4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Portions Copyright (c) 2013, 2016, Joyent, Inc. All rights reserved.
24 * Portions Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
32 /* #pragma ident "@(#)dtrace.c 1.65 08/07/02 SMI" */
35 * DTrace - Dynamic Tracing for Solaris
37 * This is the implementation of the Solaris Dynamic Tracing framework
38 * (DTrace). The user-visible interface to DTrace is described at length in
39 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
40 * library, the in-kernel DTrace framework, and the DTrace providers are
41 * described in the block comments in the <sys/dtrace.h> header file. The
42 * internal architecture of DTrace is described in the block comments in the
43 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
44 * implementation very much assume mastery of all of these sources; if one has
45 * an unanswered question about the implementation, one should consult them
48 * The functions here are ordered roughly as follows:
50 * - Probe context functions
51 * - Probe hashing functions
52 * - Non-probe context utility functions
53 * - Matching functions
54 * - Provider-to-Framework API functions
55 * - Probe management functions
56 * - DIF object functions
58 * - Predicate functions
61 * - Enabling functions
63 * - Anonymous enabling functions
65 * - Consumer state functions
68 * - Driver cookbook functions
70 * Each group of functions begins with a block comment labelled the "DTrace
71 * [Group] Functions", allowing one to find each block by searching forward
72 * on capital-f functions.
74 #include <sys/errno.h>
75 #include <sys/types.h>
78 #include <sys/systm.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/param.h>
81 #include <sys/proc_internal.h>
82 #include <sys/ioctl.h>
83 #include <sys/fcntl.h>
84 #include <miscfs/devfs/devfs.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel_types.h>
87 #include <sys/proc_internal.h>
88 #include <sys/uio_internal.h>
89 #include <sys/kauth.h>
92 #include <mach/exception_types.h>
93 #include <sys/signalvar.h>
94 #include <mach/task.h>
95 #include <kern/zalloc.h>
97 #include <kern/sched_prim.h>
98 #include <kern/task.h>
99 #include <netinet/in.h>
100 #include <libkern/sysctl.h>
101 #include <sys/kdebug.h>
104 #include <kern/monotonic.h>
105 #include <machine/monotonic.h>
106 #endif /* MONOTONIC */
108 #include <kern/cpu_data.h>
109 extern uint32_t pmap_find_phys(void *, uint64_t);
110 extern boolean_t
pmap_valid_page(uint32_t);
111 extern void OSKextRegisterKextsWithDTrace(void);
112 extern kmod_info_t g_kernel_kmod_info
;
114 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
115 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
117 #define t_predcache t_dtrace_predcache /* Cosmetic. Helps readability of thread.h */
119 extern void dtrace_suspend(void);
120 extern void dtrace_resume(void);
121 extern void dtrace_init(void);
122 extern void helper_init(void);
123 extern void fasttrap_init(void);
125 static int dtrace_lazy_dofs_duplicate(proc_t
*, proc_t
*);
126 extern void dtrace_lazy_dofs_destroy(proc_t
*);
127 extern void dtrace_postinit(void);
129 extern void dtrace_proc_fork(proc_t
*, proc_t
*, int);
130 extern void dtrace_proc_exec(proc_t
*);
131 extern void dtrace_proc_exit(proc_t
*);
133 * DTrace Tunable Variables
135 * The following variables may be dynamically tuned by using sysctl(8), the
136 * variables being stored in the kern.dtrace namespace. For example:
137 * sysctl kern.dtrace.dof_maxsize = 1048575 # 1M
139 * In general, the only variables that one should be tuning this way are those
140 * that affect system-wide DTrace behavior, and for which the default behavior
141 * is undesirable. Most of these variables are tunable on a per-consumer
142 * basis using DTrace options, and need not be tuned on a system-wide basis.
143 * When tuning these variables, avoid pathological values; while some attempt
144 * is made to verify the integrity of these variables, they are not considered
145 * part of the supported interface to DTrace, and they are therefore not
146 * checked comprehensively.
148 uint64_t dtrace_buffer_memory_maxsize
= 0; /* initialized in dtrace_init */
149 uint64_t dtrace_buffer_memory_inuse
= 0;
150 int dtrace_destructive_disallow
= 0;
151 dtrace_optval_t dtrace_nonroot_maxsize
= (16 * 1024 * 1024);
152 size_t dtrace_difo_maxsize
= (256 * 1024);
153 dtrace_optval_t dtrace_dof_maxsize
= (512 * 1024);
154 dtrace_optval_t dtrace_statvar_maxsize
= (16 * 1024);
155 dtrace_optval_t dtrace_statvar_maxsize_max
= (16 * 10 * 1024);
156 size_t dtrace_actions_max
= (16 * 1024);
157 size_t dtrace_retain_max
= 1024;
158 dtrace_optval_t dtrace_helper_actions_max
= 32;
159 dtrace_optval_t dtrace_helper_providers_max
= 64;
160 dtrace_optval_t dtrace_dstate_defsize
= (1 * 1024 * 1024);
161 size_t dtrace_strsize_default
= 256;
162 dtrace_optval_t dtrace_strsize_min
= 8;
163 dtrace_optval_t dtrace_strsize_max
= 65536;
164 dtrace_optval_t dtrace_cleanrate_default
= 990099000; /* 1.1 hz */
165 dtrace_optval_t dtrace_cleanrate_min
= 20000000; /* 50 hz */
166 dtrace_optval_t dtrace_cleanrate_max
= (uint64_t)60 * NANOSEC
; /* 1/minute */
167 dtrace_optval_t dtrace_aggrate_default
= NANOSEC
; /* 1 hz */
168 dtrace_optval_t dtrace_statusrate_default
= NANOSEC
; /* 1 hz */
169 dtrace_optval_t dtrace_statusrate_max
= (hrtime_t
)10 * NANOSEC
; /* 6/minute */
170 dtrace_optval_t dtrace_switchrate_default
= NANOSEC
; /* 1 hz */
171 dtrace_optval_t dtrace_nspec_default
= 1;
172 dtrace_optval_t dtrace_specsize_default
= 32 * 1024;
173 dtrace_optval_t dtrace_stackframes_default
= 20;
174 dtrace_optval_t dtrace_ustackframes_default
= 20;
175 dtrace_optval_t dtrace_jstackframes_default
= 50;
176 dtrace_optval_t dtrace_jstackstrsize_default
= 512;
177 dtrace_optval_t dtrace_buflimit_default
= 75;
178 dtrace_optval_t dtrace_buflimit_min
= 1;
179 dtrace_optval_t dtrace_buflimit_max
= 99;
180 int dtrace_msgdsize_max
= 128;
181 hrtime_t dtrace_chill_max
= 500 * (NANOSEC
/ MILLISEC
); /* 500 ms */
182 hrtime_t dtrace_chill_interval
= NANOSEC
; /* 1000 ms */
183 int dtrace_devdepth_max
= 32;
184 int dtrace_err_verbose
;
185 int dtrace_provide_private_probes
= 0;
186 hrtime_t dtrace_deadman_interval
= NANOSEC
;
187 hrtime_t dtrace_deadman_timeout
= (hrtime_t
)10 * NANOSEC
;
188 hrtime_t dtrace_deadman_user
= (hrtime_t
)30 * NANOSEC
;
191 * DTrace External Variables
193 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
194 * available to DTrace consumers via the backtick (`) syntax. One of these,
195 * dtrace_zero, is made deliberately so: it is provided as a source of
196 * well-known, zero-filled memory. While this variable is not documented,
197 * it is used by some translators as an implementation detail.
199 const char dtrace_zero
[256] = { 0 }; /* zero-filled memory */
200 unsigned int dtrace_max_cpus
= 0; /* number of enabled cpus */
202 * DTrace Internal Variables
204 static dev_info_t
*dtrace_devi
; /* device info */
205 static vmem_t
*dtrace_arena
; /* probe ID arena */
206 static taskq_t
*dtrace_taskq
; /* task queue */
207 static dtrace_probe_t
**dtrace_probes
; /* array of all probes */
208 static int dtrace_nprobes
; /* number of probes */
209 static dtrace_provider_t
*dtrace_provider
; /* provider list */
210 static dtrace_meta_t
*dtrace_meta_pid
; /* user-land meta provider */
211 static int dtrace_opens
; /* number of opens */
212 static int dtrace_helpers
; /* number of helpers */
213 static dtrace_hash_t
*dtrace_bymod
; /* probes hashed by module */
214 static dtrace_hash_t
*dtrace_byfunc
; /* probes hashed by function */
215 static dtrace_hash_t
*dtrace_byname
; /* probes hashed by name */
216 static dtrace_toxrange_t
*dtrace_toxrange
; /* toxic range array */
217 static int dtrace_toxranges
; /* number of toxic ranges */
218 static int dtrace_toxranges_max
; /* size of toxic range array */
219 static dtrace_anon_t dtrace_anon
; /* anonymous enabling */
220 static kmem_cache_t
*dtrace_state_cache
; /* cache for dynamic state */
221 static uint64_t dtrace_vtime_references
; /* number of vtimestamp refs */
222 static kthread_t
*dtrace_panicked
; /* panicking thread */
223 static dtrace_ecb_t
*dtrace_ecb_create_cache
; /* cached created ECB */
224 static dtrace_genid_t dtrace_probegen
; /* current probe generation */
225 static dtrace_helpers_t
*dtrace_deferred_pid
; /* deferred helper list */
226 static dtrace_enabling_t
*dtrace_retained
; /* list of retained enablings */
227 static dtrace_genid_t dtrace_retained_gen
; /* current retained enab gen */
228 static dtrace_dynvar_t dtrace_dynhash_sink
; /* end of dynamic hash chains */
230 static int dtrace_dof_mode
; /* See dtrace_impl.h for a description of Darwin's dof modes. */
233 * This does't quite fit as an internal variable, as it must be accessed in
234 * fbt_provide and sdt_provide. Its clearly not a dtrace tunable variable either...
236 int dtrace_kernel_symbol_mode
; /* See dtrace_impl.h for a description of Darwin's kernel symbol modes. */
237 static uint32_t dtrace_wake_clients
;
241 * To save memory, some common memory allocations are given a
242 * unique zone. For example, dtrace_probe_t is 72 bytes in size,
243 * which means it would fall into the kalloc.128 bucket. With
244 * 20k elements allocated, the space saved is substantial.
247 struct zone
*dtrace_probe_t_zone
;
249 static int dtrace_module_unloaded(struct kmod_info
*kmod
);
253 * DTrace is protected by three (relatively coarse-grained) locks:
255 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
256 * including enabling state, probes, ECBs, consumer state, helper state,
257 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
258 * probe context is lock-free -- synchronization is handled via the
259 * dtrace_sync() cross call mechanism.
261 * (2) dtrace_provider_lock is required when manipulating provider state, or
262 * when provider state must be held constant.
264 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
265 * when meta provider state must be held constant.
267 * The lock ordering between these three locks is dtrace_meta_lock before
268 * dtrace_provider_lock before dtrace_lock. (In particular, there are
269 * several places where dtrace_provider_lock is held by the framework as it
270 * calls into the providers -- which then call back into the framework,
271 * grabbing dtrace_lock.)
273 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
274 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
275 * role as a coarse-grained lock; it is acquired before both of these locks.
276 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
277 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
278 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
279 * acquired _between_ dtrace_provider_lock and dtrace_lock.
286 * For porting purposes, all kmutex_t vars have been changed
287 * to lck_mtx_t, which require explicit initialization.
289 * kmutex_t becomes lck_mtx_t
290 * mutex_enter() becomes lck_mtx_lock()
291 * mutex_exit() becomes lck_mtx_unlock()
293 * Lock asserts are changed like this:
295 * ASSERT(MUTEX_HELD(&cpu_lock));
297 * LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED);
300 static lck_mtx_t dtrace_lock
; /* probe state lock */
301 static lck_mtx_t dtrace_provider_lock
; /* provider state lock */
302 static lck_mtx_t dtrace_meta_lock
; /* meta-provider state lock */
303 static lck_rw_t dtrace_dof_mode_lock
; /* dof mode lock */
306 * DTrace Provider Variables
308 * These are the variables relating to DTrace as a provider (that is, the
309 * provider of the BEGIN, END, and ERROR probes).
311 static dtrace_pattr_t dtrace_provider_attr
= {
312 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
313 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
314 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
315 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
316 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
324 dtrace_enable_nullop(void)
329 static dtrace_pops_t dtrace_provider_ops
= {
330 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
,
331 (void (*)(void *, struct modctl
*))dtrace_nullop
,
332 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
,
333 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
334 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
335 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
339 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
342 static dtrace_id_t dtrace_probeid_begin
; /* special BEGIN probe */
343 static dtrace_id_t dtrace_probeid_end
; /* special END probe */
344 dtrace_id_t dtrace_probeid_error
; /* special ERROR probe */
347 * DTrace Helper Tracing Variables
349 uint32_t dtrace_helptrace_next
= 0;
350 uint32_t dtrace_helptrace_nlocals
;
351 char *dtrace_helptrace_buffer
;
352 size_t dtrace_helptrace_bufsize
= 512 * 1024;
355 int dtrace_helptrace_enabled
= 1;
357 int dtrace_helptrace_enabled
= 0;
360 #if defined (__arm64__)
362 * The ioctl for adding helper DOF is based on the
363 * size of a user_addr_t. We need to recognize both
364 * U32 and U64 as the same action.
366 #define DTRACEHIOC_ADDDOF_U32 _IOW('h', 4, user32_addr_t)
367 #define DTRACEHIOC_ADDDOF_U64 _IOW('h', 4, user64_addr_t)
368 #endif /* __arm64__ */
371 * DTrace Error Hashing
373 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
374 * table. This is very useful for checking coverage of tests that are
375 * expected to induce DIF or DOF processing errors, and may be useful for
376 * debugging problems in the DIF code generator or in DOF generation . The
377 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
380 static dtrace_errhash_t dtrace_errhash
[DTRACE_ERRHASHSZ
];
381 static const char *dtrace_errlast
;
382 static kthread_t
*dtrace_errthread
;
383 static lck_mtx_t dtrace_errlock
;
387 * DTrace Macros and Constants
389 * These are various macros that are useful in various spots in the
390 * implementation, along with a few random constants that have no meaning
391 * outside of the implementation. There is no real structure to this cpp
392 * mishmash -- but is there ever?
394 #define DTRACE_HASHSTR(hash, probe) \
395 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
397 #define DTRACE_HASHNEXT(hash, probe) \
398 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
400 #define DTRACE_HASHPREV(hash, probe) \
401 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
403 #define DTRACE_HASHEQ(hash, lhs, rhs) \
404 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
405 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
407 #define DTRACE_AGGHASHSIZE_SLEW 17
409 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
412 * The key for a thread-local variable consists of the lower 61 bits of the
413 * current_thread(), plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
414 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
415 * equal to a variable identifier. This is necessary (but not sufficient) to
416 * assure that global associative arrays never collide with thread-local
417 * variables. To guarantee that they cannot collide, we must also define the
418 * order for keying dynamic variables. That order is:
420 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
422 * Because the variable-key and the tls-key are in orthogonal spaces, there is
423 * no way for a global variable key signature to match a thread-local key
426 #if defined (__x86_64__)
427 /* FIXME: two function calls!! */
428 #define DTRACE_TLS_THRKEY(where) { \
429 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
430 uint64_t thr = (uintptr_t)current_thread(); \
431 ASSERT(intr < (1 << 3)); \
432 (where) = ((thr + DIF_VARIABLE_MAX) & \
433 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
435 #elif defined(__arm__)
436 /* FIXME: three function calls!!! */
437 #define DTRACE_TLS_THRKEY(where) { \
438 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
439 uint64_t thr = (uintptr_t)current_thread(); \
440 uint_t pid = (uint_t)dtrace_proc_selfpid(); \
441 ASSERT(intr < (1 << 3)); \
442 (where) = (((thr << 32 | pid) + DIF_VARIABLE_MAX) & \
443 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
445 #elif defined (__arm64__)
446 /* FIXME: two function calls!! */
447 #define DTRACE_TLS_THRKEY(where) { \
448 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
449 uint64_t thr = (uintptr_t)current_thread(); \
450 ASSERT(intr < (1 << 3)); \
451 (where) = ((thr + DIF_VARIABLE_MAX) & \
452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
455 #error Unknown architecture
458 #define DT_BSWAP_8(x) ((x) & 0xff)
459 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
460 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
461 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
463 #define DT_MASK_LO 0x00000000FFFFFFFFULL
465 #define DTRACE_STORE(type, tomax, offset, what) \
466 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
469 #define DTRACE_ALIGNCHECK(addr, size, flags) \
470 if (addr & (MIN(size,4) - 1)) { \
471 *flags |= CPU_DTRACE_BADALIGN; \
472 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
476 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
478 if ((remp) != NULL) { \
479 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
485 * Test whether a range of memory starting at testaddr of size testsz falls
486 * within the range of memory described by addr, sz. We take care to avoid
487 * problems with overflow and underflow of the unsigned quantities, and
488 * disallow all negative sizes. Ranges of size 0 are allowed.
490 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
491 ((testaddr) - (baseaddr) < (basesz) && \
492 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
493 (testaddr) + (testsz) >= (testaddr))
496 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
497 * alloc_sz on the righthand side of the comparison in order to avoid overflow
498 * or underflow in the comparison with it. This is simpler than the INRANGE
499 * check above, because we know that the dtms_scratch_ptr is valid in the
500 * range. Allocations of size zero are allowed.
502 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
503 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
504 (mstate)->dtms_scratch_ptr >= (alloc_sz))
506 #define RECOVER_LABEL(bits) dtraceLoadRecover##bits:
508 #if defined (__x86_64__) || (defined (__arm__) || defined (__arm64__))
509 #define DTRACE_LOADFUNC(bits) \
511 uint##bits##_t dtrace_load##bits(uintptr_t addr); \
514 dtrace_load##bits(uintptr_t addr) \
516 size_t size = bits / NBBY; \
518 uint##bits##_t rval = 0; \
520 volatile uint16_t *flags = (volatile uint16_t *) \
521 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
523 DTRACE_ALIGNCHECK(addr, size, flags); \
525 for (i = 0; i < dtrace_toxranges; i++) { \
526 if (addr >= dtrace_toxrange[i].dtt_limit) \
529 if (addr + size <= dtrace_toxrange[i].dtt_base) \
533 * This address falls within a toxic region; return 0. \
535 *flags |= CPU_DTRACE_BADADDR; \
536 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
541 volatile vm_offset_t recover = (vm_offset_t)&&dtraceLoadRecover##bits; \
542 *flags |= CPU_DTRACE_NOFAULT; \
543 recover = dtrace_set_thread_recover(current_thread(), recover); \
546 * PR6394061 - avoid device memory that is unpredictably \
547 * mapped and unmapped \
549 if (pmap_valid_page(pmap_find_phys(kernel_pmap, addr))) \
550 rval = *((volatile uint##bits##_t *)addr); \
552 *flags |= CPU_DTRACE_BADADDR; \
553 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
557 RECOVER_LABEL(bits); \
558 (void)dtrace_set_thread_recover(current_thread(), recover); \
559 *flags &= ~CPU_DTRACE_NOFAULT; \
564 #else /* all other architectures */
565 #error Unknown Architecture
569 #define dtrace_loadptr dtrace_load64
571 #define dtrace_loadptr dtrace_load32
574 #define DTRACE_DYNHASH_FREE 0
575 #define DTRACE_DYNHASH_SINK 1
576 #define DTRACE_DYNHASH_VALID 2
578 #define DTRACE_MATCH_FAIL -1
579 #define DTRACE_MATCH_NEXT 0
580 #define DTRACE_MATCH_DONE 1
581 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
582 #define DTRACE_STATE_ALIGN 64
584 #define DTRACE_FLAGS2FLT(flags) \
585 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
586 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
587 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
588 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
589 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
590 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
591 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
592 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
593 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
596 #define DTRACEACT_ISSTRING(act) \
597 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
598 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
601 static size_t dtrace_strlen(const char *, size_t);
602 static dtrace_probe_t
*dtrace_probe_lookup_id(dtrace_id_t id
);
603 static void dtrace_enabling_provide(dtrace_provider_t
*);
604 static int dtrace_enabling_match(dtrace_enabling_t
*, int *, dtrace_match_cond_t
*cond
);
605 static void dtrace_enabling_matchall_with_cond(dtrace_match_cond_t
*cond
);
606 static void dtrace_enabling_matchall(void);
607 static dtrace_state_t
*dtrace_anon_grab(void);
608 static uint64_t dtrace_helper(int, dtrace_mstate_t
*,
609 dtrace_state_t
*, uint64_t, uint64_t);
610 static dtrace_helpers_t
*dtrace_helpers_create(proc_t
*);
611 static void dtrace_buffer_drop(dtrace_buffer_t
*);
612 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t
*, size_t, size_t,
613 dtrace_state_t
*, dtrace_mstate_t
*);
614 static int dtrace_state_option(dtrace_state_t
*, dtrace_optid_t
,
616 static int dtrace_ecb_create_enable(dtrace_probe_t
*, void *, void *);
617 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t
*);
618 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
619 dtrace_mstate_t
*, dtrace_vstate_t
*);
620 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
621 dtrace_mstate_t
*, dtrace_vstate_t
*);
625 * DTrace sysctl handlers
627 * These declarations and functions are used for a deeper DTrace configuration.
628 * Most of them are not per-consumer basis and may impact the other DTrace
629 * consumers. Correctness may not be supported for all the variables, so you
630 * should be careful about what values you are using.
633 SYSCTL_DECL(_kern_dtrace
);
634 SYSCTL_NODE(_kern
, OID_AUTO
, dtrace
, CTLFLAG_RW
| CTLFLAG_LOCKED
, 0, "dtrace");
637 sysctl_dtrace_err_verbose SYSCTL_HANDLER_ARGS
639 #pragma unused(oidp, arg2)
641 int value
= *(int *) arg1
;
643 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
644 if (error
|| !changed
)
647 if (value
!= 0 && value
!= 1)
650 lck_mtx_lock(&dtrace_lock
);
651 dtrace_err_verbose
= value
;
652 lck_mtx_unlock(&dtrace_lock
);
658 * kern.dtrace.err_verbose
660 * Set DTrace verbosity when an error occured (0 = disabled, 1 = enabld).
661 * Errors are reported when a DIFO or a DOF has been rejected by the kernel.
663 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, err_verbose
,
664 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
665 &dtrace_err_verbose
, 0,
666 sysctl_dtrace_err_verbose
, "I", "dtrace error verbose");
669 sysctl_dtrace_buffer_memory_maxsize SYSCTL_HANDLER_ARGS
671 #pragma unused(oidp, arg2, req)
673 uint64_t value
= *(uint64_t *) arg1
;
675 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
676 if (error
|| !changed
)
679 if (value
<= dtrace_buffer_memory_inuse
)
682 lck_mtx_lock(&dtrace_lock
);
683 dtrace_buffer_memory_maxsize
= value
;
684 lck_mtx_unlock(&dtrace_lock
);
690 * kern.dtrace.buffer_memory_maxsize
692 * Set DTrace maximal size in bytes used by all the consumers' state buffers. By default
693 * the limit is PHYS_MEM / 3 for *all* consumers. Attempting to set a null, a negative value
694 * or a value <= to dtrace_buffer_memory_inuse will result in a failure.
696 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, buffer_memory_maxsize
,
697 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
698 &dtrace_buffer_memory_maxsize
, 0,
699 sysctl_dtrace_buffer_memory_maxsize
, "Q", "dtrace state buffer memory maxsize");
702 * kern.dtrace.buffer_memory_inuse
704 * Current state buffer memory used, in bytes, by all the DTrace consumers.
705 * This value is read-only.
707 SYSCTL_QUAD(_kern_dtrace
, OID_AUTO
, buffer_memory_inuse
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
708 &dtrace_buffer_memory_inuse
, "dtrace state buffer memory in-use");
711 sysctl_dtrace_difo_maxsize SYSCTL_HANDLER_ARGS
713 #pragma unused(oidp, arg2, req)
715 size_t value
= *(size_t*) arg1
;
717 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
718 if (error
|| !changed
)
724 lck_mtx_lock(&dtrace_lock
);
725 dtrace_difo_maxsize
= value
;
726 lck_mtx_unlock(&dtrace_lock
);
732 * kern.dtrace.difo_maxsize
734 * Set the DIFO max size in bytes, check the definition of dtrace_difo_maxsize
735 * to get the default value. Attempting to set a null or negative size will
736 * result in a failure.
738 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, difo_maxsize
,
739 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
740 &dtrace_difo_maxsize
, 0,
741 sysctl_dtrace_difo_maxsize
, "Q", "dtrace difo maxsize");
744 sysctl_dtrace_dof_maxsize SYSCTL_HANDLER_ARGS
746 #pragma unused(oidp, arg2, req)
748 dtrace_optval_t value
= *(dtrace_optval_t
*) arg1
;
750 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
751 if (error
|| !changed
)
757 lck_mtx_lock(&dtrace_lock
);
758 dtrace_dof_maxsize
= value
;
759 lck_mtx_unlock(&dtrace_lock
);
765 * kern.dtrace.dof_maxsize
767 * Set the DOF max size in bytes, check the definition of dtrace_dof_maxsize to
768 * get the default value. Attempting to set a null or negative size will result
771 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, dof_maxsize
,
772 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
773 &dtrace_dof_maxsize
, 0,
774 sysctl_dtrace_dof_maxsize
, "Q", "dtrace dof maxsize");
777 sysctl_dtrace_statvar_maxsize SYSCTL_HANDLER_ARGS
779 #pragma unused(oidp, arg2, req)
781 dtrace_optval_t value
= *(dtrace_optval_t
*) arg1
;
783 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
784 if (error
|| !changed
)
789 if (value
> dtrace_statvar_maxsize_max
)
792 lck_mtx_lock(&dtrace_lock
);
793 dtrace_statvar_maxsize
= value
;
794 lck_mtx_unlock(&dtrace_lock
);
800 * kern.dtrace.global_maxsize
802 * Set the variable max size in bytes, check the definition of
803 * dtrace_statvar_maxsize to get the default value. Attempting to set a null,
804 * too high or negative size will result in a failure.
806 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, global_maxsize
,
807 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
808 &dtrace_statvar_maxsize
, 0,
809 sysctl_dtrace_statvar_maxsize
, "Q", "dtrace statvar maxsize");
812 sysctl_dtrace_provide_private_probes SYSCTL_HANDLER_ARGS
814 #pragma unused(oidp, arg2)
816 int value
= *(int *) arg1
;
818 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, NULL
);
823 if (value
!= 0 && value
!= 1)
827 * We do not allow changing this back to zero, as private probes
828 * would still be left registered
833 lck_mtx_lock(&dtrace_lock
);
834 dtrace_provide_private_probes
= value
;
835 lck_mtx_unlock(&dtrace_lock
);
841 * kern.dtrace.provide_private_probes
843 * Set whether the providers must provide the private probes. This is
844 * mainly used by the FBT provider to request probes for the private/static
847 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, provide_private_probes
,
848 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
849 &dtrace_provide_private_probes
, 0,
850 sysctl_dtrace_provide_private_probes
, "I", "provider must provide the private probes");
853 * DTrace Probe Context Functions
855 * These functions are called from probe context. Because probe context is
856 * any context in which C may be called, arbitrarily locks may be held,
857 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
858 * As a result, functions called from probe context may only call other DTrace
859 * support functions -- they may not interact at all with the system at large.
860 * (Note that the ASSERT macro is made probe-context safe by redefining it in
861 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
862 * loads are to be performed from probe context, they _must_ be in terms of
863 * the safe dtrace_load*() variants.
865 * Some functions in this block are not actually called from probe context;
866 * for these functions, there will be a comment above the function reading
867 * "Note: not called from probe context."
871 dtrace_assfail(const char *a
, const char *f
, int l
)
873 panic("dtrace: assertion failed: %s, file: %s, line: %d", a
, f
, l
);
876 * We just need something here that even the most clever compiler
877 * cannot optimize away.
879 return (a
[(uintptr_t)f
]);
883 * Atomically increment a specified error counter from probe context.
