2 * Copyright (c) 2011-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
32 #include <sys/socket.h>
33 #include <sys/sockio.h>
34 #include <sys/systm.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
38 #include <sys/errno.h>
39 #include <sys/kernel.h>
40 #include <sys/kauth.h>
42 #include <kern/zalloc.h>
45 #include <net/if_var.h>
46 #include <net/if_types.h>
48 #include <net/flowadv.h>
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/ip.h>
54 #include <netinet/ip6.h>
57 #include <net/classq/classq_sfb.h>
58 #include <net/flowhash.h>
59 #include <net/net_osdep.h>
60 #include <dev/random/randomdev.h>
63 * Stochastic Fair Blue
65 * Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, Kang G. Shin
66 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
68 * Based on the NS code with the following parameters:
73 * hold-time: 10ms-50ms (randomized)
76 * pbox-time: 50-100ms (randomized)
77 * hinterval: 11-23 (randomized)
79 * This implementation uses L = 2 and N = 32 for 2 sets of:
81 * B[L][N]: L x N array of bins (L levels, N bins per level)
83 * Each set effectively creates 32^2 virtual buckets (bin combinations)
84 * while using only O(32*2) states.
86 * Given a 32-bit hash value, we divide it such that octets [0,1,2,3] are
87 * used as index for the bins across the 2 levels, where level 1 uses [0,2]
88 * and level 2 uses [1,3]. The 2 values per level correspond to the indices
89 * for the current and warm-up sets (section 4.4. in the SFB paper regarding
90 * Moving Hash Functions explains the purposes of these 2 sets.)
94 * Use Murmur3A_x86_32 for hash function. It seems to perform consistently
95 * across platforms for 1-word key (32-bit flowhash value). See flowhash.h
96 * for other alternatives. We only need 16-bit hash output.
98 #define SFB_HASH net_flowhash_mh3_x86_32
99 #define SFB_HASHMASK HASHMASK(16)
101 #define SFB_BINMASK(_x) \
102 ((_x) & HASHMASK(SFB_BINS_SHIFT))
104 #define SFB_BINST(_sp, _l, _n, _c) \
105 (&(*(_sp)->sfb_bins)[_c].stats[_l][_n])
107 #define SFB_BINFT(_sp, _l, _n, _c) \
108 (&(*(_sp)->sfb_bins)[_c].freezetime[_l][_n])
110 #define SFB_FC_LIST(_sp, _n) \
111 (&(*(_sp)->sfb_fc_lists)[_n])
114 * The holdtime parameter determines the minimum time interval between
115 * two successive updates of the marking probability. In the event the
116 * uplink speed is not known, a default value is chosen and is randomized
117 * to be within the following range.
119 #define HOLDTIME_BASE (100ULL * 1000 * 1000) /* 100ms */
120 #define HOLDTIME_MIN (10ULL * 1000 * 1000) /* 10ms */
121 #define HOLDTIME_MAX (100ULL * 1000 * 1000) /* 100ms */
124 * The pboxtime parameter determines the bandwidth allocated for rogue
125 * flows, i.e. the rate limiting bandwidth. In the event the uplink speed
126 * is not known, a default value is chosen and is randomized to be within
127 * the following range.
129 #define PBOXTIME_BASE (300ULL * 1000 * 1000) /* 300ms */
130 #define PBOXTIME_MIN (30ULL * 1000 * 1000) /* 30ms */
131 #define PBOXTIME_MAX (300ULL * 1000 * 1000) /* 300ms */
134 * Target queueing delay is the amount of extra delay that can be added
135 * to accommodate variations in the link bandwidth. The queue should be
136 * large enough to induce this much delay and nothing more than that.
138 #define TARGET_QDELAY_BASE (10ULL * 1000 * 1000) /* 10ms */
139 #define TARGET_QDELAY_MIN (10ULL * 1000) /* 10us */
140 #define TARGET_QDELAY_MAX (20ULL * 1000 * 1000 * 1000) /* 20s */
143 * Update interval for checking the extra delay added by the queue. This
144 * should be 90-95 percentile of RTT experienced by any TCP connection
145 * so that it will take care of the burst traffic.
147 #define UPDATE_INTERVAL_BASE (100ULL * 1000 * 1000) /* 100ms */
148 #define UPDATE_INTERVAL_MIN (100ULL * 1000 * 1000) /* 100ms */
149 #define UPDATE_INTERVAL_MAX (10ULL * 1000 * 1000 * 1000) /* 10s */
151 #define SFB_RANDOM(sp, tmin, tmax) ((sfb_random(sp) % (tmax)) + (tmin))
153 #define SFB_PKT_PBOX 0x1 /* in penalty box */
155 /* The following mantissa values are in SFB_FP_SHIFT Q format */
156 #define SFB_MAX_PMARK (1 << SFB_FP_SHIFT) /* Q14 representation of 1.00 */
159 * These are d1 (increment) and d2 (decrement) parameters, used to determine
160 * the amount by which the marking probability is incremented when the queue
161 * overflows, or is decremented when the link is idle. d1 is set higher than
162 * d2, because link underutilization can occur when congestion management is
163 * either too conservative or too aggressive, but packet loss occurs only
164 * when congestion management is too conservative. By weighing heavily
165 * against packet loss, it can quickly reach to a substantial increase in
168 #define SFB_INCREMENT 82 /* Q14 representation of 0.005 */
169 #define SFB_DECREMENT 16 /* Q14 representation of 0.001 */
171 #define SFB_PMARK_TH 16056 /* Q14 representation of 0.98 */
172 #define SFB_PMARK_WARM 3276 /* Q14 representation of 0.2 */
174 #define SFB_PMARK_INC(_bin) do { \
175 (_bin)->pmark += sfb_increment; \
176 if ((_bin)->pmark > SFB_MAX_PMARK) \
177 (_bin)->pmark = SFB_MAX_PMARK; \
180 #define SFB_PMARK_DEC(_bin) do { \
181 if ((_bin)->pmark > 0) { \
182 (_bin)->pmark -= sfb_decrement; \
183 if ((_bin)->pmark < 0) \
188 /* Minimum nuber of bytes in queue to get flow controlled */
