_iflist(int af, struct walkarg *w);
139 static int sysctl_iflist2(int af, struct walkarg *w);
140 static int sysctl_rtstat(struct sysctl_req *);
141 static int sysctl_rttrash(struct sysctl_req *);
142 static int sysctl_rtsock SYSCTL_HANDLER_ARGS;
143
144 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_LOCKED,
145 sysctl_rtsock, "");
146
147 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "routing");
148
149 /* Align x to 1024 (only power of 2) assuming x is positive */
150 #define ALIGN_BYTES(x) do { \
151 x = P2ALIGN(x, 1024); \
152 } while(0)
153
154 #define ROUNDUP32(a) \
155 ((a) > 0 ? (1 + (((a) - 1) | (sizeof (uint32_t) - 1))) : \
156 sizeof (uint32_t))
157
158 #define ADVANCE32(x, n) \
159 (x += ROUNDUP32((n)->sa_len))
160
161 /*
162 * It really doesn't make any sense at all for this code to share much
163 * with raw_usrreq.c, since its functionality is so restricted. XXX
164 */
165 static int
166 rts_abort(struct socket *so)
167 {
168 return (raw_usrreqs.pru_abort(so));
169 }
170
171 /* pru_accept is EOPNOTSUPP */
172
173 static int
174 rts_attach(struct socket *so, int proto, struct proc *p)
175 {
176 #pragma unused(p)
177 struct rawcb *rp;
178 int error;
179
180 VERIFY(so->so_pcb == NULL);
181
182 MALLOC(rp, struct rawcb *, sizeof (*rp), M_PCB, M_WAITOK | M_ZERO);
183 if (rp == NULL)
184 return (ENOBUFS);
185
186 so->so_pcb = (caddr_t)rp;
187 /* don't use raw_usrreqs.pru_attach, it checks for SS_PRIV */
188 error = raw_attach(so, proto);
189 rp = sotorawcb(so);
190 if (error) {
191 FREE(rp, M_PCB);
192 so->so_pcb = NULL;
193 so->so_flags |= SOF_PCBCLEARING;
194 return (error);
195 }
196
197 switch (rp->rcb_proto.sp_protocol) {
198 case AF_INET:
199 atomic_add_32(&route_cb.ip_count, 1);
200 break;
201 case AF_INET6:
202 atomic_add_32(&route_cb.ip6_count, 1);
203 break;
204 }
205 rp->rcb_faddr = &route_src;
206 atomic_add_32(&route_cb.any_count, 1);
207 /* the socket is already locked when we enter rts_attach */
208 soisconnected(so);
209 so->so_options |= SO_USELOOPBACK;
210 return (0);
211 }
212
213 static int
214 rts_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
215 {
216 return (raw_usrreqs.pru_bind(so, nam, p)); /* xxx just EINVAL */
217 }
218
219 static int
220 rts_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
221 {
222 return (raw_usrreqs.pru_connect(so, nam, p)); /* XXX just EINVAL */
223 }
224
225 /* pru_connect2 is EOPNOTSUPP */
226 /* pru_control is EOPNOTSUPP */
227
228 static int
229 rts_detach(struct socket *so)
230 {
231 struct rawcb *rp = sotorawcb(so);
232
233 VERIFY(rp != NULL);
234
235 switch (rp->rcb_proto.sp_protocol) {
236 case AF_INET:
237 atomic_add_32(&route_cb.ip_count, -1);
238 break;
239 case AF_INET6:
240 atomic_add_32(&route_cb.ip6_count, -1);
241 break;
242 }
243 atomic_add_32(&route_cb.any_count, -1);
244 return (raw_usrreqs.pru_detach(so));
245 }
246
247 static int
248 rts_disconnect(struct socket *so)
249 {
250 return (raw_usrreqs.pru_disconnect(so));
251 }
252
253 /* pru_listen is EOPNOTSUPP */
254
255 static int
256 rts_peeraddr(struct socket *so, struct sockaddr **nam)
257 {
258 return (raw_usrreqs.pru_peeraddr(so, nam));
259 }
260
261 /* pru_rcvd is EOPNOTSUPP */
262 /* pru_rcvoob is EOPNOTSUPP */
263
264 static int
265 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
266 struct mbuf *control, struct proc *p)
267 {
268 return (raw_usrreqs.pru_send(so, flags, m, nam, control, p));
269 }
270
271 /* pru_sense is null */
272
273 static int
274 rts_shutdown(struct socket *so)
275 {
276 return (raw_usrreqs.pru_shutdown(so));
277 }
278
279 static int
280 rts_sockaddr(struct socket *so, struct sockaddr **nam)
281 {
282 return (raw_usrreqs.pru_sockaddr(so, nam));
283 }
284
285 static struct pr_usrreqs route_usrreqs = {
286 .pru_abort = rts_abort,
287 .pru_attach = rts_attach,
288 .pru_bind = rts_bind,
289 .pru_connect = rts_connect,
290 .pru_detach = rts_detach,
291 .pru_disconnect = rts_disconnect,
292 .pru_peeraddr = rts_peeraddr,
293 .pru_send = rts_send,
294 .pru_shutdown = rts_shutdown,
295 .pru_sockaddr = rts_sockaddr,
296 .pru_sosend = sosend,
297 .pru_soreceive = soreceive,
298 };
299
300 /*ARGSUSED*/
301 static int
302 route_output(struct mbuf *m, struct socket *so)
303 {
304 struct rt_msghdr *rtm = NULL;
305 struct rtentry *rt = NULL;
306 struct rtentry *saved_nrt = NULL;
307 struct radix_node_head *rnh;
308 struct rt_addrinfo info;
309 int len, error = 0;
310 sa_family_t dst_sa_family = 0;
311 struct ifnet *ifp = NULL;
312 struct sockaddr_in dst_in, gate_in;
313 int sendonlytoself = 0;
314 unsigned int ifscope = IFSCOPE_NONE;
315 struct rawcb *rp = NULL;
316 boolean_t is_router = FALSE;
317 #define senderr(e) { error = (e); goto flush; }
318 if (m == NULL || ((m->m_len < sizeof (intptr_t)) &&
319 (m = m_pullup(m, sizeof (intptr_t))) == NULL))
320 return (ENOBUFS);
321 VERIFY(m->m_flags & M_PKTHDR);
322
323 /*
324 * Unlock the socket (but keep a reference) it won't be
325 * accessed until raw_input appends to it.
326 */
327 socket_unlock(so, 0);
328 lck_mtx_lock(rnh_lock);
329
330 len = m->m_pkthdr.len;
331 if (len < sizeof (*rtm) ||
332 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
333 info.rti_info[RTAX_DST] = NULL;
334 senderr(EINVAL);
335 }
336 R_Malloc(rtm, struct rt_msghdr *, len);
337 if (rtm == NULL) {
338 info.rti_info[RTAX_DST] = NULL;
339 senderr(ENOBUFS);
340 }
341 m_copydata(m, 0, len, (caddr_t)rtm);
342 if (rtm->rtm_version != RTM_VERSION) {
343 info.rti_info[RTAX_DST] = NULL;
344 senderr(EPROTONOSUPPORT);
345 }
346
347 /*
348 * Silent version of RTM_GET for Reachabiltiy APIs. We may change
349 * all RTM_GETs to be silent in the future, so this is private for now.