886 dtrace_error(uint32_t *counter
)
889 * Most counters stored to in probe context are per-CPU counters.
890 * However, there are some error conditions that are sufficiently
891 * arcane that they don't merit per-CPU storage. If these counters
892 * are incremented concurrently on different CPUs, scalability will be
893 * adversely affected -- but we don't expect them to be white-hot in a
894 * correctly constructed enabling...
901 if ((nval
= oval
+ 1) == 0) {
903 * If the counter would wrap, set it to 1 -- assuring
904 * that the counter is never zero when we have seen
905 * errors. (The counter must be 32-bits because we
906 * aren't guaranteed a 64-bit compare&swap operation.)
907 * To save this code both the infamy of being fingered
908 * by a priggish news story and the indignity of being
909 * the target of a neo-puritan witch trial, we're
910 * carefully avoiding any colorful description of the
911 * likelihood of this condition -- but suffice it to
912 * say that it is only slightly more likely than the
913 * overflow of predicate cache IDs, as discussed in
914 * dtrace_predicate_create().
918 } while (dtrace_cas32(counter
, oval
, nval
) != oval
);
922 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
923 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
931 dtrace_inscratch(uintptr_t dest
, size_t size
, dtrace_mstate_t
*mstate
)
933 if (dest
< mstate
->dtms_scratch_base
)
936 if (dest
+ size
< dest
)
939 if (dest
+ size
> mstate
->dtms_scratch_ptr
)
946 dtrace_canstore_statvar(uint64_t addr
, size_t sz
, size_t *remain
,
947 dtrace_statvar_t
**svars
, int nsvars
)
951 size_t maxglobalsize
, maxlocalsize
;
953 maxglobalsize
= dtrace_statvar_maxsize
+ sizeof (uint64_t);
954 maxlocalsize
= (maxglobalsize
) * NCPU
;
959 for (i
= 0; i
< nsvars
; i
++) {
960 dtrace_statvar_t
*svar
= svars
[i
];
964 if (svar
== NULL
|| (size
= svar
->dtsv_size
) == 0)
967 scope
= svar
->dtsv_var
.dtdv_scope
;
970 * We verify that our size is valid in the spirit of providing
971 * defense in depth: we want to prevent attackers from using
972 * DTrace to escalate an orthogonal kernel heap corruption bug
973 * into the ability to store to arbitrary locations in memory.
975 VERIFY((scope
== DIFV_SCOPE_GLOBAL
&& size
<= maxglobalsize
) ||
976 (scope
== DIFV_SCOPE_LOCAL
&& size
<= maxlocalsize
));
978 if (DTRACE_INRANGE(addr
, sz
, svar
->dtsv_data
, svar
->dtsv_size
)) {
979 DTRACE_RANGE_REMAIN(remain
, addr
, svar
->dtsv_data
,
989 * Check to see if the address is within a memory region to which a store may
990 * be issued. This includes the DTrace scratch areas, and any DTrace variable
991 * region. The caller of dtrace_canstore() is responsible for performing any
992 * alignment checks that are needed before stores are actually executed.
995 dtrace_canstore(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
996 dtrace_vstate_t
*vstate
)
998 return (dtrace_canstore_remains(addr
, sz
, NULL
, mstate
, vstate
));
1001 * Implementation of dtrace_canstore which communicates the upper bound of the
1002 * allowed memory region.
1005 dtrace_canstore_remains(uint64_t addr
, size_t sz
, size_t *remain
,
1006 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1009 * First, check to see if the address is in scratch space...
1011 if (DTRACE_INRANGE(addr
, sz
, mstate
->dtms_scratch_base
,
1012 mstate
->dtms_scratch_size
)) {
1013 DTRACE_RANGE_REMAIN(remain
, addr
, mstate
->dtms_scratch_base
,
1014 mstate
->dtms_scratch_size
);
1018 * Now check to see if it's a dynamic variable. This check will pick
1019 * up both thread-local variables and any global dynamically-allocated
1022 if (DTRACE_INRANGE(addr
, sz
, (uintptr_t)vstate
->dtvs_dynvars
.dtds_base
,
1023 vstate
->dtvs_dynvars
.dtds_size
)) {
1024 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
1025 uintptr_t base
= (uintptr_t)dstate
->dtds_base
+
1026 (dstate
->dtds_hashsize
* sizeof (dtrace_dynhash_t
));
1027 uintptr_t chunkoffs
;
1028 dtrace_dynvar_t
*dvar
;
1031 * Before we assume that we can store here, we need to make
1032 * sure that it isn't in our metadata -- storing to our
1033 * dynamic variable metadata would corrupt our state. For
1034 * the range to not include any dynamic variable metadata,
1037 * (1) Start above the hash table that is at the base of
1038 * the dynamic variable space
1040 * (2) Have a starting chunk offset that is beyond the
1041 * dtrace_dynvar_t that is at the base of every chunk
1043 * (3) Not span a chunk boundary
1045 * (4) Not be in the tuple space of a dynamic variable
1051 chunkoffs
= (addr
- base
) % dstate
->dtds_chunksize
;
1053 if (chunkoffs
< sizeof (dtrace_dynvar_t
))
1056 if (chunkoffs
+ sz
> dstate
->dtds_chunksize
)
1059 dvar
= (dtrace_dynvar_t
*)((uintptr_t)addr
- chunkoffs
);
1061 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
)
1064 if (chunkoffs
< sizeof (dtrace_dynvar_t
) +
1065 ((dvar
->dtdv_tuple
.dtt_nkeys
- 1) * sizeof (dtrace_key_t
)))
1072 * Finally, check the static local and global variables. These checks
1073 * take the longest, so we perform them last.
1075 if (dtrace_canstore_statvar(addr
, sz
, remain
,
1076 vstate
->dtvs_locals
, vstate
->dtvs_nlocals
))
1079 if (dtrace_canstore_statvar(addr
, sz
, remain
,
1080 vstate
->dtvs_globals
, vstate
->dtvs_nglobals
))
1088 * Convenience routine to check to see if the address is within a memory
1089 * region in which a load may be issued given the user's privilege level;
1090 * if not, it sets the appropriate error flags and loads 'addr' into the
1091 * illegal value slot.
1093 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
1094 * appropriate memory access protection.
1097 dtrace_canload(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
1098 dtrace_vstate_t
*vstate
)
1100 return (dtrace_canload_remains(addr
, sz
, NULL
, mstate
, vstate
));
1104 * Implementation of dtrace_canload which communicates the upper bound of the
1105 * allowed memory region.
1108 dtrace_canload_remains(uint64_t addr
, size_t sz
, size_t *remain
,
1109 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1111 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
1114 * If we hold the privilege to read from kernel memory, then
1115 * everything is readable.
1117 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1118 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
1123 * You can obviously read that which you can store.
1125 if (dtrace_canstore_remains(addr
, sz
, remain
, mstate
, vstate
))
1129 * We're allowed to read from our own string table.
1131 if (DTRACE_INRANGE(addr
, sz
, (uintptr_t)mstate
->dtms_difo
->dtdo_strtab
,
1132 mstate
->dtms_difo
->dtdo_strlen
)) {
1133 DTRACE_RANGE_REMAIN(remain
, addr
,
1134 mstate
->dtms_difo
->dtdo_strtab
,
1135 mstate
->dtms_difo
->dtdo_strlen
);
1139 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV
);
1145 * Convenience routine to check to see if a given string is within a memory
1146 * region in which a load may be issued given the user's privilege level;
1147 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1148 * calls in the event that the user has all privileges.
1151 dtrace_strcanload(uint64_t addr
, size_t sz
, size_t *remain
,
1152 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1157 * If we hold the privilege to read from kernel memory, then
1158 * everything is readable.
1160 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1161 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
1166 * Even if the caller is uninterested in querying the remaining valid
1167 * range, it is required to ensure that the access is allowed.
1169 if (remain
== NULL
) {
1172 if (dtrace_canload_remains(addr
, 0, remain
, mstate
, vstate
)) {
1175 * Perform the strlen after determining the length of the
1176 * memory region which is accessible. This prevents timing
1177 * information from being used to find NULs in memory which is
1178 * not accessible to the caller.
1180 strsz
= 1 + dtrace_strlen((char *)(uintptr_t)addr
,
1182 if (strsz
<= *remain
) {
1191 * Convenience routine to check to see if a given variable is within a memory
1192 * region in which a load may be issued given the user's privilege level.
1195 dtrace_vcanload(void *src
, dtrace_diftype_t
*type
, size_t *remain
,
1196 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1199 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1202 * Calculate the max size before performing any checks since even
1203 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1204 * return the max length via 'remain'.
1206 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1207 dtrace_state_t
*state
= vstate
->dtvs_state
;
1209 if (state
!= NULL
) {
1210 sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
1213 * In helper context, we have a NULL state; fall back
1214 * to using the system-wide default for the string size
1217 sz
= dtrace_strsize_default
;
1220 sz
= type
->dtdt_size
;
1224 * If we hold the privilege to read from kernel memory, then
1225 * everything is readable.
1227 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1228 DTRACE_RANGE_REMAIN(remain
, (uintptr_t)src
, src
, sz
);
1232 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1233 return (dtrace_strcanload((uintptr_t)src
, sz
, remain
, mstate
,
1236 return (dtrace_canload_remains((uintptr_t)src
, sz
, remain
, mstate
,
1241 * Compare two strings using safe loads.
1244 dtrace_strncmp(char *s1
, char *s2
, size_t limit
)
1247 volatile uint16_t *flags
;
1249 if (s1
== s2
|| limit
== 0)
1252 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1258 c1
= dtrace_load8((uintptr_t)s1
++);
1264 c2
= dtrace_load8((uintptr_t)s2
++);
1269 } while (--limit
&& c1
!= '\0' && !(*flags
& CPU_DTRACE_FAULT
));
1275 * Compute strlen(s) for a string using safe memory accesses. The additional
1276 * len parameter is used to specify a maximum length to ensure completion.
1279 dtrace_strlen(const char *s
, size_t lim
)
1283 for (len
= 0; len
!= lim
; len
++) {
1284 if (dtrace_load8((uintptr_t)s
++) == '\0')
1292 * Check if an address falls within a toxic region.
1295 dtrace_istoxic(uintptr_t kaddr
, size_t size
)
1297 uintptr_t taddr
, tsize
;
1300 for (i
= 0; i
< dtrace_toxranges
; i
++) {
1301 taddr
= dtrace_toxrange
[i
].dtt_base
;
1302 tsize
= dtrace_toxrange
[i
].dtt_limit
- taddr
;
1304 if (kaddr
- taddr
< tsize
) {
1305 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1306 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= kaddr
;
1310 if (taddr
- kaddr
< size
) {
1311 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1312 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= taddr
;
1321 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1322 * memory specified by the DIF program. The dst is assumed to be safe memory
1323 * that we can store to directly because it is managed by DTrace. As with
1324 * standard bcopy, overlapping copies are handled properly.
1327 dtrace_bcopy(const void *src
, void *dst
, size_t len
)
1331 const uint8_t *s2
= src
;
1335 *s1
++ = dtrace_load8((uintptr_t)s2
++);
1336 } while (--len
!= 0);
1342 *--s1
= dtrace_load8((uintptr_t)--s2
);
1343 } while (--len
!= 0);
1349 * Copy src to dst using safe memory accesses, up to either the specified
1350 * length, or the point that a nul byte is encountered. The src is assumed to
1351 * be unsafe memory specified by the DIF program. The dst is assumed to be
1352 * safe memory that we can store to directly because it is managed by DTrace.
1353 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1356 dtrace_strcpy(const void *src
, void *dst
, size_t len
)
1359 uint8_t *s1
= dst
, c
;
1360 const uint8_t *s2
= src
;
1363 *s1
++ = c
= dtrace_load8((uintptr_t)s2
++);
1364 } while (--len
!= 0 && c
!= '\0');
1369 * Copy src to dst, deriving the size and type from the specified (BYREF)
1370 * variable type. The src is assumed to be unsafe memory specified by the DIF
1371 * program. The dst is assumed to be DTrace variable memory that is of the
1372 * specified type; we assume that we can store to directly.
1375 dtrace_vcopy(void *src
, void *dst
, dtrace_diftype_t
*type
, size_t limit
)
1377 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1379 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1380 dtrace_strcpy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1382 dtrace_bcopy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1387 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1388 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1389 * safe memory that we can access directly because it is managed by DTrace.
1392 dtrace_bcmp(const void *s1
, const void *s2
, size_t len
)
1394 volatile uint16_t *flags
;
1396 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1401 if (s1
== NULL
|| s2
== NULL
)
1404 if (s1
!= s2
&& len
!= 0) {
1405 const uint8_t *ps1
= s1
;
1406 const uint8_t *ps2
= s2
;
1409 if (dtrace_load8((uintptr_t)ps1
++) != *ps2
++)
1411 } while (--len
!= 0 && !(*flags
& CPU_DTRACE_FAULT
));
1417 * Zero the specified region using a simple byte-by-byte loop. Note that this
1418 * is for safe DTrace-managed memory only.
1421 dtrace_bzero(void *dst
, size_t len
)
1425 for (cp
= dst
; len
!= 0; len
--)
1430 dtrace_add_128(uint64_t *addend1
, uint64_t *addend2
, uint64_t *sum
)
1434 result
[0] = addend1
[0] + addend2
[0];
1435 result
[1] = addend1
[1] + addend2
[1] +
1436 (result
[0] < addend1
[0] || result
[0] < addend2
[0] ? 1 : 0);
1443 * Shift the 128-bit value in a by b. If b is positive, shift left.
1444 * If b is negative, shift right.
1447 dtrace_shift_128(uint64_t *a
, int b
)
1457 a
[0] = a
[1] >> (b
- 64);
1461 mask
= 1LL << (64 - b
);
1463 a
[0] |= ((a
[1] & mask
) << (64 - b
));
1468 a
[1] = a
[0] << (b
- 64);
1472 mask
= a
[0] >> (64 - b
);
1480 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1481 * use native multiplication on those, and then re-combine into the
1482 * resulting 128-bit value.
1484 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1491 dtrace_multiply_128(uint64_t factor1
, uint64_t factor2
, uint64_t *product
)
1493 uint64_t hi1
, hi2
, lo1
, lo2
;
1496 hi1
= factor1
>> 32;
1497 hi2
= factor2
>> 32;
1499 lo1
= factor1
& DT_MASK_LO
;
1500 lo2
= factor2
& DT_MASK_LO
;
1502 product
[0] = lo1
* lo2
;
1503 product
[1] = hi1
* hi2
;
1507 dtrace_shift_128(tmp
, 32);
1508 dtrace_add_128(product
, tmp
, product
);
1512 dtrace_shift_128(tmp
, 32);
1513 dtrace_add_128(product
, tmp
, product
);
1517 * This privilege check should be used by actions and subroutines to
1518 * verify that the user credentials of the process that enabled the
1519 * invoking ECB match the target credentials
1522 dtrace_priv_proc_common_user(dtrace_state_t
*state
)
1524 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1527 * We should always have a non-NULL state cred here, since if cred
1528 * is null (anonymous tracing), we fast-path bypass this routine.
1530 ASSERT(s_cr
!= NULL
);
1532 if ((cr
= dtrace_CRED()) != NULL
&&
1533 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_uid
&&
1534 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_ruid
&&
1535 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_suid
&&
1536 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_gid
&&
1537 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_rgid
&&
1538 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_sgid
)
1545 * This privilege check should be used by actions and subroutines to
1546 * verify that the zone of the process that enabled the invoking ECB
1547 * matches the target credentials
1550 dtrace_priv_proc_common_zone(dtrace_state_t
*state
)
1552 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1553 #pragma unused(cr, s_cr, state) /* __APPLE__ */
1556 * We should always have a non-NULL state cred here, since if cred
1557 * is null (anonymous tracing), we fast-path bypass this routine.
1559 ASSERT(s_cr
!= NULL
);
1561 return 1; /* APPLE NOTE: Darwin doesn't do zones. */
1565 * This privilege check should be used by actions and subroutines to
1566 * verify that the process has not setuid or changed credentials.
1569 dtrace_priv_proc_common_nocd(void)
1571 return 1; /* Darwin omits "No Core Dump" flag. */
1575 dtrace_priv_proc_destructive(dtrace_state_t
*state
)
1577 int action
= state
->dts_cred
.dcr_action
;
1579 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1582 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1585 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
) == 0) &&
1586 dtrace_priv_proc_common_zone(state
) == 0)
1589 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
) == 0) &&
1590 dtrace_priv_proc_common_user(state
) == 0)
1593 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
) == 0) &&
1594 dtrace_priv_proc_common_nocd() == 0)
1600 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1606 dtrace_priv_proc_control(dtrace_state_t
*state
)
1608 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1611 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1614 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC_CONTROL
)
1617 if (dtrace_priv_proc_common_zone(state
) &&
1618 dtrace_priv_proc_common_user(state
) &&
1619 dtrace_priv_proc_common_nocd())
1623 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1629 dtrace_priv_proc(dtrace_state_t
*state
)
1631 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1634 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed() && !dtrace_can_attach_to_proc(current_proc()))
1637 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
)
1641 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1647 * The P_LNOATTACH check is an Apple specific check.
1648 * We need a version of dtrace_priv_proc() that omits
1649 * that check for PID and EXECNAME accesses
1652 dtrace_priv_proc_relaxed(dtrace_state_t
*state
)
1655 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
)
1658 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1664 dtrace_priv_kernel(dtrace_state_t
*state
)
1666 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed())
1669 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL
)
1673 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1679 dtrace_priv_kernel_destructive(dtrace_state_t
*state
)
1681 if (dtrace_is_restricted())
1684 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL_DESTRUCTIVE
)
1688 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1694 * Note: not called from probe context. This function is called
1695 * asynchronously (and at a regular interval) from outside of probe context to
1696 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1697 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1700 dtrace_dynvar_clean(dtrace_dstate_t
*dstate
)
1702 dtrace_dynvar_t
*dirty
;
1703 dtrace_dstate_percpu_t
*dcpu
;
1706 for (i
= 0; i
< (int)NCPU
; i
++) {
1707 dcpu
= &dstate
->dtds_percpu
[i
];
1709 ASSERT(dcpu
->dtdsc_rinsing
== NULL
);
1712 * If the dirty list is NULL, there is no dirty work to do.
1714 if (dcpu
->dtdsc_dirty
== NULL
)
1718 * If the clean list is non-NULL, then we're not going to do
1719 * any work for this CPU -- it means that there has not been
1720 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1721 * since the last time we cleaned house.
1723 if (dcpu
->dtdsc_clean
!= NULL
)
1729 * Atomically move the dirty list aside.
1732 dirty
= dcpu
->dtdsc_dirty
;
1735 * Before we zap the dirty list, set the rinsing list.
1736 * (This allows for a potential assertion in
1737 * dtrace_dynvar(): if a free dynamic variable appears
1738 * on a hash chain, either the dirty list or the
1739 * rinsing list for some CPU must be non-NULL.)
1741 dcpu
->dtdsc_rinsing
= dirty
;
1742 dtrace_membar_producer();
1743 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
,
1744 dirty
, NULL
) != dirty
);
1749 * We have no work to do; we can simply return.
1756 for (i
= 0; i
< (int)NCPU
; i
++) {
1757 dcpu
= &dstate
->dtds_percpu
[i
];
1759 if (dcpu
->dtdsc_rinsing
== NULL
)
1763 * We are now guaranteed that no hash chain contains a pointer
1764 * into this dirty list; we can make it clean.
1766 ASSERT(dcpu
->dtdsc_clean
== NULL
);
1767 dcpu
->dtdsc_clean
= dcpu
->dtdsc_rinsing
;
1768 dcpu
->dtdsc_rinsing
= NULL
;
1772 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1773 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1774 * This prevents a race whereby a CPU incorrectly decides that
1775 * the state should be something other than DTRACE_DSTATE_CLEAN
1776 * after dtrace_dynvar_clean() has completed.
1780 dstate
->dtds_state
= DTRACE_DSTATE_CLEAN
;
1784 * Depending on the value of the op parameter, this function looks-up,
1785 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1786 * allocation is requested, this function will return a pointer to a
1787 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1788 * variable can be allocated. If NULL is returned, the appropriate counter
1789 * will be incremented.
1791 static dtrace_dynvar_t
*
1792 dtrace_dynvar(dtrace_dstate_t
*dstate
, uint_t nkeys
,
1793 dtrace_key_t
*key
, size_t dsize
, dtrace_dynvar_op_t op
,
1794 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1796 uint64_t hashval
= DTRACE_DYNHASH_VALID
;
1797 dtrace_dynhash_t
*hash
= dstate
->dtds_hash
;
1798 dtrace_dynvar_t
*free
, *new_free
, *next
, *dvar
, *start
, *prev
= NULL
;
1799 processorid_t me
= CPU
->cpu_id
, cpu
= me
;
1800 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[me
];
1801 size_t bucket
, ksize
;
1802 size_t chunksize
= dstate
->dtds_chunksize
;
1803 uintptr_t kdata
, lock
, nstate
;
1809 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1810 * algorithm. For the by-value portions, we perform the algorithm in
1811 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1812 * bit, and seems to have only a minute effect on distribution. For
1813 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1814 * over each referenced byte. It's painful to do this, but it's much
1815 * better than pathological hash distribution. The efficacy of the
1816 * hashing algorithm (and a comparison with other algorithms) may be
1817 * found by running the ::dtrace_dynstat MDB dcmd.
1819 for (i
= 0; i
< nkeys
; i
++) {
1820 if (key
[i
].dttk_size
== 0) {
1821 uint64_t val
= key
[i
].dttk_value
;
1823 hashval
+= (val
>> 48) & 0xffff;
1824 hashval
+= (hashval
<< 10);
1825 hashval
^= (hashval
>> 6);
1827 hashval
+= (val
>> 32) & 0xffff;
1828 hashval
+= (hashval
<< 10);
1829 hashval
^= (hashval
>> 6);
1831 hashval
+= (val
>> 16) & 0xffff;
1832 hashval
+= (hashval
<< 10);
1833 hashval
^= (hashval
>> 6);
1835 hashval
+= val
& 0xffff;
1836 hashval
+= (hashval
<< 10);
1837 hashval
^= (hashval
>> 6);
1840 * This is incredibly painful, but it beats the hell
1841 * out of the alternative.
1843 uint64_t j
, size
= key
[i
].dttk_size
;
1844 uintptr_t base
= (uintptr_t)key
[i
].dttk_value
;
1846 if (!dtrace_canload(base
, size
, mstate
, vstate
))
1849 for (j
= 0; j
< size
; j
++) {
1850 hashval
+= dtrace_load8(base
+ j
);
1851 hashval
+= (hashval
<< 10);
1852 hashval
^= (hashval
>> 6);
1857 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT
))
1860 hashval
+= (hashval
<< 3);
1861 hashval
^= (hashval
>> 11);
1862 hashval
+= (hashval
<< 15);
1865 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1866 * comes out to be one of our two sentinel hash values. If this
1867 * actually happens, we set the hashval to be a value known to be a
1868 * non-sentinel value.
1870 if (hashval
== DTRACE_DYNHASH_FREE
|| hashval
== DTRACE_DYNHASH_SINK
)
1871 hashval
= DTRACE_DYNHASH_VALID
;
1874 * Yes, it's painful to do a divide here. If the cycle count becomes
1875 * important here, tricks can be pulled to reduce it. (However, it's
1876 * critical that hash collisions be kept to an absolute minimum;
1877 * they're much more painful than a divide.) It's better to have a
1878 * solution that generates few collisions and still keeps things
1879 * relatively simple.
1881 bucket
= hashval
% dstate
->dtds_hashsize
;
1883 if (op
== DTRACE_DYNVAR_DEALLOC
) {
1884 volatile uintptr_t *lockp
= &hash
[bucket
].dtdh_lock
;
1887 while ((lock
= *lockp
) & 1)
1890 if (dtrace_casptr((void *)(uintptr_t)lockp
,
1891 (void *)lock
, (void *)(lock
+ 1)) == (void *)lock
)
1895 dtrace_membar_producer();
1900 lock
= hash
[bucket
].dtdh_lock
;
1902 dtrace_membar_consumer();
1904 start
= hash
[bucket
].dtdh_chain
;
1905 ASSERT(start
!= NULL
&& (start
->dtdv_hashval
== DTRACE_DYNHASH_SINK
||
1906 start
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
||
1907 op
!= DTRACE_DYNVAR_DEALLOC
));
1909 for (dvar
= start
; dvar
!= NULL
; dvar
= dvar
->dtdv_next
) {
1910 dtrace_tuple_t
*dtuple
= &dvar
->dtdv_tuple
;
1911 dtrace_key_t
*dkey
= &dtuple
->dtt_key
[0];
1913 if (dvar
->dtdv_hashval
!= hashval
) {
1914 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_SINK
) {
1916 * We've reached the sink, and therefore the
1917 * end of the hash chain; we can kick out of
1918 * the loop knowing that we have seen a valid
1919 * snapshot of state.
1921 ASSERT(dvar
->dtdv_next
== NULL
);
1922 ASSERT(dvar
== &dtrace_dynhash_sink
);
1926 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
) {
1928 * We've gone off the rails: somewhere along
1929 * the line, one of the members of this hash
1930 * chain was deleted. Note that we could also
1931 * detect this by simply letting this loop run
1932 * to completion, as we would eventually hit
1933 * the end of the dirty list. However, we
1934 * want to avoid running the length of the
1935 * dirty list unnecessarily (it might be quite
1936 * long), so we catch this as early as
1937 * possible by detecting the hash marker. In
1938 * this case, we simply set dvar to NULL and
1939 * break; the conditional after the loop will
1940 * send us back to top.
1949 if (dtuple
->dtt_nkeys
!= nkeys
)
1952 for (i
= 0; i
< nkeys
; i
++, dkey
++) {
1953 if (dkey
->dttk_size
!= key
[i
].dttk_size
)
1954 goto next
; /* size or type mismatch */
1956 if (dkey
->dttk_size
!= 0) {
1958 (void *)(uintptr_t)key
[i
].dttk_value
,
1959 (void *)(uintptr_t)dkey
->dttk_value
,
1963 if (dkey
->dttk_value
!= key
[i
].dttk_value
)
1968 if (op
!= DTRACE_DYNVAR_DEALLOC
)
1971 ASSERT(dvar
->dtdv_next
== NULL
||
1972 dvar
->dtdv_next
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
);
1975 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1976 ASSERT(start
!= dvar
);
1977 ASSERT(prev
->dtdv_next
== dvar
);
1978 prev
->dtdv_next
= dvar
->dtdv_next
;
1980 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
,
1981 start
, dvar
->dtdv_next
) != start
) {
1983 * We have failed to atomically swing the
1984 * hash table head pointer, presumably because
1985 * of a conflicting allocation on another CPU.
1986 * We need to reread the hash chain and try
1993 dtrace_membar_producer();
1996 * Now set the hash value to indicate that it's free.
1998 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1999 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
2001 dtrace_membar_producer();
2004 * Set the next pointer to point at the dirty list, and
2005 * atomically swing the dirty pointer to the newly freed dvar.
2008 next
= dcpu
->dtdsc_dirty
;
2009 dvar
->dtdv_next
= next
;
2010 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, next
, dvar
) != next
);
2013 * Finally, unlock this hash bucket.
2015 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
2017 hash
[bucket
].dtdh_lock
++;
2027 * If dvar is NULL, it is because we went off the rails:
2028 * one of the elements that we traversed in the hash chain
2029 * was deleted while we were traversing it. In this case,
2030 * we assert that we aren't doing a dealloc (deallocs lock
2031 * the hash bucket to prevent themselves from racing with
2032 * one another), and retry the hash chain traversal.
2034 ASSERT(op
!= DTRACE_DYNVAR_DEALLOC
);
2038 if (op
!= DTRACE_DYNVAR_ALLOC
) {
2040 * If we are not to allocate a new variable, we want to
2041 * return NULL now. Before we return, check that the value
2042 * of the lock word hasn't changed. If it has, we may have
2043 * seen an inconsistent snapshot.