189 #define SFB_MIN_FC_THRESHOLD_BYTES 7500
191 #define SFB_SET_DELAY_HIGH(_sp_, _q_) do { \
192 (_sp_)->sfb_flags |= SFBF_DELAYHIGH; \
193 (_sp_)->sfb_fc_threshold = max(SFB_MIN_FC_THRESHOLD_BYTES, \
194 (qsize((_q_)) >> 3)); \
197 #define SFB_QUEUE_DELAYBASED(_sp_) ((_sp_)->sfb_flags & SFBF_DELAYBASED)
198 #define SFB_IS_DELAYHIGH(_sp_) ((_sp_)->sfb_flags & SFBF_DELAYHIGH)
199 #define SFB_QUEUE_DELAYBASED_MAXSIZE 2048 /* max pkts */
201 #define HINTERVAL_MIN (10) /* 10 seconds */
202 #define HINTERVAL_MAX (20) /* 20 seconds */
203 #define SFB_HINTERVAL(sp) ((sfb_random(sp) % HINTERVAL_MAX) + HINTERVAL_MIN)
205 #define DEQUEUE_DECAY 7 /* ilog2 of EWMA decay rate, (128) */
206 #define DEQUEUE_SPIKE(_new, _old) \
207 ((u_int64_t)ABS((int64_t)(_new) - (int64_t)(_old)) > ((_old) << 11))
209 #define ABS(v) (((v) > 0) ? (v) : -(v))
211 #define SFB_ZONE_MAX 32 /* maximum elements in zone */
212 #define SFB_ZONE_NAME "classq_sfb" /* zone name */
214 #define SFB_BINS_ZONE_MAX 32 /* maximum elements in zone */
215 #define SFB_BINS_ZONE_NAME "classq_sfb_bins" /* zone name */
217 #define SFB_FCL_ZONE_MAX 32 /* maximum elements in zone */
218 #define SFB_FCL_ZONE_NAME "classq_sfb_fcl" /* zone name */
220 /* Place the flow control entries in current bin on level 0 */
221 #define SFB_FC_LEVEL 0
223 static unsigned int sfb_size
; /* size of zone element */
224 static struct zone
*sfb_zone
; /* zone for sfb */
226 static unsigned int sfb_bins_size
; /* size of zone element */
227 static struct zone
*sfb_bins_zone
; /* zone for sfb_bins */
229 static unsigned int sfb_fcl_size
; /* size of zone element */
230 static struct zone
*sfb_fcl_zone
; /* zone for sfb_fc_lists */
232 /* internal function prototypes */
233 static u_int32_t
sfb_random(struct sfb
*);
234 static void *sfb_getq_flow(struct sfb
*, class_queue_t
*, u_int32_t
, boolean_t
,
236 static void sfb_resetq(struct sfb
*, cqev_t
);
237 static void sfb_calc_holdtime(struct sfb
*, u_int64_t
);
238 static void sfb_calc_pboxtime(struct sfb
*, u_int64_t
);
239 static void sfb_calc_hinterval(struct sfb
*, u_int64_t
*);
240 static void sfb_calc_update_interval(struct sfb
*, u_int64_t
);
241 static void sfb_swap_bins(struct sfb
*, u_int32_t
);
242 static inline int sfb_pcheck(struct sfb
*, uint32_t);
243 static int sfb_penalize(struct sfb
*, uint32_t, uint32_t *, struct timespec
*);
244 static void sfb_adjust_bin(struct sfb
*, struct sfbbinstats
*,
245 struct timespec
*, struct timespec
*, boolean_t
);
246 static void sfb_decrement_bin(struct sfb
*, struct sfbbinstats
*,
247 struct timespec
*, struct timespec
*);
248 static void sfb_increment_bin(struct sfb
*, struct sfbbinstats
*,
249 struct timespec
*, struct timespec
*);
250 static inline void sfb_dq_update_bins(struct sfb
*, uint32_t, uint32_t,
251 struct timespec
*, u_int32_t qsize
);
252 static inline void sfb_eq_update_bins(struct sfb
*, uint32_t, uint32_t);
253 static int sfb_drop_early(struct sfb
*, uint32_t, u_int16_t
*,
255 static boolean_t
sfb_bin_addfcentry(struct sfb
*, pktsched_pkt_t
*,
256 uint32_t, uint8_t, uint32_t);
257 static void sfb_fclist_append(struct sfb
*, struct sfb_fcl
*);
258 static void sfb_fclists_clean(struct sfb
*sp
);
259 static int sfb_bin_mark_or_drop(struct sfb
*sp
, struct sfbbinstats
*bin
);
260 static void sfb_detect_dequeue_stall(struct sfb
*sp
, class_queue_t
*,
263 SYSCTL_NODE(_net_classq
, OID_AUTO
, sfb
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "SFB");
265 static u_int64_t sfb_holdtime
= 0; /* 0 indicates "automatic" */
266 SYSCTL_QUAD(_net_classq_sfb
, OID_AUTO
, holdtime
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
267 &sfb_holdtime
, "SFB freeze time in nanoseconds");
269 static u_int64_t sfb_pboxtime
= 0; /* 0 indicates "automatic" */
270 SYSCTL_QUAD(_net_classq_sfb
, OID_AUTO
, pboxtime
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
271 &sfb_pboxtime
, "SFB penalty box time in nanoseconds");
273 static u_int64_t sfb_hinterval
;
274 SYSCTL_QUAD(_net_classq_sfb
, OID_AUTO
, hinterval
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
275 &sfb_hinterval
, "SFB hash interval in nanoseconds");
277 static u_int32_t sfb_increment
= SFB_INCREMENT
;
278 SYSCTL_UINT(_net_classq_sfb
, OID_AUTO
, increment
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
279 &sfb_increment
, SFB_INCREMENT
, "SFB increment [d1]");
281 static u_int32_t sfb_decrement
= SFB_DECREMENT
;
282 SYSCTL_UINT(_net_classq_sfb
, OID_AUTO
, decrement
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
283 &sfb_decrement
, SFB_DECREMENT
, "SFB decrement [d2]");
285 static u_int32_t sfb_allocation
= 0; /* 0 means "automatic" */
286 SYSCTL_UINT(_net_classq_sfb
, OID_AUTO
, allocation
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
287 &sfb_allocation
, 0, "SFB bin allocation");
289 static u_int32_t sfb_ratelimit
= 0;
290 SYSCTL_UINT(_net_classq_sfb
, OID_AUTO
, ratelimit
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
291 &sfb_ratelimit
, 0, "SFB rate limit");
293 #define KBPS (1ULL * 1000) /* 1 Kbits per second */
294 #define MBPS (1ULL * 1000 * 1000) /* 1 Mbits per second */
295 #define GBPS (MBPS * 1000) /* 1 Gbits per second */
297 struct sfb_time_tbl
{
298 u_int64_t speed
; /* uplink speed */
299 u_int64_t holdtime
; /* hold time */