350 */
351 if (rtm->rtm_type == RTM_GET_SILENT) {
352 if (!(so->so_options & SO_USELOOPBACK))
353 senderr(EINVAL);
354 sendonlytoself = 1;
355 rtm->rtm_type = RTM_GET;
356 }
357
358 /*
359 * Perform permission checking, only privileged sockets
360 * may perform operations other than RTM_GET
361 */
362 if (rtm->rtm_type != RTM_GET && !(so->so_state & SS_PRIV)) {
363 info.rti_info[RTAX_DST] = NULL;
364 senderr(EPERM);
365 }
366
367 rtm->rtm_pid = proc_selfpid();
368 info.rti_addrs = rtm->rtm_addrs;
369 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
370 info.rti_info[RTAX_DST] = NULL;
371 senderr(EINVAL);
372 }
373 if (info.rti_info[RTAX_DST] == NULL ||
374 info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
375 (info.rti_info[RTAX_GATEWAY] != NULL &&
376 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
377 senderr(EINVAL);
378
379 if (info.rti_info[RTAX_DST]->sa_family == AF_INET &&
380 info.rti_info[RTAX_DST]->sa_len != sizeof (dst_in)) {
381 /* At minimum, we need up to sin_addr */
382 if (info.rti_info[RTAX_DST]->sa_len <
383 offsetof(struct sockaddr_in, sin_zero))
384 senderr(EINVAL);
385 bzero(&dst_in, sizeof (dst_in));
386 dst_in.sin_len = sizeof (dst_in);
387 dst_in.sin_family = AF_INET;
388 dst_in.sin_port = SIN(info.rti_info[RTAX_DST])->sin_port;
389 dst_in.sin_addr = SIN(info.rti_info[RTAX_DST])->sin_addr;
390 info.rti_info[RTAX_DST] = (struct sockaddr *)&dst_in;
391 dst_sa_family = info.rti_info[RTAX_DST]->sa_family;
392 }
393
394 if (info.rti_info[RTAX_GATEWAY] != NULL &&
395 info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET &&
396 info.rti_info[RTAX_GATEWAY]->sa_len != sizeof (gate_in)) {
397 /* At minimum, we need up to sin_addr */
398 if (info.rti_info[RTAX_GATEWAY]->sa_len <
399 offsetof(struct sockaddr_in, sin_zero))
400 senderr(EINVAL);
401 bzero(&gate_in, sizeof (gate_in));
402 gate_in.sin_len = sizeof (gate_in);
403 gate_in.sin_family = AF_INET;
404 gate_in.sin_port = SIN(info.rti_info[RTAX_GATEWAY])->sin_port;
405 gate_in.sin_addr = SIN(info.rti_info[RTAX_GATEWAY])->sin_addr;
406 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gate_in;
407 }
408
409 if (info.rti_info[RTAX_GENMASK]) {
410 struct radix_node *t;
411 t = rn_addmask((caddr_t)info.rti_info[RTAX_GENMASK], 0, 1);
412 if (t != NULL && Bcmp(info.rti_info[RTAX_GENMASK],
413 t->rn_key, *(u_char *)info.rti_info[RTAX_GENMASK]) == 0)
414 info.rti_info[RTAX_GENMASK] =
415 (struct sockaddr *)(t->rn_key);
416 else
417 senderr(ENOBUFS);
418 }
419
420 /*
421 * If RTF_IFSCOPE flag is set, then rtm_index specifies the scope.
422 */
423 if (rtm->rtm_flags & RTF_IFSCOPE) {
424 if (info.rti_info[RTAX_DST]->sa_family != AF_INET &&
425 info.rti_info[RTAX_DST]->sa_family != AF_INET6)
426 senderr(EINVAL);
427 ifscope = rtm->rtm_index;
428 }
429 /*
430 * Block changes on INTCOPROC interfaces.
431 */
432 if (ifscope) {
433 unsigned int intcoproc_scope = 0;
434 ifnet_head_lock_shared();
435 TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
436 if (IFNET_IS_INTCOPROC(ifp)) {
437 intcoproc_scope = ifp->if_index;
438 break;
439 }
440 }
441 ifnet_head_done();
442 if (intcoproc_scope == ifscope && current_proc()->p_pid != 0)
443 senderr(EINVAL);
444 }
445
446 /*
447 * RTF_PROXY can only be set internally from within the kernel.
448 */
449 if (rtm->rtm_flags & RTF_PROXY)
450 senderr(EINVAL);
451
452 /*
453 * For AF_INET, always zero out the embedded scope ID. If this is
454 * a scoped request, it must be done explicitly by setting RTF_IFSCOPE
455 * flag and the corresponding rtm_index value. This is to prevent
456 * false interpretation of the scope ID because it's using the sin_zero
457 * field, which might not be properly cleared by the requestor.
458 */
459 if (info.rti_info[RTAX_DST]->sa_family == AF_INET)
460 sin_set_ifscope(info.rti_info[RTAX_DST], IFSCOPE_NONE);
461 if (info.rti_info[RTAX_GATEWAY] != NULL &&
462 info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET)
463 sin_set_ifscope(info.rti_info[RTAX_GATEWAY], IFSCOPE_NONE);
464 switch (rtm->rtm_type) {
465 case RTM_ADD:
466 if (info.rti_info[RTAX_GATEWAY] == NULL)
467 senderr(EINVAL);
468
469 error = rtrequest_scoped_locked(RTM_ADD,
470 info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY],
471 info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt,
472 ifscope);
473 if (error == 0 && saved_nrt != NULL) {
474 RT_LOCK(saved_nrt);
475 /*
476 * If the route request specified an interface with
477 * IFA and/or IFP, we set the requested interface on
478 * the route with rt_setif. It would be much better
479 * to do this inside rtrequest, but that would
480 * require passing the desired interface, in some
481 * form, to rtrequest. Since rtrequest is called in
482 * so many places (roughly 40 in our source), adding
483 * a parameter is to much for us to swallow; this is
484 * something for the FreeBSD developers to tackle.
485 * Instead, we let rtrequest compute whatever
486 * interface it wants, then come in behind it and
487 * stick in the interface that we really want. This
488 * works reasonably well except when rtrequest can't
489 * figure out what interface to use (with
490 * ifa_withroute) and returns ENETUNREACH. Ideally
491 * it shouldn't matter if rtrequest can't figure out
492 * the interface if we're going to explicitly set it
493 * ourselves anyway. But practically we can't
494 * recover here because rtrequest will not do any of
495 * the work necessary to add the route if it can't
496 * find an interface. As long as there is a default
497 * route that leads to some interface, rtrequest will
498 * find an interface, so this problem should be
499 * rarely encountered.
500 * dwiggins@bbn.com
501 */
502 rt_setif(saved_nrt,
503 info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA],
504 info.rti_info[RTAX_GATEWAY], ifscope);
505 (void)rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, saved_nrt);
506 saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
507 saved_nrt->rt_rmx.rmx_locks |=
508 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
509 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
510 RT_REMREF_LOCKED(saved_nrt);
511 RT_UNLOCK(saved_nrt);
512 }
513 break;
514
515 case RTM_DELETE:
516 error = rtrequest_scoped_locked(RTM_DELETE,
517 info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY],
518 info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt,
519 ifscope);
520 if (error == 0) {
521 rt = saved_nrt;
522 RT_LOCK(rt);
523 goto report;
524 }
525 break;
526
527 case RTM_GET:
528 case RTM_CHANGE:
529 case RTM_LOCK:
530 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family];
531 if (rnh == NULL)
532 senderr(EAFNOSUPPORT);
533 /*
534 * Lookup the best match based on the key-mask pair;
535 * callee adds a reference and checks for root node.
536 */
537 rt = rt_lookup(TRUE, info.rti_info[RTAX_DST],
538 info.rti_info[RTAX_NETMASK], rnh, ifscope);
539 if (rt == NULL)
540 senderr(ESRCH);
541 RT_LOCK(rt);
542
543 /*
544 * Holding rnh_lock here prevents the possibility of
545 * ifa from changing (e.g. in_ifinit), so it is safe
546 * to access its ifa_addr (down below) without locking.
547 */
548 switch (rtm->rtm_type) {
549 case RTM_GET: {
550 kauth_cred_t cred;
551 struct ifaddr *ifa2;
552 report:
553 cred = kauth_cred_proc_ref(current_proc());
554 ifa2 = NULL;
555 RT_LOCK_ASSERT_HELD(rt);
556 info.rti_info[RTAX_DST] = rt_key(rt);
557 dst_sa_family = info.rti_info[RTAX_DST]->sa_family;
558 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
559 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
560 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
561 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
562 ifp = rt->rt_ifp;
563 if (ifp != NULL) {
564 ifnet_lock_shared(ifp);
565 ifa2 = ifp->if_lladdr;
566 info.rti_info[RTAX_IFP] =
567 ifa2->ifa_addr;
568 IFA_ADDREF(ifa2);
569 ifnet_lock_done(ifp);
570 info.rti_info[RTAX_IFA] =
571 rt->rt_ifa->ifa_addr;
572 rtm->rtm_index = ifp->if_index;
573 } else {
574 info.rti_info[RTAX_IFP] = NULL;
575 info.rti_info[RTAX_IFA] = NULL;
576 }
577 } else if ((ifp = rt->rt_ifp) != NULL) {
578 rtm->rtm_index = ifp->if_index;
579 }
580 if (ifa2 != NULL)
581 IFA_LOCK(ifa2);
582 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL, &cred);
583 if (ifa2 != NULL)
584 IFA_UNLOCK(ifa2);
585 struct rt_msghdr *out_rtm;
586 R_Malloc(out_rtm, struct rt_msghdr *, len);
587 if (out_rtm == NULL) {
588 RT_UNLOCK(rt);
589 if (ifa2 != NULL)
590 IFA_REMREF(ifa2);
591 senderr(ENOBUFS);
592 }
593 Bcopy(rtm, out_rtm, sizeof(struct rt_msghdr));
594 if (ifa2 != NULL)
595 IFA_LOCK(ifa2);
596 (void) rt_msg2(out_rtm->rtm_type, &info, (caddr_t)out_rtm,
597 NULL, &cred);
598 if (ifa2 != NULL)
599 IFA_UNLOCK(ifa2);
600 R_Free(rtm);
601 rtm = out_rtm;
602 rtm->rtm_flags = rt->rt_flags;
603 rt_getmetrics(rt, &rtm->rtm_rmx);
604 rtm->rtm_addrs = info.rti_addrs;
605 if (ifa2 != NULL)
606 IFA_REMREF(ifa2);
607
608 kauth_cred_unref(&cred);
609 break;
610 }
611
612 case RTM_CHANGE:
613 is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE;
614
615 if (info.rti_info[RTAX_GATEWAY] != NULL &&
616 (error = rt_setgate(rt, rt_key(rt),
617 info.rti_info[RTAX_GATEWAY]))) {
618 int tmp = error;
619 RT_UNLOCK(rt);
620 senderr(tmp);
621 }
622 /*
623 * If they tried to change things but didn't specify
624 * the required gateway, then just use the old one.
