2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/resourcevar.h>
72 #include <sys/kernel.h>
73 #include <sys/systm.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/vnode.h>
80 #include <sys/mount_internal.h>
81 #include <sys/sysproto.h>
82 #include <sys/signalvar.h>
83 #include <sys/protosw.h> /* for net_uptime2timeval() */
85 #include <kern/clock.h>
86 #include <kern/task.h>
87 #include <kern/thread_call.h>
89 #include <security/mac_framework.h>
91 #include <IOKit/IOBSD.h>
94 #define HZ 100 /* XXX */
96 /* simple lock used to access timezone, tz structure */
97 lck_spin_t
* tz_slock
;
98 lck_grp_t
* tz_slock_grp
;
99 lck_attr_t
* tz_slock_attr
;
100 lck_grp_attr_t
*tz_slock_grp_attr
;
102 static void setthetime(
105 void time_zone_slock_init(void);
108 * Time of day and interval timer support.
110 * These routines provide the kernel entry points to get and set
111 * the time-of-day and per-process interval timers. Subroutines
112 * here provide support for adding and subtracting timeval structures
113 * and decrementing interval timers, optionally reloading the interval
114 * timers when they expire.
120 struct gettimeofday_args
*uap
,
121 __unused
int32_t *retval
)
124 struct timezone ltz
; /* local copy */
129 if (uap
->tp
|| uap
->mach_absolute_time
) {
130 clock_gettimeofday_and_absolute_time(&secs
, &usecs
, &mach_time
);
134 /* Casting secs through a uint32_t to match arm64 commpage */
135 if (IS_64BIT_PROCESS(p
)) {
136 struct user64_timeval user_atv
= {};
137 user_atv
.tv_sec
= (uint32_t)secs
;
138 user_atv
.tv_usec
= usecs
;
139 error
= copyout(&user_atv
, uap
->tp
, sizeof(user_atv
));
141 struct user32_timeval user_atv
= {};
142 user_atv
.tv_sec
= (uint32_t)secs
;
143 user_atv
.tv_usec
= usecs
;
144 error
= copyout(&user_atv
, uap
->tp
, sizeof(user_atv
));
152 lck_spin_lock(tz_slock
);
154 lck_spin_unlock(tz_slock
);
156 error
= copyout((caddr_t
)<z
, CAST_USER_ADDR_T(uap
->tzp
), sizeof(tz
));
159 if (error
== 0 && uap
->mach_absolute_time
) {
160 error
= copyout(&mach_time
, uap
->mach_absolute_time
, sizeof(mach_time
));
167 * XXX Y2038 bug because of setthetime() argument
171 settimeofday(__unused
struct proc
*p
, struct settimeofday_args
*uap
, __unused
int32_t *retval
)
177 bzero(&atv
, sizeof(atv
));
179 /* Check that this task is entitled to set the time or it is root */
180 if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT
)) {
183 error
= mac_system_check_settime(kauth_cred_get());
187 #ifndef CONFIG_EMBEDDED
188 if ((error
= suser(kauth_cred_get(), &p
->p_acflag
)))
193 /* Verify all parameters before changing time */
195 if (IS_64BIT_PROCESS(p
)) {
196 struct user64_timeval user_atv
;
197 error
= copyin(uap
->tv
, &user_atv
, sizeof(user_atv
));
198 atv
.tv_sec
= user_atv
.tv_sec
;
199 atv
.tv_usec
= user_atv
.tv_usec
;
201 struct user32_timeval user_atv
;
202 error
= copyin(uap
->tv
, &user_atv
, sizeof(user_atv
));
203 atv
.tv_sec
= user_atv
.tv_sec
;
204 atv
.tv_usec
= user_atv
.tv_usec
;
209 if (uap
->tzp
&& (error
= copyin(uap
->tzp
, (caddr_t
)&atz
, sizeof(atz
))))
213 if (atv
.tv_sec
< 0 || (atv
.tv_sec
== 0 && atv
.tv_usec
< 0))
218 lck_spin_lock(tz_slock
);
220 lck_spin_unlock(tz_slock
);
229 clock_set_calendar_microtime(tv
->tv_sec
, tv
->tv_usec
);
233 * Verify the calendar value. If negative,
234 * reset to zero (the epoch).