300 u_int64_t pboxtime
; /* penalty box time */
303 static struct sfb_time_tbl sfb_ttbl
[] = {
304 { 1 * MBPS
, HOLDTIME_BASE
* 1000, PBOXTIME_BASE
* 1000 },
305 { 10 * MBPS
, HOLDTIME_BASE
* 100, PBOXTIME_BASE
* 100 },
306 { 100 * MBPS
, HOLDTIME_BASE
* 10, PBOXTIME_BASE
* 10 },
307 { 1 * GBPS
, HOLDTIME_BASE
, PBOXTIME_BASE
},
308 { 10 * GBPS
, HOLDTIME_BASE
/ 10, PBOXTIME_BASE
/ 10 },
309 { 100 * GBPS
, HOLDTIME_BASE
/ 100, PBOXTIME_BASE
/ 100 },
316 _CASSERT(SFBF_ECN4
== CLASSQF_ECN4
);
317 _CASSERT(SFBF_ECN6
== CLASSQF_ECN6
);
319 sfb_size
= sizeof (struct sfb
);
320 sfb_zone
= zinit(sfb_size
, SFB_ZONE_MAX
* sfb_size
,
322 if (sfb_zone
== NULL
) {
323 panic("%s: failed allocating %s", __func__
, SFB_ZONE_NAME
);
326 zone_change(sfb_zone
, Z_EXPAND
, TRUE
);
327 zone_change(sfb_zone
, Z_CALLERACCT
, TRUE
);
329 sfb_bins_size
= sizeof (*((struct sfb
*)0)->sfb_bins
);
330 sfb_bins_zone
= zinit(sfb_bins_size
, SFB_BINS_ZONE_MAX
* sfb_bins_size
,
331 0, SFB_BINS_ZONE_NAME
);
332 if (sfb_bins_zone
== NULL
) {
333 panic("%s: failed allocating %s", __func__
, SFB_BINS_ZONE_NAME
);
336 zone_change(sfb_bins_zone
, Z_EXPAND
, TRUE
);
337 zone_change(sfb_bins_zone
, Z_CALLERACCT
, TRUE
);
339 sfb_fcl_size
= sizeof (*((struct sfb
*)0)->sfb_fc_lists
);
340 sfb_fcl_zone
= zinit(sfb_fcl_size
, SFB_FCL_ZONE_MAX
* sfb_fcl_size
,
341 0, SFB_FCL_ZONE_NAME
);
342 if (sfb_fcl_zone
== NULL
) {
343 panic("%s: failed allocating %s", __func__
, SFB_FCL_ZONE_NAME
);
346 zone_change(sfb_fcl_zone
, Z_EXPAND
, TRUE
);
347 zone_change(sfb_fcl_zone
, Z_CALLERACCT
, TRUE
);
351 sfb_random(struct sfb
*sp
)
353 IFCQ_CONVERT_LOCK(&sp
->sfb_ifp
->if_snd
);
354 return (RandomULong());
358 sfb_calc_holdtime(struct sfb
*sp
, u_int64_t outbw
)
362 if (sfb_holdtime
!= 0) {
363 holdtime
= sfb_holdtime
;
364 } else if (outbw
== 0) {
365 holdtime
= SFB_RANDOM(sp
, HOLDTIME_MIN
, HOLDTIME_MAX
);
369 n
= sfb_ttbl
[0].holdtime
;
370 for (i
= 0; sfb_ttbl
[i
].speed
!= 0; i
++) {
371 if (outbw
< sfb_ttbl
[i
].speed
)
373 n
= sfb_ttbl
[i
].holdtime
;
377 net_nsectimer(&holdtime
, &sp
->sfb_holdtime
);
381 sfb_calc_pboxtime(struct sfb
*sp
, u_int64_t outbw
)
385 if (sfb_pboxtime
!= 0) {
386 pboxtime
= sfb_pboxtime
;
387 } else if (outbw
== 0) {
388 pboxtime
= SFB_RANDOM(sp
, PBOXTIME_MIN
, PBOXTIME_MAX
);
392 n
= sfb_ttbl
[0].pboxtime
;
393 for (i
= 0; sfb_ttbl
[i
].speed
!= 0; i
++) {
394 if (outbw
< sfb_ttbl
[i
].speed
)
396 n
= sfb_ttbl
[i
].pboxtime
;
400 net_nsectimer(&pboxtime
, &sp
->sfb_pboxtime
);
401 net_timerclear(&sp
->sfb_pboxfreeze
);
405 sfb_calc_hinterval(struct sfb
*sp
, u_int64_t
*t
)
407 u_int64_t hinterval
= 0;
412 * TODO adi@apple.com: use dq_avg to derive hinterval.
417 if (sfb_hinterval
!= 0)
418 hinterval
= sfb_hinterval
;
419 else if (t
== NULL
|| hinterval
== 0)
420 hinterval
= ((u_int64_t
)SFB_HINTERVAL(sp
) * NSEC_PER_SEC
);
422 net_nsectimer(&hinterval
, &sp
->sfb_hinterval
);
425 net_timeradd(&now
, &sp
->sfb_hinterval
, &sp
->sfb_nextreset
);
429 sfb_calc_update_interval(struct sfb
*sp
, u_int64_t out_bw
)
431 #pragma unused(out_bw)
432 u_int64_t update_interval
= 0;
433 ifclassq_calc_update_interval(&update_interval
);
434 net_nsectimer(&update_interval
, &sp
->sfb_update_interval
);
438 * sfb support routines
441 sfb_alloc(struct ifnet
*ifp
, u_int32_t qid
, u_int32_t qlim
, u_int32_t flags
)
446 VERIFY(ifp
!= NULL
&& qlim
> 0);
448 sp
= zalloc(sfb_zone
);
450 log(LOG_ERR
, "%s: SFB unable to allocate\n", if_name(ifp
));
455 if ((sp
->sfb_bins
= zalloc(sfb_bins_zone
)) == NULL
) {
456 log(LOG_ERR
, "%s: SFB unable to allocate bins\n", if_name(ifp
));
460 bzero(sp
->sfb_bins
, sfb_bins_size
);
462 if ((sp
->sfb_fc_lists
= zalloc(sfb_fcl_zone
)) == NULL
) {
463 log(LOG_ERR
, "%s: SFB unable to allocate flow control lists\n",
468 bzero(sp
->sfb_fc_lists
, sfb_fcl_size
);
470 for (i
= 0; i
< SFB_BINS
; ++i
)
471 STAILQ_INIT(&SFB_FC_LIST(sp
, i
)->fclist
);
476 sp
->sfb_flags
= (flags
& SFBF_USERFLAGS
);
478 if (sp
->sfb_flags
& SFBF_ECN
) {
479 sp
->sfb_flags
&= ~SFBF_ECN
;
480 log(LOG_ERR
, "%s: SFB qid=%d, ECN not available; ignoring "
481 "SFBF_ECN flag!\n", if_name(ifp
), sp
->sfb_qid
);
485 sfb_resetq(sp
, CLASSQ_EV_INIT
);
491 sfb_fclist_append(struct sfb
*sp
, struct sfb_fcl
*fcl
)
493 IFCQ_CONVERT_LOCK(&sp
->sfb_ifp
->if_snd
);
494 VERIFY(STAILQ_EMPTY(&fcl
->fclist
) || fcl
->cnt
> 0);
495 sp
->sfb_stats
.flow_feedback
+= fcl
->cnt
;
498 flowadv_add(&fcl
->fclist
);
499 VERIFY(fcl
->cnt
== 0 && STAILQ_EMPTY(&fcl
->fclist
));
503 sfb_fclists_clean(struct sfb
*sp
)
507 /* Move all the flow control entries to the flowadv list */
508 for (i
= 0; i
< SFB_BINS
; ++i
) {
509 struct sfb_fcl
*fcl
= SFB_FC_LIST(sp
, i
);
510 if (!STAILQ_EMPTY(&fcl
->fclist
))
511 sfb_fclist_append(sp
, fcl
);
516 sfb_destroy(struct sfb
*sp
)
518 sfb_fclists_clean(sp
);
519 if (sp
->sfb_bins
!= NULL
) {
520 zfree(sfb_bins_zone
, sp
->sfb_bins
);
523 if (sp
->sfb_fc_lists
!= NULL
) {
524 zfree(sfb_fcl_zone
, sp
->sfb_fc_lists
);
525 sp
->sfb_fc_lists
= NULL
;
531 sfb_resetq(struct sfb
*sp
, cqev_t ev
)
533 struct ifnet
*ifp
= sp
->sfb_ifp
;
538 if (ev
!= CLASSQ_EV_LINK_DOWN
) {
539 (*sp
->sfb_bins
)[0].fudge
= sfb_random(sp
);
540 (*sp
->sfb_bins
)[1].fudge
= sfb_random(sp
);
541 sp
->sfb_allocation
= ((sfb_allocation
== 0) ?