625 * This can happen if the user tries to change the
626 * flags on the default route without changing the
627 * default gateway. Changing flags still doesn't work.
628 */
629 if ((rt->rt_flags & RTF_GATEWAY) &&
630 info.rti_info[RTAX_GATEWAY] == NULL)
631 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
632
633 /*
634 * On Darwin, we call rt_setif which contains the
635 * equivalent to the code found at this very spot
636 * in BSD.
637 */
638 rt_setif(rt,
639 info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA],
640 info.rti_info[RTAX_GATEWAY], ifscope);
641
642 if ((error = rt_setmetrics(rtm->rtm_inits,
643 &rtm->rtm_rmx, rt))) {
644 int tmp = error;
645 RT_UNLOCK(rt);
646 senderr(tmp);
647 }
648 if (info.rti_info[RTAX_GENMASK])
649 rt->rt_genmask = info.rti_info[RTAX_GENMASK];
650
651 /*
652 * Enqueue work item to invoke callback for this route entry
653 * This may not be needed always, but for now issue it anytime
654 * RTM_CHANGE gets called.
655 */
656 route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, TRUE);
657 /*
658 * If the route is for a router, walk the tree to send refresh
659 * event to protocol cloned entries
660 */
661 if (is_router) {
662 struct route_event rt_ev;
663 route_event_init(&rt_ev, rt, NULL, ROUTE_ENTRY_REFRESH);
664 RT_UNLOCK(rt);
665 (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev);
666 RT_LOCK(rt);
667 }
668 /* FALLTHRU */
669 case RTM_LOCK:
670 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
671 rt->rt_rmx.rmx_locks |=
672 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
673 break;
674 }
675 RT_UNLOCK(rt);
676 break;
677
678 default:
679 senderr(EOPNOTSUPP);
680 }
681 flush:
682 if (rtm != NULL) {
683 if (error)
684 rtm->rtm_errno = error;
685 else
686 rtm->rtm_flags |= RTF_DONE;
687 }
688 if (rt != NULL) {
689 RT_LOCK_ASSERT_NOTHELD(rt);
690 rtfree_locked(rt);
691 }
692 lck_mtx_unlock(rnh_lock);
693
694 /* relock the socket now */
695 socket_lock(so, 0);
696 /*
697 * Check to see if we don't want our own messages.
698 */
699 if (!(so->so_options & SO_USELOOPBACK)) {
700 if (route_cb.any_count <= 1) {
701 if (rtm != NULL)
702 R_Free(rtm);
703 m_freem(m);
704 return (error);
705 }
706 /* There is another listener, so construct message */
707 rp = sotorawcb(so);
708 }
709 if (rtm != NULL) {
710 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
711 if (m->m_pkthdr.len < rtm->rtm_msglen) {
712 m_freem(m);
713 m = NULL;
714 } else if (m->m_pkthdr.len > rtm->rtm_msglen) {
715 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
716 }
717 R_Free(rtm);
718 }
719 if (sendonlytoself && m != NULL) {
720 error = 0;
721 if (sbappendaddr(&so->so_rcv, &route_src, m,
722 NULL, &error) != 0) {
723 sorwakeup(so);
724 }
725 if (error)
726 return (error);
727 } else {
728 struct sockproto route_proto = { PF_ROUTE, 0 };
729 if (rp != NULL)
730 rp->rcb_proto.sp_family = 0; /* Avoid us */
731 if (dst_sa_family != 0)
732 route_proto.sp_protocol = dst_sa_family;
733 if (m != NULL) {
734 socket_unlock(so, 0);
735 raw_input(m, &route_proto, &route_src, &route_dst);
736 socket_lock(so, 0);
737 }
738 if (rp != NULL)
739 rp->rcb_proto.sp_family = PF_ROUTE;
740 }
741 return (error);
742 }
743
744 void
745 rt_setexpire(struct rtentry *rt, uint64_t expiry)
746 {
747 /* set both rt_expire and rmx_expire */
748 rt->rt_expire = expiry;
749 if (expiry) {
750 rt->rt_rmx.rmx_expire = expiry + rt->base_calendartime -
751 rt->base_uptime;
752 } else {
753 rt->rt_rmx.rmx_expire = 0;
754 }
755 }
756
757 static int
758 rt_setmetrics(u_int32_t which, struct rt_metrics *in, struct rtentry *out)
759 {
760 if (!(which & RTV_REFRESH_HOST)) {
761 struct timeval caltime;
762 getmicrotime(&caltime);
763 #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->e;
764 metric(RTV_RPIPE, rmx_recvpipe);
765 metric(RTV_SPIPE, rmx_sendpipe);
766 metric(RTV_SSTHRESH, rmx_ssthresh);
767 metric(RTV_RTT, rmx_rtt);
768 metric(RTV_RTTVAR, rmx_rttvar);
769 metric(RTV_HOPCOUNT, rmx_hopcount);
770 metric(RTV_MTU, rmx_mtu);
771 metric(RTV_EXPIRE, rmx_expire);
772 #undef metric
773 if (out->rt_rmx.rmx_expire > 0) {
774 /* account for system time change */
775 getmicrotime(&caltime);
776 out->base_calendartime +=
777 NET_CALCULATE_CLOCKSKEW(caltime,
778 out->base_calendartime,
779 net_uptime(), out->base_uptime);
780 rt_setexpire(out,
781 out->rt_rmx.rmx_expire -
782 out->base_calendartime +
783 out->base_uptime);
784 } else {
785 rt_setexpire(out, 0);
786 }
787
788 VERIFY(out->rt_expire == 0 || out->rt_rmx.rmx_expire != 0);
789 VERIFY(out->rt_expire != 0 || out->rt_rmx.rmx_expire == 0);
790 } else {
791 /* Only RTV_REFRESH_HOST must be set */
792 if ((which & ~RTV_REFRESH_HOST) ||
793 (out->rt_flags & RTF_STATIC) ||
794 !(out->rt_flags & RTF_LLINFO)) {
795 return (EINVAL);
796 }
797
798 if (out->rt_llinfo_refresh == NULL) {
799 return (ENOTSUP);
800 }
801
802 out->rt_llinfo_refresh(out);
803 }
804 return (0);
805 }
806
807 static void
808 rt_getmetrics(struct rtentry *in, struct rt_metrics *out)
809 {
810 struct timeval caltime;
811
812 VERIFY(in->rt_expire == 0 || in->rt_rmx.rmx_expire != 0);
813 VERIFY(in->rt_expire != 0 || in->rt_rmx.rmx_expire == 0);
814
815 *out = in->rt_rmx;
816
817 if (in->rt_expire != 0) {
818 /* account for system time change */
819 getmicrotime(&caltime);
820
821 in->base_calendartime +=
822 NET_CALCULATE_CLOCKSKEW(caltime,
823 in->base_calendartime, net_uptime(), in->base_uptime);
824
825 out->rmx_expire = in->base_calendartime +
826 in->rt_expire - in->base_uptime;
827 } else {
828 out->rmx_expire = 0;
829 }
830 }
831
832 /*
833 * Set route's interface given info.rti_info[RTAX_IFP],
834 * info.rti_info[RTAX_IFA], and gateway.
835 */
836 static void
837 rt_setif(struct rtentry *rt, struct sockaddr *Ifpaddr, struct sockaddr *Ifaaddr,
838 struct sockaddr *Gate, unsigned int ifscope)
839 {
840 struct ifaddr *ifa = NULL;
841 struct ifnet *ifp = NULL;
842 void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
843
844 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
845
846 RT_LOCK_ASSERT_HELD(rt);
847
848 /* Don't update a defunct route */
849 if (rt->rt_flags & RTF_CONDEMNED)
850 return;
851
852 /* Add an extra ref for ourselves */
853 RT_ADDREF_LOCKED(rt);
854
855 /* Become a regular mutex, just in case */
856 RT_CONVERT_LOCK(rt);
857
858 /*
859 * New gateway could require new ifaddr, ifp; flags may also
860 * be different; ifp may be specified by ll sockaddr when
861 * protocol address is ambiguous.