238 __unused
time_t base
)
244 * The calendar has already been
245 * set up from the platform clock.
247 * The value returned by microtime()
248 * is gotten from the calendar.
252 if (tv
.tv_sec
< 0 || tv
.tv_usec
< 0) {
253 printf ("WARNING: preposterous time in Real Time Clock");
254 tv
.tv_sec
= 0; /* the UNIX epoch */
257 printf(" -- CHECK AND RESET THE DATE!\n");
265 clock_nsec_t nanosecs
;
267 clock_get_boottime_nanotime(&secs
, &nanosecs
);
272 boottime_timeval(struct timeval
*tv
)
275 clock_usec_t microsecs
;
277 clock_get_boottime_microtime(&secs
, µsecs
);
280 tv
->tv_usec
= microsecs
;
284 * Get value of an interval timer. The process virtual and
285 * profiling virtual time timers are kept internally in the
286 * way they are specified externally: in time until they expire.
288 * The real time interval timer expiration time (p_rtime)
289 * is kept as an absolute time rather than as a delta, so that
290 * it is easy to keep periodic real-time signals from drifting.
292 * The real time timer is processed by a callout routine.
293 * Since a callout may be delayed in real time due to
294 * other processing in the system, it is possible for the real
295 * time callout routine (realitexpire, given below), to be delayed
296 * in real time past when it is supposed to occur. It does not
297 * suffice, therefore, to reload the real time .it_value from the
298 * real time .it_interval. Rather, we compute the next time in
299 * absolute time when the timer should go off.
302 * EINVAL Invalid argument
303 * copyout:EFAULT Bad address
307 getitimer(struct proc
*p
, struct getitimer_args
*uap
, __unused
int32_t *retval
)
309 struct itimerval aitv
;
311 if (uap
->which
> ITIMER_PROF
)
314 bzero(&aitv
, sizeof(aitv
));
317 switch (uap
->which
) {
321 * If time for real time timer has passed return 0,
322 * else return difference between current time and
323 * time for the timer to go off.
325 aitv
= p
->p_realtimer
;
326 if (timerisset(&p
->p_rtime
)) {
330 if (timercmp(&p
->p_rtime
, &now
, <))
331 timerclear(&aitv
.it_value
);
333 aitv
.it_value
= p
->p_rtime
;
334 timevalsub(&aitv
.it_value
, &now
);
338 timerclear(&aitv
.it_value
);
342 aitv
= p
->p_vtimer_user
;
346 aitv
= p
->p_vtimer_prof
;
352 if (IS_64BIT_PROCESS(p
)) {
353 struct user64_itimerval user_itv
;
354 bzero(&user_itv
, sizeof (user_itv
));
355 user_itv
.it_interval
.tv_sec
= aitv
.it_interval
.tv_sec
;
356 user_itv
.it_interval
.tv_usec
= aitv
.it_interval
.tv_usec
;
357 user_itv
.it_value
.tv_sec
= aitv
.it_value
.tv_sec
;
358 user_itv
.it_value
.tv_usec
= aitv
.it_value
.tv_usec
;
359 return (copyout((caddr_t
)&user_itv
, uap
->itv
, sizeof (user_itv
)));
361 struct user32_itimerval user_itv
;
362 bzero(&user_itv
, sizeof (user_itv
));
363 user_itv
.it_interval
.tv_sec
= aitv
.it_interval
.tv_sec
;
364 user_itv
.it_interval
.tv_usec
= aitv
.it_interval
.tv_usec
;
365 user_itv
.it_value
.tv_sec
= aitv
.it_value
.tv_sec
;
366 user_itv
.it_value
.tv_usec
= aitv