542 (sp
->sfb_qlim
/ 3) : sfb_allocation
);
543 sp
->sfb_drop_thresh
= sp
->sfb_allocation
+
544 (sp
->sfb_allocation
>> 1);
547 sp
->sfb_clearpkts
= 0;
550 eff_rate
= ifnet_output_linkrate(ifp
);
551 sp
->sfb_eff_rate
= eff_rate
;
553 sfb_calc_holdtime(sp
, eff_rate
);
554 sfb_calc_pboxtime(sp
, eff_rate
);
555 sfb_calc_hinterval(sp
, NULL
);
556 ifclassq_calc_target_qdelay(ifp
, &sp
->sfb_target_qdelay
);
557 sfb_calc_update_interval(sp
, eff_rate
);
559 if (ev
== CLASSQ_EV_LINK_DOWN
||
560 ev
== CLASSQ_EV_LINK_UP
)
561 sfb_fclists_clean(sp
);
563 bzero(sp
->sfb_bins
, sizeof (*sp
->sfb_bins
));
564 bzero(&sp
->sfb_stats
, sizeof (sp
->sfb_stats
));
566 if (ev
== CLASSQ_EV_LINK_DOWN
|| !classq_verbose
)
569 log(LOG_DEBUG
, "%s: SFB qid=%d, holdtime=%llu nsec, "
570 "pboxtime=%llu nsec, allocation=%d, drop_thresh=%d, "
571 "hinterval=%d sec, sfb_bins=%d bytes, eff_rate=%llu bps"
572 "target_qdelay= %llu nsec "
573 "update_interval=%llu sec %llu nsec flags=0x%x\n",
574 if_name(ifp
), sp
->sfb_qid
, (u_int64_t
)sp
->sfb_holdtime
.tv_nsec
,
575 (u_int64_t
)sp
->sfb_pboxtime
.tv_nsec
,
576 (u_int32_t
)sp
->sfb_allocation
, (u_int32_t
)sp
->sfb_drop_thresh
,
577 (int)sp
->sfb_hinterval
.tv_sec
, (int)sizeof (*sp
->sfb_bins
),
578 eff_rate
, (u_int64_t
)sp
->sfb_target_qdelay
,
579 (u_int64_t
)sp
->sfb_update_interval
.tv_sec
,
580 (u_int64_t
)sp
->sfb_update_interval
.tv_nsec
, sp
->sfb_flags
);
584 sfb_getstats(struct sfb
*sp
, struct sfb_stats
*sps
)
586 sps
->allocation
= sp
->sfb_allocation
;
587 sps
->dropthresh
= sp
->sfb_drop_thresh
;
588 sps
->clearpkts
= sp
->sfb_clearpkts
;
589 sps
->current
= sp
->sfb_current
;
590 sps
->target_qdelay
= sp
->sfb_target_qdelay
;
591 sps
->min_estdelay
= sp
->sfb_min_qdelay
;
592 sps
->delay_fcthreshold
= sp
->sfb_fc_threshold
;
593 sps
->flags
= sp
->sfb_flags
;
595 net_timernsec(&sp
->sfb_holdtime
, &sp
->sfb_stats
.hold_time
);
596 net_timernsec(&sp
->sfb_pboxtime
, &sp
->sfb_stats
.pbox_time
);
597 net_timernsec(&sp
->sfb_hinterval
, &sp
->sfb_stats
.rehash_intval
);
598 net_timernsec(&sp
->sfb_update_interval
, &sps
->update_interval
);
599 *(&(sps
->sfbstats
)) = *(&(sp
->sfb_stats
));
601 _CASSERT(sizeof ((*sp
->sfb_bins
)[0].stats
) ==
602 sizeof (sps
->binstats
[0].stats
));
604 bcopy(&(*sp
->sfb_bins
)[0].stats
, &sps
->binstats
[0].stats
,
605 sizeof (sps
->binstats
[0].stats
));
606 bcopy(&(*sp
->sfb_bins
)[1].stats
, &sps
->binstats
[1].stats
,
607 sizeof (sps
->binstats
[1].stats
));
611 sfb_swap_bins(struct sfb
*sp
, u_int32_t len
)
615 if (sp
->sfb_flags
& SFBF_SUSPENDED
)
619 VERIFY((s
+ (s
^ 1)) == 1);
621 (*sp
->sfb_bins
)[s
].fudge
= sfb_random(sp
); /* recompute perturbation */
622 sp
->sfb_clearpkts
= len
;
623 sp
->sfb_stats
.num_rehash
++;
625 s
= (sp
->sfb_current
^= 1); /* flip the bit (swap current) */
627 if (classq_verbose
) {
628 log(LOG_DEBUG
, "%s: SFB qid=%d, set %d is now current, "
629 "qlen=%d\n", if_name(sp
->sfb_ifp
), sp
->sfb_qid
, s
, len
);
632 /* clear freezetime for all current bins */
633 bzero(&(*sp
->sfb_bins
)[s
].freezetime
,
634 sizeof ((*sp
->sfb_bins
)[s
].freezetime
));
636 /* clear/adjust bin statistics and flow control lists */
637 for (i
= 0; i
< SFB_BINS
; i
++) {
638 struct sfb_fcl
*fcl
= SFB_FC_LIST(sp
, i
);
640 if (!STAILQ_EMPTY(&fcl
->fclist
))
641 sfb_fclist_append(sp
, fcl
);
643 for (j
= 0; j
< SFB_LEVELS
; j
++) {
644 struct sfbbinstats
*cbin
, *wbin
;
646 cbin
= SFB_BINST(sp
, j
, i
, s
); /* current */
647 wbin
= SFB_BINST(sp
, j
, i
, s
^ 1); /* warm-up */
651 if (cbin
->pmark
> SFB_MAX_PMARK
)
652 cbin
->pmark
= SFB_MAX_PMARK
;
657 * Keep pmark from before to identify
658 * non-responsives immediately.
660 if (wbin
->pmark
> SFB_PMARK_WARM
)
661 wbin
->pmark
= SFB_PMARK_WARM
;
667 sfb_pcheck(struct sfb
*sp
, uint32_t pkt_sfb_hash
)
671 #endif /* SFB_LEVELS != 2 */
672 uint8_t *pkt_sfb_hash8
= (uint8_t *)&pkt_sfb_hash
;
676 VERIFY((s
+ (s
^ 1)) == 1);
679 * For current bins, returns 1 if all pmark >= SFB_PMARK_TH,
680 * 0 otherwise; optimize for SFB_LEVELS=2.