862 */
863 if (Ifpaddr && (ifa = ifa_ifwithnet_scoped(Ifpaddr, ifscope)) &&
864 (ifp = ifa->ifa_ifp) && (Ifaaddr || Gate)) {
865 IFA_REMREF(ifa);
866 ifa = ifaof_ifpforaddr(Ifaaddr ? Ifaaddr : Gate, ifp);
867 } else {
868 if (ifa != NULL) {
869 IFA_REMREF(ifa);
870 ifa = NULL;
871 }
872 if (Ifpaddr && (ifp = if_withname(Ifpaddr))) {
873 if (Gate) {
874 ifa = ifaof_ifpforaddr(Gate, ifp);
875 } else {
876 ifnet_lock_shared(ifp);
877 ifa = TAILQ_FIRST(&ifp->if_addrhead);
878 if (ifa != NULL)
879 IFA_ADDREF(ifa);
880 ifnet_lock_done(ifp);
881 }
882 } else if (Ifaaddr &&
883 (ifa = ifa_ifwithaddr_scoped(Ifaaddr, ifscope))) {
884 ifp = ifa->ifa_ifp;
885 } else if (Gate != NULL) {
886 /*
887 * Safe to drop rt_lock and use rt_key, since holding
888 * rnh_lock here prevents another thread from calling
889 * rt_setgate() on this route. We cannot hold the
890 * lock across ifa_ifwithroute since the lookup done
891 * by that routine may point to the same route.
892 */
893 RT_UNLOCK(rt);
894 if ((ifa = ifa_ifwithroute_scoped_locked(rt->rt_flags,
895 rt_key(rt), Gate, ifscope)) != NULL)
896 ifp = ifa->ifa_ifp;
897 RT_LOCK(rt);
898 /* Don't update a defunct route */
899 if (rt->rt_flags & RTF_CONDEMNED) {
900 if (ifa != NULL)
901 IFA_REMREF(ifa);
902 /* Release extra ref */
903 RT_REMREF_LOCKED(rt);
904 return;
905 }
906 }
907 }
908
909 /* trigger route cache reevaluation */
910 if (rt_key(rt)->sa_family == AF_INET)
911 routegenid_inet_update();
912 #if INET6
913 else if (rt_key(rt)->sa_family == AF_INET6)
914 routegenid_inet6_update();
915 #endif /* INET6 */
916
917 if (ifa != NULL) {
918 struct ifaddr *oifa = rt->rt_ifa;
919 if (oifa != ifa) {
920 if (oifa != NULL) {
921 IFA_LOCK_SPIN(oifa);
922 ifa_rtrequest = oifa->ifa_rtrequest;
923 IFA_UNLOCK(oifa);
924 if (ifa_rtrequest != NULL)
925 ifa_rtrequest(RTM_DELETE, rt, Gate);
926 }
927 rtsetifa(rt, ifa);
928
929 if (rt->rt_ifp != ifp) {
930 /*
931 * Purge any link-layer info caching.
932 */
933 if (rt->rt_llinfo_purge != NULL)
934 rt->rt_llinfo_purge(rt);
935
936 /*
937 * Adjust route ref count for the interfaces.
938 */
939 if (rt->rt_if_ref_fn != NULL) {
940 rt->rt_if_ref_fn(ifp, 1);
941 rt->rt_if_ref_fn(rt->rt_ifp, -1);
942 }
943 }
944 rt->rt_ifp = ifp;
945 /*
946 * If this is the (non-scoped) default route, record
947 * the interface index used for the primary ifscope.
948 */
949 if (rt_primary_default(rt, rt_key(rt))) {
950 set_primary_ifscope(rt_key(rt)->sa_family,
951 rt->rt_ifp->if_index);
952 }
953 /*
954 * If rmx_mtu is not locked, update it
955 * to the MTU used by the new interface.
956 */
957 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
958 rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
959
960 if (rt->rt_ifa != NULL) {
961 IFA_LOCK_SPIN(rt->rt_ifa);
962 ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
963 IFA_UNLOCK(rt->rt_ifa);
964 if (ifa_rtrequest != NULL)
965 ifa_rtrequest(RTM_ADD, rt, Gate);
966 }
967 IFA_REMREF(ifa);
968 /* Release extra ref */
969 RT_REMREF_LOCKED(rt);
970 return;
971 }
972 IFA_REMREF(ifa);
973 ifa = NULL;
974 }
975
976 /* XXX: to reset gateway to correct value, at RTM_CHANGE */
977 if (rt->rt_ifa != NULL) {
978 IFA_LOCK_SPIN(rt->rt_ifa);
979 ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
980 IFA_UNLOCK(rt->rt_ifa);
981 if (ifa_rtrequest != NULL)
982 ifa_rtrequest(RTM_ADD, rt, Gate);
983 }
984
985 /*
986 * Workaround for local address routes pointing to the loopback
987 * interface added by configd, until <rdar://problem/12970142>.
988 */
989 if ((rt->rt_ifp->if_flags & IFF_LOOPBACK) &&
990 (rt->rt_flags & RTF_HOST) && rt->rt_ifa->ifa_ifp == rt->rt_ifp) {
991 ifa = ifa_ifwithaddr(rt_key(rt));
992 if (ifa != NULL) {
993 if (ifa != rt->rt_ifa)
994 rtsetifa(rt, ifa);
995 IFA_REMREF(ifa);
996 }
997 }
998
999 /* Release extra ref */
1000 RT_REMREF_LOCKED(rt);
1001 }
1002
1003 /*
1004 * Extract the addresses of the passed sockaddrs.
1005 * Do a little sanity checking so as to avoid bad memory references.
1006 * This data is derived straight from userland.
1007 */
1008 static int
1009 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1010 {
1011 struct sockaddr *sa;
1012 int i;
1013
1014 bzero(rtinfo->rti_info, sizeof (rtinfo->rti_info));
1015 for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
1016 if ((rtinfo->rti_addrs & (1 << i)) == 0)
1017 continue;
1018 sa = (struct sockaddr *)cp;
1019 /*
1020 * It won't fit.
1021 */
1022 if ((cp + sa->sa_len) > cplim)
1023 return (EINVAL);
1024 /*
1025 * there are no more.. quit now
1026 * If there are more bits, they are in error.
1027 * I've seen this. route(1) can evidently generate these.
1028 * This causes kernel to core dump.
1029 * for compatibility, If we see this, point to a safe address.
1030 */
1031 if (sa->sa_len == 0) {
1032 rtinfo->rti_info[i] = &sa_zero;
1033 return (0); /* should be EINVAL but for compat */
1034 }
1035 /* accept it */
1036 rtinfo->rti_info[i] = sa;
1037 ADVANCE32(cp, sa);
1038 }
1039 return (0);
1040 }
1041
1042 static struct mbuf *
1043 rt_msg1(int type, struct rt_addrinfo *rtinfo)
1044 {
1045 struct rt_msghdr *rtm;
1046 struct mbuf *m;
1047 int i;
1048 int len, dlen, off;
1049
1050 switch (type) {
1051
1052 case RTM_DELADDR:
1053 case RTM_NEWADDR:
1054 len = sizeof (struct ifa_msghdr);
1055 break;
1056
1057 case RTM_DELMADDR:
1058 case RTM_NEWMADDR:
1059 len = sizeof (struct ifma_msghdr);
1060 break;
1061
1062 case RTM_IFINFO:
1063 len = sizeof (struct if_msghdr);
1064 break;
1065
1066 default:
1067 len = sizeof (struct rt_msghdr);
1068 }
1069 m = m_gethdr(M_DONTWAIT, MT_DATA);
1070 if (m && len > MHLEN) {
1071 MCLGET(m, M_DONTWAIT);
1072 if (!(m->m_flags & M_EXT)) {
1073 m_free(m);
1074 m = NULL;
1075 }
1076 }
1077 if (m == NULL)
1078 return (NULL);
1079 m->m_pkthdr.len = m->m_len = len;
1080 m->m_pkthdr.rcvif = NULL;
1081 rtm = mtod(m, struct rt_msghdr *);
1082 bzero((caddr_t)rtm, len);
1083 off = len;
1084 for (i = 0; i < RTAX_MAX; i++) {
1085 struct sockaddr *sa, *hint;
1086 uint8_t ssbuf[SOCK_MAXADDRLEN + 1];
1087
1088 /*
1089 * Make sure to accomodate the largest possible size of sa_len.