2045 if (op
== DTRACE_DYNVAR_NOALLOC
) {
2046 if (hash
[bucket
].dtdh_lock
!= lock
)
2049 ASSERT(op
== DTRACE_DYNVAR_DEALLOC
);
2050 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
2052 hash
[bucket
].dtdh_lock
++;
2059 * We need to allocate a new dynamic variable. The size we need is the
2060 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2061 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2062 * the size of any referred-to data (dsize). We then round the final
2063 * size up to the chunksize for allocation.
2065 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
2066 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
2069 * This should be pretty much impossible, but could happen if, say,
2070 * strange DIF specified the tuple. Ideally, this should be an
2071 * assertion and not an error condition -- but that requires that the
2072 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2073 * bullet-proof. (That is, it must not be able to be fooled by
2074 * malicious DIF.) Given the lack of backwards branches in DIF,
2075 * solving this would presumably not amount to solving the Halting
2076 * Problem -- but it still seems awfully hard.
2078 if (sizeof (dtrace_dynvar_t
) + sizeof (dtrace_key_t
) * (nkeys
- 1) +
2079 ksize
+ dsize
> chunksize
) {
2080 dcpu
->dtdsc_drops
++;
2084 nstate
= DTRACE_DSTATE_EMPTY
;
2088 free
= dcpu
->dtdsc_free
;
2091 dtrace_dynvar_t
*clean
= dcpu
->dtdsc_clean
;
2094 if (clean
== NULL
) {
2096 * We're out of dynamic variable space on
2097 * this CPU. Unless we have tried all CPUs,
2098 * we'll try to allocate from a different
2101 switch (dstate
->dtds_state
) {
2102 case DTRACE_DSTATE_CLEAN
: {
2103 void *sp
= &dstate
->dtds_state
;
2105 if (++cpu
>= (int)NCPU
)
2108 if (dcpu
->dtdsc_dirty
!= NULL
&&
2109 nstate
== DTRACE_DSTATE_EMPTY
)
2110 nstate
= DTRACE_DSTATE_DIRTY
;
2112 if (dcpu
->dtdsc_rinsing
!= NULL
)
2113 nstate
= DTRACE_DSTATE_RINSING
;
2115 dcpu
= &dstate
->dtds_percpu
[cpu
];
2120 (void) dtrace_cas32(sp
,
2121 DTRACE_DSTATE_CLEAN
, nstate
);
2124 * To increment the correct bean
2125 * counter, take another lap.
2130 case DTRACE_DSTATE_DIRTY
:
2131 dcpu
->dtdsc_dirty_drops
++;
2134 case DTRACE_DSTATE_RINSING
:
2135 dcpu
->dtdsc_rinsing_drops
++;
2138 case DTRACE_DSTATE_EMPTY
:
2139 dcpu
->dtdsc_drops
++;
2143 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP
);
2148 * The clean list appears to be non-empty. We want to
2149 * move the clean list to the free list; we start by
2150 * moving the clean pointer aside.
2152 if (dtrace_casptr(&dcpu
->dtdsc_clean
,
2153 clean
, NULL
) != clean
) {
2155 * We are in one of two situations:
2157 * (a) The clean list was switched to the
2158 * free list by another CPU.
2160 * (b) The clean list was added to by the
2163 * In either of these situations, we can
2164 * just reattempt the free list allocation.
2169 ASSERT(clean
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2172 * Now we'll move the clean list to the free list.
2173 * It's impossible for this to fail: the only way
2174 * the free list can be updated is through this
2175 * code path, and only one CPU can own the clean list.
2176 * Thus, it would only be possible for this to fail if
2177 * this code were racing with dtrace_dynvar_clean().
2178 * (That is, if dtrace_dynvar_clean() updated the clean
2179 * list, and we ended up racing to update the free
2180 * list.) This race is prevented by the dtrace_sync()
2181 * in dtrace_dynvar_clean() -- which flushes the
2182 * owners of the clean lists out before resetting
2185 rval
= dtrace_casptr(&dcpu
->dtdsc_free
, NULL
, clean
);
2186 ASSERT(rval
== NULL
);
2191 new_free
= dvar
->dtdv_next
;
2192 } while (dtrace_casptr(&dcpu
->dtdsc_free
, free
, new_free
) != free
);
2195 * We have now allocated a new chunk. We copy the tuple keys into the
2196 * tuple array and copy any referenced key data into the data space
2197 * following the tuple array. As we do this, we relocate dttk_value
2198 * in the final tuple to point to the key data address in the chunk.
2200 kdata
= (uintptr_t)&dvar
->dtdv_tuple
.dtt_key
[nkeys
];
2201 dvar
->dtdv_data
= (void *)(kdata
+ ksize
);
2202 dvar
->dtdv_tuple
.dtt_nkeys
= nkeys
;
2204 for (i
= 0; i
< nkeys
; i
++) {
2205 dtrace_key_t
*dkey
= &dvar
->dtdv_tuple
.dtt_key
[i
];
2206 size_t kesize
= key
[i
].dttk_size
;
2210 (const void *)(uintptr_t)key
[i
].dttk_value
,
2211 (void *)kdata
, kesize
);
2212 dkey
->dttk_value
= kdata
;
2213 kdata
+= P2ROUNDUP(kesize
, sizeof (uint64_t));
2215 dkey
->dttk_value
= key
[i
].dttk_value
;
2218 dkey
->dttk_size
= kesize
;
2221 ASSERT(dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2222 dvar
->dtdv_hashval
= hashval
;
2223 dvar
->dtdv_next
= start
;
2225 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
, start
, dvar
) == start
)
2229 * The cas has failed. Either another CPU is adding an element to
2230 * this hash chain, or another CPU is deleting an element from this
2231 * hash chain. The simplest way to deal with both of these cases
2232 * (though not necessarily the most efficient) is to free our
2233 * allocated block and tail-call ourselves. Note that the free is
2234 * to the dirty list and _not_ to the free list. This is to prevent
2235 * races with allocators, above.
2237 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
2239 dtrace_membar_producer();
2242 free
= dcpu
->dtdsc_dirty
;
2243 dvar
->dtdv_next
= free
;
2244 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, free
, dvar
) != free
);
2246 return (dtrace_dynvar(dstate
, nkeys
, key
, dsize
, op
, mstate
, vstate
));
2251 dtrace_aggregate_min(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2253 #pragma unused(arg) /* __APPLE__ */
2254 if ((int64_t)nval
< (int64_t)*oval
)
2260 dtrace_aggregate_max(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2262 #pragma unused(arg) /* __APPLE__ */
2263 if ((int64_t)nval
> (int64_t)*oval
)
2268 dtrace_aggregate_quantize(uint64_t *quanta
, uint64_t nval
, uint64_t incr
)
2270 int i
, zero
= DTRACE_QUANTIZE_ZEROBUCKET
;
2271 int64_t val
= (int64_t)nval
;
2274 for (i
= 0; i
< zero
; i
++) {
2275 if (val
<= DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2281 for (i
= zero
+ 1; i
< DTRACE_QUANTIZE_NBUCKETS
; i
++) {
2282 if (val
< DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2283 quanta
[i
- 1] += incr
;
2288 quanta
[DTRACE_QUANTIZE_NBUCKETS
- 1] += incr
;
2296 dtrace_aggregate_lquantize(uint64_t *lquanta
, uint64_t nval
, uint64_t incr
)
2298 uint64_t arg
= *lquanta
++;
2299 int32_t base
= DTRACE_LQUANTIZE_BASE(arg
);
2300 uint16_t step
= DTRACE_LQUANTIZE_STEP(arg
);
2301 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(arg
);
2302 int32_t val
= (int32_t)nval
, level
;
2305 ASSERT(levels
!= 0);
2309 * This is an underflow.
2315 level
= (val
- base
) / step
;
2317 if (level
< levels
) {
2318 lquanta
[level
+ 1] += incr
;
2323 * This is an overflow.
2325 lquanta
[levels
+ 1] += incr
;
2329 dtrace_aggregate_llquantize_bucket(int16_t factor
, int16_t low
, int16_t high
,
2330 int16_t nsteps
, int64_t value
)
2332 int64_t this = 1, last
, next
;
2333 int base
= 1, order
;
2335 for (order
= 0; order
< low
; ++order
)
2339 * If our value is less than our factor taken to the power of the
2340 * low order of magnitude, it goes into the zeroth bucket.
2347 for (this *= factor
; order
<= high
; ++order
) {
2348 int nbuckets
= this > nsteps
? nsteps
: this;
2351 * We should not generally get log/linear quantizations
2352 * with a high magnitude that allows 64-bits to
2353 * overflow, but we nonetheless protect against this
2354 * by explicitly checking for overflow, and clamping
2355 * our value accordingly.
2357 next
= this * factor
;
2363 * If our value lies within this order of magnitude,
2364 * determine its position by taking the offset within
2365 * the order of magnitude, dividing by the bucket
2366 * width, and adding to our (accumulated) base.
2369 return (base
+ (value
- last
) / (this / nbuckets
));
2372 base
+= nbuckets
- (nbuckets
/ factor
);
2378 * Our value is greater than or equal to our factor taken to the
2379 * power of one plus the high magnitude -- return the top bucket.
2385 dtrace_aggregate_llquantize(uint64_t *llquanta
, uint64_t nval
, uint64_t incr
)
2387 uint64_t arg
= *llquanta
++;
2388 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(arg
);
2389 uint16_t low
= DTRACE_LLQUANTIZE_LOW(arg
);
2390 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(arg
);
2391 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(arg
);
2393 llquanta
[dtrace_aggregate_llquantize_bucket(factor
, low
, high
, nsteps
, nval
)] += incr
;
2398 dtrace_aggregate_avg(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2400 #pragma unused(arg) /* __APPLE__ */
2407 dtrace_aggregate_stddev(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2409 #pragma unused(arg) /* __APPLE__ */
2410 int64_t snval
= (int64_t)nval
;
2417 * What we want to say here is:
2419 * data[2] += nval * nval;
2421 * But given that nval is 64-bit, we could easily overflow, so
2422 * we do this as 128-bit arithmetic.
2427 dtrace_multiply_128((uint64_t)snval
, (uint64_t)snval
, tmp
);
2428 dtrace_add_128(data
+ 2, tmp
, data
+ 2);
2433 dtrace_aggregate_count(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2435 #pragma unused(nval, arg) /* __APPLE__ */
2441 dtrace_aggregate_sum(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2443 #pragma unused(arg) /* __APPLE__ */
2448 * Aggregate given the tuple in the principal data buffer, and the aggregating
2449 * action denoted by the specified dtrace_aggregation_t. The aggregation
2450 * buffer is specified as the buf parameter. This routine does not return
2451 * failure; if there is no space in the aggregation buffer, the data will be
2452 * dropped, and a corresponding counter incremented.
2455 dtrace_aggregate(dtrace_aggregation_t
*agg
, dtrace_buffer_t
*dbuf
,
2456 intptr_t offset
, dtrace_buffer_t
*buf
, uint64_t expr
, uint64_t arg
)
2459 dtrace_recdesc_t
*rec
= &agg
->dtag_action
.dta_rec
;
2460 uint32_t i
, ndx
, size
, fsize
;
2461 uint32_t align
= sizeof (uint64_t) - 1;
2462 dtrace_aggbuffer_t
*agb
;
2463 dtrace_aggkey_t
*key
;
2464 uint32_t hashval
= 0, limit
, isstr
;
2465 caddr_t tomax
, data
, kdata
;
2466 dtrace_actkind_t action
;
2467 dtrace_action_t
*act
;
2473 if (!agg
->dtag_hasarg
) {
2475 * Currently, only quantize() and lquantize() take additional
2476 * arguments, and they have the same semantics: an increment
2477 * value that defaults to 1 when not present. If additional
2478 * aggregating actions take arguments, the setting of the
2479 * default argument value will presumably have to become more
2485 action
= agg
->dtag_action
.dta_kind
- DTRACEACT_AGGREGATION
;
2486 size
= rec
->dtrd_offset
- agg
->dtag_base
;
2487 fsize
= size
+ rec
->dtrd_size
;
2489 ASSERT(dbuf
->dtb_tomax
!= NULL
);
2490 data
= dbuf
->dtb_tomax
+ offset
+ agg
->dtag_base
;
2492 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
2493 dtrace_buffer_drop(buf
);
2498 * The metastructure is always at the bottom of the buffer.
2500 agb
= (dtrace_aggbuffer_t
*)(tomax
+ buf
->dtb_size
-
2501 sizeof (dtrace_aggbuffer_t
));
2503 if (buf
->dtb_offset
== 0) {
2505 * We just kludge up approximately 1/8th of the size to be
2506 * buckets. If this guess ends up being routinely
2507 * off-the-mark, we may need to dynamically readjust this
2508 * based on past performance.
2510 uintptr_t hashsize
= (buf
->dtb_size
>> 3) / sizeof (uintptr_t);
2512 if ((uintptr_t)agb
- hashsize
* sizeof (dtrace_aggkey_t
*) <
2513 (uintptr_t)tomax
|| hashsize
== 0) {
2515 * We've been given a ludicrously small buffer;
2516 * increment our drop count and leave.
2518 dtrace_buffer_drop(buf
);
2523 * And now, a pathetic attempt to try to get a an odd (or
2524 * perchance, a prime) hash size for better hash distribution.
2526 if (hashsize
> (DTRACE_AGGHASHSIZE_SLEW
<< 3))
2527 hashsize
-= DTRACE_AGGHASHSIZE_SLEW
;
2529 agb
->dtagb_hashsize
= hashsize
;
2530 agb
->dtagb_hash
= (dtrace_aggkey_t
**)((uintptr_t)agb
-
2531 agb
->dtagb_hashsize
* sizeof (dtrace_aggkey_t
*));
2532 agb
->dtagb_free
= (uintptr_t)agb
->dtagb_hash
;
2534 for (i
= 0; i
< agb
->dtagb_hashsize
; i
++)
2535 agb
->dtagb_hash
[i
] = NULL
;
2538 ASSERT(agg
->dtag_first
!= NULL
);
2539 ASSERT(agg
->dtag_first
->dta_intuple
);
2542 * Calculate the hash value based on the key. Note that we _don't_
2543 * include the aggid in the hashing (but we will store it as part of
2544 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2545 * algorithm: a simple, quick algorithm that has no known funnels, and
2546 * gets good distribution in practice. The efficacy of the hashing
2547 * algorithm (and a comparison with other algorithms) may be found by
2548 * running the ::dtrace_aggstat MDB dcmd.
2550 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2551 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2552 limit
= i
+ act
->dta_rec
.dtrd_size
;
2553 ASSERT(limit
<= size
);
2554 isstr
= DTRACEACT_ISSTRING(act
);
2556 for (; i
< limit
; i
++) {
2558 hashval
+= (hashval
<< 10);
2559 hashval
^= (hashval
>> 6);
2561 if (isstr
&& data
[i
] == '\0')
2566 hashval
+= (hashval
<< 3);
2567 hashval
^= (hashval
>> 11);
2568 hashval
+= (hashval
<< 15);
2571 * Yes, the divide here is expensive -- but it's generally the least
2572 * of the performance issues given the amount of data that we iterate
2573 * over to compute hash values, compare data, etc.
2575 ndx
= hashval
% agb
->dtagb_hashsize
;
2577 for (key
= agb
->dtagb_hash
[ndx
]; key
!= NULL
; key
= key
->dtak_next
) {
2578 ASSERT((caddr_t
)key
>= tomax
);
2579 ASSERT((caddr_t
)key
< tomax
+ buf
->dtb_size
);
2581 if (hashval
!= key
->dtak_hashval
|| key
->dtak_size
!= size
)
2584 kdata
= key
->dtak_data
;
2585 ASSERT(kdata
>= tomax
&& kdata
< tomax
+ buf
->dtb_size
);
2587 for (act
= agg
->dtag_first
; act
->dta_intuple
;
2588 act
= act
->dta_next
) {
2589 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2590 limit
= i
+ act
->dta_rec
.dtrd_size
;
2591 ASSERT(limit
<= size
);
2592 isstr
= DTRACEACT_ISSTRING(act
);
2594 for (; i
< limit
; i
++) {
2595 if (kdata
[i
] != data
[i
])
2598 if (isstr
&& data
[i
] == '\0')
2603 if (action
!= key
->dtak_action
) {
2605 * We are aggregating on the same value in the same
2606 * aggregation with two different aggregating actions.
2607 * (This should have been picked up in the compiler,
2608 * so we may be dealing with errant or devious DIF.)
2609 * This is an error condition; we indicate as much,
2612 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
2617 * This is a hit: we need to apply the aggregator to
2618 * the value at this key.
2620 agg
->dtag_aggregate((uint64_t *)(kdata
+ size
), expr
, arg
);
2627 * We didn't find it. We need to allocate some zero-filled space,
2628 * link it into the hash table appropriately, and apply the aggregator
2629 * to the (zero-filled) value.
2631 offs
= buf
->dtb_offset
;
2632 while (offs
& (align
- 1))
2633 offs
+= sizeof (uint32_t);
2636 * If we don't have enough room to both allocate a new key _and_
2637 * its associated data, increment the drop count and return.
2639 if ((uintptr_t)tomax
+ offs
+ fsize
>
2640 agb
->dtagb_free
- sizeof (dtrace_aggkey_t
)) {
2641 dtrace_buffer_drop(buf
);
2646 ASSERT(!(sizeof (dtrace_aggkey_t
) & (sizeof (uintptr_t) - 1)));
2647 key
= (dtrace_aggkey_t
*)(agb
->dtagb_free
- sizeof (dtrace_aggkey_t
));
2648 agb
->dtagb_free
-= sizeof (dtrace_aggkey_t
);
2650 key
->dtak_data
= kdata
= tomax
+ offs
;
2651 buf
->dtb_offset
= offs
+ fsize
;
2654 * Now copy the data across.
2656 *((dtrace_aggid_t
*)kdata
) = agg
->dtag_id
;
2658 for (i
= sizeof (dtrace_aggid_t
); i
< size
; i
++)
2662 * Because strings are not zeroed out by default, we need to iterate
2663 * looking for actions that store strings, and we need to explicitly
2664 * pad these strings out with zeroes.
2666 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2669 if (!DTRACEACT_ISSTRING(act
))
2672 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2673 limit
= i
+ act
->dta_rec
.dtrd_size
;
2674 ASSERT(limit
<= size
);
2676 for (nul
= 0; i
< limit
; i
++) {
2682 if (data
[i
] != '\0')
2689 for (i
= size
; i
< fsize
; i
++)
2692 key
->dtak_hashval
= hashval
;
2693 key
->dtak_size
= size
;
2694 key
->dtak_action
= action
;
2695 key
->dtak_next
= agb
->dtagb_hash
[ndx
];
2696 agb
->dtagb_hash
[ndx
] = key
;
2699 * Finally, apply the aggregator.
2701 *((uint64_t *)(key
->dtak_data
+ size
)) = agg
->dtag_initial
;
2702 agg
->dtag_aggregate((uint64_t *)(key
->dtak_data
+ size
), expr
, arg
);
2706 * Given consumer state, this routine finds a speculation in the INACTIVE
2707 * state and transitions it into the ACTIVE state. If there is no speculation
2708 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2709 * incremented -- it is up to the caller to take appropriate action.
2712 dtrace_speculation(dtrace_state_t
*state
)
2715 dtrace_speculation_state_t current
;
2716 uint32_t *stat
= &state
->dts_speculations_unavail
, count
;
2718 while (i
< state
->dts_nspeculations
) {
2719 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2721 current
= spec
->dtsp_state
;
2723 if (current
!= DTRACESPEC_INACTIVE
) {
2724 if (current
== DTRACESPEC_COMMITTINGMANY
||
2725 current
== DTRACESPEC_COMMITTING
||
2726 current
== DTRACESPEC_DISCARDING
)
2727 stat
= &state
->dts_speculations_busy
;
2732 if (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2733 current
, DTRACESPEC_ACTIVE
) == current
)
2738 * We couldn't find a speculation. If we found as much as a single
2739 * busy speculation buffer, we'll attribute this failure as "busy"
2740 * instead of "unavail".
2744 } while (dtrace_cas32(stat
, count
, count
+ 1) != count
);
2750 * This routine commits an active speculation. If the specified speculation
2751 * is not in a valid state to perform a commit(), this routine will silently do
2752 * nothing. The state of the specified speculation is transitioned according
2753 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2756 dtrace_speculation_commit(dtrace_state_t
*state
, processorid_t cpu
,
2757 dtrace_specid_t which
)
2759 dtrace_speculation_t
*spec
;
2760 dtrace_buffer_t
*src
, *dest
;
2761 uintptr_t daddr
, saddr
, dlimit
, slimit
;
2762 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
2769 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
2770 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2774 spec
= &state
->dts_speculations
[which
- 1];
2775 src
= &spec
->dtsp_buffer
[cpu
];
2776 dest
= &state
->dts_buffer
[cpu
];
2779 current
= spec
->dtsp_state
;
2781 if (current
== DTRACESPEC_COMMITTINGMANY
)
2785 case DTRACESPEC_INACTIVE
:
2786 case DTRACESPEC_DISCARDING
:
2789 case DTRACESPEC_COMMITTING
:
2791 * This is only possible if we are (a) commit()'ing
2792 * without having done a prior speculate() on this CPU
2793 * and (b) racing with another commit() on a different
2794 * CPU. There's nothing to do -- we just assert that
2797 ASSERT(src
->dtb_offset
== 0);
2800 case DTRACESPEC_ACTIVE
:
2801 new = DTRACESPEC_COMMITTING
;
2804 case DTRACESPEC_ACTIVEONE
:
2806 * This speculation is active on one CPU. If our
2807 * buffer offset is non-zero, we know that the one CPU
2808 * must be us. Otherwise, we are committing on a
2809 * different CPU from the speculate(), and we must
2810 * rely on being asynchronously cleaned.
2812 if (src
->dtb_offset
!= 0) {
2813 new = DTRACESPEC_COMMITTING
;
2818 case DTRACESPEC_ACTIVEMANY
:
2819 new = DTRACESPEC_COMMITTINGMANY
;
2825 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2826 current
, new) != current
);
2829 * We have set the state to indicate that we are committing this
2830 * speculation. Now reserve the necessary space in the destination
2833 if ((offs
= dtrace_buffer_reserve(dest
, src
->dtb_offset
,
2834 sizeof (uint64_t), state
, NULL
)) < 0) {
2835 dtrace_buffer_drop(dest
);
2840 * We have sufficient space to copy the speculative buffer into the
2841 * primary buffer. First, modify the speculative buffer, filling
2842 * in the timestamp of all entries with the current time. The data
2843 * must have the commit() time rather than the time it was traced,
2844 * so that all entries in the primary buffer are in timestamp order.
2846 timestamp
= dtrace_gethrtime();
2847 saddr
= (uintptr_t)src
->dtb_tomax
;
2848 slimit
= saddr
+ src
->dtb_offset
;
2849 while (saddr
< slimit
) {
2851 dtrace_rechdr_t
*dtrh
= (dtrace_rechdr_t
*)saddr
;
2853 if (dtrh
->dtrh_epid
== DTRACE_EPIDNONE
) {
2854 saddr
+= sizeof (dtrace_epid_t
);
2858 ASSERT(dtrh
->dtrh_epid
<= ((dtrace_epid_t
) state
->dts_necbs
));
2859 size
= state
->dts_ecbs
[dtrh
->dtrh_epid
- 1]->dte_size
;
2861 ASSERT(saddr
+ size
<= slimit
);
2862 ASSERT(size
>= sizeof(dtrace_rechdr_t
));
2863 ASSERT(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh
) == UINT64_MAX
);
2865 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, timestamp
);
2871 * Copy the buffer across. (Note that this is a
2872 * highly subobtimal bcopy(); in the unlikely event that this becomes
2873 * a serious performance issue, a high-performance DTrace-specific
2874 * bcopy() should obviously be invented.)
2876 daddr
= (uintptr_t)dest
->dtb_tomax
+ offs
;
2877 dlimit
= daddr
+ src
->dtb_offset
;
2878 saddr
= (uintptr_t)src
->dtb_tomax
;
2881 * First, the aligned portion.
2883 while (dlimit
- daddr
>= sizeof (uint64_t)) {
2884 *((uint64_t *)daddr
) = *((uint64_t *)saddr
);
2886 daddr
+= sizeof (uint64_t);
2887 saddr
+= sizeof (uint64_t);
2891 * Now any left-over bit...
2893 while (dlimit
- daddr
)
2894 *((uint8_t *)daddr
++) = *((uint8_t *)saddr
++);
2897 * Finally, commit the reserved space in the destination buffer.
2899 dest
->dtb_offset
= offs
+ src
->dtb_offset
;
2903 * If we're lucky enough to be the only active CPU on this speculation
2904 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2906 if (current
== DTRACESPEC_ACTIVE
||
2907 (current
== DTRACESPEC_ACTIVEONE
&& new == DTRACESPEC_COMMITTING
)) {
2908 uint32_t rval
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2909 DTRACESPEC_COMMITTING
, DTRACESPEC_INACTIVE
);
2910 #pragma unused(rval) /* __APPLE__ */
2912 ASSERT(rval
== DTRACESPEC_COMMITTING
);
2915 src
->dtb_offset
= 0;
2916 src
->dtb_xamot_drops
+= src
->dtb_drops
;
2921 * This routine discards an active speculation. If the specified speculation
2922 * is not in a valid state to perform a discard(), this routine will silently
2923 * do nothing. The state of the specified speculation is transitioned
2924 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2927 dtrace_speculation_discard(dtrace_state_t
*state
, processorid_t cpu
,
2928 dtrace_specid_t which
)
2930 dtrace_speculation_t
*spec
;
2931 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
2932 dtrace_buffer_t
*buf
;
2937 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
2938 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2942 spec
= &state
->dts_speculations
[which
- 1];
2943 buf
= &spec
->dtsp_buffer
[cpu
];
2946 current
= spec
->dtsp_state
;
2949 case DTRACESPEC_INACTIVE
:
2950 case DTRACESPEC_COMMITTINGMANY
:
2951 case DTRACESPEC_COMMITTING
:
2952 case DTRACESPEC_DISCARDING
:
2955 case DTRACESPEC_ACTIVE
:
2956 case DTRACESPEC_ACTIVEMANY
:
2957 new = DTRACESPEC_DISCARDING
;
2960 case DTRACESPEC_ACTIVEONE
:
2961 if (buf
->dtb_offset
!= 0) {
2962 new = DTRACESPEC_INACTIVE
;
2964 new = DTRACESPEC_DISCARDING
;
2971 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2972 current
, new) != current
);
2974 buf
->dtb_offset
= 0;
2979 * Note: not called from probe context. This function is called
2980 * asynchronously from cross call context to clean any speculations that are
2981 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2982 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2986 dtrace_speculation_clean_here(dtrace_state_t
*state
)
2988 dtrace_icookie_t cookie
;
2989 processorid_t cpu
= CPU
->cpu_id
;
2990 dtrace_buffer_t
*dest
= &state
->dts_buffer
[cpu
];
2993 cookie
= dtrace_interrupt_disable();
2995 if (dest
->dtb_tomax
== NULL
) {
2996 dtrace_interrupt_enable(cookie
);
3000 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
3001 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3002 dtrace_buffer_t
*src
= &spec
->dtsp_buffer
[cpu
];
3004 if (src
->dtb_tomax
== NULL
)
3007 if (spec
->dtsp_state
== DTRACESPEC_DISCARDING
) {
3008 src
->dtb_offset
= 0;
3012 if (spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
3015 if (src
->dtb_offset
== 0)
3018 dtrace_speculation_commit(state
, cpu
, i
+ 1);
3021 dtrace_interrupt_enable(cookie
);
3025 * Note: not called from probe context. This function is called
3026 * asynchronously (and at a regular interval) to clean any speculations that
3027 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
3028 * is work to be done, it cross calls all CPUs to perform that work;
3029 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3030 * INACTIVE state until they have been cleaned by all CPUs.