684 * Level 0: bin index at [0] for set 0; [2] for set 1
685 * Level 1: bin index at [1] for set 0; [3] for set 1
687 if (SFB_BINST(sp
, 0, SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1)]),
688 s
)->pmark
< SFB_PMARK_TH
||
689 SFB_BINST(sp
, 1, SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1) + 1]),
690 s
)->pmark
< SFB_PMARK_TH
)
692 #else /* SFB_LEVELS != 2 */
693 for (i
= 0; i
< SFB_LEVELS
; i
++) {
694 if (s
== 0) /* set 0, bin index [0,1] */
695 n
= SFB_BINMASK(pkt_sfb_hash8
[i
]);
696 else /* set 1, bin index [2,3] */
697 n
= SFB_BINMASK(pkt_sfb_hash8
[i
+ 2]);
699 if (SFB_BINST(sp
, i
, n
, s
)->pmark
< SFB_PMARK_TH
)
702 #endif /* SFB_LEVELS != 2 */
707 sfb_penalize(struct sfb
*sp
, uint32_t pkt_sfb_hash
, uint32_t *pkt_sfb_flags
,
708 struct timespec
*now
)
710 struct timespec delta
= { 0, 0 };
711 uint8_t *pkt_sfb_hash8
= (uint8_t *)&pkt_sfb_hash
;
713 /* If minimum pmark of current bins is < SFB_PMARK_TH, we're done */
714 if (!sfb_ratelimit
|| !sfb_pcheck(sp
, pkt_sfb_hash
))
717 net_timersub(now
, &sp
->sfb_pboxfreeze
, &delta
);
718 if (net_timercmp(&delta
, &sp
->sfb_pboxtime
, <)) {
721 #endif /* SFB_LEVELS != 2 */
722 struct sfbbinstats
*bin
;
725 w
= sp
->sfb_current
^ 1;
726 VERIFY((w
+ (w
^ 1)) == 1);
729 * Update warm-up bins; optimize for SFB_LEVELS=2
732 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
733 n
= SFB_BINMASK(pkt_sfb_hash8
[(w
<< 1)]);
734 bin
= SFB_BINST(sp
, 0, n
, w
);
735 if (bin
->pkts
>= sp
->sfb_allocation
)
736 sfb_increment_bin(sp
, bin
, SFB_BINFT(sp
, 0, n
, w
), now
);
738 /* Level 0: bin index at [1] for set 0; [3] for set 1 */
739 n
= SFB_BINMASK(pkt_sfb_hash8
[(w
<< 1) + 1]);
740 bin
= SFB_BINST(sp
, 1, n
, w
);
741 if (bin
->pkts
>= sp
->sfb_allocation
)
742 sfb_increment_bin(sp
, bin
, SFB_BINFT(sp
, 1, n
, w
), now
);
743 #else /* SFB_LEVELS != 2 */
744 for (i
= 0; i
< SFB_LEVELS
; i
++) {
745 if (w
== 0) /* set 0, bin index [0,1] */
746 n
= SFB_BINMASK(pkt_sfb_hash8
[i
]);
747 else /* set 1, bin index [2,3] */
748 n
= SFB_BINMASK(pkt_sfb_hash8
[i
+ 2]);
750 bin
= SFB_BINST(sp
, i
, n
, w
);
751 if (bin
->pkts
>= sp
->sfb_allocation
) {
752 sfb_increment_bin(sp
, bin
,
753 SFB_BINFT(sp
, i
, n
, w
), now
);
756 #endif /* SFB_LEVELS != 2 */
760 /* non-conformant or else misclassified flow; queue it anyway */
761 *pkt_sfb_flags
|= SFB_PKT_PBOX
;
762 *(&sp
->sfb_pboxfreeze
) = *now
;
768 sfb_adjust_bin(struct sfb
*sp
, struct sfbbinstats
*bin
, struct timespec
*ft
,
769 struct timespec
*now
, boolean_t inc
)
771 struct timespec delta
;
773 net_timersub(now
, ft
, &delta
);
774 if (net_timercmp(&delta
, &sp
->sfb_holdtime
, <)) {
775 if (classq_verbose
> 1) {
776 log(LOG_DEBUG
, "%s: SFB qid=%d, %s update frozen "
777 "(delta=%llu nsec)\n", if_name(sp
->sfb_ifp
),
778 sp
->sfb_qid
, inc
? "increment" : "decrement",
779 (u_int64_t
)delta
.tv_nsec
);
784 /* increment/decrement marking probability */
793 sfb_decrement_bin(struct sfb
*sp
, struct sfbbinstats
*bin
, struct timespec
*ft
,
794 struct timespec
*now
)
796 return (sfb_adjust_bin(sp
, bin
, ft
, now
, FALSE
));
800 sfb_increment_bin(struct sfb
*sp
, struct sfbbinstats
*bin
, struct timespec
*ft
,
801 struct timespec
*now
)
803 return (sfb_adjust_bin(sp
, bin
, ft
, now
, TRUE
));
807 sfb_dq_update_bins(struct sfb
*sp
, uint32_t pkt_sfb_hash
, uint32_t pkt_len
,
808 struct timespec
*now
, u_int32_t qsize
)
810 #if SFB_LEVELS != 2 || SFB_FC_LEVEL != 0
812 #endif /* SFB_LEVELS != 2 || SFB_FC_LEVEL != 0 */
813 struct sfbbinstats
*bin
;
815 struct sfb_fcl
*fcl
= NULL
;
816 uint8_t *pkt_sfb_hash8
= (uint8_t *)&pkt_sfb_hash
;
819 VERIFY((s
+ (s
^ 1)) == 1);
822 * Update current bins; optimize for SFB_LEVELS=2 and SFB_FC_LEVEL=0
824 #if SFB_LEVELS == 2 && SFB_FC_LEVEL == 0
825 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
826 n
= SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1)]);
827 bin
= SFB_BINST(sp
, 0, n
, s
);
829 VERIFY(bin
->pkts
> 0 && bin
->bytes
>= pkt_len
);
831 bin
->bytes
-= pkt_len
;
834 sfb_decrement_bin(sp
, bin
, SFB_BINFT(sp
, 0, n
, s
), now
);
836 /* Deliver flow control feedback to the sockets */
837 if (SFB_QUEUE_DELAYBASED(sp
)) {
838 if (!(SFB_IS_DELAYHIGH(sp
)) ||
839 bin
->bytes
<= sp
->sfb_fc_threshold
||
840 bin
->pkts
== 0 || qsize
== 0)
841 fcl
= SFB_FC_LIST(sp
, n
);
842 } else if (bin
->pkts
<= (sp
->sfb_allocation
>> 2)) {
843 fcl
= SFB_FC_LIST(sp
, n
);
846 if (fcl
!= NULL
&& !STAILQ_EMPTY(&fcl
->fclist
))
847 sfb_fclist_append(sp
, fcl
);
850 /* Level 1: bin index at [1] for set 0; [3] for set 1 */
851 n
= SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1) + 1]);
852 bin
= SFB_BINST(sp
, 1, n
, s
);
854 VERIFY(bin
->pkts
> 0 && bin
->bytes
>= (u_int64_t
)pkt_len
);
856 bin
->bytes
-= pkt_len
;
858 sfb_decrement_bin(sp
, bin
, SFB_BINFT(sp
, 1, n
, s
), now
);
859 #else /* SFB_LEVELS != 2 || SFB_FC_LEVEL != 0 */
860 for (i
= 0; i
< SFB_LEVELS
; i
++) {
861 if (s
== 0) /* set 0, bin index [0,1] */
862 n
= SFB_BINMASK(pkt_sfb_hash8
[i
]);
863 else /* set 1, bin index [2,3] */
864 n
= SFB_BINMASK(pkt_sfb_hash8
[i
+ 2]);
866 bin
= SFB_BINST(sp
, i
, n
, s
);
868 VERIFY(bin
->pkts
> 0 && bin
->bytes
>= pkt_len
);
870 bin
->bytes
-= pkt_len
;
872 sfb_decrement_bin(sp
, bin
,
873 SFB_BINFT(sp
, i
, n
, s
), now
);
874 if (i
!= SFB_FC_LEVEL
)
876 if (SFB_QUEUE_DELAYBASED(sp
)) {
877 if (!(SFB_IS_DELAYHIGH(sp
)) ||
878 bin
->bytes
<= sp
->sfb_fc_threshold
)
879 fcl
= SFB_FC_LIST(sp
, n
);
880 } else if (bin
->pkts
<= (sp
->sfb_allocation
>> 2)) {
881 fcl
= SFB_FC_LIST(sp
, n
);
883 if (fcl
!= NULL
&& !STAILQ_EMPTY(&fcl
->fclist
))
884 sfb_fclist_append(sp
, fcl
);
887 #endif /* SFB_LEVELS != 2 || SFB_FC_LEVEL != 0 */
891 sfb_eq_update_bins(struct sfb
*sp
, uint32_t pkt_sfb_hash
, uint32_t pkt_len
)
895 #endif /* SFB_LEVELS != 2 */
897 struct sfbbinstats
*bin
;
898 uint8_t *pkt_sfb_hash8
= (uint8_t *)&pkt_sfb_hash
;
900 VERIFY((s
+ (s
^ 1)) == 1);
903 * Update current bins; optimize for SFB_LEVELS=2
906 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
907 bin
= SFB_BINST(sp
, 0,
908 SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1)]), s
);
910 bin
->bytes
+= pkt_len
;
912 /* Level 1: bin index at [1] for set 0; [3] for set 1 */
913 bin
= SFB_BINST(sp
, 1,
914 SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1) + 1]), s
);
916 bin
->bytes
+= pkt_len
;
918 #else /* SFB_LEVELS != 2 */
919 for (i
= 0; i
< SFB_LEVELS
; i
++) {
920 if (s
== 0) /* set 0, bin index [0,1] */
921 n
= SFB_BINMASK(pkt_sfb_hash8
[i
]);
922 else /* set 1, bin index [2,3] */
923 n
= SFB_BINMASK(pkt_sfb_hash8
[i
+ 2]);
925 bin
= SFB_BINST(sp
, i
, n
, s
);
927 bin
->bytes
+= pkt_len
;
929 #endif /* SFB_LEVELS != 2 */
933 sfb_bin_addfcentry(struct sfb
*sp
, pktsched_pkt_t
*pkt
, uint32_t pkt_sfb_hash
,
934 uint8_t flowsrc
, uint32_t flowid
)
936 struct flowadv_fcentry
*fce
;
939 uint8_t *pkt_sfb_hash8
= (uint8_t *)&pkt_sfb_hash
;
942 VERIFY((s
+ (s
^ 1)) == 1);
945 sp
->sfb_stats
.null_flowid
++;
950 * Use value at index 0 for set 0 and
951 * value at index 2 for set 1
953 fcl
= SFB_FC_LIST(sp
, SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1)]));
954 STAILQ_FOREACH(fce
, &fcl
->fclist
, fce_link
) {
955 if ((uint8_t)fce
->fce_flowsrc_type
== flowsrc
&&
956 fce
->fce_flowid
== flowid
) {
957 /* Already on flow control list; just return */
962 IFCQ_CONVERT_LOCK(&sp
->sfb_ifp
->if_snd
);
963 fce
= pktsched_alloc_fcentry(pkt
, sp
->sfb_ifp
, M_WAITOK
);
965 STAILQ_INSERT_TAIL(&fcl
->fclist
, fce
, fce_link
);
967 sp
->sfb_stats
.flow_controlled
++;
970 return (fce
!= NULL
);
974 * check if this flow needs to be flow-controlled or if this
975 * packet needs to be dropped.