1090 */
1091 _CASSERT(sizeof (ssbuf) == (SOCK_MAXADDRLEN + 1));
1092
1093 if ((sa = rtinfo->rti_info[i]) == NULL)
1094 continue;
1095
1096 switch (i) {
1097 case RTAX_DST:
1098 case RTAX_NETMASK:
1099 if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL)
1100 hint = rtinfo->rti_info[RTAX_IFA];
1101
1102 /* Scrub away any trace of embedded interface scope */
1103 sa = rtm_scrub(type, i, hint, sa, &ssbuf,
1104 sizeof (ssbuf), NULL);
1105 break;
1106
1107 default:
1108 break;
1109 }
1110
1111 rtinfo->rti_addrs |= (1 << i);
1112 dlen = sa->sa_len;
1113 m_copyback(m, off, dlen, (caddr_t)sa);
1114 len = off + dlen;
1115 off += ROUNDUP32(dlen);
1116 }
1117 if (m->m_pkthdr.len != len) {
1118 m_freem(m);
1119 return (NULL);
1120 }
1121 rtm->rtm_msglen = len;
1122 rtm->rtm_version = RTM_VERSION;
1123 rtm->rtm_type = type;
1124 return (m);
1125 }
1126
1127 static int
1128 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w,
1129 kauth_cred_t* credp)
1130 {
1131 int i;
1132 int len, dlen, rlen, second_time = 0;
1133 caddr_t cp0;
1134
1135 rtinfo->rti_addrs = 0;
1136 again:
1137 switch (type) {
1138
1139 case RTM_DELADDR:
1140 case RTM_NEWADDR:
1141 len = sizeof (struct ifa_msghdr);
1142 break;
1143
1144 case RTM_DELMADDR:
1145 case RTM_NEWMADDR:
1146 len = sizeof (struct ifma_msghdr);
1147 break;
1148
1149 case RTM_IFINFO:
1150 len = sizeof (struct if_msghdr);
1151 break;
1152
1153 case RTM_IFINFO2:
1154 len = sizeof (struct if_msghdr2);
1155 break;
1156
1157 case RTM_NEWMADDR2:
1158 len = sizeof (struct ifma_msghdr2);
1159 break;
1160
1161 case RTM_GET_EXT:
1162 len = sizeof (struct rt_msghdr_ext);
1163 break;
1164
1165 case RTM_GET2:
1166 len = sizeof (struct rt_msghdr2);
1167 break;
1168
1169 default:
1170 len = sizeof (struct rt_msghdr);
1171 }
1172 cp0 = cp;
1173 if (cp0)
1174 cp += len;
1175 for (i = 0; i < RTAX_MAX; i++) {
1176 struct sockaddr *sa, *hint;
1177 uint8_t ssbuf[SOCK_MAXADDRLEN + 1];
1178
1179 /*
1180 * Make sure to accomodate the largest possible size of sa_len.
1181 */
1182 _CASSERT(sizeof (ssbuf) == (SOCK_MAXADDRLEN + 1));
1183
1184 if ((sa = rtinfo->rti_info[i]) == NULL)
1185 continue;
1186
1187 switch (i) {
1188 case RTAX_DST:
1189 case RTAX_NETMASK:
1190 if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL)
1191 hint = rtinfo->rti_info[RTAX_IFA];
1192
1193 /* Scrub away any trace of embedded interface scope */
1194 sa = rtm_scrub(type, i, hint, sa, &ssbuf,
1195 sizeof (ssbuf), NULL);
1196 break;
1197 case RTAX_GATEWAY:
1198 case RTAX_IFP:
1199 sa = rtm_scrub(type, i, NULL, sa, &ssbuf,
1200 sizeof (ssbuf), credp);
1201 break;
1202
1203 default:
1204 break;
1205 }
1206
1207 rtinfo->rti_addrs |= (1 << i);
1208 dlen = sa->sa_len;
1209 rlen = ROUNDUP32(dlen);
1210 if (cp) {
1211 bcopy((caddr_t)sa, cp, (size_t)dlen);
1212 if (dlen != rlen)
1213 bzero(cp + dlen, rlen - dlen);
1214 cp += rlen;
1215 }
1216 len += rlen;
1217 }
1218 if (cp == NULL && w != NULL && !second_time) {
1219 struct walkarg *rw = w;
1220
1221 if (rw->w_req != NULL) {
1222 if (rw->w_tmemsize < len) {
1223 if (rw->w_tmem != NULL)
1224 FREE(rw->w_tmem, M_RTABLE);
1225 rw->w_tmem = _MALLOC(len, M_RTABLE, M_WAITOK);
1226 if (rw->w_tmem != NULL)
1227 rw->w_tmemsize = len;
1228 }
1229 if (rw->w_tmem != NULL) {
1230 cp = rw->w_tmem;
1231 second_time = 1;
1232 goto again;
1233 }
1234 }
1235 }
1236 if (cp) {
1237 struct rt_msghdr *rtm = (struct rt_msghdr *)(void *)cp0;
1238
1239 rtm->rtm_version = RTM_VERSION;
1240 rtm->rtm_type = type;
1241 rtm->rtm_msglen = len;
1242 }
1243 return (len);
1244 }
1245
1246 /*
1247 * This routine is called to generate a message from the routing
1248 * socket indicating that a redirect has occurred, a routing lookup
1249 * has failed, or that a protocol has detected timeouts to a particular
1250 * destination.
1251 */
1252 void
1253 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1254 {
1255 struct rt_msghdr *rtm;
1256 struct mbuf *m;
1257 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1258 struct sockproto route_proto = { PF_ROUTE, 0 };
1259
1260 if (route_cb.any_count == 0)
1261 return;
1262 m = rt_msg1(type, rtinfo);
1263 if (m == NULL)
1264 return;
1265 rtm = mtod(m, struct rt_msghdr *);
1266 rtm->rtm_flags = RTF_DONE | flags;
1267 rtm->rtm_errno = error;
1268 rtm->rtm_addrs = rtinfo->rti_addrs;
1269 route_proto.sp_family = sa ? sa->sa_family : 0;
1270 raw_input(m, &route_proto, &route_src, &route_dst);
1271 }
1272
1273 /*
1274 * This routine is called to generate a message from the routing
1275 * socket indicating that the status of a network interface has changed.
1276 */
1277 void
1278 rt_ifmsg(struct ifnet *ifp)
1279 {
1280 struct if_msghdr *ifm;
1281 struct mbuf *m;
1282 struct rt_addrinfo info;
1283 struct sockproto route_proto = { PF_ROUTE, 0 };
1284
1285 if (route_cb.any_count == 0)
1286 return;
1287 bzero((caddr_t)&info, sizeof (info));
1288 m = rt_msg1(RTM_IFINFO, &info);
1289 if (m == NULL)
1290 return;
1291 ifm = mtod(m, struct if_msghdr *);
1292 ifm->ifm_index = ifp->if_index;
1293 ifm->ifm_flags = (u_short)ifp->if_flags;
1294 if_data_internal_to_if_data(ifp, &ifp->if_data, &ifm->ifm_data);
1295 ifm->ifm_addrs = 0;
1296 raw_input(m, &route_proto, &route_src, &route_dst);
1297 }
1298
1299 /*
1300 * This is called to generate messages from the routing socket
1301 * indicating a network interface has had addresses associated with it.
1302 * if we ever reverse the logic and replace messages TO the routing
1303 * socket indicate a request to configure interfaces, then it will
1304 * be unnecessary as the routing socket will automatically generate
1305 * copies of it.
1306 *
1307 * Since this is coming from the interface, it is expected that the
1308 * interface will be locked. Caller must hold rnh_lock and rt_lock.
1309 */
1310 void
1311 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1312 {
1313 struct rt_addrinfo info;
1314 struct sockaddr *sa = 0;
1315 int pass;
1316 struct mbuf *m = 0;
1317 struct ifnet *ifp = ifa->ifa_ifp;
1318 struct sockproto route_proto = { PF_ROUTE, 0 };
1319
1320 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1321 RT_LOCK_ASSERT_HELD(rt);
1322
1323 if (route_cb.any_count == 0)
1324 return;
1325
1326 /* Become a regular mutex, just in case */
1327 RT_CONVERT_LOCK(rt);
1328 for (pass = 1; pass < 3; pass++) {
1329 bzero((caddr_t)&info, sizeof (info));
1330 if ((cmd == RTM_ADD && pass == 1) ||
1331 (cmd == RTM_DELETE && pass == 2)) {
1332 struct ifa_msghdr *ifam;
1333 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1334
1335 /* Lock ifp for if_lladdr */
1336 ifnet_lock_shared(ifp);
1337 IFA_LOCK(ifa);
1338 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1339 /*
1340 * Holding ifnet lock here prevents the link address
1341 * from changing contents, so no need to hold its
1342 * lock. The link address is always present; it's
1343 * never freed.
1344 */
1345 info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr;
1346 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1347 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1348 if ((m = rt_msg1(ncmd, &info)) == NULL) {
1349 IFA_UNLOCK(ifa);
1350 ifnet_lock_done(ifp);
1351 continue;
1352 }
1353 IFA_UNLOCK(ifa);
1354 ifnet_lock_done(ifp);
1355 ifam = mtod(m, struct ifa_msghdr *);
1356 ifam->ifam_index = ifp->if_index;
1357 IFA_LOCK_SPIN(ifa);
1358 ifam->ifam_metric = ifa->ifa_metric;
1359 ifam->ifam_flags = ifa->ifa_flags;
1360 IFA_UNLOCK(ifa);
1361 ifam->ifam_addrs = info.rti_addrs;
1362 }
1363 if ((cmd == RTM_ADD && pass == 2) ||
1364 (cmd == RTM_DELETE && pass == 1)) {
1365 struct rt_msghdr *rtm;
1366
1367 if (rt == NULL)
1368 continue;
1369 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1370 info.rti_info[RTAX_DST] = sa = rt_key(rt);
1371 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1372 if ((m = rt_msg1(cmd, &info)) == NULL)
1373 continue;
1374 rtm = mtod(m, struct rt_msghdr *);
1375 rtm->rtm_index = ifp->if_index;
1376 rtm->rtm_flags |= rt->rt_flags;
1377 rtm->rtm_errno = error;
1378 rtm->rtm_addrs = info.rti_addrs;
1379 }
1380 route_proto.sp_protocol = sa ? sa->sa_family : 0;
1381 raw_input(m, &route_proto, &route_src, &route_dst);
1382 }
1383 }
1384
1385 /*
1386 * This is the analogue to the rt_newaddrmsg which performs the same
1387 * function but for multicast group memberhips. This is easier since
1388 * there is no route state to worry about.