3033 dtrace_speculation_clean(dtrace_state_t
*state
)
3039 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
3040 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3042 ASSERT(!spec
->dtsp_cleaning
);
3044 if (spec
->dtsp_state
!= DTRACESPEC_DISCARDING
&&
3045 spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
3049 spec
->dtsp_cleaning
= 1;
3055 dtrace_xcall(DTRACE_CPUALL
,
3056 (dtrace_xcall_t
)dtrace_speculation_clean_here
, state
);
3059 * We now know that all CPUs have committed or discarded their
3060 * speculation buffers, as appropriate. We can now set the state
3063 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
3064 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3065 dtrace_speculation_state_t current
, new;
3067 if (!spec
->dtsp_cleaning
)
3070 current
= spec
->dtsp_state
;
3071 ASSERT(current
== DTRACESPEC_DISCARDING
||
3072 current
== DTRACESPEC_COMMITTINGMANY
);
3074 new = DTRACESPEC_INACTIVE
;
3076 rv
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
, current
, new);
3077 ASSERT(rv
== current
);
3078 spec
->dtsp_cleaning
= 0;
3083 * Called as part of a speculate() to get the speculative buffer associated
3084 * with a given speculation. Returns NULL if the specified speculation is not
3085 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3086 * the active CPU is not the specified CPU -- the speculation will be
3087 * atomically transitioned into the ACTIVEMANY state.
3089 static dtrace_buffer_t
*
3090 dtrace_speculation_buffer(dtrace_state_t
*state
, processorid_t cpuid
,
3091 dtrace_specid_t which
)
3093 dtrace_speculation_t
*spec
;
3094 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
3095 dtrace_buffer_t
*buf
;
3100 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
3101 cpu_core
[cpuid
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
3105 spec
= &state
->dts_speculations
[which
- 1];
3106 buf
= &spec
->dtsp_buffer
[cpuid
];
3109 current
= spec
->dtsp_state
;
3112 case DTRACESPEC_INACTIVE
:
3113 case DTRACESPEC_COMMITTINGMANY
:
3114 case DTRACESPEC_DISCARDING
:
3117 case DTRACESPEC_COMMITTING
:
3118 ASSERT(buf
->dtb_offset
== 0);
3121 case DTRACESPEC_ACTIVEONE
:
3123 * This speculation is currently active on one CPU.
3124 * Check the offset in the buffer; if it's non-zero,
3125 * that CPU must be us (and we leave the state alone).
3126 * If it's zero, assume that we're starting on a new
3127 * CPU -- and change the state to indicate that the
3128 * speculation is active on more than one CPU.
3130 if (buf
->dtb_offset
!= 0)
3133 new = DTRACESPEC_ACTIVEMANY
;
3136 case DTRACESPEC_ACTIVEMANY
:
3139 case DTRACESPEC_ACTIVE
:
3140 new = DTRACESPEC_ACTIVEONE
;
3146 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
3147 current
, new) != current
);
3149 ASSERT(new == DTRACESPEC_ACTIVEONE
|| new == DTRACESPEC_ACTIVEMANY
);
3154 * Return a string. In the event that the user lacks the privilege to access
3155 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3156 * don't fail access checking.
3158 * dtrace_dif_variable() uses this routine as a helper for various
3159 * builtin values such as 'execname' and 'probefunc.'
3163 dtrace_dif_varstr(uintptr_t addr
, dtrace_state_t
*state
,
3164 dtrace_mstate_t
*mstate
)
3166 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3171 * The easy case: this probe is allowed to read all of memory, so
3172 * we can just return this as a vanilla pointer.
3174 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
3178 * This is the tougher case: we copy the string in question from
3179 * kernel memory into scratch memory and return it that way: this
3180 * ensures that we won't trip up when access checking tests the
3181 * BYREF return value.
3183 strsz
= dtrace_strlen((char *)addr
, size
) + 1;
3185 if (mstate
->dtms_scratch_ptr
+ strsz
>
3186 mstate
->dtms_scratch_base
+ mstate
->dtms_scratch_size
) {
3187 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3191 dtrace_strcpy((const void *)addr
, (void *)mstate
->dtms_scratch_ptr
,
3193 ret
= mstate
->dtms_scratch_ptr
;
3194 mstate
->dtms_scratch_ptr
+= strsz
;
3199 * This function implements the DIF emulator's variable lookups. The emulator
3200 * passes a reserved variable identifier and optional built-in array index.
3203 dtrace_dif_variable(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
, uint64_t v
,
3207 * If we're accessing one of the uncached arguments, we'll turn this
3208 * into a reference in the args array.
3210 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
) {
3211 ndx
= v
- DIF_VAR_ARG0
;
3217 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_ARGS
);
3218 if (ndx
>= sizeof (mstate
->dtms_arg
) /
3219 sizeof (mstate
->dtms_arg
[0])) {
3221 * APPLE NOTE: Account for introduction of __dtrace_probe()
3223 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3224 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
3225 dtrace_provider_t
*pv
;
3228 pv
= mstate
->dtms_probe
->dtpr_provider
;
3229 if (pv
->dtpv_pops
.dtps_getargval
!= NULL
)
3230 val
= pv
->dtpv_pops
.dtps_getargval(pv
->dtpv_arg
,
3231 mstate
->dtms_probe
->dtpr_id
,
3232 mstate
->dtms_probe
->dtpr_arg
, ndx
, aframes
);
3233 /* Special case access of arg5 as passed to dtrace_probe_error() (which see.) */
3234 else if (mstate
->dtms_probe
->dtpr_id
== dtrace_probeid_error
&& ndx
== 5) {
3235 return ((dtrace_state_t
*)(uintptr_t)(mstate
->dtms_arg
[0]))->dts_arg_error_illval
;
3239 val
= dtrace_getarg(ndx
, aframes
, mstate
, vstate
);
3242 * This is regrettably required to keep the compiler
3243 * from tail-optimizing the call to dtrace_getarg().
3244 * The condition always evaluates to true, but the
3245 * compiler has no way of figuring that out a priori.
3246 * (None of this would be necessary if the compiler
3247 * could be relied upon to _always_ tail-optimize
3248 * the call to dtrace_getarg() -- but it can't.)
3250 if (mstate
->dtms_probe
!= NULL
)
3256 return (mstate
->dtms_arg
[ndx
]);
3258 case DIF_VAR_UREGS
: {
3261 if (!dtrace_priv_proc(state
))
3264 if ((thread
= current_thread()) == NULL
) {
3265 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
3266 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= 0;
3270 return (dtrace_getreg(find_user_regs(thread
), ndx
));
3274 case DIF_VAR_CURTHREAD
:
3275 if (!dtrace_priv_kernel(state
))
3278 return ((uint64_t)(uintptr_t)current_thread());
3280 case DIF_VAR_TIMESTAMP
:
3281 if (!(mstate
->dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
3282 mstate
->dtms_timestamp
= dtrace_gethrtime();
3283 mstate
->dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
3285 return (mstate
->dtms_timestamp
);
3287 case DIF_VAR_VTIMESTAMP
:
3288 ASSERT(dtrace_vtime_references
!= 0);
3289 return (dtrace_get_thread_vtime(current_thread()));
3291 case DIF_VAR_WALLTIMESTAMP
:
3292 if (!(mstate
->dtms_present
& DTRACE_MSTATE_WALLTIMESTAMP
)) {
3293 mstate
->dtms_walltimestamp
= dtrace_gethrestime();
3294 mstate
->dtms_present
|= DTRACE_MSTATE_WALLTIMESTAMP
;
3296 return (mstate
->dtms_walltimestamp
);
3298 case DIF_VAR_MACHTIMESTAMP
:
3299 if (!(mstate
->dtms_present
& DTRACE_MSTATE_MACHTIMESTAMP
)) {
3300 mstate
->dtms_machtimestamp
= mach_absolute_time();
3301 mstate
->dtms_present
|= DTRACE_MSTATE_MACHTIMESTAMP
;
3303 return (mstate
->dtms_machtimestamp
);
3306 return ((uint64_t) dtrace_get_thread_last_cpu_id(current_thread()));
3309 if (!dtrace_priv_kernel(state
))
3311 if (!(mstate
->dtms_present
& DTRACE_MSTATE_IPL
)) {
3312 mstate
->dtms_ipl
= dtrace_getipl();
3313 mstate
->dtms_present
|= DTRACE_MSTATE_IPL
;
3315 return (mstate
->dtms_ipl
);
3318 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_EPID
);
3319 return (mstate
->dtms_epid
);
3322 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3323 return (mstate
->dtms_probe
->dtpr_id
);
3325 case DIF_VAR_STACKDEPTH
:
3326 if (!dtrace_priv_kernel(state
))
3328 if (!(mstate
->dtms_present
& DTRACE_MSTATE_STACKDEPTH
)) {
3330 * APPLE NOTE: Account for introduction of __dtrace_probe()
3332 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3334 mstate
->dtms_stackdepth
= dtrace_getstackdepth(aframes
);
3335 mstate
->dtms_present
|= DTRACE_MSTATE_STACKDEPTH
;
3337 return (mstate
->dtms_stackdepth
);
3339 case DIF_VAR_USTACKDEPTH
:
3340 if (!dtrace_priv_proc(state
))
3342 if (!(mstate
->dtms_present
& DTRACE_MSTATE_USTACKDEPTH
)) {
3344 * See comment in DIF_VAR_PID.
3346 if (DTRACE_ANCHORED(mstate
->dtms_probe
) &&
3348 mstate
->dtms_ustackdepth
= 0;
3350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3351 mstate
->dtms_ustackdepth
=
3352 dtrace_getustackdepth();
3353 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3355 mstate
->dtms_present
|= DTRACE_MSTATE_USTACKDEPTH
;
3357 return (mstate
->dtms_ustackdepth
);
3359 case DIF_VAR_CALLER
:
3360 if (!dtrace_priv_kernel(state
))
3362 if (!(mstate
->dtms_present
& DTRACE_MSTATE_CALLER
)) {
3364 * APPLE NOTE: Account for introduction of __dtrace_probe()
3366 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3368 if (!DTRACE_ANCHORED(mstate
->dtms_probe
)) {
3370 * If this is an unanchored probe, we are
3371 * required to go through the slow path:
3372 * dtrace_caller() only guarantees correct
3373 * results for anchored probes.
3377 dtrace_getpcstack(caller
, 2, aframes
,
3378 (uint32_t *)(uintptr_t)mstate
->dtms_arg
[0]);
3379 mstate
->dtms_caller
= caller
[1];
3380 } else if ((mstate
->dtms_caller
=
3381 dtrace_caller(aframes
)) == (uintptr_t)-1) {
3383 * We have failed to do this the quick way;
3384 * we must resort to the slower approach of
3385 * calling dtrace_getpcstack().
3389 dtrace_getpcstack(&caller
, 1, aframes
, NULL
);
3390 mstate
->dtms_caller
= caller
;
3393 mstate
->dtms_present
|= DTRACE_MSTATE_CALLER
;
3395 return (mstate
->dtms_caller
);
3397 case DIF_VAR_UCALLER
:
3398 if (!dtrace_priv_proc(state
))
3401 if (!(mstate
->dtms_present
& DTRACE_MSTATE_UCALLER
)) {
3405 * dtrace_getupcstack() fills in the first uint64_t
3406 * with the current PID. The second uint64_t will
3407 * be the program counter at user-level. The third
3408 * uint64_t will contain the caller, which is what
3412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3413 dtrace_getupcstack(ustack
, 3);
3414 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3415 mstate
->dtms_ucaller
= ustack
[2];
3416 mstate
->dtms_present
|= DTRACE_MSTATE_UCALLER
;
3419 return (mstate
->dtms_ucaller
);
3421 case DIF_VAR_PROBEPROV
:
3422 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3423 return (dtrace_dif_varstr(
3424 (uintptr_t)mstate
->dtms_probe
->dtpr_provider
->dtpv_name
,
3427 case DIF_VAR_PROBEMOD
:
3428 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3429 return (dtrace_dif_varstr(
3430 (uintptr_t)mstate
->dtms_probe
->dtpr_mod
,
3433 case DIF_VAR_PROBEFUNC
:
3434 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3435 return (dtrace_dif_varstr(
3436 (uintptr_t)mstate
->dtms_probe
->dtpr_func
,
3439 case DIF_VAR_PROBENAME
:
3440 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3441 return (dtrace_dif_varstr(
3442 (uintptr_t)mstate
->dtms_probe
->dtpr_name
,
3446 if (!dtrace_priv_proc_relaxed(state
))
3450 * Note that we are assuming that an unanchored probe is
3451 * always due to a high-level interrupt. (And we're assuming
3452 * that there is only a single high level interrupt.)
3454 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3455 /* Anchored probe that fires while on an interrupt accrues to process 0 */
3458 return ((uint64_t)dtrace_proc_selfpid());
3461 if (!dtrace_priv_proc_relaxed(state
))
3465 * See comment in DIF_VAR_PID.
3467 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3470 return ((uint64_t)dtrace_proc_selfppid());
3473 /* We do not need to check for null current_thread() */
3474 return thread_tid(current_thread()); /* globally unique */
3476 case DIF_VAR_PTHREAD_SELF
:
3477 if (!dtrace_priv_proc(state
))
3480 /* Not currently supported, but we should be able to delta the dispatchqaddr and dispatchqoffset to get pthread_self */
3483 case DIF_VAR_DISPATCHQADDR
:
3484 if (!dtrace_priv_proc(state
))
3487 /* We do not need to check for null current_thread() */
3488 return thread_dispatchqaddr(current_thread());
3490 case DIF_VAR_EXECNAME
:
3492 char *xname
= (char *)mstate
->dtms_scratch_ptr
;
3493 size_t scratch_size
= MAXCOMLEN
+1;
3495 /* The scratch allocation's lifetime is that of the clause. */
3496 if (!DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3497 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3501 if (!dtrace_priv_proc_relaxed(state
))
3504 mstate
->dtms_scratch_ptr
+= scratch_size
;
3505 proc_selfname( xname
, scratch_size
);
3507 return ((uint64_t)(uintptr_t)xname
);
3511 case DIF_VAR_ZONENAME
:
3513 /* scratch_size is equal to length('global') + 1 for the null-terminator. */
3514 char *zname
= (char *)mstate
->dtms_scratch_ptr
;
3515 size_t scratch_size
= 6 + 1;
3517 if (!dtrace_priv_proc(state
))
3520 /* The scratch allocation's lifetime is that of the clause. */
3521 if (!DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3522 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3526 mstate
->dtms_scratch_ptr
+= scratch_size
;
3528 /* The kernel does not provide zonename, it will always return 'global'. */
3529 strlcpy(zname
, "global", scratch_size
);
3531 return ((uint64_t)(uintptr_t)zname
);
3535 case DIF_VAR_CPUINSTRS
:
3536 return mt_cur_cpu_instrs();
3538 case DIF_VAR_CPUCYCLES
:
3539 return mt_cur_cpu_cycles();
3541 case DIF_VAR_VINSTRS
:
3542 return mt_cur_thread_instrs();
3544 case DIF_VAR_VCYCLES
:
3545 return mt_cur_thread_cycles();
3546 #else /* MONOTONIC */
3547 case DIF_VAR_CPUINSTRS
: /* FALLTHROUGH */
3548 case DIF_VAR_CPUCYCLES
: /* FALLTHROUGH */
3549 case DIF_VAR_VINSTRS
: /* FALLTHROUGH */
3550 case DIF_VAR_VCYCLES
: /* FALLTHROUGH */
3552 #endif /* !MONOTONIC */
3555 if (!dtrace_priv_proc_relaxed(state
))
3559 * See comment in DIF_VAR_PID.
3561 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3564 return ((uint64_t) dtrace_proc_selfruid());
3567 if (!dtrace_priv_proc(state
))
3571 * See comment in DIF_VAR_PID.
3573 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3576 if (dtrace_CRED() != NULL
)
3577 /* Credential does not require lazy initialization. */
3578 return ((uint64_t)kauth_getgid());
3580 /* proc_lock would be taken under kauth_cred_proc_ref() in kauth_cred_get(). */
3581 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3585 case DIF_VAR_ERRNO
: {
3586 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
3587 if (!dtrace_priv_proc(state
))
3591 * See comment in DIF_VAR_PID.
3593 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3597 return (uint64_t)uthread
->t_dtrace_errno
;
3599 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3605 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3611 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3612 * Notice that we don't bother validating the proper number of arguments or
3613 * their types in the tuple stack. This isn't needed because all argument
3614 * interpretation is safe because of our load safety -- the worst that can
3615 * happen is that a bogus program can obtain bogus results.
3618 dtrace_dif_subr(uint_t subr
, uint_t rd
, uint64_t *regs
,
3619 dtrace_key_t
*tupregs
, int nargs
,
3620 dtrace_mstate_t
*mstate
, dtrace_state_t
*state
)
3622 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
3623 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
3624 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
3626 #if !defined(__APPLE__)
3637 /* FIXME: awaits lock/mutex work */
3638 #endif /* __APPLE__ */
3642 regs
[rd
] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3645 #if !defined(__APPLE__)
3646 case DIF_SUBR_MUTEX_OWNED
:
3647 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3653 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3654 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
))
3655 regs
[rd
] = MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
;
3657 regs
[rd
] = LOCK_HELD(&m
.mi
.m_spin
.m_spinlock
);
3660 case DIF_SUBR_MUTEX_OWNER
:
3661 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3667 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3668 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
) &&
3669 MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
)
3670 regs
[rd
] = (uintptr_t)MUTEX_OWNER(&m
.mi
);
3675 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE
:
3676 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3682 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3683 regs
[rd
] = MUTEX_TYPE_ADAPTIVE(&m
.mi
);
3686 case DIF_SUBR_MUTEX_TYPE_SPIN
:
3687 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3693 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3694 regs
[rd
] = MUTEX_TYPE_SPIN(&m
.mi
);
3697 case DIF_SUBR_RW_READ_HELD
: {
3700 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (uintptr_t),
3706 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3707 regs
[rd
] = _RW_READ_HELD(&r
.ri
, tmp
);
3711 case DIF_SUBR_RW_WRITE_HELD
:
3712 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
3718 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3719 regs
[rd
] = _RW_WRITE_HELD(&r
.ri
);
3722 case DIF_SUBR_RW_ISWRITER
:
3723 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
3729 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3730 regs
[rd
] = _RW_ISWRITER(&r
.ri
);
3733 /* FIXME: awaits lock/mutex work */
3734 #endif /* __APPLE__ */
3736 case DIF_SUBR_BCOPY
: {
3738 * We need to be sure that the destination is in the scratch
3739 * region -- no other region is allowed.
3741 uintptr_t src
= tupregs
[0].dttk_value
;
3742 uintptr_t dest
= tupregs
[1].dttk_value
;
3743 size_t size
= tupregs
[2].dttk_value
;
3745 if (!dtrace_inscratch(dest
, size
, mstate
)) {
3746 *flags
|= CPU_DTRACE_BADADDR
;
3751 if (!dtrace_canload(src
, size
, mstate
, vstate
)) {
3756 dtrace_bcopy((void *)src
, (void *)dest
, size
);
3760 case DIF_SUBR_ALLOCA
:
3761 case DIF_SUBR_COPYIN
: {
3762 uintptr_t dest
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
3764 tupregs
[subr
== DIF_SUBR_ALLOCA
? 0 : 1].dttk_value
;
3765 size_t scratch_size
= (dest
- mstate
->dtms_scratch_ptr
) + size
;
3768 * Check whether the user can access kernel memory
3770 if (dtrace_priv_kernel(state
) == 0) {
3771 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV
);
3776 * This action doesn't require any credential checks since
3777 * probes will not activate in user contexts to which the
3778 * enabling user does not have permissions.
3782 * Rounding up the user allocation size could have overflowed
3783 * a large, bogus allocation (like -1ULL) to 0.
3785 if (scratch_size
< size
||
3786 !DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3787 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3792 if (subr
== DIF_SUBR_COPYIN
) {
3793 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3794 if (dtrace_priv_proc(state
))
3795 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
3796 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3799 mstate
->dtms_scratch_ptr
+= scratch_size
;
3804 case DIF_SUBR_COPYINTO
: {
3805 uint64_t size
= tupregs
[1].dttk_value
;
3806 uintptr_t dest
= tupregs
[2].dttk_value
;
3809 * This action doesn't require any credential checks since
3810 * probes will not activate in user contexts to which the
3811 * enabling user does not have permissions.
3813 if (!dtrace_inscratch(dest
, size
, mstate
)) {
3814 *flags
|= CPU_DTRACE_BADADDR
;
3819 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3820 if (dtrace_priv_proc(state
))
3821 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
3822 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3826 case DIF_SUBR_COPYINSTR
: {
3827 uintptr_t dest
= mstate
->dtms_scratch_ptr
;
3828 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3830 if (nargs
> 1 && tupregs
[1].dttk_value
< size
)
3831 size
= tupregs
[1].dttk_value
+ 1;
3834 * This action doesn't require any credential checks since
3835 * probes will not activate in user contexts to which the
3836 * enabling user does not have permissions.
3838 if (!DTRACE_INSCRATCH(mstate
, size
)) {
3839 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3844 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3845 if (dtrace_priv_proc(state
))
3846 dtrace_copyinstr(tupregs
[0].dttk_value
, dest
, size
, flags
);
3847 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3849 ((char *)dest
)[size
- 1] = '\0';
3850 mstate
->dtms_scratch_ptr
+= size
;
3855 case DIF_SUBR_MSGSIZE
:
3856 case DIF_SUBR_MSGDSIZE
: {
3857 /* Darwin does not implement SysV streams messages */
3858 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3863 case DIF_SUBR_PROGENYOF
: {
3864 pid_t pid
= tupregs
[0].dttk_value
;
3865 struct proc
*p
= current_proc();
3866 int rval
= 0, lim
= nprocs
;
3868 while(p
&& (lim
-- > 0)) {
3871 ppid
= (pid_t
)dtrace_load32((uintptr_t)&(p
->p_pid
));
3872 if (*flags
& CPU_DTRACE_FAULT
)
3881 break; /* Can't climb process tree any further. */
3883 p
= (struct proc
*)dtrace_loadptr((uintptr_t)&(p
->p_pptr
));
3884 if (*flags
& CPU_DTRACE_FAULT
)
3892 case DIF_SUBR_SPECULATION
:
3893 regs
[rd
] = dtrace_speculation(state
);
3897 case DIF_SUBR_COPYOUT
: {
3898 uintptr_t kaddr
= tupregs
[0].dttk_value
;
3899 user_addr_t uaddr
= tupregs
[1].dttk_value
;
3900 uint64_t size
= tupregs
[2].dttk_value
;
3902 if (!dtrace_destructive_disallow
&&
3903 dtrace_priv_proc_control(state
) &&
3904 !dtrace_istoxic(kaddr
, size
) &&
3905 dtrace_canload(kaddr
, size
, mstate
, vstate
)) {
3906 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3907 dtrace_copyout(kaddr
, uaddr
, size
, flags
);
3908 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3913 case DIF_SUBR_COPYOUTSTR
: {
3914 uintptr_t kaddr
= tupregs
[0].dttk_value
;
3915 user_addr_t uaddr
= tupregs
[1].dttk_value
;
3916 uint64_t size
= tupregs
[2].dttk_value
;
3919 if (!dtrace_destructive_disallow
&&
3920 dtrace_priv_proc_control(state
) &&
3921 !dtrace_istoxic(kaddr
, size
) &&
3922 dtrace_strcanload(kaddr
, size
, &lim
, mstate
, vstate
)) {
3923 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3924 dtrace_copyoutstr(kaddr
, uaddr
, lim
, flags
);
3925 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3930 case DIF_SUBR_STRLEN
: {
3931 size_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3932 uintptr_t addr
= (uintptr_t)tupregs
[0].dttk_value
;
3935 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
3940 regs
[rd
] = dtrace_strlen((char *)addr
, lim
);
3945 case DIF_SUBR_STRCHR
:
3946 case DIF_SUBR_STRRCHR
: {
3948 * We're going to iterate over the string looking for the
3949 * specified character. We will iterate until we have reached
3950 * the string length or we have found the character. If this
3951 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3952 * of the specified character instead of the first.
3954 uintptr_t addr
= tupregs
[0].dttk_value
;
3955 uintptr_t addr_limit
;
3956 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3958 char c
, target
= (char)tupregs
[1].dttk_value
;
3960 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
3964 addr_limit
= addr
+ lim
;
3966 for (regs
[rd
] = 0; addr
< addr_limit
; addr
++) {
3967 if ((c
= dtrace_load8(addr
)) == target
) {
3970 if (subr
== DIF_SUBR_STRCHR
)
3981 case DIF_SUBR_STRSTR
:
3982 case DIF_SUBR_INDEX
:
3983 case DIF_SUBR_RINDEX
: {
3985 * We're going to iterate over the string looking for the
3986 * specified string. We will iterate until we have reached
3987 * the string length or we have found the string. (Yes, this
3988 * is done in the most naive way possible -- but considering
3989 * that the string we're searching for is likely to be
3990 * relatively short, the complexity of Rabin-Karp or similar
3991 * hardly seems merited.)
3993 char *addr
= (char *)(uintptr_t)tupregs
[0].dttk_value
;
3994 char *substr
= (char *)(uintptr_t)tupregs
[1].dttk_value
;
3995 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3996 size_t len
= dtrace_strlen(addr
, size
);
3997 size_t sublen
= dtrace_strlen(substr
, size
);
3998 char *limit
= addr
+ len
, *orig
= addr
;
3999 int notfound
= subr
== DIF_SUBR_STRSTR
? 0 : -1;
4002 regs
[rd
] = notfound
;
4004 if (!dtrace_canload((uintptr_t)addr
, len
+ 1, mstate
, vstate
)) {
4009 if (!dtrace_canload((uintptr_t)substr
, sublen
+ 1, mstate
,
4016 * strstr() and index()/rindex() have similar semantics if
4017 * both strings are the empty string: strstr() returns a
4018 * pointer to the (empty) string, and index() and rindex()
4019 * both return index 0 (regardless of any position argument).
4021 if (sublen
== 0 && len
== 0) {
4022 if (subr
== DIF_SUBR_STRSTR
)
4023 regs
[rd
] = (uintptr_t)addr
;
4029 if (subr
!= DIF_SUBR_STRSTR
) {
4030 if (subr
== DIF_SUBR_RINDEX
) {
4037 * Both index() and rindex() take an optional position
4038 * argument that denotes the starting position.
4041 int64_t pos
= (int64_t)tupregs
[2].dttk_value
;
4044 * If the position argument to index() is
4045 * negative, Perl implicitly clamps it at
4046 * zero. This semantic is a little surprising
4047 * given the special meaning of negative
4048 * positions to similar Perl functions like
4049 * substr(), but it appears to reflect a
4050 * notion that index() can start from a
4051 * negative index and increment its way up to
4052 * the string. Given this notion, Perl's
4053 * rindex() is at least self-consistent in
4054 * that it implicitly clamps positions greater
4055 * than the string length to be the string
4056 * length. Where Perl completely loses
4057 * coherence, however, is when the specified
4058 * substring is the empty string (""). In
4059 * this case, even if the position is
4060 * negative, rindex() returns 0 -- and even if
4061 * the position is greater than the length,
4062 * index() returns the string length. These
4063 * semantics violate the notion that index()
4064 * should never return a value less than the
4065 * specified position and that rindex() should
4066 * never return a value greater than the
4067 * specified position. (One assumes that
4068 * these semantics are artifacts of Perl's
4069 * implementation and not the results of
4070 * deliberate design -- it beggars belief that
4071 * even Larry Wall could desire such oddness.)
4072 * While in the abstract one would wish for
4073 * consistent position semantics across
4074 * substr(), index() and rindex() -- or at the
4075 * very least self-consistent position
4076 * semantics for index() and rindex() -- we
4077 * instead opt to keep with the extant Perl
4078 * semantics, in all their broken glory. (Do
4079 * we have more desire to maintain Perl's
4080 * semantics than Perl does? Probably.)