978 sfb_bin_mark_or_drop(struct sfb
*sp
, struct sfbbinstats
*bin
)
981 if (SFB_QUEUE_DELAYBASED(sp
)) {
983 * Mark or drop if this bin has more
984 * bytes than the flowcontrol threshold.
986 if (SFB_IS_DELAYHIGH(sp
) &&
987 bin
->bytes
>= (sp
->sfb_fc_threshold
<< 1))
990 if (bin
->pkts
>= sp
->sfb_allocation
&&
991 bin
->pkts
>= sp
->sfb_drop_thresh
)
992 ret
= 1; /* drop or mark */
998 * early-drop probability is kept in pmark of each bin of the flow
1001 sfb_drop_early(struct sfb
*sp
, uint32_t pkt_sfb_hash
, u_int16_t
*pmin
,
1002 struct timespec
*now
)
1006 #endif /* SFB_LEVELS != 2 */
1007 struct sfbbinstats
*bin
;
1009 uint8_t *pkt_sfb_hash8
= (uint8_t *)&pkt_sfb_hash
;
1011 s
= sp
->sfb_current
;
1012 VERIFY((s
+ (s
^ 1)) == 1);
1014 *pmin
= (u_int16_t
)-1;
1017 * Update current bins; optimize for SFB_LEVELS=2
1020 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
1021 n
= SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1)]);
1022 bin
= SFB_BINST(sp
, 0, n
, s
);
1023 if (*pmin
> (u_int16_t
)bin
->pmark
)
1024 *pmin
= (u_int16_t
)bin
->pmark
;
1027 /* Update SFB probability */
1028 if (bin
->pkts
>= sp
->sfb_allocation
)
1029 sfb_increment_bin(sp
, bin
, SFB_BINFT(sp
, 0, n
, s
), now
);
1031 ret
= sfb_bin_mark_or_drop(sp
, bin
);
1033 /* Level 1: bin index at [1] for set 0; [3] for set 1 */
1034 n
= SFB_BINMASK(pkt_sfb_hash8
[(s
<< 1) + 1]);
1035 bin
= SFB_BINST(sp
, 1, n
, s
);
1036 if (*pmin
> (u_int16_t
)bin
->pmark
)
1037 *pmin
= (u_int16_t
)bin
->pmark
;
1039 if (bin
->pkts
>= sp
->sfb_allocation
)
1040 sfb_increment_bin(sp
, bin
, SFB_BINFT(sp
, 1, n
, s
), now
);
1041 #else /* SFB_LEVELS != 2 */
1042 for (i
= 0; i
< SFB_LEVELS
; i
++) {
1043 if (s
== 0) /* set 0, bin index [0,1] */
1044 n
= SFB_BINMASK(pkt_sfb_hash8
[i
]);
1045 else /* set 1, bin index [2,3] */
1046 n
= SFB_BINMASK(pkt_sfb_hash8
[i
+ 2]);
1048 bin
= SFB_BINST(sp
, i
, n
, s
);
1049 if (*pmin
> (u_int16_t
)bin
->pmark
)
1050 *pmin
= (u_int16_t
)bin
->pmark
;
1052 if (bin
->pkts
>= sp
->sfb_allocation
)
1053 sfb_increment_bin(sp
, bin
,
1054 SFB_BINFT(sp
, i
, n
, s
), now
);
1055 if (i
== SFB_FC_LEVEL
)
1056 ret
= sfb_bin_mark_or_drop(sp
, bin
);
1058 #endif /* SFB_LEVELS != 2 */
1060 if (sp
->sfb_flags
& SFBF_SUSPENDED
)
1061 ret
= 1; /* drop or mark */
1067 sfb_detect_dequeue_stall(struct sfb
*sp
, class_queue_t
*q
,
1068 struct timespec
*now
)
1070 struct timespec max_getqtime
;
1072 if (!SFB_QUEUE_DELAYBASED(sp
) || SFB_IS_DELAYHIGH(sp
) ||
1073 qsize(q
) <= SFB_MIN_FC_THRESHOLD_BYTES
||
1074 !net_timerisset(&sp
->sfb_getqtime
))
1077 net_timeradd(&sp
->sfb_getqtime
, &sp
->sfb_update_interval
,
1079 if (net_timercmp(now
, &max_getqtime
, >)) {
1081 * No packets have been dequeued in an update interval
1082 * worth of time. It means that the queue is stalled
1084 SFB_SET_DELAY_HIGH(sp
, q
);
1085 sp
->sfb_stats
.dequeue_stall
++;
1089 #define DTYPE_NODROP 0 /* no drop */
1090 #define DTYPE_FORCED 1 /* a "forced" drop */
1091 #define DTYPE_EARLY 2 /* an "unforced" (early) drop */
1094 sfb_addq(struct sfb
*sp
, class_queue_t
*q
, pktsched_pkt_t
*pkt
,
1099 #endif /* !PF_ECN */
1100 struct timespec now
;
1104 int ret
= CLASSQEQ_SUCCESS
;
1105 uint32_t maxqsize
= 0;
1106 uint64_t *pkt_timestamp
;
1107 uint32_t *pkt_sfb_hash
;
1108 uint16_t *pkt_sfb_hash16
;
1109 uint32_t *pkt_sfb_flags
;
1110 uint32_t pkt_flowid
;
1111 uint32_t *pkt_flags
;
1112 uint8_t pkt_proto
, pkt_flowsrc
;
1114 s
= sp
->sfb_current
;
1115 VERIFY((s
+ (s
^ 1)) == 1);
1117 pktsched_get_pkt_vars(pkt
, &pkt_flags
, &pkt_timestamp
, &pkt_flowid
,
1118 &pkt_flowsrc
, &pkt_proto
, NULL
);
1119 pkt_sfb_hash
= pktsched_get_pkt_sfb_vars(pkt
, &pkt_sfb_flags
);
1120 pkt_sfb_hash16
= (uint16_t *)pkt_sfb_hash
;
1122 if (pkt
->pktsched_ptype
== QP_MBUF
) {
1123 /* See comments in <rdar://problem/14040693> */
1124 VERIFY(!(*pkt_flags
& PKTF_PRIV_GUARDED
));
1125 *pkt_flags
|= PKTF_PRIV_GUARDED
;
1128 if (*pkt_timestamp
> 0) {
1129 net_nsectimer(pkt_timestamp
, &now
);
1132 net_timernsec(&now
, pkt_timestamp
);
1135 /* time to swap the bins? */
1136 if (net_timercmp(&now
, &sp
->sfb_nextreset
, >=)) {
1137 net_timeradd(&now
, &sp
->sfb_hinterval
, &sp
->sfb_nextreset
);
1138 sfb_swap_bins(sp
, qlen(q
));
1139 s
= sp
->sfb_current
;
1140 VERIFY((s
+ (s
^ 1)) == 1);
1143 if (!net_timerisset(&sp
->sfb_update_time
)) {
1144 net_timeradd(&now
, &sp
->sfb_update_interval
,
1145 &sp
->sfb_update_time
);
1149 * If getq time is not set because this is the first packet
1150 * or after idle time, set it now so that we can detect a stall.