1389 */
1390 void
1391 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1392 {
1393 struct rt_addrinfo info;
1394 struct mbuf *m = 0;
1395 struct ifnet *ifp = ifma->ifma_ifp;
1396 struct ifma_msghdr *ifmam;
1397 struct sockproto route_proto = { PF_ROUTE, 0 };
1398
1399 if (route_cb.any_count == 0)
1400 return;
1401
1402 /* Lock ifp for if_lladdr */
1403 ifnet_lock_shared(ifp);
1404 bzero((caddr_t)&info, sizeof (info));
1405 IFMA_LOCK(ifma);
1406 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1407 /* lladdr doesn't need lock */
1408 info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr;
1409
1410 /*
1411 * If a link-layer address is present, present it as a ``gateway''
1412 * (similarly to how ARP entries, e.g., are presented).
1413 */
1414 info.rti_info[RTAX_GATEWAY] = (ifma->ifma_ll != NULL) ?
1415 ifma->ifma_ll->ifma_addr : NULL;
1416 if ((m = rt_msg1(cmd, &info)) == NULL) {
1417 IFMA_UNLOCK(ifma);
1418 ifnet_lock_done(ifp);
1419 return;
1420 }
1421 ifmam = mtod(m, struct ifma_msghdr *);
1422 ifmam->ifmam_index = ifp->if_index;
1423 ifmam->ifmam_addrs = info.rti_addrs;
1424 route_proto.sp_protocol = ifma->ifma_addr->sa_family;
1425 IFMA_UNLOCK(ifma);
1426 ifnet_lock_done(ifp);
1427 raw_input(m, &route_proto, &route_src, &route_dst);
1428 }
1429
1430 const char *
1431 rtm2str(int cmd)
1432 {
1433 const char *c = "RTM_?";
1434
1435 switch (cmd) {
1436 case RTM_ADD:
1437 c = "RTM_ADD";
1438 break;
1439 case RTM_DELETE:
1440 c = "RTM_DELETE";
1441 break;
1442 case RTM_CHANGE:
1443 c = "RTM_CHANGE";
1444 break;
1445 case RTM_GET:
1446 c = "RTM_GET";
1447 break;
1448 case RTM_LOSING:
1449 c = "RTM_LOSING";
1450 break;
1451 case RTM_REDIRECT:
1452 c = "RTM_REDIRECT";
1453 break;
1454 case RTM_MISS:
1455 c = "RTM_MISS";
1456 break;
1457 case RTM_LOCK:
1458 c = "RTM_LOCK";
1459 break;
1460 case RTM_OLDADD:
1461 c = "RTM_OLDADD";
1462 break;
1463 case RTM_OLDDEL:
1464 c = "RTM_OLDDEL";
1465 break;
1466 case RTM_RESOLVE:
1467 c = "RTM_RESOLVE";
1468 break;
1469 case RTM_NEWADDR:
1470 c = "RTM_NEWADDR";
1471 break;
1472 case RTM_DELADDR:
1473 c = "RTM_DELADDR";
1474 break;
1475 case RTM_IFINFO:
1476 c = "RTM_IFINFO";
1477 break;
1478 case RTM_NEWMADDR:
1479 c = "RTM_NEWMADDR";
1480 break;
1481 case RTM_DELMADDR:
1482 c = "RTM_DELMADDR";
1483 break;
1484 case RTM_GET_SILENT:
1485 c = "RTM_GET_SILENT";
1486 break;
1487 case RTM_IFINFO2:
1488 c = "RTM_IFINFO2";
1489 break;
1490 case RTM_NEWMADDR2:
1491 c = "RTM_NEWMADDR2";
1492 break;
1493 case RTM_GET2:
1494 c = "RTM_GET2";
1495 break;
1496 case RTM_GET_EXT:
1497 c = "RTM_GET_EXT";
1498 break;
1499 }
1500
1501 return (c);
1502 }
1503
1504 /*
1505 * This is used in dumping the kernel table via sysctl().
1506 */
1507 static int
1508 sysctl_dumpentry(struct radix_node *rn, void *vw)
1509 {
1510 struct walkarg *w = vw;
1511 struct rtentry *rt = (struct rtentry *)rn;
1512 int error = 0, size;
1513 struct rt_addrinfo info;
1514 kauth_cred_t cred;
1515
1516 cred = kauth_cred_proc_ref(current_proc());
1517
1518 RT_LOCK(rt);
1519 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1520 goto done;
1521 bzero((caddr_t)&info, sizeof (info));
1522 info.rti_info[RTAX_DST] = rt_key(rt);
1523 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1524 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1525 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
1526
1527 if (w->w_op != NET_RT_DUMP2) {
1528 size = rt_msg2(RTM_GET, &info, NULL, w, &cred);
1529 if (w->w_req != NULL && w->w_tmem != NULL) {
1530 struct rt_msghdr *rtm =
1531 (struct rt_msghdr *)(void *)w->w_tmem;
1532
1533 rtm->rtm_flags = rt->rt_flags;
1534 rtm->rtm_use = rt->rt_use;
1535 rt_getmetrics(rt, &rtm->rtm_rmx);
1536 rtm->rtm_index = rt->rt_ifp->if_index;
1537 rtm->rtm_pid = 0;
1538 rtm->rtm_seq = 0;
1539 rtm->rtm_errno = 0;
1540 rtm->rtm_addrs = info.rti_addrs;
1541 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1542 }
1543 } else {
1544 size = rt_msg2(RTM_GET2, &info, NULL, w, &cred);
1545 if (w->w_req != NULL && w->w_tmem != NULL) {
1546 struct rt_msghdr2 *rtm =
1547 (struct rt_msghdr2 *)(void *)w->w_tmem;
1548
1549 rtm->rtm_flags = rt->rt_flags;
1550 rtm->rtm_use = rt->rt_use;
1551 rt_getmetrics(rt, &rtm->rtm_rmx);
1552 rtm->rtm_index = rt->rt_ifp->if_index;
1553 rtm->rtm_refcnt = rt->rt_refcnt;
1554 if (rt->rt_parent)
1555 rtm->rtm_parentflags = rt->rt_parent->rt_flags;
1556 else
1557 rtm->rtm_parentflags = 0;
1558 rtm->rtm_reserved = 0;
1559 rtm->rtm_addrs = info.rti_addrs;
1560 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1561 }
1562 }
1563
1564 done:
1565 RT_UNLOCK(rt);
1566 kauth_cred_unref(&cred);
1567 return (error);
1568 }
1569
1570 /*
1571 * This is used for dumping extended information from route entries.
1572 */
1573 static int
1574 sysctl_dumpentry_ext(struct radix_node *rn, void *vw)
1575 {
1576 struct walkarg *w = vw;
1577 struct rtentry *rt = (struct rtentry *)rn;
1578 int error = 0, size;
1579 struct rt_addrinfo info;
1580 kauth_cred_t cred;
1581
1582 cred = kauth_cred_proc_ref(current_proc());
1583
1584 RT_LOCK(rt);
1585 if (w->w_op == NET_RT_DUMPX_FLAGS && !(rt->rt_flags & w->w_arg))
1586 goto done;
1587 bzero(&info, sizeof (info));
1588 info.rti_info[RTAX_DST] = rt_key(rt);
1589 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1590 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1591 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
1592
1593 size = rt_msg2(RTM_GET_EXT, &info, NULL, w, &cred);
1594 if (w->w_req != NULL && w->w_tmem != NULL) {
1595 struct rt_msghdr_ext *ertm =
1596 (struct rt_msghdr_ext *)(void *)w->w_tmem;
1597
1598 ertm->rtm_flags = rt->rt_flags;
1599 ertm->rtm_use = rt->rt_use;
1600 rt_getmetrics(rt, &ertm->rtm_rmx);
1601 ertm->rtm_index = rt->rt_ifp->if_index;
1602 ertm->rtm_pid = 0;
1603 ertm->rtm_seq = 0;
1604 ertm->rtm_errno = 0;
1605 ertm->rtm_addrs = info.rti_addrs;
1606 if (rt->rt_llinfo_get_ri == NULL) {
1607 bzero(&ertm->rtm_ri, sizeof (ertm->rtm_ri));
1608 ertm->rtm_ri.ri_rssi = IFNET_RSSI_UNKNOWN;
1609 ertm->rtm_ri.ri_lqm = IFNET_LQM_THRESH_OFF;
1610 ertm->rtm_ri.ri_npm = IFNET_NPM_THRESH_UNKNOWN;
1611 } else {
1612 rt->rt_llinfo_get_ri(rt, &ertm->rtm_ri);
1613 }
1614 error = SYSCTL_OUT(w->w_req, (caddr_t)ertm, size);
1615 }
1616
1617 done:
1618 RT_UNLOCK(rt);
1619 kauth_cred_unref(&cred);
1620 return (error);
1621 }
1622
1623 /*
1624 * rdar://9307819
1625 * To avoid to call copyout() while holding locks and to cause problems
1626 * in the paging path, sysctl_iflist() and sysctl_iflist2() contstruct
1627 * the list in two passes. In the first pass we compute the total
1628 * length of the data we are going to copyout, then we release
1629 * all locks to allocate a temporary buffer that gets filled
1630 * in the second pass.