4082 if (subr
== DIF_SUBR_RINDEX
) {
4089 if ((size_t)pos
> len
)
4095 if ((size_t)pos
>= len
) {
4106 for (regs
[rd
] = notfound
; addr
!= limit
; addr
+= inc
) {
4107 if (dtrace_strncmp(addr
, substr
, sublen
) == 0) {
4108 if (subr
!= DIF_SUBR_STRSTR
) {
4110 * As D index() and rindex() are
4111 * modeled on Perl (and not on awk),
4112 * we return a zero-based (and not a
4113 * one-based) index. (For you Perl
4114 * weenies: no, we're not going to add
4115 * $[ -- and shouldn't you be at a con
4118 regs
[rd
] = (uintptr_t)(addr
- orig
);
4122 ASSERT(subr
== DIF_SUBR_STRSTR
);
4123 regs
[rd
] = (uintptr_t)addr
;
4131 case DIF_SUBR_STRTOK
: {
4132 uintptr_t addr
= tupregs
[0].dttk_value
;
4133 uintptr_t tokaddr
= tupregs
[1].dttk_value
;
4134 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4135 uintptr_t limit
, toklimit
;
4137 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4138 uint8_t c
='\0', tokmap
[32]; /* 256 / 8 */
4142 * Check both the token buffer and (later) the input buffer,
4143 * since both could be non-scratch addresses.
4145 if (!dtrace_strcanload(tokaddr
, size
, &clim
, mstate
, vstate
)) {
4149 toklimit
= tokaddr
+ clim
;
4151 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4152 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4159 * If the address specified is NULL, we use our saved
4160 * strtok pointer from the mstate. Note that this
4161 * means that the saved strtok pointer is _only_
4162 * valid within multiple enablings of the same probe --
4163 * it behaves like an implicit clause-local variable.
4165 addr
= mstate
->dtms_strtok
;
4166 limit
= mstate
->dtms_strtok_limit
;
4169 * If the user-specified address is non-NULL we must
4170 * access check it. This is the only time we have
4171 * a chance to do so, since this address may reside
4172 * in the string table of this clause-- future calls
4173 * (when we fetch addr from mstate->dtms_strtok)
4174 * would fail this access check.
4176 if (!dtrace_strcanload(addr
, size
, &clim
, mstate
,
4181 limit
= addr
+ clim
;
4185 * First, zero the token map, and then process the token
4186 * string -- setting a bit in the map for every character
4187 * found in the token string.
4189 for (i
= 0; i
< (int)sizeof (tokmap
); i
++)
4192 for (; tokaddr
< toklimit
; tokaddr
++) {
4193 if ((c
= dtrace_load8(tokaddr
)) == '\0')
4196 ASSERT((c
>> 3) < sizeof (tokmap
));
4197 tokmap
[c
>> 3] |= (1 << (c
& 0x7));
4200 for (; addr
< limit
; addr
++) {
4202 * We're looking for a character that is _not_
4203 * contained in the token string.
4205 if ((c
= dtrace_load8(addr
)) == '\0')
4208 if (!(tokmap
[c
>> 3] & (1 << (c
& 0x7))))
4214 * We reached the end of the string without finding
4215 * any character that was not in the token string.
4216 * We return NULL in this case, and we set the saved
4217 * address to NULL as well.
4220 mstate
->dtms_strtok
= 0;
4221 mstate
->dtms_strtok_limit
= 0;
4226 * From here on, we're copying into the destination string.
4228 for (i
= 0; addr
< limit
&& i
< size
- 1; addr
++) {
4229 if ((c
= dtrace_load8(addr
)) == '\0')
4232 if (tokmap
[c
>> 3] & (1 << (c
& 0x7)))
4241 regs
[rd
] = (uintptr_t)dest
;
4242 mstate
->dtms_scratch_ptr
+= size
;
4243 mstate
->dtms_strtok
= addr
;
4244 mstate
->dtms_strtok_limit
= limit
;
4248 case DIF_SUBR_SUBSTR
: {
4249 uintptr_t s
= tupregs
[0].dttk_value
;
4250 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4251 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4252 int64_t index
= (int64_t)tupregs
[1].dttk_value
;
4253 int64_t remaining
= (int64_t)tupregs
[2].dttk_value
;
4254 size_t len
= dtrace_strlen((char *)s
, size
);
4257 if (!dtrace_canload(s
, len
+ 1, mstate
, vstate
)) {
4262 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4263 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4269 remaining
= (int64_t)size
;
4274 if (index
< 0 && index
+ remaining
> 0) {
4280 if ((size_t)index
>= len
|| index
< 0) {
4282 } else if (remaining
< 0) {
4283 remaining
+= len
- index
;
4284 } else if ((uint64_t)index
+ (uint64_t)remaining
> size
) {
4285 remaining
= size
- index
;
4288 for (i
= 0; i
< remaining
; i
++) {
4289 if ((d
[i
] = dtrace_load8(s
+ index
+ i
)) == '\0')
4295 mstate
->dtms_scratch_ptr
+= size
;
4296 regs
[rd
] = (uintptr_t)d
;
4300 case DIF_SUBR_GETMAJOR
:
4301 regs
[rd
] = (uintptr_t)major( (dev_t
)tupregs
[0].dttk_value
);
4304 case DIF_SUBR_GETMINOR
:
4305 regs
[rd
] = (uintptr_t)minor( (dev_t
)tupregs
[0].dttk_value
);
4308 case DIF_SUBR_DDI_PATHNAME
: {
4309 /* APPLE NOTE: currently unsupported on Darwin */
4310 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4315 case DIF_SUBR_STRJOIN
: {
4316 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4317 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4318 uintptr_t s1
= tupregs
[0].dttk_value
;
4319 uintptr_t s2
= tupregs
[1].dttk_value
;
4320 uint64_t i
= 0, j
= 0;
4324 if (!dtrace_strcanload(s1
, size
, &lim1
, mstate
, vstate
) ||
4325 !dtrace_strcanload(s2
, size
, &lim2
, mstate
, vstate
)) {
4330 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4331 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4338 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4342 c
= (i
>= lim1
) ? '\0' : dtrace_load8(s1
++);
4343 if ((d
[i
++] = c
) == '\0') {
4351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4355 c
= (j
++ >= lim2
) ? '\0' : dtrace_load8(s2
++);
4356 if ((d
[i
++] = c
) == '\0')
4361 mstate
->dtms_scratch_ptr
+= i
;
4362 regs
[rd
] = (uintptr_t)d
;
4368 case DIF_SUBR_LLTOSTR
: {
4369 int64_t i
= (int64_t)tupregs
[0].dttk_value
;
4370 uint64_t val
, digit
;
4371 uint64_t size
= 65; /* enough room for 2^64 in binary */
4372 char *end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4376 if ((base
= tupregs
[1].dttk_value
) <= 1 ||
4377 base
> ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4378 *flags
|= CPU_DTRACE_ILLOP
;
4383 val
= (base
== 10 && i
< 0) ? i
* -1 : i
;
4385 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4386 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4391 for (*end
-- = '\0'; val
; val
/= base
) {
4392 if ((digit
= val
% base
) <= '9' - '0') {
4393 *end
-- = '0' + digit
;
4395 *end
-- = 'a' + (digit
- ('9' - '0') - 1);
4399 if (i
== 0 && base
== 16)
4405 if (i
== 0 || base
== 8 || base
== 16)
4408 if (i
< 0 && base
== 10)
4411 regs
[rd
] = (uintptr_t)end
+ 1;
4412 mstate
->dtms_scratch_ptr
+= size
;
4416 case DIF_SUBR_HTONS
:
4417 case DIF_SUBR_NTOHS
:
4419 regs
[rd
] = (uint16_t)tupregs
[0].dttk_value
;
4421 regs
[rd
] = DT_BSWAP_16((uint16_t)tupregs
[0].dttk_value
);
4426 case DIF_SUBR_HTONL
:
4427 case DIF_SUBR_NTOHL
:
4429 regs
[rd
] = (uint32_t)tupregs
[0].dttk_value
;
4431 regs
[rd
] = DT_BSWAP_32((uint32_t)tupregs
[0].dttk_value
);
4436 case DIF_SUBR_HTONLL
:
4437 case DIF_SUBR_NTOHLL
:
4439 regs
[rd
] = (uint64_t)tupregs
[0].dttk_value
;
4441 regs
[rd
] = DT_BSWAP_64((uint64_t)tupregs
[0].dttk_value
);
4446 case DIF_SUBR_DIRNAME
:
4447 case DIF_SUBR_BASENAME
: {
4448 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4449 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4450 uintptr_t src
= tupregs
[0].dttk_value
;
4451 int i
, j
, len
= dtrace_strlen((char *)src
, size
);
4452 int lastbase
= -1, firstbase
= -1, lastdir
= -1;
4455 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
4460 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4461 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4467 * The basename and dirname for a zero-length string is
4472 src
= (uintptr_t)".";
4476 * Start from the back of the string, moving back toward the
4477 * front until we see a character that isn't a slash. That
4478 * character is the last character in the basename.
4480 for (i
= len
- 1; i
>= 0; i
--) {
4481 if (dtrace_load8(src
+ i
) != '/')
4489 * Starting from the last character in the basename, move
4490 * towards the front until we find a slash. The character
4491 * that we processed immediately before that is the first
4492 * character in the basename.
4494 for (; i
>= 0; i
--) {
4495 if (dtrace_load8(src
+ i
) == '/')
4503 * Now keep going until we find a non-slash character. That
4504 * character is the last character in the dirname.
4506 for (; i
>= 0; i
--) {
4507 if (dtrace_load8(src
+ i
) != '/')
4514 ASSERT(!(lastbase
== -1 && firstbase
!= -1));
4515 ASSERT(!(firstbase
== -1 && lastdir
!= -1));
4517 if (lastbase
== -1) {
4519 * We didn't find a non-slash character. We know that
4520 * the length is non-zero, so the whole string must be
4521 * slashes. In either the dirname or the basename
4522 * case, we return '/'.
4524 ASSERT(firstbase
== -1);
4525 firstbase
= lastbase
= lastdir
= 0;
4528 if (firstbase
== -1) {
4530 * The entire string consists only of a basename
4531 * component. If we're looking for dirname, we need
4532 * to change our string to be just "."; if we're
4533 * looking for a basename, we'll just set the first
4534 * character of the basename to be 0.
4536 if (subr
== DIF_SUBR_DIRNAME
) {
4537 ASSERT(lastdir
== -1);
4538 src
= (uintptr_t)".";
4545 if (subr
== DIF_SUBR_DIRNAME
) {
4546 if (lastdir
== -1) {
4548 * We know that we have a slash in the name --
4549 * or lastdir would be set to 0, above. And
4550 * because lastdir is -1, we know that this
4551 * slash must be the first character. (That
4552 * is, the full string must be of the form
4553 * "/basename".) In this case, the last
4554 * character of the directory name is 0.
4562 ASSERT(subr
== DIF_SUBR_BASENAME
);
4563 ASSERT(firstbase
!= -1 && lastbase
!= -1);
4568 for (i
= start
, j
= 0; i
<= end
&& (uint64_t)j
< size
- 1; i
++, j
++)
4569 dest
[j
] = dtrace_load8(src
+ i
);
4572 regs
[rd
] = (uintptr_t)dest
;
4573 mstate
->dtms_scratch_ptr
+= size
;
4577 case DIF_SUBR_CLEANPATH
: {
4578 char *dest
= (char *)mstate
->dtms_scratch_ptr
, c
;
4579 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4580 uintptr_t src
= tupregs
[0].dttk_value
;
4582 size_t i
= 0, j
= 0;
4584 if (!dtrace_strcanload(src
, size
, &lim
, mstate
, vstate
)) {
4589 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4590 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4596 * Move forward, loading each character.
4599 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4601 if ((uint64_t)(j
+ 5) >= size
) /* 5 = strlen("/..c\0") */
4609 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4613 * We have two slashes -- we can just advance
4614 * to the next character.
4621 * This is not "." and it's not ".." -- we can
4622 * just store the "/" and this character and
4630 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4634 * This is a "/./" component. We're not going
4635 * to store anything in the destination buffer;
4636 * we're just going to go to the next component.
4643 * This is not ".." -- we can just store the
4644 * "/." and this character and continue
4653 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4655 if (c
!= '/' && c
!= '\0') {
4657 * This is not ".." -- it's "..[mumble]".
4658 * We'll store the "/.." and this character
4659 * and continue processing.
4669 * This is "/../" or "/..\0". We need to back up
4670 * our destination pointer until we find a "/".
4673 while (j
!= 0 && dest
[--j
] != '/')
4678 } while (c
!= '\0');
4681 regs
[rd
] = (uintptr_t)dest
;
4682 mstate
->dtms_scratch_ptr
+= size
;
4686 case DIF_SUBR_INET_NTOA
:
4687 case DIF_SUBR_INET_NTOA6
:
4688 case DIF_SUBR_INET_NTOP
: {
4693 if (subr
== DIF_SUBR_INET_NTOP
) {
4694 af
= (int)tupregs
[0].dttk_value
;
4697 af
= subr
== DIF_SUBR_INET_NTOA
? AF_INET
: AF_INET6
;
4701 if (af
== AF_INET
) {
4702 #if !defined(__APPLE__)
4706 #endif /* __APPLE__ */
4710 * Safely load the IPv4 address.
4712 #if !defined(__APPLE__)
4713 ip4
= dtrace_load32(tupregs
[argi
].dttk_value
);
4715 if (!dtrace_canload(tupregs
[argi
].dttk_value
, sizeof(ip4
),
4722 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
4723 (void *)(uintptr_t)&ip4
, sizeof (ip4
));
4724 #endif /* __APPLE__ */
4726 * Check an IPv4 string will fit in scratch.
4728 #if !defined(__APPLE__)
4729 size
= INET_ADDRSTRLEN
;
4731 size
= MAX_IPv4_STR_LEN
;
4732 #endif /* __APPLE__ */
4733 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4734 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4738 base
= (char *)mstate
->dtms_scratch_ptr
;
4739 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4742 * Stringify as a dotted decimal quad.
4745 ptr8
= (uint8_t *)&ip4
;
4746 for (i
= 3; i
>= 0; i
--) {
4752 for (; val
; val
/= 10) {
4753 *end
-- = '0' + (val
% 10);
4760 ASSERT(end
+ 1 >= base
);
4762 } else if (af
== AF_INET6
) {
4763 #if defined(__APPLE__)
4764 #define _S6_un __u6_addr
4765 #define _S6_u8 __u6_addr8
4766 #endif /* __APPLE__ */
4767 struct in6_addr ip6
;
4768 int firstzero
, tryzero
, numzero
, v6end
;
4770 const char digits
[] = "0123456789abcdef";
4773 * Stringify using RFC 1884 convention 2 - 16 bit
4774 * hexadecimal values with a zero-run compression.
4775 * Lower case hexadecimal digits are used.
4776 * eg, fe80::214:4fff:fe0b:76c8.
4777 * The IPv4 embedded form is returned for inet_ntop,
4778 * just the IPv4 string is returned for inet_ntoa6.
4781 if (!dtrace_canload(tupregs
[argi
].dttk_value
,
4782 sizeof(struct in6_addr
), mstate
, vstate
)) {
4788 * Safely load the IPv6 address.
4791 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
4792 (void *)(uintptr_t)&ip6
, sizeof (struct in6_addr
));
4795 * Check an IPv6 string will fit in scratch.
4797 size
= INET6_ADDRSTRLEN
;
4798 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4799 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4803 base
= (char *)mstate
->dtms_scratch_ptr
;
4804 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4808 * Find the longest run of 16 bit zero values
4809 * for the single allowed zero compression - "::".
4814 for (i
= 0; i
< (int)sizeof (struct in6_addr
); i
++) {
4815 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
4816 tryzero
== -1 && i
% 2 == 0) {
4821 if (tryzero
!= -1 &&
4822 (ip6
._S6_un
._S6_u8
[i
] != 0 ||
4823 i
== sizeof (struct in6_addr
) - 1)) {
4825 if (i
- tryzero
<= numzero
) {
4830 firstzero
= tryzero
;
4831 numzero
= i
- i
% 2 - tryzero
;
4834 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
4835 i
== sizeof (struct in6_addr
) - 1)
4839 ASSERT(firstzero
+ numzero
<= (int)sizeof (struct in6_addr
));
4842 * Check for an IPv4 embedded address.
4844 v6end
= sizeof (struct in6_addr
) - 2;
4845 if (IN6_IS_ADDR_V4MAPPED(&ip6
) ||
4846 IN6_IS_ADDR_V4COMPAT(&ip6
)) {
4847 for (i
= sizeof (struct in6_addr
) - 1;
4848 i
>= (int)DTRACE_V4MAPPED_OFFSET
; i
--) {
4849 ASSERT(end
>= base
);
4851 val
= ip6
._S6_un
._S6_u8
[i
];
4856 for (; val
; val
/= 10) {
4857 *end
-- = '0' + val
% 10;
4861 if (i
> (int)DTRACE_V4MAPPED_OFFSET
)
4865 if (subr
== DIF_SUBR_INET_NTOA6
)
4869 * Set v6end to skip the IPv4 address that
4870 * we have already stringified.
4876 * Build the IPv6 string by working through the
4877 * address in reverse.
4879 for (i
= v6end
; i
>= 0; i
-= 2) {
4880 ASSERT(end
>= base
);
4882 if (i
== firstzero
+ numzero
- 2) {
4889 if (i
< 14 && i
!= firstzero
- 2)
4892 val
= (ip6
._S6_un
._S6_u8
[i
] << 8) +
4893 ip6
._S6_un
._S6_u8
[i
+ 1];
4898 for (; val
; val
/= 16) {
4899 *end
-- = digits
[val
% 16];
4903 ASSERT(end
+ 1 >= base
);
4905 #if defined(__APPLE__)
4908 #endif /* __APPLE__ */
4911 * The user didn't use AH_INET or AH_INET6.
4913 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4918 inetout
: regs
[rd
] = (uintptr_t)end
+ 1;
4919 mstate
->dtms_scratch_ptr
+= size
;
4923 case DIF_SUBR_TOUPPER
:
4924 case DIF_SUBR_TOLOWER
: {
4925 uintptr_t src
= tupregs
[0].dttk_value
;
4926 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4927 char lower
, upper
, base
, c
;
4928 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4929 size_t len
= dtrace_strlen((char*) src
, size
);
4932 lower
= (subr
== DIF_SUBR_TOUPPER
) ? 'a' : 'A';
4933 upper
= (subr
== DIF_SUBR_TOUPPER
) ? 'z' : 'Z';
4934 base
= (subr
== DIF_SUBR_TOUPPER
) ? 'A' : 'a';
4936 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
4941 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4942 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4947 for (i
= 0; i
< size
- 1; ++i
) {
4948 if ((c
= dtrace_load8(src
+ i
)) == '\0')
4950 if (c
>= lower
&& c
<= upper
)
4951 c
= base
+ (c
- lower
);
4958 regs
[rd
] = (uintptr_t) dest
;
4959 mstate
->dtms_scratch_ptr
+= size
;
4964 #if defined(__APPLE__)
4965 case DIF_SUBR_VM_KERNEL_ADDRPERM
: {
4966 if (!dtrace_priv_kernel(state
)) {
4969 regs
[rd
] = VM_KERNEL_ADDRPERM((vm_offset_t
) tupregs
[0].dttk_value
);
4975 case DIF_SUBR_KDEBUG_TRACE
: {
4977 uintptr_t args
[4] = {0};
4980 if (nargs
< 2 || nargs
> 5) {
4981 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4985 if (dtrace_destructive_disallow
)
4988 debugid
= tupregs
[0].dttk_value
;
4989 for (i
= 0; i
< nargs
- 1; i
++)
4990 args
[i
] = tupregs
[i
+ 1].dttk_value
;
4992 kernel_debug(debugid
, args
[0], args
[1], args
[2], args
[3], 0);
4997 case DIF_SUBR_KDEBUG_TRACE_STRING
: {
5002 if (dtrace_destructive_disallow
)
5005 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5006 uint32_t debugid
= tupregs
[0].dttk_value
;
5007 uint64_t str_id
= tupregs
[1].dttk_value
;
5008 uintptr_t src
= tupregs
[2].dttk_value
;
5013 if (src
!= (uintptr_t)0) {
5015 if (!dtrace_strcanload(src
, size
, &lim
, mstate
, vstate
)) {
5018 dtrace_strcpy((void*)src
, buf
, size
);
5021 (void)kernel_debug_string(debugid
, &str_id
, str
);
5032 * Emulate the execution of DTrace IR instructions specified by the given
5033 * DIF object. This function is deliberately void of assertions as all of
5034 * the necessary checks are handled by a call to dtrace_difo_validate().
5037 dtrace_dif_emulate(dtrace_difo_t
*difo
, dtrace_mstate_t
*mstate
,
5038 dtrace_vstate_t
*vstate
, dtrace_state_t
*state
)
5040 const dif_instr_t
*text
= difo
->dtdo_buf
;
5041 const uint_t textlen
= difo
->dtdo_len
;
5042 const char *strtab
= difo
->dtdo_strtab
;
5043 const uint64_t *inttab
= difo
->dtdo_inttab
;
5046 dtrace_statvar_t
*svar
;
5047 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
5049 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
5050 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
5052 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
5053 uint64_t regs
[DIF_DIR_NREGS
];
5056 uint8_t cc_n
= 0, cc_z
= 0, cc_v
= 0, cc_c
= 0;
5058 uint_t pc
= 0, id
, opc
= 0;
5064 * We stash the current DIF object into the machine state: we need it
5065 * for subsequent access checking.
5067 mstate
->dtms_difo
= difo
;
5069 regs
[DIF_REG_R0
] = 0; /* %r0 is fixed at zero */
5071 while (pc
< textlen
&& !(*flags
& CPU_DTRACE_FAULT
)) {
5075 r1
= DIF_INSTR_R1(instr
);
5076 r2
= DIF_INSTR_R2(instr
);
5077 rd
= DIF_INSTR_RD(instr
);
5079 switch (DIF_INSTR_OP(instr
)) {
5081 regs
[rd
] = regs
[r1
] | regs
[r2
];
5084 regs
[rd
] = regs
[r1
] ^ regs
[r2
];
5087 regs
[rd
] = regs
[r1
] & regs
[r2
];
5090 regs
[rd
] = regs
[r1
] << regs
[r2
];
5093 regs
[rd
] = regs
[r1
] >> regs
[r2
];
5096 regs
[rd
] = regs
[r1
] - regs
[r2
];
5099 regs
[rd
] = regs
[r1
] + regs
[r2
];
5102 regs
[rd
] = regs
[r1
] * regs
[r2
];
5105 if (regs
[r2
] == 0) {
5107 *flags
|= CPU_DTRACE_DIVZERO
;
5109 regs
[rd
] = (int64_t)regs
[r1
] /
5115 if (regs
[r2
] == 0) {
5117 *flags
|= CPU_DTRACE_DIVZERO
;
5119 regs
[rd
] = regs
[r1
] / regs
[r2
];
5124 if (regs
[r2
] == 0) {
5126 *flags
|= CPU_DTRACE_DIVZERO
;
5128 regs
[rd
] = (int64_t)regs
[r1
] %
5134 if (regs
[r2
] == 0) {
5136 *flags
|= CPU_DTRACE_DIVZERO
;
5138 regs
[rd
] = regs
[r1
] % regs
[r2
];
5143 regs
[rd
] = ~regs
[r1
];
5146 regs
[rd
] = regs
[r1
];
5149 cc_r
= regs
[r1
] - regs
[r2
];
5153 cc_c
= regs
[r1
] < regs
[r2
];
5156 cc_n
= cc_v
= cc_c
= 0;
5157 cc_z
= regs
[r1
] == 0;
5160 pc
= DIF_INSTR_LABEL(instr
);
5164 pc
= DIF_INSTR_LABEL(instr
);
5168 pc
= DIF_INSTR_LABEL(instr
);
5171 if ((cc_z
| (cc_n
^ cc_v
)) == 0)
5172 pc
= DIF_INSTR_LABEL(instr
);
5175 if ((cc_c
| cc_z
) == 0)
5176 pc
= DIF_INSTR_LABEL(instr
);
5179 if ((cc_n
^ cc_v
) == 0)
5180 pc
= DIF_INSTR_LABEL(instr
);
5184 pc
= DIF_INSTR_LABEL(instr
);
5188 pc
= DIF_INSTR_LABEL(instr
);
5192 pc
= DIF_INSTR_LABEL(instr
);
5195 if (cc_z
| (cc_n
^ cc_v
))
5196 pc
= DIF_INSTR_LABEL(instr
);
5200 pc
= DIF_INSTR_LABEL(instr
);
5203 if (!dtrace_canstore(regs
[r1
], 1, mstate
, vstate
)) {
5204 *flags
|= CPU_DTRACE_KPRIV
;
5210 regs
[rd
] = (int8_t)dtrace_load8(regs
[r1
]);
5213 if (!dtrace_canstore(regs
[r1
], 2, mstate
, vstate
)) {
5214 *flags
|= CPU_DTRACE_KPRIV
;
5220 regs
[rd
] = (int16_t)dtrace_load16(regs
[r1
]);
5223 if (!dtrace_canstore(regs
[r1
], 4, mstate
, vstate
)) {
5224 *flags
|= CPU_DTRACE_KPRIV
;
5230 regs
[rd
] = (int32_t)dtrace_load32(regs
[r1
]);
5233 if (!dtrace_canstore(regs
[r1
], 1, mstate
, vstate
)) {
5234 *flags
|= CPU_DTRACE_KPRIV
;
5240 regs
[rd
] = dtrace_load8(regs
[r1
]);
5243 if (!dtrace_canstore(regs
[r1
], 2, mstate
, vstate
)) {
5244 *flags
|= CPU_DTRACE_KPRIV
;
5250 regs
[rd
] = dtrace_load16(regs
[r1
]);
5253 if (!dtrace_canstore(regs
[r1
], 4, mstate
, vstate
)) {
5254 *flags
|= CPU_DTRACE_KPRIV
;
5260 regs
[rd
] = dtrace_load32(regs
[r1
]);
5263 if (!dtrace_canstore(regs
[r1
], 8, mstate
, vstate
)) {
5264 *flags
|= CPU_DTRACE_KPRIV
;
5270 regs
[rd
] = dtrace_load64(regs
[r1
]);
5273 * Darwin 32-bit kernel may fetch from 64-bit user.
5274 * Do not cast regs to uintptr_t
5275 * DIF_OP_ULDSB,DIF_OP_ULDSH, DIF_OP_ULDSW, DIF_OP_ULDUB
5276 * DIF_OP_ULDUH, DIF_OP_ULDUW, DIF_OP_ULDX
5280 dtrace_fuword8(regs
[r1
]);
5283 regs
[rd
] = (int16_t)
5284 dtrace_fuword16(regs
[r1
]);
5287 regs
[rd
] = (int32_t)
5288 dtrace_fuword32(regs
[r1
]);
5292 dtrace_fuword8(regs
[r1
]);
5296 dtrace_fuword16(regs
[r1
]);
5300 dtrace_fuword32(regs
[r1
]);
5304 dtrace_fuword64(regs
[r1
]);
5313 regs
[rd
] = inttab
[DIF_INSTR_INTEGER(instr
)];
5316 regs
[rd
] = (uint64_t)(uintptr_t)
5317 (strtab
+ DIF_INSTR_STRING(instr
));
5320 size_t sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5321 uintptr_t s1
= regs
[r1
];
5322 uintptr_t s2
= regs
[r2
];
5323 size_t lim1
= sz
, lim2
= sz
;
5326 !dtrace_strcanload(s1
, sz
, &lim1
, mstate
, vstate
))
5329 !dtrace_strcanload(s2
, sz
, &lim2
, mstate
, vstate
))
5332 cc_r
= dtrace_strncmp((char *)s1
, (char *)s2
,
5341 regs
[rd
] = dtrace_dif_variable(mstate
, state
,
5345 id
= DIF_INSTR_VAR(instr
);
5347 if (id
>= DIF_VAR_OTHER_UBASE
) {
5350 id
-= DIF_VAR_OTHER_UBASE
;
5351 svar
= vstate
->dtvs_globals
[id
];
5352 ASSERT(svar
!= NULL
);
5353 v
= &svar
->dtsv_var
;
5355 if (!(v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)) {
5356 regs
[rd
] = svar
->dtsv_data
;
5360 a
= (uintptr_t)svar
->dtsv_data
;
5362 if (*(uint8_t *)a
== UINT8_MAX
) {
5364 * If the 0th byte is set to UINT8_MAX
5365 * then this is to be treated as a
5366 * reference to a NULL variable.