.it_value
.tv_usec
;
367 return (copyout((caddr_t
)&user_itv
, uap
->itv
, sizeof (user_itv
)));
373 * EINVAL Invalid argument
374 * copyin:EFAULT Bad address
375 * getitimer:EINVAL Invalid argument
376 * getitimer:EFAULT Bad address
380 setitimer(struct proc
*p
, struct setitimer_args
*uap
, int32_t *retval
)
382 struct itimerval aitv
;
386 bzero(&aitv
, sizeof(aitv
));
388 if (uap
->which
> ITIMER_PROF
)
390 if ((itvp
= uap
->itv
)) {
391 if (IS_64BIT_PROCESS(p
)) {
392 struct user64_itimerval user_itv
;
393 if ((error
= copyin(itvp
, (caddr_t
)&user_itv
, sizeof (user_itv
))))
395 aitv
.it_interval
.tv_sec
= user_itv
.it_interval
.tv_sec
;
396 aitv
.it_interval
.tv_usec
= user_itv
.it_interval
.tv_usec
;
397 aitv
.it_value
.tv_sec
= user_itv
.it_value
.tv_sec
;
398 aitv
.it_value
.tv_usec
= user_itv
.it_value
.tv_usec
;
400 struct user32_itimerval user_itv
;
401 if ((error
= copyin(itvp
, (caddr_t
)&user_itv
, sizeof (user_itv
))))
403 aitv
.it_interval
.tv_sec
= user_itv
.it_interval
.tv_sec
;
404 aitv
.it_interval
.tv_usec
= user_itv
.it_interval
.tv_usec
;
405 aitv
.it_value
.tv_sec
= user_itv
.it_value
.tv_sec
;
406 aitv
.it_value
.tv_usec
= user_itv
.it_value
.tv_usec
;
409 if ((uap
->itv
= uap
->oitv
) && (error
= getitimer(p
, (struct getitimer_args
*)uap
, retval
)))
413 if (itimerfix(&aitv
.it_value
) || itimerfix(&aitv
.it_interval
))
416 switch (uap
->which
) {
420 if (timerisset(&aitv
.it_value
)) {
421 microuptime(&p
->p_rtime
);
422 timevaladd(&p
->p_rtime
, &aitv
.it_value
);
423 p
->p_realtimer
= aitv
;
424 if (!thread_call_enter_delayed_with_leeway(p
->p_rcall
, NULL
,
425 tvtoabstime(&p
->p_rtime
), 0, THREAD_CALL_DELAY_USER_NORMAL
))
428 timerclear(&p
->p_rtime
);
429 p
->p_realtimer
= aitv
;
430 if (thread_call_cancel(p
->p_rcall
))
439 if (timerisset(&aitv
.it_value
))
440 task_vtimer_set(p
->task
, TASK_VTIMER_USER
);
442 task_vtimer_clear(p
->task
, TASK_VTIMER_USER
);
445 p
->p_vtimer_user
= aitv
;
450 if (timerisset(&aitv
.it_value
))
451 task_vtimer_set(p
->task
, TASK_VTIMER_PROF
);
453 task_vtimer_clear(p
->task
, TASK_VTIMER_PROF
);
456 p
->p_vtimer_prof
= aitv
;
465 * Real interval timer expired:
466 * send process whose timer expired an alarm signal.
467 * If time is not set up to reload, then just return.
468 * Else compute next time timer should go off which is > current time.
469 * This is where delay in processing this timeout causes multiple
470 * SIGALRM calls to be compressed into one.
479 r
= proc_find(p
->p_pid
);
483 assert(p
->p_ractive
> 0);
485 if (--p
->p_ractive
> 0 || r
!= p
) {
487 * bail, because either proc is exiting
488 * or there's another active thread call
497 if (!timerisset(&p
->p_realtimer
.it_interval
)) {
499 * p_realtimer was cleared while this call was pending,
500 * send one last SIGALRM, but don't re-arm
502 timerclear(&p
->p_rtime
);
513 * Send the signal before re-arming the next thread call,
514 * so in case psignal blocks, we won't create yet another thread call.