1152 if (qsize(q
) == 0 && !net_timerisset(&sp
->sfb_getqtime
))
1153 *(&sp
->sfb_getqtime
) = *(&now
);
1157 (SFB_HASH(&pkt_flowid
, sizeof (pkt_flowid
),
1158 (*sp
->sfb_bins
)[s
].fudge
) & SFB_HASHMASK
);
1159 pkt_sfb_hash16
[s
^ 1] =
1160 (SFB_HASH(&pkt_flowid
, sizeof (pkt_flowid
),
1161 (*sp
->sfb_bins
)[s
^ 1].fudge
) & SFB_HASHMASK
);
1163 /* check if the queue has been stalled */
1164 sfb_detect_dequeue_stall(sp
, q
, &now
);
1166 /* see if we drop early */
1167 droptype
= DTYPE_NODROP
;
1168 if (sfb_drop_early(sp
, *pkt_sfb_hash
, &pmin
, &now
)) {
1169 /* flow control, mark or drop by sfb */
1170 if ((sp
->sfb_flags
& SFBF_FLOWCTL
) &&
1171 (*pkt_flags
& PKTF_FLOW_ADV
)) {
1173 /* drop all during suspension or for non-TCP */
1174 if ((sp
->sfb_flags
& SFBF_SUSPENDED
) ||
1175 pkt_proto
!= IPPROTO_TCP
) {
1176 droptype
= DTYPE_EARLY
;
1177 sp
->sfb_stats
.drop_early
++;
1181 /* XXX: only supported for mbuf */
1182 else if ((sp
->sfb_flags
& SFBF_ECN
) &&
1183 (pkt
->pktsched_ptype
== QP_MBUF
) &&
1184 (pkt_proto
== IPPROTO_TCP
) && /* only for TCP */
1185 ((sfb_random(sp
) & SFB_MAX_PMARK
) <= pmin
) &&
1186 mark_ecn(m
, t
, sp
->sfb_flags
) &&
1187 !(sp
->sfb_flags
& SFBF_SUSPENDED
)) {
1188 /* successfully marked; do not drop. */
1189 sp
->sfb_stats
.marked_packets
++;
1193 /* unforced drop by sfb */
1194 droptype
= DTYPE_EARLY
;
1195 sp
->sfb_stats
.drop_early
++;
1199 /* non-responsive flow penalty? */
1200 if (droptype
== DTYPE_NODROP
&& sfb_penalize(sp
, *pkt_sfb_hash
,
1201 pkt_sfb_flags
, &now
)) {
1202 droptype
= DTYPE_FORCED
;
1203 sp
->sfb_stats
.drop_pbox
++;
1206 if (SFB_QUEUE_DELAYBASED(sp
))
1207 maxqsize
= SFB_QUEUE_DELAYBASED_MAXSIZE
;
1209 maxqsize
= qlimit(q
);
1212 * When the queue length hits the queue limit, make it a forced
1215 if (droptype
== DTYPE_NODROP
&& qlen(q
) >= maxqsize
) {
1216 if (pkt_proto
== IPPROTO_TCP
&&
1217 qlen(q
) < (maxqsize
+ (maxqsize
>> 1)) &&
1218 ((*pkt_flags
& PKTF_TCP_REXMT
) ||
1219 (sp
->sfb_flags
& SFBF_LAST_PKT_DROPPED
))) {
1221 * At some level, dropping packets will make the
1222 * flows backoff and will keep memory requirements
1223 * under control. But we should not cause a tail
1224 * drop because it can take a long time for a
1225 * TCP flow to recover. We should try to drop
1226 * alternate packets instead.
1228 sp
->sfb_flags
&= ~SFBF_LAST_PKT_DROPPED
;
1230 droptype
= DTYPE_FORCED
;
1231 sp
->sfb_stats
.drop_queue
++;
1232 sp
->sfb_flags
|= SFBF_LAST_PKT_DROPPED
;
1236 if (fc_adv
== 1 && droptype
!= DTYPE_FORCED
&&
1237 sfb_bin_addfcentry(sp
, pkt
, *pkt_sfb_hash
, pkt_flowsrc
,
1239 /* deliver flow control advisory error */
1240 if (droptype
== DTYPE_NODROP
) {
1241 ret
= CLASSQEQ_SUCCESS_FC
;
1242 VERIFY(!(sp
->sfb_flags
& SFBF_SUSPENDED
));
1243 } else if (sp
->sfb_flags
& SFBF_SUSPENDED
) {
1244 /* drop due to suspension */
1245 ret
= CLASSQEQ_DROP_SP
;
1247 /* drop due to flow-control */
1248 ret
= CLASSQEQ_DROP_FC
;
1251 /* if successful enqueue this packet, else drop it */
1252 if (droptype
== DTYPE_NODROP
) {
1253 VERIFY(pkt
->pktsched_ptype
== qptype(q
));
1254 _addq(q
, pkt
->pktsched_pkt
);
1256 IFCQ_CONVERT_LOCK(&sp
->sfb_ifp
->if_snd
);
1257 return ((ret
!= CLASSQEQ_SUCCESS
) ? ret
: CLASSQEQ_DROP
);
1260 if (!(*pkt_sfb_flags
& SFB_PKT_PBOX
))
1261 sfb_eq_update_bins(sp
, *pkt_sfb_hash
,
1262 pktsched_get_pkt_len(pkt
));
1264 sp
->sfb_stats
.pbox_packets
++;
1266 /* successfully queued */
1271 sfb_getq_flow(struct sfb
*sp
, class_queue_t
*q
, u_int32_t flow
, boolean_t purge
,
1272 pktsched_pkt_t
*pkt
)
1274 struct timespec now
;
1275 classq_pkt_type_t ptype
;
1276 uint64_t *pkt_timestamp
;
1277 uint32_t *pkt_flags
;
1278 uint32_t *pkt_sfb_flags
;
1279 uint32_t *pkt_sfb_hash
;
1282 if (!purge
&& (sp
->sfb_flags
& SFBF_SUSPENDED
))
1287 /* flow of 0 means head of queue */
1288 if ((p
= ((flow
== 0) ? _getq(q
) : _getq_flow(q
, flow
))) == NULL
) {
1290 net_timerclear(&sp
->sfb_getqtime
);
1295 pktsched_pkt_encap(pkt
, ptype
, p
);
1296 pktsched_get_pkt_vars(pkt
, &pkt_flags
, &pkt_timestamp
, NULL
,
1298 pkt_sfb_hash
= pktsched_get_pkt_sfb_vars(pkt
, &pkt_sfb_flags
);
1300 /* See comments in <rdar://problem/14040693> */
1301 if (ptype
== QP_MBUF
)
1302 VERIFY(*pkt_flags
& PKTF_PRIV_GUARDED
);
1305 /* calculate EWMA of dequeues */
1306 if (net_timerisset(&sp
->sfb_getqtime
)) {
1307 struct timespec delta
;
1309 net_timersub(&now
, &sp
->sfb_getqtime
, &delta
);
1310 net_timernsec(&delta