5370 regs
[rd
] = a
+ sizeof (uint64_t);
5376 regs
[rd
] = dtrace_dif_variable(mstate
, state
, id
, 0);
5380 id
= DIF_INSTR_VAR(instr
);
5382 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5383 id
-= DIF_VAR_OTHER_UBASE
;
5385 VERIFY(id
< (uint_t
)vstate
->dtvs_nglobals
);
5386 svar
= vstate
->dtvs_globals
[id
];
5387 ASSERT(svar
!= NULL
);
5388 v
= &svar
->dtsv_var
;
5390 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5391 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5395 ASSERT(svar
->dtsv_size
!= 0);
5397 if (regs
[rd
] == 0) {
5398 *(uint8_t *)a
= UINT8_MAX
;
5402 a
+= sizeof (uint64_t);
5404 if (!dtrace_vcanload(
5405 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5406 &lim
, mstate
, vstate
))
5409 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5410 (void *)a
, &v
->dtdv_type
, lim
);
5414 svar
->dtsv_data
= regs
[rd
];
5419 * There are no DTrace built-in thread-local arrays at
5420 * present. This opcode is saved for future work.
5422 *flags
|= CPU_DTRACE_ILLOP
;
5427 id
= DIF_INSTR_VAR(instr
);
5429 if (id
< DIF_VAR_OTHER_UBASE
) {
5431 * For now, this has no meaning.
5437 id
-= DIF_VAR_OTHER_UBASE
;
5439 ASSERT(id
< (uint_t
)vstate
->dtvs_nlocals
);
5440 ASSERT(vstate
->dtvs_locals
!= NULL
);
5441 svar
= vstate
->dtvs_locals
[id
];
5442 ASSERT(svar
!= NULL
);
5443 v
= &svar
->dtsv_var
;
5445 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5446 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5447 size_t sz
= v
->dtdv_type
.dtdt_size
;
5449 sz
+= sizeof (uint64_t);
5450 ASSERT(svar
->dtsv_size
== (int)NCPU
* sz
);
5451 a
+= CPU
->cpu_id
* sz
;
5453 if (*(uint8_t *)a
== UINT8_MAX
) {
5455 * If the 0th byte is set to UINT8_MAX
5456 * then this is to be treated as a
5457 * reference to a NULL variable.
5461 regs
[rd
] = a
+ sizeof (uint64_t);
5467 ASSERT(svar
->dtsv_size
== (int)NCPU
* sizeof (uint64_t));
5468 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
5469 regs
[rd
] = tmp
[CPU
->cpu_id
];
5473 id
= DIF_INSTR_VAR(instr
);
5475 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5476 id
-= DIF_VAR_OTHER_UBASE
;
5477 VERIFY(id
< (uint_t
)vstate
->dtvs_nlocals
);
5478 ASSERT(vstate
->dtvs_locals
!= NULL
);
5479 svar
= vstate
->dtvs_locals
[id
];
5480 ASSERT(svar
!= NULL
);
5481 v
= &svar
->dtsv_var
;
5483 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5484 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5485 size_t sz
= v
->dtdv_type
.dtdt_size
;
5488 sz
+= sizeof (uint64_t);
5489 ASSERT(svar
->dtsv_size
== (int)NCPU
* sz
);
5490 a
+= CPU
->cpu_id
* sz
;
5492 if (regs
[rd
] == 0) {
5493 *(uint8_t *)a
= UINT8_MAX
;
5497 a
+= sizeof (uint64_t);
5500 if (!dtrace_vcanload(
5501 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5502 &lim
, mstate
, vstate
))
5505 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5506 (void *)a
, &v
->dtdv_type
, lim
);
5510 ASSERT(svar
->dtsv_size
== (int)NCPU
* sizeof (uint64_t));
5511 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
5512 tmp
[CPU
->cpu_id
] = regs
[rd
];
5516 dtrace_dynvar_t
*dvar
;
5519 id
= DIF_INSTR_VAR(instr
);
5520 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5521 id
-= DIF_VAR_OTHER_UBASE
;
5522 v
= &vstate
->dtvs_tlocals
[id
];
5524 key
= &tupregs
[DIF_DTR_NREGS
];
5525 key
[0].dttk_value
= (uint64_t)id
;
5526 key
[0].dttk_size
= 0;
5527 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
5528 key
[1].dttk_size
= 0;
5530 dvar
= dtrace_dynvar(dstate
, 2, key
,
5531 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC
,
5539 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5540 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
5542 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
5549 dtrace_dynvar_t
*dvar
;
5552 id
= DIF_INSTR_VAR(instr
);
5553 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5554 id
-= DIF_VAR_OTHER_UBASE
;
5555 VERIFY(id
< (uint_t
)vstate
->dtvs_ntlocals
);
5557 key
= &tupregs
[DIF_DTR_NREGS
];
5558 key
[0].dttk_value
= (uint64_t)id
;
5559 key
[0].dttk_size
= 0;
5560 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
5561 key
[1].dttk_size
= 0;
5562 v
= &vstate
->dtvs_tlocals
[id
];
5564 dvar
= dtrace_dynvar(dstate
, 2, key
,
5565 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5566 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5567 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
5568 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
5571 * Given that we're storing to thread-local data,
5572 * we need to flush our predicate cache.
5574 dtrace_set_thread_predcache(current_thread(), 0);
5579 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5582 if (!dtrace_vcanload(
5583 (void *)(uintptr_t)regs
[rd
],
5584 &v
->dtdv_type
, &lim
, mstate
, vstate
))
5587 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5588 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
5590 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
5597 regs
[rd
] = (int64_t)regs
[r1
] >> regs
[r2
];
5601 dtrace_dif_subr(DIF_INSTR_SUBR(instr
), rd
,
5602 regs
, tupregs
, ttop
, mstate
, state
);
5606 if (ttop
== DIF_DTR_NREGS
) {
5607 *flags
|= CPU_DTRACE_TUPOFLOW
;
5611 if (r1
== DIF_TYPE_STRING
) {
5613 * If this is a string type and the size is 0,
5614 * we'll use the system-wide default string
5615 * size. Note that we are _not_ looking at
5616 * the value of the DTRACEOPT_STRSIZE option;
5617 * had this been set, we would expect to have
5618 * a non-zero size value in the "pushtr".
5620 tupregs
[ttop
].dttk_size
=
5621 dtrace_strlen((char *)(uintptr_t)regs
[rd
],
5622 regs
[r2
] ? regs
[r2
] :
5623 dtrace_strsize_default
) + 1;
5625 if (regs
[r2
] > LONG_MAX
) {
5626 *flags
|= CPU_DTRACE_ILLOP
;
5629 tupregs
[ttop
].dttk_size
= regs
[r2
];
5632 tupregs
[ttop
++].dttk_value
= regs
[rd
];
5636 if (ttop
== DIF_DTR_NREGS
) {
5637 *flags
|= CPU_DTRACE_TUPOFLOW
;
5641 tupregs
[ttop
].dttk_value
= regs
[rd
];
5642 tupregs
[ttop
++].dttk_size
= 0;
5650 case DIF_OP_FLUSHTS
:
5655 case DIF_OP_LDTAA
: {
5656 dtrace_dynvar_t
*dvar
;
5657 dtrace_key_t
*key
= tupregs
;
5658 uint_t nkeys
= ttop
;
5660 id
= DIF_INSTR_VAR(instr
);
5661 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5662 id
-= DIF_VAR_OTHER_UBASE
;
5664 key
[nkeys
].dttk_value
= (uint64_t)id
;
5665 key
[nkeys
++].dttk_size
= 0;
5667 if (DIF_INSTR_OP(instr
) == DIF_OP_LDTAA
) {
5668 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
5669 key
[nkeys
++].dttk_size
= 0;
5670 VERIFY(id
< (uint_t
)vstate
->dtvs_ntlocals
);
5671 v
= &vstate
->dtvs_tlocals
[id
];
5673 VERIFY(id
< (uint_t
)vstate
->dtvs_nglobals
);
5674 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
5677 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
5678 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5679 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5680 DTRACE_DYNVAR_NOALLOC
, mstate
, vstate
);
5687 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5688 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
5690 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
5697 case DIF_OP_STTAA
: {
5698 dtrace_dynvar_t
*dvar
;
5699 dtrace_key_t
*key
= tupregs
;
5700 uint_t nkeys
= ttop
;
5702 id
= DIF_INSTR_VAR(instr
);
5703 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5704 id
-= DIF_VAR_OTHER_UBASE
;
5706 key
[nkeys
].dttk_value
= (uint64_t)id
;
5707 key
[nkeys
++].dttk_size
= 0;
5709 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
) {
5710 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
5711 key
[nkeys
++].dttk_size
= 0;
5712 VERIFY(id
< (uint_t
)vstate
->dtvs_ntlocals
);
5713 v
= &vstate
->dtvs_tlocals
[id
];
5715 VERIFY(id
< (uint_t
)vstate
->dtvs_nglobals
);
5716 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
5719 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
5720 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5721 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5722 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
5723 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
5728 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5731 if (!dtrace_vcanload(
5732 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5733 &lim
, mstate
, vstate
))
5736 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5737 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
5739 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
5745 case DIF_OP_ALLOCS
: {
5746 uintptr_t ptr
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
5747 size_t size
= ptr
- mstate
->dtms_scratch_ptr
+ regs
[r1
];
5750 * Rounding up the user allocation size could have
5751 * overflowed large, bogus allocations (like -1ULL) to
5754 if (size
< regs
[r1
] ||
5755 !DTRACE_INSCRATCH(mstate
, size
)) {
5756 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5761 dtrace_bzero((void *) mstate
->dtms_scratch_ptr
, size
);
5762 mstate
->dtms_scratch_ptr
+= size
;
5768 if (!dtrace_canstore(regs
[rd
], regs
[r2
],
5770 *flags
|= CPU_DTRACE_BADADDR
;
5775 if (!dtrace_canload(regs
[r1
], regs
[r2
], mstate
, vstate
))
5778 dtrace_bcopy((void *)(uintptr_t)regs
[r1
],
5779 (void *)(uintptr_t)regs
[rd
], (size_t)regs
[r2
]);
5783 if (!dtrace_canstore(regs
[rd
], 1, mstate
, vstate
)) {
5784 *flags
|= CPU_DTRACE_BADADDR
;
5788 *((uint8_t *)(uintptr_t)regs
[rd
]) = (uint8_t)regs
[r1
];
5792 if (!dtrace_canstore(regs
[rd
], 2, mstate
, vstate
)) {
5793 *flags
|= CPU_DTRACE_BADADDR
;
5798 *flags
|= CPU_DTRACE_BADALIGN
;
5802 *((uint16_t *)(uintptr_t)regs
[rd
]) = (uint16_t)regs
[r1
];
5806 if (!dtrace_canstore(regs
[rd
], 4, mstate
, vstate
)) {
5807 *flags
|= CPU_DTRACE_BADADDR
;
5812 *flags
|= CPU_DTRACE_BADALIGN
;
5816 *((uint32_t *)(uintptr_t)regs
[rd
]) = (uint32_t)regs
[r1
];
5820 if (!dtrace_canstore(regs
[rd
], 8, mstate
, vstate
)) {
5821 *flags
|= CPU_DTRACE_BADADDR
;
5827 * Darwin kmem_zalloc() called from
5828 * dtrace_difo_init() is 4-byte aligned.
5831 *flags
|= CPU_DTRACE_BADALIGN
;
5835 *((uint64_t *)(uintptr_t)regs
[rd
]) = regs
[r1
];
5840 if (!(*flags
& CPU_DTRACE_FAULT
))
5843 mstate
->dtms_fltoffs
= opc
* sizeof (dif_instr_t
);
5844 mstate
->dtms_present
|= DTRACE_MSTATE_FLTOFFS
;
5850 dtrace_action_breakpoint(dtrace_ecb_t
*ecb
)
5852 dtrace_probe_t
*probe
= ecb
->dte_probe
;
5853 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
5854 char c
[DTRACE_FULLNAMELEN
+ 80], *str
;
5855 const char *msg
= "dtrace: breakpoint action at probe ";
5856 const char *ecbmsg
= " (ecb ";
5857 uintptr_t mask
= (0xf << (sizeof (uintptr_t) * NBBY
/ 4));
5858 uintptr_t val
= (uintptr_t)ecb
;
5859 int shift
= (sizeof (uintptr_t) * NBBY
) - 4, i
= 0;
5861 if (dtrace_destructive_disallow
)
5865 * It's impossible to be taking action on the NULL probe.
5867 ASSERT(probe
!= NULL
);
5870 * This is a poor man's (destitute man's?) sprintf(): we want to
5871 * print the provider name, module name, function name and name of
5872 * the probe, along with the hex address of the ECB with the breakpoint
5873 * action -- all of which we must place in the character buffer by
5876 while (*msg
!= '\0')
5879 for (str
= prov
->dtpv_name
; *str
!= '\0'; str
++)
5883 for (str
= probe
->dtpr_mod
; *str
!= '\0'; str
++)
5887 for (str
= probe
->dtpr_func
; *str
!= '\0'; str
++)
5891 for (str
= probe
->dtpr_name
; *str
!= '\0'; str
++)
5894 while (*ecbmsg
!= '\0')
5897 while (shift
>= 0) {
5898 mask
= (uintptr_t)0xf << shift
;
5900 if (val
>= ((uintptr_t)1 << shift
))
5901 c
[i
++] = "0123456789abcdef"[(val
& mask
) >> shift
];
5912 dtrace_action_panic(dtrace_ecb_t
*ecb
)
5914 dtrace_probe_t
*probe
= ecb
->dte_probe
;
5917 * It's impossible to be taking action on the NULL probe.
5919 ASSERT(probe
!= NULL
);
5921 if (dtrace_destructive_disallow
)
5924 if (dtrace_panicked
!= NULL
)
5927 if (dtrace_casptr(&dtrace_panicked
, NULL
, current_thread()) != NULL
)
5931 * We won the right to panic. (We want to be sure that only one
5932 * thread calls panic() from dtrace_probe(), and that panic() is
5933 * called exactly once.)
5935 panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5936 probe
->dtpr_provider
->dtpv_name
, probe
->dtpr_mod
,
5937 probe
->dtpr_func
, probe
->dtpr_name
, (void *)ecb
);
5940 * APPLE NOTE: this was for an old Mac OS X debug feature
5941 * allowing a return from panic(). Revisit someday.
5943 dtrace_panicked
= NULL
;
5947 dtrace_action_raise(uint64_t sig
)
5949 if (dtrace_destructive_disallow
)
5953 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
5958 * raise() has a queue depth of 1 -- we ignore all subsequent
5959 * invocations of the raise() action.
5962 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
5964 if (uthread
&& uthread
->t_dtrace_sig
== 0) {
5965 uthread
->t_dtrace_sig
= sig
;
5966 act_set_astbsd(current_thread());
5971 dtrace_action_stop(void)
5973 if (dtrace_destructive_disallow
)
5976 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
5979 * The currently running process will be set to task_suspend
5980 * when it next leaves the kernel.
5982 uthread
->t_dtrace_stop
= 1;
5983 act_set_astbsd(current_thread());
5989 * APPLE NOTE: pidresume works in conjunction with the dtrace stop action.
5990 * Both activate only when the currently running process next leaves the
5994 dtrace_action_pidresume(uint64_t pid
)
5996 if (dtrace_destructive_disallow
)
5999 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
6000 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
6003 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
6006 * When the currently running process leaves the kernel, it attempts to
6007 * task_resume the process (denoted by pid), if that pid appears to have
6008 * been stopped by dtrace_action_stop().
6009 * The currently running process has a pidresume() queue depth of 1 --
6010 * subsequent invocations of the pidresume() action are ignored.
6013 if (pid
!= 0 && uthread
&& uthread
->t_dtrace_resumepid
== 0) {
6014 uthread
->t_dtrace_resumepid
= pid
;
6015 act_set_astbsd(current_thread());
6020 dtrace_action_chill(dtrace_mstate_t
*mstate
, hrtime_t val
)
6023 volatile uint16_t *flags
;
6024 dtrace_cpu_t
*cpu
= CPU
;
6026 if (dtrace_destructive_disallow
)
6029 flags
= (volatile uint16_t *)&cpu_core
[cpu
->cpu_id
].cpuc_dtrace_flags
;
6031 now
= dtrace_gethrtime();
6033 if (now
- cpu
->cpu_dtrace_chillmark
> dtrace_chill_interval
) {
6035 * We need to advance the mark to the current time.
6037 cpu
->cpu_dtrace_chillmark
= now
;
6038 cpu
->cpu_dtrace_chilled
= 0;
6042 * Now check to see if the requested chill time would take us over
6043 * the maximum amount of time allowed in the chill interval. (Or
6044 * worse, if the calculation itself induces overflow.)
6046 if (cpu
->cpu_dtrace_chilled
+ val
> dtrace_chill_max
||
6047 cpu
->cpu_dtrace_chilled
+ val
< cpu
->cpu_dtrace_chilled
) {
6048 *flags
|= CPU_DTRACE_ILLOP
;
6052 while (dtrace_gethrtime() - now
< val
)
6056 * Normally, we assure that the value of the variable "timestamp" does
6057 * not change within an ECB. The presence of chill() represents an
6058 * exception to this rule, however.
6060 mstate
->dtms_present
&= ~DTRACE_MSTATE_TIMESTAMP
;
6061 cpu
->cpu_dtrace_chilled
+= val
;
6065 dtrace_action_ustack(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
,
6066 uint64_t *buf
, uint64_t arg
)
6068 int nframes
= DTRACE_USTACK_NFRAMES(arg
);
6069 int strsize
= DTRACE_USTACK_STRSIZE(arg
);
6070 uint64_t *pcs
= &buf
[1], *fps
;
6071 char *str
= (char *)&pcs
[nframes
];
6072 int size
, offs
= 0, i
, j
;
6073 uintptr_t old
= mstate
->dtms_scratch_ptr
, saved
;
6074 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6078 * Should be taking a faster path if string space has not been
6081 ASSERT(strsize
!= 0);
6084 * We will first allocate some temporary space for the frame pointers.
6086 fps
= (uint64_t *)P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
6087 size
= (uintptr_t)fps
- mstate
->dtms_scratch_ptr
+
6088 (nframes
* sizeof (uint64_t));
6090 if (!DTRACE_INSCRATCH(mstate
, (uintptr_t)size
)) {
6092 * Not enough room for our frame pointers -- need to indicate
6093 * that we ran out of scratch space.
6095 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
6099 mstate
->dtms_scratch_ptr
+= size
;
6100 saved
= mstate
->dtms_scratch_ptr
;
6103 * Now get a stack with both program counters and frame pointers.
6105 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6106 dtrace_getufpstack(buf
, fps
, nframes
+ 1);
6107 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6110 * If that faulted, we're cooked.
6112 if (*flags
& CPU_DTRACE_FAULT
)
6116 * Now we want to walk up the stack, calling the USTACK helper. For
6117 * each iteration, we restore the scratch pointer.
6119 for (i
= 0; i
< nframes
; i
++) {
6120 mstate
->dtms_scratch_ptr
= saved
;
6122 if (offs
>= strsize
)
6125 sym
= (char *)(uintptr_t)dtrace_helper(
6126 DTRACE_HELPER_ACTION_USTACK
,
6127 mstate
, state
, pcs
[i
], fps
[i
]);
6130 * If we faulted while running the helper, we're going to
6131 * clear the fault and null out the corresponding string.
6133 if (*flags
& CPU_DTRACE_FAULT
) {
6134 *flags
&= ~CPU_DTRACE_FAULT
;
6144 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6147 * Now copy in the string that the helper returned to us.
6149 for (j
= 0; offs
+ j
< strsize
; j
++) {
6150 if ((str
[offs
+ j
] = sym
[j
]) == '\0')
6154 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6159 if (offs
>= strsize
) {
6161 * If we didn't have room for all of the strings, we don't
6162 * abort processing -- this needn't be a fatal error -- but we
6163 * still want to increment a counter (dts_stkstroverflows) to
6164 * allow this condition to be warned about. (If this is from
6165 * a jstack() action, it is easily tuned via jstackstrsize.)
6167 dtrace_error(&state
->dts_stkstroverflows
);
6170 while (offs
< strsize
)
6174 mstate
->dtms_scratch_ptr
= old
;
6178 dtrace_store_by_ref(dtrace_difo_t
*dp
, caddr_t tomax
, size_t size
,
6179 size_t *valoffsp
, uint64_t *valp
, uint64_t end
, int intuple
, int dtkind
)
6181 volatile uint16_t *flags
;
6182 uint64_t val
= *valp
;
6183 size_t valoffs
= *valoffsp
;
6185 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6186 ASSERT(dtkind
== DIF_TF_BYREF
|| dtkind
== DIF_TF_BYUREF
);
6189 * If this is a string, we're going to only load until we find the zero
6190 * byte -- after which we'll store zero bytes.
6192 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
6196 for (s
= 0; s
< size
; s
++) {
6197 if (c
!= '\0' && dtkind
== DIF_TF_BYREF
) {
6198 c
= dtrace_load8(val
++);
6199 } else if (c
!= '\0' && dtkind
== DIF_TF_BYUREF
) {
6200 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6201 c
= dtrace_fuword8((user_addr_t
)(uintptr_t)val
++);
6202 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6203 if (*flags
& CPU_DTRACE_FAULT
)
6207 DTRACE_STORE(uint8_t, tomax
, valoffs
++, c
);
6209 if (c
== '\0' && intuple
)
6214 while (valoffs
< end
) {
6215 if (dtkind
== DIF_TF_BYREF
) {
6216 c
= dtrace_load8(val
++);
6217 } else if (dtkind
== DIF_TF_BYUREF
) {
6218 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6219 c
= dtrace_fuword8((user_addr_t
)(uintptr_t)val
++);
6220 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6221 if (*flags
& CPU_DTRACE_FAULT
)
6225 DTRACE_STORE(uint8_t, tomax
,
6231 *valoffsp
= valoffs
;
6235 * If you're looking for the epicenter of DTrace, you just found it. This
6236 * is the function called by the provider to fire a probe -- from which all
6237 * subsequent probe-context DTrace activity emanates.
6240 __dtrace_probe(dtrace_id_t id
, uint64_t arg0
, uint64_t arg1
,
6241 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
)
6243 processorid_t cpuid
;
6244 dtrace_icookie_t cookie
;
6245 dtrace_probe_t
*probe
;
6246 dtrace_mstate_t mstate
;
6248 dtrace_action_t
*act
;
6252 volatile uint16_t *flags
;
6255 cookie
= dtrace_interrupt_disable();
6256 probe
= dtrace_probes
[id
- 1];
6257 cpuid
= CPU
->cpu_id
;
6258 onintr
= CPU_ON_INTR(CPU
);
6260 if (!onintr
&& probe
->dtpr_predcache
!= DTRACE_CACHEIDNONE
&&
6261 probe
->dtpr_predcache
== dtrace_get_thread_predcache(current_thread())) {
6263 * We have hit in the predicate cache; we know that
6264 * this predicate would evaluate to be false.
6266 dtrace_interrupt_enable(cookie
);
6270 if (panic_quiesce
) {
6272 * We don't trace anything if we're panicking.
6274 dtrace_interrupt_enable(cookie
);
6278 #if !defined(__APPLE__)
6279 now
= dtrace_gethrtime();
6280 vtime
= dtrace_vtime_references
!= 0;
6282 if (vtime
&& curthread
->t_dtrace_start
)
6283 curthread
->t_dtrace_vtime
+= now
- curthread
->t_dtrace_start
;
6286 * APPLE NOTE: The time spent entering DTrace and arriving
6287 * to this point, is attributed to the current thread.
6288 * Instead it should accrue to DTrace. FIXME
6290 vtime
= dtrace_vtime_references
!= 0;
6294 int64_t dtrace_accum_time
, recent_vtime
;
6295 thread_t thread
= current_thread();
6297 dtrace_accum_time
= dtrace_get_thread_tracing(thread
); /* Time spent inside DTrace so far (nanoseconds) */
6299 if (dtrace_accum_time
>= 0) {
6300 recent_vtime
= dtrace_abs_to_nano(dtrace_calc_thread_recent_vtime(thread
)); /* up to the moment thread vtime */
6302 recent_vtime
= recent_vtime
- dtrace_accum_time
; /* Time without DTrace contribution */
6304 dtrace_set_thread_vtime(thread
, recent_vtime
);
6308 now
= dtrace_gethrtime(); /* must not precede dtrace_calc_thread_recent_vtime() call! */
6309 #endif /* __APPLE__ */
6312 * APPLE NOTE: A provider may call dtrace_probe_error() in lieu of
6313 * dtrace_probe() in some circumstances. See, e.g. fasttrap_isa.c.
6314 * However the provider has no access to ECB context, so passes
6315 * 0 through "arg0" and the probe_id of the overridden probe as arg1.
6316 * Detect that here and cons up a viable state (from the probe_id).
6318 if (dtrace_probeid_error
== id
&& 0 == arg0
) {
6319 dtrace_id_t ftp_id
= (dtrace_id_t
)arg1
;
6320 dtrace_probe_t
*ftp_probe
= dtrace_probes
[ftp_id
- 1];
6321 dtrace_ecb_t
*ftp_ecb
= ftp_probe
->dtpr_ecb
;
6323 if (NULL
!= ftp_ecb
) {
6324 dtrace_state_t
*ftp_state
= ftp_ecb
->dte_state
;
6326 arg0
= (uint64_t)(uintptr_t)ftp_state
;
6327 arg1
= ftp_ecb
->dte_epid
;
6329 * args[2-4] established by caller.
6331 ftp_state
->dts_arg_error_illval
= -1; /* arg5 */
6335 mstate
.dtms_difo
= NULL
;
6336 mstate
.dtms_probe
= probe
;
6337 mstate
.dtms_strtok
= 0;
6338 mstate
.dtms_arg
[0] = arg0
;
6339 mstate
.dtms_arg
[1] = arg1
;
6340 mstate
.dtms_arg
[2] = arg2
;
6341 mstate
.dtms_arg
[3] = arg3
;
6342 mstate
.dtms_arg
[4] = arg4
;
6344 flags
= (volatile uint16_t *)&cpu_core
[cpuid
].cpuc_dtrace_flags
;
6346 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
6347 dtrace_predicate_t
*pred
= ecb
->dte_predicate
;
6348 dtrace_state_t
*state
= ecb
->dte_state
;
6349 dtrace_buffer_t
*buf
= &state
->dts_buffer
[cpuid
];
6350 dtrace_buffer_t
*aggbuf
= &state
->dts_aggbuffer
[cpuid
];
6351 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
6352 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
6353 uint64_t tracememsize
= 0;
6358 * A little subtlety with the following (seemingly innocuous)
6359 * declaration of the automatic 'val': by looking at the
6360 * code, you might think that it could be declared in the
6361 * action processing loop, below. (That is, it's only used in
6362 * the action processing loop.) However, it must be declared
6363 * out of that scope because in the case of DIF expression
6364 * arguments to aggregating actions, one iteration of the
6365 * action loop will use the last iteration's value.
6373 mstate
.dtms_present
= DTRACE_MSTATE_ARGS
| DTRACE_MSTATE_PROBE
;
6374 *flags
&= ~CPU_DTRACE_ERROR
;
6376 if (prov
== dtrace_provider
) {
6378 * If dtrace itself is the provider of this probe,
6379 * we're only going to continue processing the ECB if
6380 * arg0 (the dtrace_state_t) is equal to the ECB's
6381 * creating state. (This prevents disjoint consumers
6382 * from seeing one another's metaprobes.)
6384 if (arg0
!= (uint64_t)(uintptr_t)state
)
6388 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
) {
6390 * We're not currently active. If our provider isn't
6391 * the dtrace pseudo provider, we're not interested.