521 /* Should we still re-arm the next thread call? */
522 if (!timerisset(&p
->p_realtimer
.it_interval
)) {
523 timerclear(&p
->p_rtime
);
531 timevaladd(&p
->p_rtime
, &p
->p_realtimer
.it_interval
);
533 if (timercmp(&p
->p_rtime
, &t
, <=)) {
534 if ((p
->p_rtime
.tv_sec
+ 2) >= t
.tv_sec
) {
536 timevaladd(&p
->p_rtime
, &p
->p_realtimer
.it_interval
);
537 if (timercmp(&p
->p_rtime
, &t
, >))
541 p
->p_rtime
= p
->p_realtimer
.it_interval
;
542 timevaladd(&p
->p_rtime
, &t
);
546 assert(p
->p_rcall
!= NULL
);
548 if (!thread_call_enter_delayed_with_leeway(p
->p_rcall
, NULL
, tvtoabstime(&p
->p_rtime
), 0,
549 THREAD_CALL_DELAY_USER_NORMAL
)) {
559 * Called once in proc_exit to clean up after an armed or pending realitexpire
561 * This will only be called after the proc refcount is drained,
562 * so realitexpire cannot be currently holding a proc ref.
563 * i.e. it will/has gotten PROC_NULL from proc_find.
566 proc_free_realitimer(proc_t p
)
570 assert(p
->p_rcall
!= NULL
);
571 assert(p
->p_refcount
== 0);
573 timerclear(&p
->p_realtimer
.it_interval
);
575 if (thread_call_cancel(p
->p_rcall
)) {
576 assert(p
->p_ractive
> 0);
580 while (p
->p_ractive
> 0) {
588 thread_call_t call
= p
->p_rcall
;
593 thread_call_free(call
);
597 * Check that a proposed value to load into the .it_value or
598 * .it_interval part of an interval timer is acceptable.
605 if (tv
->tv_sec
< 0 || tv
->tv_sec
> 100000000 ||
606 tv
->tv_usec
< 0 || tv
->tv_usec
>= 1000000)
612 timespec_is_valid(const struct timespec
*ts
)
614 /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions
615 * which accept 32-bit ints. */
616 if (ts
->tv_sec
< 0 || ts
->tv_sec
> INT32_MAX
||
617 ts
->tv_nsec
< 0 || (unsigned long long)ts
->tv_nsec
> NSEC_PER_SEC
) {
624 * Decrement an interval timer by a specified number
625 * of microseconds, which must be less than a second,
626 * i.e. < 1000000. If the timer expires, then reload
627 * it. In this case, carry over (usec - old value) to
628 * reduce the value reloaded into the timer so that
629 * the timer does not drift. This routine assumes
630 * that it is called in a context where the timers
631 * on which it is operating cannot change in value.
635 struct itimerval
*itp
, int usec
)
640 if (itp
->it_value
.tv_usec
< usec
) {
641 if (itp
->it_value
.tv_sec
== 0) {
642 /* expired, and already in next interval */
643 usec
-= itp
->it_value
.tv_usec
;
646 itp
->it_value
.tv_usec
+= 1000000;
647 itp
->it_value
.tv_sec
--;
649 itp
->it_value
.tv_usec
-= usec
;
651 if (timerisset(&itp
->it_value
)) {
655 /* expired, exactly at end of interval */
657 if (timerisset(&itp
->it_interval
)) {
658 itp
->it_value
= itp
->it_interval
;
659 if (itp
->it_value
.tv_sec
> 0) {
660 itp
->it_value
.tv_usec
-= usec
;
661 if (itp
->it_value
.tv_usec
< 0) {
662 itp
->it_value
.tv_usec
+= 1000000;
663 itp
->it_value
.tv_sec
--;
667 itp
->it_value
.tv_usec
= 0; /* sec is already 0 */
673 * Add and subtract routines for timevals.
674 * N.B.: subtract routine doesn't deal with
675 * results which are before the beginning,
676 * it just gets very confused in this case.
685 t1
->tv_sec
+= t2
->tv_sec
;
686 t1
->tv_usec
+= t2
->tv_usec
;
695 t1
->tv_sec
-= t2
->tv_sec
;
696 t1
->tv_usec
-= t2
->tv_usec
;
704 if (t1
->tv_usec
< 0) {
706 t1
->tv_usec
+= 1000000;
708 if (t1
->tv_usec
>= 1000000) {
710 t1
->tv_usec
-= 1000000;
715 * Return the best possible estimate of the time in the timeval
716 * to which tvp points.