1631 *
1632 * Note that we are verifying the assumption that _MALLOC returns a buffer
1633 * that is at least 32 bits aligned and that the messages and addresses are
1634 * 32 bits aligned.
1635 */
1636 static int
1637 sysctl_iflist(int af, struct walkarg *w)
1638 {
1639 struct ifnet *ifp;
1640 struct ifaddr *ifa;
1641 struct rt_addrinfo info;
1642 int len = 0, error = 0;
1643 int pass = 0;
1644 int total_len = 0, current_len = 0;
1645 char *total_buffer = NULL, *cp = NULL;
1646 kauth_cred_t cred;
1647
1648 cred = kauth_cred_proc_ref(current_proc());
1649
1650 bzero((caddr_t)&info, sizeof (info));
1651
1652 for (pass = 0; pass < 2; pass++) {
1653 ifnet_head_lock_shared();
1654
1655 TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
1656 if (error)
1657 break;
1658 if (w->w_arg && w->w_arg != ifp->if_index)
1659 continue;
1660 ifnet_lock_shared(ifp);
1661 /*
1662 * Holding ifnet lock here prevents the link address
1663 * from changing contents, so no need to hold the ifa
1664 * lock. The link address is always present; it's
1665 * never freed.
1666 */
1667 ifa = ifp->if_lladdr;
1668 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1669 len = rt_msg2(RTM_IFINFO, &info, NULL, NULL, &cred);
1670 if (pass == 0) {
1671 total_len += len;
1672 } else {
1673 struct if_msghdr *ifm;
1674
1675 if (current_len + len > total_len) {
1676 ifnet_lock_done(ifp);
1677 error = ENOBUFS;
1678 break;
1679 }
1680 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1681 len = rt_msg2(RTM_IFINFO, &info,
1682 (caddr_t)cp, NULL, &cred);
1683 info.rti_info[RTAX_IFP] = NULL;
1684
1685 ifm = (struct if_msghdr *)(void *)cp;
1686 ifm->ifm_index = ifp->if_index;
1687 ifm->ifm_flags = (u_short)ifp->if_flags;
1688 if_data_internal_to_if_data(ifp, &ifp->if_data,
1689 &ifm->ifm_data);
1690 ifm->ifm_addrs = info.rti_addrs;
1691 /*
1692 * <rdar://problem/32940901>
1693 * Round bytes only for non-platform
1694 */
1695 if (!csproc_get_platform_binary(w->w_req->p)) {
1696 ALIGN_BYTES(ifm->ifm_data.ifi_ibytes);
1697 ALIGN_BYTES(ifm->ifm_data.ifi_obytes);
1698 }
1699
1700 cp += len;
1701 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1702 current_len += len;
1703 }
1704 while ((ifa = ifa->ifa_link.tqe_next) != NULL) {
1705 IFA_LOCK(ifa);
1706 if (af && af != ifa->ifa_addr->sa_family) {
1707 IFA_UNLOCK(ifa);
1708 continue;
1709 }
1710 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1711 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1712 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1713 len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL,
1714 &cred);
1715 if (pass == 0) {
1716 total_len += len;
1717 } else {
1718 struct ifa_msghdr *ifam;
1719
1720 if (current_len + len > total_len) {
1721 IFA_UNLOCK(ifa);
1722 error = ENOBUFS;
1723 break;
1724 }
1725 len = rt_msg2(RTM_NEWADDR, &info,
1726 (caddr_t)cp, NULL, &cred);
1727
1728 ifam = (struct ifa_msghdr *)(void *)cp;
1729 ifam->ifam_index =
1730 ifa->ifa_ifp->if_index;
1731 ifam->ifam_flags = ifa->ifa_flags;
1732 ifam->ifam_metric = ifa->ifa_metric;
1733 ifam->ifam_addrs = info.rti_addrs;
1734
1735 cp += len;
1736 VERIFY(IS_P2ALIGNED(cp,
1737 sizeof (u_int32_t)));
1738 current_len += len;
1739 }
1740 IFA_UNLOCK(ifa);
1741 }
1742 ifnet_lock_done(ifp);
1743 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1744 info.rti_info[RTAX_BRD] = NULL;
1745 }
1746
1747 ifnet_head_done();
1748
1749 if (error != 0) {
1750 if (error == ENOBUFS)
1751 printf("%s: current_len (%d) + len (%d) > "
1752 "total_len (%d)\n", __func__, current_len,
1753 len, total_len);
1754 break;
1755 }
1756
1757 if (pass == 0) {
1758 /* Better to return zero length buffer than ENOBUFS */
1759 if (total_len == 0)
1760 total_len = 1;
1761 total_len += total_len >> 3;
1762 total_buffer = _MALLOC(total_len, M_RTABLE,
1763 M_ZERO | M_WAITOK);
1764 if (total_buffer == NULL) {
1765 printf("%s: _MALLOC(%d) failed\n", __func__,
1766 total_len);
1767 error = ENOBUFS;
1768 break;
1769 }
1770 cp = total_buffer;
1771 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1772 } else {
1773 error = SYSCTL_OUT(w->w_req, total_buffer, current_len);
1774 if (error)
1775 break;
1776 }
1777 }
1778
1779 if (total_buffer != NULL)
1780 _FREE(total_buffer, M_RTABLE);
1781
1782 kauth_cred_unref(&cred);
1783 return (error);
1784 }
1785
1786 static int
1787 sysctl_iflist2(int af, struct walkarg *w)
1788 {
1789 struct ifnet *ifp;
1790 struct ifaddr *ifa;
1791 struct rt_addrinfo info;
1792 int len = 0, error = 0;
1793 int pass = 0;
1794 int total_len = 0, current_len = 0;
1795 char *total_buffer = NULL, *cp = NULL;
1796 kauth_cred_t cred;
1797
1798 cred = kauth_cred_proc_ref(current_proc());
1799
1800 bzero((caddr_t)&info, sizeof (info));
1801
1802 for (pass = 0; pass < 2; pass++) {
1803 struct ifmultiaddr *ifma;
1804
1805 ifnet_head_lock_shared();
1806
1807 TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
1808 if (error)
1809 break;
1810 if (w->w_arg && w->w_arg != ifp->if_index)
1811 continue;
1812 ifnet_lock_shared(ifp);
1813 /*
1814 * Holding ifnet lock here prevents the link address
1815 * from changing contents, so no need to hold the ifa
1816 * lock. The link address is always present; it's
1817 * never freed.