6393 if (prov
!= dtrace_provider
)
6397 * Now we must further check if we are in the BEGIN
6398 * probe. If we are, we will only continue processing
6399 * if we're still in WARMUP -- if one BEGIN enabling
6400 * has invoked the exit() action, we don't want to
6401 * evaluate subsequent BEGIN enablings.
6403 if (probe
->dtpr_id
== dtrace_probeid_begin
&&
6404 state
->dts_activity
!= DTRACE_ACTIVITY_WARMUP
) {
6405 ASSERT(state
->dts_activity
==
6406 DTRACE_ACTIVITY_DRAINING
);
6411 if (ecb
->dte_cond
) {
6413 * If the dte_cond bits indicate that this
6414 * consumer is only allowed to see user-mode firings
6415 * of this probe, call the provider's dtps_usermode()
6416 * entry point to check that the probe was fired
6417 * while in a user context. Skip this ECB if that's
6420 if ((ecb
->dte_cond
& DTRACE_COND_USERMODE
) &&
6421 prov
->dtpv_pops
.dtps_usermode
&&
6422 prov
->dtpv_pops
.dtps_usermode(prov
->dtpv_arg
,
6423 probe
->dtpr_id
, probe
->dtpr_arg
) == 0)
6427 * This is more subtle than it looks. We have to be
6428 * absolutely certain that CRED() isn't going to
6429 * change out from under us so it's only legit to
6430 * examine that structure if we're in constrained
6431 * situations. Currently, the only times we'll this
6432 * check is if a non-super-user has enabled the
6433 * profile or syscall providers -- providers that
6434 * allow visibility of all processes. For the
6435 * profile case, the check above will ensure that
6436 * we're examining a user context.
6438 if (ecb
->dte_cond
& DTRACE_COND_OWNER
) {
6441 ecb
->dte_state
->dts_cred
.dcr_cred
;
6443 #pragma unused(proc) /* __APPLE__ */
6445 ASSERT(s_cr
!= NULL
);
6448 * XXX this is hackish, but so is setting a variable
6449 * XXX in a McCarthy OR...
6451 if ((cr
= dtrace_CRED()) == NULL
||
6452 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_uid
||
6453 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_ruid
||
6454 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_suid
||
6455 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_gid
||
6456 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_rgid
||
6457 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_sgid
||
6458 #if !defined(__APPLE__)
6459 (proc
= ttoproc(curthread
)) == NULL
||
6460 (proc
->p_flag
& SNOCD
))
6462 1) /* APPLE NOTE: Darwin omits "No Core Dump" flag */
6463 #endif /* __APPLE__ */
6467 if (ecb
->dte_cond
& DTRACE_COND_ZONEOWNER
) {
6470 ecb
->dte_state
->dts_cred
.dcr_cred
;
6471 #pragma unused(cr, s_cr) /* __APPLE__ */
6473 ASSERT(s_cr
!= NULL
);
6475 #if !defined(__APPLE__)
6476 if ((cr
= CRED()) == NULL
||
6477 s_cr
->cr_zone
->zone_id
!=
6478 cr
->cr_zone
->zone_id
)
6481 /* APPLE NOTE: Darwin doesn't do zones. */
6482 #endif /* __APPLE__ */
6486 if (now
- state
->dts_alive
> dtrace_deadman_timeout
) {
6488 * We seem to be dead. Unless we (a) have kernel
6489 * destructive permissions (b) have expicitly enabled
6490 * destructive actions and (c) destructive actions have
6491 * not been disabled, we're going to transition into
6492 * the KILLED state, from which no further processing
6493 * on this state will be performed.
6495 if (!dtrace_priv_kernel_destructive(state
) ||
6496 !state
->dts_cred
.dcr_destructive
||
6497 dtrace_destructive_disallow
) {
6498 void *activity
= &state
->dts_activity
;
6499 dtrace_activity_t current
;
6502 current
= state
->dts_activity
;
6503 } while (dtrace_cas32(activity
, current
,
6504 DTRACE_ACTIVITY_KILLED
) != current
);
6510 if ((offs
= dtrace_buffer_reserve(buf
, ecb
->dte_needed
,
6511 ecb
->dte_alignment
, state
, &mstate
)) < 0)
6514 tomax
= buf
->dtb_tomax
;
6515 ASSERT(tomax
!= NULL
);
6518 * Build and store the record header corresponding to the ECB.
6520 if (ecb
->dte_size
!= 0) {
6521 dtrace_rechdr_t dtrh
;
6523 if (!(mstate
.dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
6524 mstate
.dtms_timestamp
= dtrace_gethrtime();
6525 mstate
.dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
6528 ASSERT(ecb
->dte_size
>= sizeof(dtrace_rechdr_t
));
6530 dtrh
.dtrh_epid
= ecb
->dte_epid
;
6531 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh
, mstate
.dtms_timestamp
);
6532 DTRACE_STORE(dtrace_rechdr_t
, tomax
, offs
, dtrh
);
6535 mstate
.dtms_epid
= ecb
->dte_epid
;
6536 mstate
.dtms_present
|= DTRACE_MSTATE_EPID
;
6538 if (state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)
6539 mstate
.dtms_access
= DTRACE_ACCESS_KERNEL
;
6541 mstate
.dtms_access
= 0;
6544 dtrace_difo_t
*dp
= pred
->dtp_difo
;
6547 rval
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
6549 if (!(*flags
& CPU_DTRACE_ERROR
) && !rval
) {
6550 dtrace_cacheid_t cid
= probe
->dtpr_predcache
;
6552 if (cid
!= DTRACE_CACHEIDNONE
&& !onintr
) {
6554 * Update the predicate cache...
6556 ASSERT(cid
== pred
->dtp_cacheid
);
6558 dtrace_set_thread_predcache(current_thread(), cid
);
6565 for (act
= ecb
->dte_action
; !(*flags
& CPU_DTRACE_ERROR
) &&
6566 act
!= NULL
; act
= act
->dta_next
) {
6569 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
6571 size
= rec
->dtrd_size
;
6572 valoffs
= offs
+ rec
->dtrd_offset
;
6574 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
6576 dtrace_aggregation_t
*agg
;
6578 agg
= (dtrace_aggregation_t
*)act
;
6580 if ((dp
= act
->dta_difo
) != NULL
)
6581 v
= dtrace_dif_emulate(dp
,
6582 &mstate
, vstate
, state
);
6584 if (*flags
& CPU_DTRACE_ERROR
)
6588 * Note that we always pass the expression
6589 * value from the previous iteration of the
6590 * action loop. This value will only be used
6591 * if there is an expression argument to the
6592 * aggregating action, denoted by the
6593 * dtag_hasarg field.
6595 dtrace_aggregate(agg
, buf
,
6596 offs
, aggbuf
, v
, val
);
6600 switch (act
->dta_kind
) {
6601 case DTRACEACT_STOP
:
6602 if (dtrace_priv_proc_destructive(state
))
6603 dtrace_action_stop();
6606 case DTRACEACT_BREAKPOINT
:
6607 if (dtrace_priv_kernel_destructive(state
))
6608 dtrace_action_breakpoint(ecb
);
6611 case DTRACEACT_PANIC
:
6612 if (dtrace_priv_kernel_destructive(state
))
6613 dtrace_action_panic(ecb
);
6616 case DTRACEACT_STACK
:
6617 if (!dtrace_priv_kernel(state
))
6620 dtrace_getpcstack((pc_t
*)(tomax
+ valoffs
),
6621 size
/ sizeof (pc_t
), probe
->dtpr_aframes
,
6622 DTRACE_ANCHORED(probe
) ? NULL
:
6623 (uint32_t *)(uintptr_t)arg0
);
6626 case DTRACEACT_JSTACK
:
6627 case DTRACEACT_USTACK
:
6628 if (!dtrace_priv_proc(state
))
6632 * See comment in DIF_VAR_PID.
6634 if (DTRACE_ANCHORED(mstate
.dtms_probe
) &&
6636 int depth
= DTRACE_USTACK_NFRAMES(
6639 dtrace_bzero((void *)(tomax
+ valoffs
),
6640 DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
)
6641 + depth
* sizeof (uint64_t));
6646 if (DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
) != 0 &&
6647 curproc
->p_dtrace_helpers
!= NULL
) {
6649 * This is the slow path -- we have
6650 * allocated string space, and we're
6651 * getting the stack of a process that
6652 * has helpers. Call into a separate
6653 * routine to perform this processing.
6655 dtrace_action_ustack(&mstate
, state
,
6656 (uint64_t *)(tomax
+ valoffs
),
6661 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6662 dtrace_getupcstack((uint64_t *)
6664 DTRACE_USTACK_NFRAMES(rec
->dtrd_arg
) + 1);
6665 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6675 val
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
6677 if (*flags
& CPU_DTRACE_ERROR
)
6680 switch (act
->dta_kind
) {
6681 case DTRACEACT_SPECULATE
: {
6682 dtrace_rechdr_t
*dtrh
= NULL
;
6684 ASSERT(buf
== &state
->dts_buffer
[cpuid
]);
6685 buf
= dtrace_speculation_buffer(state
,
6689 *flags
|= CPU_DTRACE_DROP
;
6693 offs
= dtrace_buffer_reserve(buf
,
6694 ecb
->dte_needed
, ecb
->dte_alignment
,
6698 *flags
|= CPU_DTRACE_DROP
;
6702 tomax
= buf
->dtb_tomax
;
6703 ASSERT(tomax
!= NULL
);
6705 if (ecb
->dte_size
== 0)
6708 ASSERT(ecb
->dte_size
>= sizeof(dtrace_rechdr_t
));
6709 dtrh
= ((void *)(tomax
+ offs
));
6710 dtrh
->dtrh_epid
= ecb
->dte_epid
;
6713 * When the speculation is committed, all of
6714 * the records in the speculative buffer will
6715 * have their timestamps set to the commit
6716 * time. Until then, it is set to a sentinel
6717 * value, for debugability.
6719 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, UINT64_MAX
);
6724 case DTRACEACT_CHILL
:
6725 if (dtrace_priv_kernel_destructive(state
))
6726 dtrace_action_chill(&mstate
, val
);
6729 case DTRACEACT_RAISE
:
6730 if (dtrace_priv_proc_destructive(state
))
6731 dtrace_action_raise(val
);
6734 case DTRACEACT_PIDRESUME
: /* __APPLE__ */
6735 if (dtrace_priv_proc_destructive(state
))
6736 dtrace_action_pidresume(val
);
6739 case DTRACEACT_COMMIT
:
6743 * We need to commit our buffer state.
6746 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
6747 buf
= &state
->dts_buffer
[cpuid
];
6748 dtrace_speculation_commit(state
, cpuid
, val
);
6752 case DTRACEACT_DISCARD
:
6753 dtrace_speculation_discard(state
, cpuid
, val
);
6756 case DTRACEACT_DIFEXPR
:
6757 case DTRACEACT_LIBACT
:
6758 case DTRACEACT_PRINTF
:
6759 case DTRACEACT_PRINTA
:
6760 case DTRACEACT_SYSTEM
:
6761 case DTRACEACT_FREOPEN
:
6762 case DTRACEACT_APPLEBINARY
: /* __APPLE__ */
6763 case DTRACEACT_TRACEMEM
:
6766 case DTRACEACT_TRACEMEM_DYNSIZE
:
6772 if (!dtrace_priv_kernel(state
))
6776 case DTRACEACT_USYM
:
6777 case DTRACEACT_UMOD
:
6778 case DTRACEACT_UADDR
: {
6779 if (!dtrace_priv_proc(state
))
6782 DTRACE_STORE(uint64_t, tomax
,
6783 valoffs
, (uint64_t)dtrace_proc_selfpid());
6784 DTRACE_STORE(uint64_t, tomax
,
6785 valoffs
+ sizeof (uint64_t), val
);
6790 case DTRACEACT_EXIT
: {
6792 * For the exit action, we are going to attempt
6793 * to atomically set our activity to be
6794 * draining. If this fails (either because
6795 * another CPU has beat us to the exit action,
6796 * or because our current activity is something
6797 * other than ACTIVE or WARMUP), we will
6798 * continue. This assures that the exit action
6799 * can be successfully recorded at most once
6800 * when we're in the ACTIVE state. If we're
6801 * encountering the exit() action while in
6802 * COOLDOWN, however, we want to honor the new
6803 * status code. (We know that we're the only
6804 * thread in COOLDOWN, so there is no race.)
6806 void *activity
= &state
->dts_activity
;
6807 dtrace_activity_t current
= state
->dts_activity
;
6809 if (current
== DTRACE_ACTIVITY_COOLDOWN
)
6812 if (current
!= DTRACE_ACTIVITY_WARMUP
)
6813 current
= DTRACE_ACTIVITY_ACTIVE
;
6815 if (dtrace_cas32(activity
, current
,
6816 DTRACE_ACTIVITY_DRAINING
) != current
) {
6817 *flags
|= CPU_DTRACE_DROP
;
6828 if (dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
)) {
6829 uintptr_t end
= valoffs
+ size
;
6831 if (tracememsize
!= 0 &&
6832 valoffs
+ tracememsize
< end
)
6834 end
= valoffs
+ tracememsize
;
6838 if (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
&&
6839 !dtrace_vcanload((void *)(uintptr_t)val
,
6840 &dp
->dtdo_rtype
, NULL
, &mstate
, vstate
))
6845 dtrace_store_by_ref(dp
, tomax
, size
, &valoffs
,
6846 &val
, end
, act
->dta_intuple
,
6847 dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
?
6848 DIF_TF_BYREF
: DIF_TF_BYUREF
);
6857 case sizeof (uint8_t):
6858 DTRACE_STORE(uint8_t, tomax
, valoffs
, val
);
6860 case sizeof (uint16_t):
6861 DTRACE_STORE(uint16_t, tomax
, valoffs
, val
);
6863 case sizeof (uint32_t):
6864 DTRACE_STORE(uint32_t, tomax
, valoffs
, val
);
6866 case sizeof (uint64_t):
6867 DTRACE_STORE(uint64_t, tomax
, valoffs
, val
);
6871 * Any other size should have been returned by
6872 * reference, not by value.
6879 if (*flags
& CPU_DTRACE_DROP
)
6882 if (*flags
& CPU_DTRACE_FAULT
) {
6884 dtrace_action_t
*err
;
6888 if (probe
->dtpr_id
== dtrace_probeid_error
) {
6890 * There's nothing we can do -- we had an
6891 * error on the error probe. We bump an
6892 * error counter to at least indicate that
6893 * this condition happened.
6895 dtrace_error(&state
->dts_dblerrors
);
6901 * Before recursing on dtrace_probe(), we
6902 * need to explicitly clear out our start
6903 * time to prevent it from being accumulated
6904 * into t_dtrace_vtime.
6908 * Darwin sets the sign bit on t_dtrace_tracing
6909 * to suspend accumulation to it.
6911 dtrace_set_thread_tracing(current_thread(),
6912 (1ULL<<63) | dtrace_get_thread_tracing(current_thread()));
6917 * Iterate over the actions to figure out which action
6918 * we were processing when we experienced the error.
6919 * Note that act points _past_ the faulting action; if
6920 * act is ecb->dte_action, the fault was in the
6921 * predicate, if it's ecb->dte_action->dta_next it's
6922 * in action #1, and so on.
6924 for (err
= ecb
->dte_action
, ndx
= 0;
6925 err
!= act
; err
= err
->dta_next
, ndx
++)
6928 dtrace_probe_error(state
, ecb
->dte_epid
, ndx
,
6929 (mstate
.dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
6930 mstate
.dtms_fltoffs
: -1, DTRACE_FLAGS2FLT(*flags
),
6931 cpu_core
[cpuid
].cpuc_dtrace_illval
);
6937 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
6940 /* FIXME: On Darwin the time spent leaving DTrace from this point to the rti is attributed
6941 to the current thread. Instead it should accrue to DTrace. */
6943 thread_t thread
= current_thread();
6944 int64_t t
= dtrace_get_thread_tracing(thread
);
6947 /* Usual case, accumulate time spent here into t_dtrace_tracing */
6948 dtrace_set_thread_tracing(thread
, t
+ (dtrace_gethrtime() - now
));
6950 /* Return from error recursion. No accumulation, just clear the sign bit on t_dtrace_tracing. */
6951 dtrace_set_thread_tracing(thread
, (~(1ULL<<63)) & t
);
6955 dtrace_interrupt_enable(cookie
);
6959 * APPLE NOTE: Don't allow a thread to re-enter dtrace_probe().
6960 * This could occur if a probe is encountered on some function in the
6961 * transitive closure of the call to dtrace_probe().
6962 * Solaris has some strong guarantees that this won't happen.
6963 * The Darwin implementation is not so mature as to make those guarantees.
6964 * Hence, the introduction of __dtrace_probe() on xnu.
6968 dtrace_probe(dtrace_id_t id
, uint64_t arg0
, uint64_t arg1
,
6969 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
)
6971 thread_t thread
= current_thread();
6972 disable_preemption();
6973 if (id
== dtrace_probeid_error
) {
6974 __dtrace_probe(id
, arg0
, arg1
, arg2
, arg3
, arg4
);
6975 dtrace_getipl(); /* Defeat tail-call optimization of __dtrace_probe() */
6976 } else if (!dtrace_get_thread_reentering(thread
)) {
6977 dtrace_set_thread_reentering(thread
, TRUE
);
6978 __dtrace_probe(id
, arg0
, arg1
, arg2
, arg3
, arg4
);
6979 dtrace_set_thread_reentering(thread
, FALSE
);
6982 else __dtrace_probe(dtrace_probeid_error
, 0, id
, 1, -1, DTRACEFLT_UNKNOWN
);
6984 enable_preemption();
6988 * DTrace Probe Hashing Functions
6990 * The functions in this section (and indeed, the functions in remaining
6991 * sections) are not _called_ from probe context. (Any exceptions to this are
6992 * marked with a "Note:".) Rather, they are called from elsewhere in the
6993 * DTrace framework to look-up probes in, add probes to and remove probes from
6994 * the DTrace probe hashes. (Each probe is hashed by each element of the
6995 * probe tuple -- allowing for fast lookups, regardless of what was
6999 dtrace_hash_str(const char *p
)
7005 hval
= (hval
<< 4) + *p
++;
7006 if ((g
= (hval
& 0xf0000000)) != 0)
7013 static dtrace_hash_t
*
7014 dtrace_hash_create(uintptr_t stroffs
, uintptr_t nextoffs
, uintptr_t prevoffs
)
7016 dtrace_hash_t
*hash
= kmem_zalloc(sizeof (dtrace_hash_t
), KM_SLEEP
);
7018 hash
->dth_stroffs
= stroffs
;
7019 hash
->dth_nextoffs
= nextoffs
;
7020 hash
->dth_prevoffs
= prevoffs
;
7023 hash
->dth_mask
= hash
->dth_size
- 1;
7025 hash
->dth_tab
= kmem_zalloc(hash
->dth_size
*
7026 sizeof (dtrace_hashbucket_t
*), KM_SLEEP
);
7032 * APPLE NOTE: dtrace_hash_destroy is not used.
7033 * It is called by dtrace_detach which is not
7034 * currently implemented. Revisit someday.
7036 #if !defined(__APPLE__)
7038 dtrace_hash_destroy(dtrace_hash_t
*hash
)
7043 for (i
= 0; i
< hash
->dth_size
; i
++)
7044 ASSERT(hash
->dth_tab
[i
] == NULL
);
7047 kmem_free(hash
->dth_tab
,
7048 hash
->dth_size
* sizeof (dtrace_hashbucket_t
*));
7049 kmem_free(hash
, sizeof (dtrace_hash_t
));
7051 #endif /* __APPLE__ */
7054 dtrace_hash_resize(dtrace_hash_t
*hash
)
7056 int size
= hash
->dth_size
, i
, ndx
;
7057 int new_size
= hash
->dth_size
<< 1;
7058 int new_mask
= new_size
- 1;
7059 dtrace_hashbucket_t
**new_tab
, *bucket
, *next
;
7061 ASSERT((new_size
& new_mask
) == 0);
7063 new_tab
= kmem_zalloc(new_size
* sizeof (void *), KM_SLEEP
);
7065 for (i
= 0; i
< size
; i
++) {
7066 for (bucket
= hash
->dth_tab
[i
]; bucket
!= NULL
; bucket
= next
) {
7067 dtrace_probe_t
*probe
= bucket
->dthb_chain
;
7069 ASSERT(probe
!= NULL
);
7070 ndx
= DTRACE_HASHSTR(hash
, probe
) & new_mask
;
7072 next
= bucket
->dthb_next
;
7073 bucket
->dthb_next
= new_tab
[ndx
];
7074 new_tab
[ndx
] = bucket
;
7078 kmem_free(hash
->dth_tab
, hash
->dth_size
* sizeof (void *));
7079 hash
->dth_tab
= new_tab
;
7080 hash
->dth_size
= new_size
;
7081 hash
->dth_mask
= new_mask
;
7085 dtrace_hash_add(dtrace_hash_t
*hash
, dtrace_probe_t
*new)
7087 int hashval
= DTRACE_HASHSTR(hash
, new);
7088 int ndx
= hashval
& hash
->dth_mask
;
7089 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7090 dtrace_probe_t
**nextp
, **prevp
;
7092 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7093 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, new))
7097 if ((hash
->dth_nbuckets
>> 1) > hash
->dth_size
) {
7098 dtrace_hash_resize(hash
);
7099 dtrace_hash_add(hash
, new);
7103 bucket
= kmem_zalloc(sizeof (dtrace_hashbucket_t
), KM_SLEEP
);
7104 bucket
->dthb_next
= hash
->dth_tab
[ndx
];
7105 hash
->dth_tab
[ndx
] = bucket
;
7106 hash
->dth_nbuckets
++;
7109 nextp
= DTRACE_HASHNEXT(hash
, new);
7110 ASSERT(*nextp
== NULL
&& *(DTRACE_HASHPREV(hash
, new)) == NULL
);
7111 *nextp
= bucket
->dthb_chain
;
7113 if (bucket
->dthb_chain
!= NULL
) {
7114 prevp
= DTRACE_HASHPREV(hash
, bucket
->dthb_chain
);
7115 ASSERT(*prevp
== NULL
);
7119 bucket
->dthb_chain
= new;
7123 static dtrace_probe_t
*
7124 dtrace_hash_lookup(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7126 int hashval
= DTRACE_HASHSTR(hash
, template);
7127 int ndx
= hashval
& hash
->dth_mask
;
7128 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7130 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7131 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7132 return (bucket
->dthb_chain
);
7139 dtrace_hash_collisions(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7141 int hashval
= DTRACE_HASHSTR(hash
, template);
7142 int ndx
= hashval
& hash
->dth_mask
;
7143 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7145 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7146 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7147 return (bucket
->dthb_len
);
7154 dtrace_hash_remove(dtrace_hash_t
*hash
, dtrace_probe_t
*probe
)
7156 int ndx
= DTRACE_HASHSTR(hash
, probe
) & hash
->dth_mask
;
7157 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7159 dtrace_probe_t
**prevp
= DTRACE_HASHPREV(hash
, probe
);
7160 dtrace_probe_t
**nextp
= DTRACE_HASHNEXT(hash
, probe
);
7163 * Find the bucket that we're removing this probe from.
7165 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7166 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, probe
))
7170 ASSERT(bucket
!= NULL
);
7172 if (*prevp
== NULL
) {
7173 if (*nextp
== NULL
) {
7175 * The removed probe was the only probe on this
7176 * bucket; we need to remove the bucket.
7178 dtrace_hashbucket_t
*b
= hash
->dth_tab
[ndx
];
7180 ASSERT(bucket
->dthb_chain
== probe
);
7184 hash
->dth_tab
[ndx
] = bucket
->dthb_next
;
7186 while (b
->dthb_next
!= bucket
)
7188 b
->dthb_next
= bucket
->dthb_next
;
7191 ASSERT(hash
->dth_nbuckets
> 0);
7192 hash
->dth_nbuckets
--;
7193 kmem_free(bucket
, sizeof (dtrace_hashbucket_t
));
7197 bucket
->dthb_chain
= *nextp
;
7199 *(DTRACE_HASHNEXT(hash
, *prevp
)) = *nextp
;
7203 *(DTRACE_HASHPREV(hash
, *nextp
)) = *prevp
;
7207 * DTrace Utility Functions
7209 * These are random utility functions that are _not_ called from probe context.
7212 dtrace_badattr(const dtrace_attribute_t
*a
)
7214 return (a
->dtat_name
> DTRACE_STABILITY_MAX
||
7215 a
->dtat_data
> DTRACE_STABILITY_MAX
||
7216 a
->dtat_class
> DTRACE_CLASS_MAX
);
7220 * Return a duplicate copy of a string. If the specified string is NULL,
7221 * this function returns a zero-length string.
7222 * APPLE NOTE: Darwin employs size bounded string operation.
7225 dtrace_strdup(const char *str
)
7227 size_t bufsize
= (str
!= NULL
? strlen(str
) : 0) + 1;
7228 char *new = kmem_zalloc(bufsize
, KM_SLEEP
);
7231 (void) strlcpy(new, str
, bufsize
);
7236 #define DTRACE_ISALPHA(c) \
7237 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7240 dtrace_badname(const char *s
)
7244 if (s
== NULL
|| (c
= *s
++) == '\0')
7247 if (!DTRACE_ISALPHA(c
) && c
!= '-' && c
!= '_' && c
!= '.')
7250 while ((c
= *s
++) != '\0') {
7251 if (!DTRACE_ISALPHA(c
) && (c
< '0' || c
> '9') &&
7252 c
!= '-' && c
!= '_' && c
!= '.' && c
!= '`')
7260 dtrace_cred2priv(cred_t
*cr
, uint32_t *privp
, uid_t
*uidp
, zoneid_t
*zoneidp
)
7264 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
7265 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) {
7266 priv
= DTRACE_PRIV_USER
| DTRACE_PRIV_PROC
| DTRACE_PRIV_OWNER
;
7269 priv
= DTRACE_PRIV_ALL
;
7274 *uidp
= crgetuid(cr
);
7275 *zoneidp
= crgetzoneid(cr
);
7278 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
))
7279 priv
|= DTRACE_PRIV_KERNEL
| DTRACE_PRIV_USER
;
7280 else if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
))
7281 priv
|= DTRACE_PRIV_USER
;
7282 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
))
7283 priv
|= DTRACE_PRIV_PROC
;
7284 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
7285 priv
|= DTRACE_PRIV_OWNER
;
7286 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
7287 priv
|= DTRACE_PRIV_ZONEOWNER
;
7293 #ifdef DTRACE_ERRDEBUG
7295 dtrace_errdebug(const char *str
)
7297 int hval
= dtrace_hash_str(str
) % DTRACE_ERRHASHSZ
;
7300 lck_mtx_lock(&dtrace_errlock
);
7301 dtrace_errlast
= str
;
7302 dtrace_errthread
= (kthread_t
*)current_thread();
7304 while (occupied
++ < DTRACE_ERRHASHSZ
) {
7305 if (dtrace_errhash
[hval
].dter_msg
== str
) {
7306 dtrace_errhash
[hval
].dter_count
++;
7310 if (dtrace_errhash
[hval
].dter_msg
!= NULL
) {
7311 hval
= (hval
+ 1) % DTRACE_ERRHASHSZ
;
7315 dtrace_errhash
[hval
].dter_msg
= str
;
7316 dtrace_errhash
[hval
].dter_count
= 1;
7320 panic("dtrace: undersized error hash");
7322 lck_mtx_unlock(&dtrace_errlock
);
7327 * DTrace Matching Functions
7329 * These functions are used to match groups of probes, given some elements of
7330 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7333 dtrace_match_priv(const dtrace_probe_t
*prp
, uint32_t priv
, uid_t uid
,
7336 if (priv
!= DTRACE_PRIV_ALL
) {
7337 uint32_t ppriv
= prp
->dtpr_provider
->dtpv_priv
.dtpp_flags
;
7338 uint32_t match
= priv
& ppriv
;
7341 * No PRIV_DTRACE_* privileges...
7343 if ((priv
& (DTRACE_PRIV_PROC
| DTRACE_PRIV_USER
|
7344 DTRACE_PRIV_KERNEL
)) == 0)
7348 * No matching bits, but there were bits to match...