723 clock_usec_t tv_usec
;
725 clock_get_calendar_microtime(&tv_sec
, &tv_usec
);
727 tvp
->tv_sec
= tv_sec
;
728 tvp
->tv_usec
= tv_usec
;
732 microtime_with_abstime(
733 struct timeval
*tvp
, uint64_t *abstime
)
736 clock_usec_t tv_usec
;
738 clock_get_calendar_absolute_and_microtime(&tv_sec
, &tv_usec
, abstime
);
740 tvp
->tv_sec
= tv_sec
;
741 tvp
->tv_usec
= tv_usec
;
749 clock_usec_t tv_usec
;
751 clock_get_system_microtime(&tv_sec
, &tv_usec
);
753 tvp
->tv_sec
= tv_sec
;
754 tvp
->tv_usec
= tv_usec
;
758 * Ditto for timespec.
762 struct timespec
*tsp
)
765 clock_nsec_t tv_nsec
;
767 clock_get_calendar_nanotime(&tv_sec
, &tv_nsec
);
769 tsp
->tv_sec
= tv_sec
;
770 tsp
->tv_nsec
= tv_nsec
;
775 struct timespec
*tsp
)
778 clock_nsec_t tv_nsec
;
780 clock_get_system_nanotime(&tv_sec
, &tv_nsec
);
782 tsp
->tv_sec
= tv_sec
;
783 tsp
->tv_nsec
= tv_nsec
;
790 uint64_t result
, usresult
;
792 clock_interval_to_absolutetime_interval(
793 tvp
->tv_sec
, NSEC_PER_SEC
, &result
);
794 clock_interval_to_absolutetime_interval(
795 tvp
->tv_usec
, NSEC_PER_USEC
, &usresult
);
797 return (result
+ usresult
);
801 tstoabstime(struct timespec
*ts
)
803 uint64_t abstime_s
, abstime_ns
;
804 clock_interval_to_absolutetime_interval(ts
->tv_sec
, NSEC_PER_SEC
, &abstime_s
);
805 clock_interval_to_absolutetime_interval(ts
->tv_nsec
, 1, &abstime_ns
);
806 return abstime_s
+ abstime_ns
;
811 * ratecheck(): simple time-based rate-limit checking.
814 ratecheck(struct timeval
*lasttime
, const struct timeval
*mininterval
)
816 struct timeval tv
, delta
;
819 net_uptime2timeval(&tv
);
821 timevalsub(&delta
, lasttime
);
824 * check for 0,0 is so that the message will be seen at least once,
825 * even if interval is huge.
827 if (timevalcmp(&delta
, mininterval
, >=) ||
828 (lasttime
->tv_sec
== 0 && lasttime
->tv_usec
== 0)) {
837 * ppsratecheck(): packets (or events) per second limitation.
840 ppsratecheck(struct timeval
*lasttime
, int *curpps
, int maxpps
)
842 struct timeval tv
, delta
;
845 net_uptime2timeval(&tv
);
847 timersub(&tv
, lasttime
, &delta
);
850 * Check for 0,0 so that the message will be seen at least once.
851 * If more than one second has passed since the last update of
852 * lasttime, reset the counter.
854 * we do increment *curpps even in *curpps < maxpps case, as some may
855 * try to use *curpps for stat purposes as well.
857 if ((lasttime
->tv_sec
== 0 && lasttime
->tv_usec
== 0) ||
862 } else if (maxpps
< 0)
864 else if (*curpps
< maxpps
)
869 #if 1 /* DIAGNOSTIC? */
870 /* be careful about wrap-around */
872 *curpps
= *curpps
+ 1;
875 * assume that there's not too many calls to this function.
876 * not sure if the assumption holds, as it depends on *caller's*
877 * behavior, not the behavior of this function.
878 * IMHO it is wrong to make assumption on the caller's behavior,
879 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
881 *curpps
= *curpps
+ 1;
886 #endif /* NETWORKING */
889 time_zone_slock_init(void)
891 /* allocate lock group attribute and group */
892 tz_slock_grp_attr
= lck_grp_attr_alloc_init();
894 tz_slock_grp
= lck_grp_alloc_init("tzlock", tz_slock_grp_attr
);
896 /* Allocate lock attribute */
897 tz_slock_attr
= lck_attr_alloc_init();
899 /* Allocate the spin lock */
900 tz_slock
= lck_spin_alloc_init(tz_slock_grp
, tz_slock_attr
);