1818 */
1819 ifa = ifp->if_lladdr;
1820 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1821 len = rt_msg2(RTM_IFINFO2, &info, NULL, NULL, &cred);
1822 if (pass == 0) {
1823 total_len += len;
1824 } else {
1825 struct if_msghdr2 *ifm;
1826
1827 if (current_len + len > total_len) {
1828 ifnet_lock_done(ifp);
1829 error = ENOBUFS;
1830 break;
1831 }
1832 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1833 len = rt_msg2(RTM_IFINFO2, &info,
1834 (caddr_t)cp, NULL, &cred);
1835 info.rti_info[RTAX_IFP] = NULL;
1836
1837 ifm = (struct if_msghdr2 *)(void *)cp;
1838 ifm->ifm_addrs = info.rti_addrs;
1839 ifm->ifm_flags = (u_short)ifp->if_flags;
1840 ifm->ifm_index = ifp->if_index;
1841 ifm->ifm_snd_len = IFCQ_LEN(&ifp->if_snd);
1842 ifm->ifm_snd_maxlen = IFCQ_MAXLEN(&ifp->if_snd);
1843 ifm->ifm_snd_drops =
1844 ifp->if_snd.ifcq_dropcnt.packets;
1845 ifm->ifm_timer = ifp->if_timer;
1846 if_data_internal_to_if_data64(ifp,
1847 &ifp->if_data, &ifm->ifm_data);
1848 /*
1849 * <rdar://problem/32940901>
1850 * Round bytes only for non-platform
1851 */
1852 if (!csproc_get_platform_binary(w->w_req->p)) {
1853 ALIGN_BYTES(ifm->ifm_data.ifi_ibytes);
1854 ALIGN_BYTES(ifm->ifm_data.ifi_obytes);
1855 }
1856
1857 cp += len;
1858 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1859 current_len += len;
1860 }
1861 while ((ifa = ifa->ifa_link.tqe_next) != NULL) {
1862 IFA_LOCK(ifa);
1863 if (af && af != ifa->ifa_addr->sa_family) {
1864 IFA_UNLOCK(ifa);
1865 continue;
1866 }
1867 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1868 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1869 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1870 len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL,
1871 &cred);
1872 if (pass == 0) {
1873 total_len += len;
1874 } else {
1875 struct ifa_msghdr *ifam;
1876
1877 if (current_len + len > total_len) {
1878 IFA_UNLOCK(ifa);
1879 error = ENOBUFS;
1880 break;
1881 }
1882 len = rt_msg2(RTM_NEWADDR, &info,
1883 (caddr_t)cp, NULL, &cred);
1884
1885 ifam = (struct ifa_msghdr *)(void *)cp;
1886 ifam->ifam_index =
1887 ifa->ifa_ifp->if_index;
1888 ifam->ifam_flags = ifa->ifa_flags;
1889 ifam->ifam_metric = ifa->ifa_metric;
1890 ifam->ifam_addrs = info.rti_addrs;
1891
1892 cp += len;
1893 VERIFY(IS_P2ALIGNED(cp,
1894 sizeof (u_int32_t)));
1895 current_len += len;
1896 }
1897 IFA_UNLOCK(ifa);
1898 }
1899 if (error) {
1900 ifnet_lock_done(ifp);
1901 break;
1902 }
1903
1904 for (ifma = LIST_FIRST(&ifp->if_multiaddrs);
1905 ifma != NULL; ifma = LIST_NEXT(ifma, ifma_link)) {
1906 struct ifaddr *ifa0;
1907
1908 IFMA_LOCK(ifma);
1909 if (af && af != ifma->ifma_addr->sa_family) {
1910 IFMA_UNLOCK(ifma);
1911 continue;
1912 }
1913 bzero((caddr_t)&info, sizeof (info));
1914 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1915 /*
1916 * Holding ifnet lock here prevents the link
1917 * address from changing contents, so no need
1918 * to hold the ifa0 lock. The link address is
1919 * always present; it's never freed.
1920 */
1921 ifa0 = ifp->if_lladdr;
1922 info.rti_info[RTAX_IFP] = ifa0->ifa_addr;
1923 if (ifma->ifma_ll != NULL)
1924 info.rti_info[RTAX_GATEWAY] =
1925 ifma->ifma_ll->ifma_addr;
1926 len = rt_msg2(RTM_NEWMADDR2, &info, NULL, NULL,
1927 &cred);
1928 if (pass == 0) {
1929 total_len += len;
1930 } else {
1931 struct ifma_msghdr2 *ifmam;
1932
1933 if (current_len + len > total_len) {
1934 IFMA_UNLOCK(ifma);
1935 error = ENOBUFS;
1936 break;
1937 }
1938 len = rt_msg2(RTM_NEWMADDR2, &info,
1939 (caddr_t)cp, NULL, &cred);
1940
1941 ifmam =
1942 (struct ifma_msghdr2 *)(void *)cp;
1943 ifmam->ifmam_addrs = info.rti_addrs;
1944 ifmam->ifmam_flags = 0;
1945 ifmam->ifmam_index =
1946 ifma->ifma_ifp->if_index;
1947 ifmam->ifmam_refcount =
1948 ifma->ifma_reqcnt;
1949
1950 cp += len;
1951 VERIFY(IS_P2ALIGNED(cp,
1952 sizeof (u_int32_t)));
1953 current_len += len;
1954 }
1955 IFMA_UNLOCK(ifma);
1956 }
1957 ifnet_lock_done(ifp);
1958 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1959 info.rti_info[RTAX_BRD] = NULL;
1960 }
1961 ifnet_head_done();
1962
1963 if (error) {
1964 if (error == ENOBUFS)
1965 printf("%s: current_len (%d) + len (%d) > "
1966 "total_len (%d)\n", __func__, current_len,
1967 len, total_len);
1968 break;
1969 }
1970
1971 if (pass == 0) {
1972 /* Better to return zero length buffer than ENOBUFS */
1973 if (total_len == 0)
1974 total_len = 1;
1975 total_len += total_len >> 3;
1976 total_buffer = _MALLOC(total_len, M_RTABLE,
1977 M_ZERO | M_WAITOK);
1978 if (total_buffer == NULL) {
1979 printf("%s: _MALLOC(%d) failed\n", __func__,
1980 total_len);
1981 error = ENOBUFS;
1982 break;
1983 }
1984 cp = total_buffer;
1985 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1986 } else {
1987 error = SYSCTL_OUT(w->w_req, total_buffer, current_len);
1988 if (error)
1989 break;
1990 }
1991 }
1992
1993 if (total_buffer != NULL)
1994 _FREE(total_buffer, M_RTABLE);
1995
1996 kauth_cred_unref(&cred);
1997 return (error);
1998 }
1999
2000
2001 static int
2002 sysctl_rtstat(struct sysctl_req *req)
2003 {
2004 return (SYSCTL_OUT(req, &rtstat, sizeof (struct rtstat)));
2005 }
2006
2007 static int
2008 sysctl_rttrash(struct sysctl_req *req)
2009 {
2010 return (SYSCTL_OUT(req, &rttrash, sizeof (rttrash)));
2011 }
2012
2013 static int
2014 sysctl_rtsock SYSCTL_HANDLER_ARGS
2015 {
2016 #pragma unused(oidp)
2017 int *name = (int *)arg1;
2018 u_int namelen = arg2;
2019 struct radix_node_head *rnh;
2020 int i, error = EINVAL;
2021 u_char af;
2022 struct walkarg w;
2023
2024 name ++;
2025 namelen--;
2026 if (req->newptr)
2027 return (EPERM);
2028 if (namelen != 3)
2029 return (EINVAL);
2030 af = name[0];
2031 Bzero(&w, sizeof (w));
2032 w.w_op = name[1];
2033 w.w_arg = name[2];
2034 w.w_req = req;
2035
2036 switch (w.w_op) {
2037
2038 case NET_RT_DUMP:
2039 case NET_RT_DUMP2:
2040 case NET_RT_FLAGS:
2041 lck_mtx_lock(rnh_lock);
2042 for (i = 1; i <= AF_MAX; i++)
2043 if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
2044 (error = rnh->rnh_walktree(rnh,
2045 sysctl_dumpentry, &w)))
2046 break;
2047 lck_mtx_unlock(rnh_lock);
2048 break;
2049 case NET_RT_DUMPX:
2050 case NET_RT_DUMPX_FLAGS:
2051 lck_mtx_lock(rnh_lock);
2052 for (i = 1; i <= AF_MAX; i++)
2053 if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
2054 (error = rnh->rnh_walktree(rnh,
2055 sysctl_dumpentry_ext, &w)))
2056 break;
2057 lck_mtx_unlock(rnh_lock);
2058 break;
2059 case NET_RT_IFLIST:
2060 error = sysctl_iflist(af, &w);
2061 break;
2062 case NET_RT_IFLIST2:
2063 error = sysctl_iflist2(af, &w);
2064 break;
2065 case NET_RT_STAT:
2066 error = sysctl_rtstat(req);
2067 break;
2068 case NET_RT_TRASH:
2069 error = sysctl_rttrash(req);
2070 break;
2071 }
2072 if (w.w_tmem != NULL)
2073 FREE(w.w_tmem, M_RTABLE);
2074 return (error);
2075 }
2076
2077 /*
2078 * Definitions of protocols supported in the ROUTE domain.
2079 */
2080 static struct protosw routesw[] = {
2081 {
2082 .pr_type = SOCK_RAW,
2083 .pr_protocol = 0,
2084 .pr_flags = PR_ATOMIC|PR_ADDR,
2085 .pr_output = route_output,
2086 .pr_ctlinput = raw_ctlinput,
2087 .pr_init = raw_init,
2088 .pr_usrreqs = &route_usrreqs,
2089 }
2090 };
2091
2092 static int route_proto_count = (sizeof (routesw) / sizeof (struct protosw));
2093
2094 struct domain routedomain_s = {
2095 .dom_family = PF_ROUTE,
2096 .dom_name = "route",
2097 .dom_init = route_dinit,
2098 };
2099
2100 static void
2101 route_dinit(struct domain *dp)
2102 {
2103 struct protosw *pr;
2104 int i;
2105
2106 VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
2107 VERIFY(routedomain == NULL);
2108
2109 routedomain = dp;
2110
2111 for (i = 0, pr = &routesw[0]; i < route_proto_count; i++, pr++)
2112 net_add_proto(pr, dp, 1);
2113
2114 route_init();
2115 }