, &new);
1311 avg
= sp
->sfb_stats
.dequeue_avg
;
1313 int decay
= DEQUEUE_DECAY
;
1315 * If the time since last dequeue is
1316 * significantly greater than the current
1317 * average, weigh the average more against
1320 if (DEQUEUE_SPIKE(new, avg
))
1322 avg
= (((avg
<< decay
) - avg
) + new) >> decay
;
1326 sp
->sfb_stats
.dequeue_avg
= avg
;
1328 *(&sp
->sfb_getqtime
) = *(&now
);
1331 if (!purge
&& SFB_QUEUE_DELAYBASED(sp
)) {
1332 u_int64_t dequeue_ns
, queue_delay
= 0;
1333 net_timernsec(&now
, &dequeue_ns
);
1334 if (dequeue_ns
> *pkt_timestamp
)
1335 queue_delay
= dequeue_ns
- *pkt_timestamp
;
1337 if (sp
->sfb_min_qdelay
== 0 ||
1338 (queue_delay
> 0 && queue_delay
< sp
->sfb_min_qdelay
))
1339 sp
->sfb_min_qdelay
= queue_delay
;
1340 if (net_timercmp(&now
, &sp
->sfb_update_time
, >=)) {
1341 if (sp
->sfb_min_qdelay
> sp
->sfb_target_qdelay
) {
1342 if (!SFB_IS_DELAYHIGH(sp
))
1343 SFB_SET_DELAY_HIGH(sp
, q
);
1345 sp
->sfb_flags
&= ~(SFBF_DELAYHIGH
);
1346 sp
->sfb_fc_threshold
= 0;
1349 net_timeradd(&now
, &sp
->sfb_update_interval
,
1350 &sp
->sfb_update_time
);
1351 sp
->sfb_min_qdelay
= 0;
1357 * Clearpkts are the ones which were in the queue when the hash
1358 * function was perturbed. Since the perturbation value (fudge),
1359 * and thus bin information for these packets is not known, we do
1360 * not change accounting information while dequeuing these packets.
1361 * It is important not to set the hash interval too small due to
1362 * this reason. A rule of thumb is to set it to K*D, where D is
1363 * the time taken to drain queue.
1365 if (*pkt_sfb_flags
& SFB_PKT_PBOX
) {
1366 *pkt_sfb_flags
&= ~SFB_PKT_PBOX
;
1367 if (sp
->sfb_clearpkts
> 0)
1368 sp
->sfb_clearpkts
--;
1369 } else if (sp
->sfb_clearpkts
> 0) {
1370 sp
->sfb_clearpkts
--;
1372 sfb_dq_update_bins(sp
, *pkt_sfb_hash
, pktsched_get_pkt_len(pkt
),
1376 /* See comments in <rdar://problem/14040693> */
1377 if (ptype
== QP_MBUF
)
1378 *pkt_flags
&= ~PKTF_PRIV_GUARDED
;
1381 * If the queue becomes empty before the update interval, reset
1382 * the flow control threshold
1384 if (qsize(q
) == 0) {
1385 sp
->sfb_flags
&= ~SFBF_DELAYHIGH
;
1386 sp
->sfb_min_qdelay
= 0;
1387 sp
->sfb_fc_threshold
= 0;
1388 net_timerclear(&sp
->sfb_update_time
);
1389 net_timerclear(&sp
->sfb_getqtime
);
1395 sfb_getq(struct sfb
*sp
, class_queue_t
*q
, pktsched_pkt_t
*pkt
)
1397 sfb_getq_flow(sp
, q
, 0, FALSE
, pkt
);
1401 sfb_purgeq(struct sfb
*sp
, class_queue_t
*q
, u_int32_t flow
, u_int32_t
*packets
,
1404 u_int32_t cnt
= 0, len
= 0;
1407 IFCQ_CONVERT_LOCK(&sp
->sfb_ifp
->if_snd
);
1408 while (sfb_getq_flow(sp
, q
, flow
, TRUE
, &pkt
) != NULL
) {
1410 len
+= pktsched_get_pkt_len(&pkt
);
1411 pktsched_free_pkt(&pkt
);
1414 if (packets
!= NULL
)
1421 sfb_updateq(struct sfb
*sp
, cqev_t ev
)
1423 struct ifnet
*ifp
= sp
->sfb_ifp
;
1425 VERIFY(ifp
!= NULL
);
1428 case CLASSQ_EV_LINK_BANDWIDTH
: {
1429 u_int64_t eff_rate
= ifnet_output_linkrate(ifp
);
1431 /* update parameters only if rate has changed */
1432 if (eff_rate
== sp
->sfb_eff_rate
)
1435 if (classq_verbose
) {
1436 log(LOG_DEBUG
, "%s: SFB qid=%d, adapting to new "
1437 "eff_rate=%llu bps\n", if_name(ifp
), sp
->sfb_qid
,
1440 sfb_calc_holdtime(sp
, eff_rate
);
1441 sfb_calc_pboxtime(sp
, eff_rate
);
1442 ifclassq_calc_target_qdelay(ifp
, &sp
->sfb_target_qdelay
);
1443 sfb_calc_update_interval(sp
, eff_rate
);
1447 case CLASSQ_EV_LINK_UP
:
1448 case CLASSQ_EV_LINK_DOWN
:
1449 if (classq_verbose
) {
1450 log(LOG_DEBUG
, "%s: SFB qid=%d, resetting due to "
1451 "link %s\n", if_name(ifp
), sp
->sfb_qid
,
1452 (ev
== CLASSQ_EV_LINK_UP
) ? "UP" : "DOWN");
1457 case CLASSQ_EV_LINK_LATENCY
:
1458 case CLASSQ_EV_LINK_MTU
:
1465 sfb_suspendq(struct sfb
*sp
, class_queue_t
*q
, boolean_t on
)
1468 struct ifnet
*ifp
= sp
->sfb_ifp
;
1470 VERIFY(ifp
!= NULL
);
1472 if ((on
&& (sp
->sfb_flags
& SFBF_SUSPENDED
)) ||
1473 (!on
&& !(sp
->sfb_flags
& SFBF_SUSPENDED
)))
1476 if (!(sp
->sfb_flags
& SFBF_FLOWCTL
)) {
1477 log(LOG_ERR
, "%s: SFB qid=%d, unable to %s queue since "
1478 "flow-control is not enabled", if_name(ifp
), sp
->sfb_qid
,
1479 (on
? "suspend" : "resume"));
1483 if (classq_verbose
) {
1484 log(LOG_DEBUG
, "%s: SFB qid=%d, setting state to %s",
1485 if_name(ifp
), sp
->sfb_qid
, (on
? "SUSPENDED" : "RUNNING"));
1489 sp
->sfb_flags
|= SFBF_SUSPENDED
;
1491 sp
->sfb_flags
&= ~SFBF_SUSPENDED
;
1492 sfb_swap_bins(sp
, qlen(q
));