7350 if (match
== 0 && ppriv
!= 0)
7354 * Need to have permissions to the process, but don't...
7356 if (((ppriv
& ~match
) & DTRACE_PRIV_OWNER
) != 0 &&
7357 uid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_uid
) {
7362 * Need to be in the same zone unless we possess the
7363 * privilege to examine all zones.
7365 if (((ppriv
& ~match
) & DTRACE_PRIV_ZONEOWNER
) != 0 &&
7366 zoneid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_zoneid
) {
7375 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7376 * consists of input pattern strings and an ops-vector to evaluate them.
7377 * This function returns >0 for match, 0 for no match, and <0 for error.
7380 dtrace_match_probe(const dtrace_probe_t
*prp
, const dtrace_probekey_t
*pkp
,
7381 uint32_t priv
, uid_t uid
, zoneid_t zoneid
)
7383 dtrace_provider_t
*pvp
= prp
->dtpr_provider
;
7386 if (pvp
->dtpv_defunct
)
7389 if ((rv
= pkp
->dtpk_pmatch(pvp
->dtpv_name
, pkp
->dtpk_prov
, 0)) <= 0)
7392 if ((rv
= pkp
->dtpk_mmatch(prp
->dtpr_mod
, pkp
->dtpk_mod
, 0)) <= 0)
7395 if ((rv
= pkp
->dtpk_fmatch(prp
->dtpr_func
, pkp
->dtpk_func
, 0)) <= 0)
7398 if ((rv
= pkp
->dtpk_nmatch(prp
->dtpr_name
, pkp
->dtpk_name
, 0)) <= 0)
7401 if (dtrace_match_priv(prp
, priv
, uid
, zoneid
) == 0)
7408 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7409 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7410 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7411 * In addition, all of the recursion cases except for '*' matching have been
7412 * unwound. For '*', we still implement recursive evaluation, but a depth
7413 * counter is maintained and matching is aborted if we recurse too deep.
7414 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7417 dtrace_match_glob(const char *s
, const char *p
, int depth
)
7423 if (depth
> DTRACE_PROBEKEY_MAXDEPTH
)
7427 s
= ""; /* treat NULL as empty string */
7436 if ((c
= *p
++) == '\0')
7437 return (s1
== '\0');
7441 int ok
= 0, notflag
= 0;
7452 if ((c
= *p
++) == '\0')
7456 if (c
== '-' && lc
!= '\0' && *p
!= ']') {
7457 if ((c
= *p
++) == '\0')
7459 if (c
== '\\' && (c
= *p
++) == '\0')
7463 if (s1
< lc
|| s1
> c
)
7467 } else if (lc
<= s1
&& s1
<= c
)
7470 } else if (c
== '\\' && (c
= *p
++) == '\0')
7473 lc
= c
; /* save left-hand 'c' for next iteration */
7483 if ((c
= *p
++) == '\0')
7495 if ((c
= *p
++) == '\0')
7511 p
++; /* consecutive *'s are identical to a single one */
7516 for (s
= olds
; *s
!= '\0'; s
++) {
7517 if ((gs
= dtrace_match_glob(s
, p
, depth
+ 1)) != 0)
7527 dtrace_match_string(const char *s
, const char *p
, int depth
)
7529 #pragma unused(depth) /* __APPLE__ */
7531 /* APPLE NOTE: Darwin employs size bounded string operation. */
7532 return (s
!= NULL
&& strncmp(s
, p
, strlen(s
) + 1) == 0);
7537 dtrace_match_nul(const char *s
, const char *p
, int depth
)
7539 #pragma unused(s, p, depth) /* __APPLE__ */
7540 return (1); /* always match the empty pattern */
7545 dtrace_match_nonzero(const char *s
, const char *p
, int depth
)
7547 #pragma unused(p, depth) /* __APPLE__ */
7548 return (s
!= NULL
&& s
[0] != '\0');
7552 dtrace_match(const dtrace_probekey_t
*pkp
, uint32_t priv
, uid_t uid
,
7553 zoneid_t zoneid
, int (*matched
)(dtrace_probe_t
*, void *, void *), void *arg1
, void *arg2
)
7555 dtrace_probe_t
template, *probe
;
7556 dtrace_hash_t
*hash
= NULL
;
7557 int len
, rc
, best
= INT_MAX
, nmatched
= 0;
7560 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7563 * If the probe ID is specified in the key, just lookup by ID and
7564 * invoke the match callback once if a matching probe is found.
7566 if (pkp
->dtpk_id
!= DTRACE_IDNONE
) {
7567 if ((probe
= dtrace_probe_lookup_id(pkp
->dtpk_id
)) != NULL
&&
7568 dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) > 0) {
7569 if ((*matched
)(probe
, arg1
, arg2
) == DTRACE_MATCH_FAIL
)
7570 return (DTRACE_MATCH_FAIL
);
7576 template.dtpr_mod
= (char *)(uintptr_t)pkp
->dtpk_mod
;
7577 template.dtpr_func
= (char *)(uintptr_t)pkp
->dtpk_func
;
7578 template.dtpr_name
= (char *)(uintptr_t)pkp
->dtpk_name
;
7581 * We want to find the most distinct of the module name, function
7582 * name, and name. So for each one that is not a glob pattern or
7583 * empty string, we perform a lookup in the corresponding hash and
7584 * use the hash table with the fewest collisions to do our search.
7586 if (pkp
->dtpk_mmatch
== &dtrace_match_string
&&
7587 (len
= dtrace_hash_collisions(dtrace_bymod
, &template)) < best
) {
7589 hash
= dtrace_bymod
;
7592 if (pkp
->dtpk_fmatch
== &dtrace_match_string
&&
7593 (len
= dtrace_hash_collisions(dtrace_byfunc
, &template)) < best
) {
7595 hash
= dtrace_byfunc
;
7598 if (pkp
->dtpk_nmatch
== &dtrace_match_string
&&
7599 (len
= dtrace_hash_collisions(dtrace_byname
, &template)) < best
) {
7601 hash
= dtrace_byname
;
7605 * If we did not select a hash table, iterate over every probe and
7606 * invoke our callback for each one that matches our input probe key.
7609 for (i
= 0; i
< (dtrace_id_t
)dtrace_nprobes
; i
++) {
7610 if ((probe
= dtrace_probes
[i
]) == NULL
||
7611 dtrace_match_probe(probe
, pkp
, priv
, uid
,
7617 if ((rc
= (*matched
)(probe
, arg1
, arg2
)) != DTRACE_MATCH_NEXT
) {
7618 if (rc
== DTRACE_MATCH_FAIL
)
7619 return (DTRACE_MATCH_FAIL
);
7628 * If we selected a hash table, iterate over each probe of the same key
7629 * name and invoke the callback for every probe that matches the other
7630 * attributes of our input probe key.
7632 for (probe
= dtrace_hash_lookup(hash
, &template); probe
!= NULL
;
7633 probe
= *(DTRACE_HASHNEXT(hash
, probe
))) {
7635 if (dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) <= 0)
7640 if ((rc
= (*matched
)(probe
, arg1
, arg2
)) != DTRACE_MATCH_NEXT
) {
7641 if (rc
== DTRACE_MATCH_FAIL
)
7642 return (DTRACE_MATCH_FAIL
);
7651 * Return the function pointer dtrace_probecmp() should use to compare the
7652 * specified pattern with a string. For NULL or empty patterns, we select
7653 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7654 * For non-empty non-glob strings, we use dtrace_match_string().
7656 static dtrace_probekey_f
*
7657 dtrace_probekey_func(const char *p
)
7661 if (p
== NULL
|| *p
== '\0')
7662 return (&dtrace_match_nul
);
7664 while ((c
= *p
++) != '\0') {
7665 if (c
== '[' || c
== '?' || c
== '*' || c
== '\\')
7666 return (&dtrace_match_glob
);
7669 return (&dtrace_match_string
);
7673 * Build a probe comparison key for use with dtrace_match_probe() from the
7674 * given probe description. By convention, a null key only matches anchored
7675 * probes: if each field is the empty string, reset dtpk_fmatch to
7676 * dtrace_match_nonzero().
7679 dtrace_probekey(const dtrace_probedesc_t
*pdp
, dtrace_probekey_t
*pkp
)
7681 pkp
->dtpk_prov
= pdp
->dtpd_provider
;
7682 pkp
->dtpk_pmatch
= dtrace_probekey_func(pdp
->dtpd_provider
);
7684 pkp
->dtpk_mod
= pdp
->dtpd_mod
;
7685 pkp
->dtpk_mmatch
= dtrace_probekey_func(pdp
->dtpd_mod
);
7687 pkp
->dtpk_func
= pdp
->dtpd_func
;
7688 pkp
->dtpk_fmatch
= dtrace_probekey_func(pdp
->dtpd_func
);
7690 pkp
->dtpk_name
= pdp
->dtpd_name
;
7691 pkp
->dtpk_nmatch
= dtrace_probekey_func(pdp
->dtpd_name
);
7693 pkp
->dtpk_id
= pdp
->dtpd_id
;
7695 if (pkp
->dtpk_id
== DTRACE_IDNONE
&&
7696 pkp
->dtpk_pmatch
== &dtrace_match_nul
&&
7697 pkp
->dtpk_mmatch
== &dtrace_match_nul
&&
7698 pkp
->dtpk_fmatch
== &dtrace_match_nul
&&
7699 pkp
->dtpk_nmatch
== &dtrace_match_nul
)
7700 pkp
->dtpk_fmatch
= &dtrace_match_nonzero
;
7704 dtrace_cond_provider_match(dtrace_probedesc_t
*desc
, void *data
)
7709 dtrace_probekey_f
*func
= dtrace_probekey_func(desc
->dtpd_provider
);
7711 return func((char*)data
, desc
->dtpd_provider
, 0);
7715 * DTrace Provider-to-Framework API Functions
7717 * These functions implement much of the Provider-to-Framework API, as
7718 * described in <sys/dtrace.h>. The parts of the API not in this section are
7719 * the functions in the API for probe management (found below), and
7720 * dtrace_probe() itself (found above).
7724 * Register the calling provider with the DTrace framework. This should
7725 * generally be called by DTrace providers in their attach(9E) entry point.
7728 dtrace_register(const char *name
, const dtrace_pattr_t
*pap
, uint32_t priv
,
7729 cred_t
*cr
, const dtrace_pops_t
*pops
, void *arg
, dtrace_provider_id_t
*idp
)
7731 dtrace_provider_t
*provider
;
7733 if (name
== NULL
|| pap
== NULL
|| pops
== NULL
|| idp
== NULL
) {
7734 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7735 "arguments", name
? name
: "<NULL>");
7739 if (name
[0] == '\0' || dtrace_badname(name
)) {
7740 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7741 "provider name", name
);
7745 if ((pops
->dtps_provide
== NULL
&& pops
->dtps_provide_module
== NULL
) ||
7746 pops
->dtps_enable
== NULL
|| pops
->dtps_disable
== NULL
||
7747 pops
->dtps_destroy
== NULL
||
7748 ((pops
->dtps_resume
== NULL
) != (pops
->dtps_suspend
== NULL
))) {
7749 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7750 "provider ops", name
);
7754 if (dtrace_badattr(&pap
->dtpa_provider
) ||
7755 dtrace_badattr(&pap
->dtpa_mod
) ||
7756 dtrace_badattr(&pap
->dtpa_func
) ||
7757 dtrace_badattr(&pap
->dtpa_name
) ||
7758 dtrace_badattr(&pap
->dtpa_args
)) {
7759 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7760 "provider attributes", name
);
7764 if (priv
& ~DTRACE_PRIV_ALL
) {
7765 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7766 "privilege attributes", name
);
7770 if ((priv
& DTRACE_PRIV_KERNEL
) &&
7771 (priv
& (DTRACE_PRIV_USER
| DTRACE_PRIV_OWNER
)) &&
7772 pops
->dtps_usermode
== NULL
) {
7773 cmn_err(CE_WARN
, "failed to register provider '%s': need "
7774 "dtps_usermode() op for given privilege attributes", name
);
7778 provider
= kmem_zalloc(sizeof (dtrace_provider_t
), KM_SLEEP
);
7780 /* APPLE NOTE: Darwin employs size bounded string operation. */
7782 size_t bufsize
= strlen(name
) + 1;
7783 provider
->dtpv_name
= kmem_alloc(bufsize
, KM_SLEEP
);
7784 (void) strlcpy(provider
->dtpv_name
, name
, bufsize
);
7787 provider
->dtpv_attr
= *pap
;
7788 provider
->dtpv_priv
.dtpp_flags
= priv
;
7790 provider
->dtpv_priv
.dtpp_uid
= crgetuid(cr
);
7791 provider
->dtpv_priv
.dtpp_zoneid
= crgetzoneid(cr
);
7793 provider
->dtpv_pops
= *pops
;
7795 if (pops
->dtps_provide
== NULL
) {
7796 ASSERT(pops
->dtps_provide_module
!= NULL
);
7797 provider
->dtpv_pops
.dtps_provide
=
7798 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
;
7801 if (pops
->dtps_provide_module
== NULL
) {
7802 ASSERT(pops
->dtps_provide
!= NULL
);
7803 provider
->dtpv_pops
.dtps_provide_module
=
7804 (void (*)(void *, struct modctl
*))dtrace_nullop
;
7807 if (pops
->dtps_suspend
== NULL
) {
7808 ASSERT(pops
->dtps_resume
== NULL
);
7809 provider
->dtpv_pops
.dtps_suspend
=
7810 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
7811 provider
->dtpv_pops
.dtps_resume
=
7812 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
7815 provider
->dtpv_arg
= arg
;
7816 *idp
= (dtrace_provider_id_t
)provider
;
7818 if (pops
== &dtrace_provider_ops
) {
7819 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
7820 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7821 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
7824 * We make sure that the DTrace provider is at the head of
7825 * the provider chain.
7827 provider
->dtpv_next
= dtrace_provider
;
7828 dtrace_provider
= provider
;
7832 lck_mtx_lock(&dtrace_provider_lock
);
7833 lck_mtx_lock(&dtrace_lock
);
7836 * If there is at least one provider registered, we'll add this
7837 * provider after the first provider.
7839 if (dtrace_provider
!= NULL
) {
7840 provider
->dtpv_next
= dtrace_provider
->dtpv_next
;
7841 dtrace_provider
->dtpv_next
= provider
;
7843 dtrace_provider
= provider
;
7846 if (dtrace_retained
!= NULL
) {
7847 dtrace_enabling_provide(provider
);
7850 * Now we need to call dtrace_enabling_matchall_with_cond() --
7851 * with a condition matching the provider name we just added,
7852 * which will acquire cpu_lock and dtrace_lock. We therefore need
7853 * to drop all of our locks before calling into it...
7855 lck_mtx_unlock(&dtrace_lock
);
7856 lck_mtx_unlock(&dtrace_provider_lock
);
7858 dtrace_match_cond_t cond
= {dtrace_cond_provider_match
, provider
->dtpv_name
};
7859 dtrace_enabling_matchall_with_cond(&cond
);
7864 lck_mtx_unlock(&dtrace_lock
);
7865 lck_mtx_unlock(&dtrace_provider_lock
);
7871 * Unregister the specified provider from the DTrace framework. This should
7872 * generally be called by DTrace providers in their detach(9E) entry point.
7875 dtrace_unregister(dtrace_provider_id_t id
)
7877 dtrace_provider_t
*old
= (dtrace_provider_t
*)id
;
7878 dtrace_provider_t
*prev
= NULL
;
7880 dtrace_probe_t
*probe
, *first
= NULL
;
7882 if (old
->dtpv_pops
.dtps_enable
==
7883 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
) {
7885 * If DTrace itself is the provider, we're called with locks
7888 ASSERT(old
== dtrace_provider
);
7889 ASSERT(dtrace_devi
!= NULL
);
7890 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
7891 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7894 if (dtrace_provider
->dtpv_next
!= NULL
) {
7896 * There's another provider here; return failure.
7901 lck_mtx_lock(&dtrace_provider_lock
);
7902 lck_mtx_lock(&mod_lock
);
7903 lck_mtx_lock(&dtrace_lock
);
7907 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7908 * probes, we refuse to let providers slither away, unless this
7909 * provider has already been explicitly invalidated.
7911 if (!old
->dtpv_defunct
&&
7912 (dtrace_opens
|| (dtrace_anon
.dta_state
!= NULL
&&
7913 dtrace_anon
.dta_state
->dts_necbs
> 0))) {
7915 lck_mtx_unlock(&dtrace_lock
);
7916 lck_mtx_unlock(&mod_lock
);
7917 lck_mtx_unlock(&dtrace_provider_lock
);
7923 * Attempt to destroy the probes associated with this provider.
7925 if (old
->dtpv_ecb_count
!=0) {
7927 * We have at least one ECB; we can't remove this provider.
7930 lck_mtx_unlock(&dtrace_lock
);
7931 lck_mtx_unlock(&mod_lock
);
7932 lck_mtx_unlock(&dtrace_provider_lock
);
7938 * All of the probes for this provider are disabled; we can safely
7939 * remove all of them from their hash chains and from the probe array.
7941 for (i
= 0; i
< dtrace_nprobes
&& old
->dtpv_probe_count
!=0; i
++) {
7942 if ((probe
= dtrace_probes
[i
]) == NULL
)
7945 if (probe
->dtpr_provider
!= old
)
7948 dtrace_probes
[i
] = NULL
;
7949 old
->dtpv_probe_count
--;
7951 dtrace_hash_remove(dtrace_bymod
, probe
);
7952 dtrace_hash_remove(dtrace_byfunc
, probe
);
7953 dtrace_hash_remove(dtrace_byname
, probe
);
7955 if (first
== NULL
) {
7957 probe
->dtpr_nextmod
= NULL
;
7959 probe
->dtpr_nextmod
= first
;
7965 * The provider's probes have been removed from the hash chains and
7966 * from the probe array. Now issue a dtrace_sync() to be sure that
7967 * everyone has cleared out from any probe array processing.
7971 for (probe
= first
; probe
!= NULL
; probe
= first
) {
7972 first
= probe
->dtpr_nextmod
;
7974 old
->dtpv_pops
.dtps_destroy(old
->dtpv_arg
, probe
->dtpr_id
,
7976 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
7977 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
7978 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
7979 vmem_free(dtrace_arena
, (void *)(uintptr_t)(probe
->dtpr_id
), 1);
7980 zfree(dtrace_probe_t_zone
, probe
);
7983 if ((prev
= dtrace_provider
) == old
) {
7984 ASSERT(self
|| dtrace_devi
== NULL
);
7985 ASSERT(old
->dtpv_next
== NULL
|| dtrace_devi
== NULL
);
7986 dtrace_provider
= old
->dtpv_next
;
7988 while (prev
!= NULL
&& prev
->dtpv_next
!= old
)
7989 prev
= prev
->dtpv_next
;
7992 panic("attempt to unregister non-existent "
7993 "dtrace provider %p\n", (void *)id
);
7996 prev
->dtpv_next
= old
->dtpv_next
;
8000 lck_mtx_unlock(&dtrace_lock
);
8001 lck_mtx_unlock(&mod_lock
);
8002 lck_mtx_unlock(&dtrace_provider_lock
);
8005 kmem_free(old
->dtpv_name
, strlen(old
->dtpv_name
) + 1);
8006 kmem_free(old
, sizeof (dtrace_provider_t
));
8012 * Invalidate the specified provider. All subsequent probe lookups for the
8013 * specified provider will fail, but its probes will not be removed.
8016 dtrace_invalidate(dtrace_provider_id_t id
)
8018 dtrace_provider_t
*pvp
= (dtrace_provider_t
*)id
;
8020 ASSERT(pvp
->dtpv_pops
.dtps_enable
!=
8021 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8023 lck_mtx_lock(&dtrace_provider_lock
);
8024 lck_mtx_lock(&dtrace_lock
);
8026 pvp
->dtpv_defunct
= 1;
8028 lck_mtx_unlock(&dtrace_lock
);
8029 lck_mtx_unlock(&dtrace_provider_lock
);
8033 * Indicate whether or not DTrace has attached.
8036 dtrace_attached(void)
8039 * dtrace_provider will be non-NULL iff the DTrace driver has
8040 * attached. (It's non-NULL because DTrace is always itself a
8043 return (dtrace_provider
!= NULL
);
8047 * Remove all the unenabled probes for the given provider. This function is
8048 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8049 * -- just as many of its associated probes as it can.
8052 dtrace_condense(dtrace_provider_id_t id
)
8054 dtrace_provider_t
*prov
= (dtrace_provider_t
*)id
;
8056 dtrace_probe_t
*probe
;
8059 * Make sure this isn't the dtrace provider itself.
8061 ASSERT(prov
->dtpv_pops
.dtps_enable
!=
8062 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8064 lck_mtx_lock(&dtrace_provider_lock
);
8065 lck_mtx_lock(&dtrace_lock
);
8068 * Attempt to destroy the probes associated with this provider.
8070 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8071 if ((probe
= dtrace_probes
[i
]) == NULL
)
8074 if (probe
->dtpr_provider
!= prov
)
8077 if (probe
->dtpr_ecb
!= NULL
)
8080 dtrace_probes
[i
] = NULL
;
8081 prov
->dtpv_probe_count
--;
8083 dtrace_hash_remove(dtrace_bymod
, probe
);
8084 dtrace_hash_remove(dtrace_byfunc
, probe
);
8085 dtrace_hash_remove(dtrace_byname
, probe
);
8087 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, i
+ 1,
8089 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
8090 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
8091 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
8092 zfree(dtrace_probe_t_zone
, probe
);
8093 vmem_free(dtrace_arena
, (void *)((uintptr_t)i
+ 1), 1);
8096 lck_mtx_unlock(&dtrace_lock
);
8097 lck_mtx_unlock(&dtrace_provider_lock
);
8103 * DTrace Probe Management Functions
8105 * The functions in this section perform the DTrace probe management,
8106 * including functions to create probes, look-up probes, and call into the
8107 * providers to request that probes be provided. Some of these functions are
8108 * in the Provider-to-Framework API; these functions can be identified by the
8109 * fact that they are not declared "static".
8113 * Create a probe with the specified module name, function name, and name.
8116 dtrace_probe_create(dtrace_provider_id_t prov
, const char *mod
,
8117 const char *func
, const char *name
, int aframes
, void *arg
)
8119 dtrace_probe_t
*probe
, **probes
;
8120 dtrace_provider_t
*provider
= (dtrace_provider_t
*)prov
;
8123 if (provider
== dtrace_provider
) {
8124 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
8126 lck_mtx_lock(&dtrace_lock
);
8129 id
= (dtrace_id_t
)(uintptr_t)vmem_alloc(dtrace_arena
, 1,
8130 VM_BESTFIT
| VM_SLEEP
);
8132 probe
= zalloc(dtrace_probe_t_zone
);
8133 bzero(probe
, sizeof (dtrace_probe_t
));
8135 probe
->dtpr_id
= id
;
8136 probe
->dtpr_gen
= dtrace_probegen
++;
8137 probe
->dtpr_mod
= dtrace_strdup(mod
);
8138 probe
->dtpr_func
= dtrace_strdup(func
);
8139 probe
->dtpr_name
= dtrace_strdup(name
);
8140 probe
->dtpr_arg
= arg
;
8141 probe
->dtpr_aframes
= aframes
;
8142 probe
->dtpr_provider
= provider
;
8144 dtrace_hash_add(dtrace_bymod
, probe
);
8145 dtrace_hash_add(dtrace_byfunc
, probe
);
8146 dtrace_hash_add(dtrace_byname
, probe
);
8148 if (id
- 1 >= (dtrace_id_t
)dtrace_nprobes
) {
8149 size_t osize
= dtrace_nprobes
* sizeof (dtrace_probe_t
*);
8150 size_t nsize
= osize
<< 1;
8154 ASSERT(dtrace_probes
== NULL
);
8155 nsize
= sizeof (dtrace_probe_t
*);
8158 probes
= kmem_zalloc(nsize
, KM_SLEEP
);
8160 if (dtrace_probes
== NULL
) {
8162 dtrace_probes
= probes
;
8165 dtrace_probe_t
**oprobes
= dtrace_probes
;
8167 bcopy(oprobes
, probes
, osize
);
8168 dtrace_membar_producer();
8169 dtrace_probes
= probes
;
8174 * All CPUs are now seeing the new probes array; we can
8175 * safely free the old array.
8177 kmem_free(oprobes
, osize
);
8178 dtrace_nprobes
<<= 1;
8181 ASSERT(id
- 1 < (dtrace_id_t
)dtrace_nprobes
);
8184 ASSERT(dtrace_probes
[id
- 1] == NULL
);
8185 dtrace_probes
[id
- 1] = probe
;
8186 provider
->dtpv_probe_count
++;
8188 if (provider
!= dtrace_provider
)
8189 lck_mtx_unlock(&dtrace_lock
);
8194 static dtrace_probe_t
*
8195 dtrace_probe_lookup_id(dtrace_id_t id
)
8197 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
8199 if (id
== 0 || id
> (dtrace_id_t
)dtrace_nprobes
)
8202 return (dtrace_probes
[id
- 1]);
8206 dtrace_probe_lookup_match(dtrace_probe_t
*probe
, void *arg1
, void *arg2
)
8208 #pragma unused(arg2)
8209 *((dtrace_id_t
*)arg1
) = probe
->dtpr_id
;
8211 return (DTRACE_MATCH_DONE
);
8215 * Look up a probe based on provider and one or more of module name, function
8216 * name and probe name.
8219 dtrace_probe_lookup(dtrace_provider_id_t prid
, const char *mod
,
8220 const char *func
, const char *name
)
8222 dtrace_probekey_t pkey
;
8226 pkey
.dtpk_prov
= ((dtrace_provider_t
*)prid
)->dtpv_name
;
8227 pkey
.dtpk_pmatch
= &dtrace_match_string
;
8228 pkey
.dtpk_mod
= mod
;
8229 pkey
.dtpk_mmatch
= mod
? &dtrace_match_string
: &dtrace_match_nul
;
8230 pkey
.dtpk_func
= func
;
8231 pkey
.dtpk_fmatch
= func
? &dtrace_match_string
: &dtrace_match_nul
;
8232 pkey
.dtpk_name
= name
;
8233 pkey
.dtpk_nmatch
= name
? &dtrace_match_string
: &dtrace_match_nul
;
8234 pkey
.dtpk_id
= DTRACE_IDNONE
;
8236 lck_mtx_lock(&dtrace_lock
);
8237 match
= dtrace_match(&pkey
, DTRACE_PRIV_ALL
, 0, 0,
8238 dtrace_probe_lookup_match
, &id
, NULL
);
8239 lck_mtx_unlock(&dtrace_lock
);
8241 ASSERT(match
== 1 || match
== 0);
8242 return (match
? id
: 0);
8246 * Returns the probe argument associated with the specified probe.
8249 dtrace_probe_arg(dtrace_provider_id_t id
, dtrace_id_t pid
)
8251 dtrace_probe_t
*probe
;
8254 lck_mtx_lock(&dtrace_lock
);
8256 if ((probe
= dtrace_probe_lookup_id(pid
)) != NULL
&&
8257 probe
->dtpr_provider
== (dtrace_provider_t
*)id
)
8258 rval
= probe
->dtpr_arg
;
8260 lck_mtx_unlock(&dtrace_lock
);
8266 * Copy a probe into a probe description.
8269 dtrace_probe_description(const dtrace_probe_t
*prp
, dtrace_probedesc_t
*pdp
)
8271 bzero(pdp
, sizeof (dtrace_probedesc_t
));
8272 pdp
->dtpd_id
= prp
->dtpr_id
;
8274 /* APPLE NOTE: Darwin employs size bounded string operation. */
8275 (void) strlcpy(pdp
->dtpd_provider
,
8276 prp
->dtpr_provider
->dtpv_name
, DTRACE_PROVNAMELEN
);
8278 (void) strlcpy(pdp
->dtpd_mod
, prp
->dtpr_mod
, DTRACE_MODNAMELEN
);
8279 (void) strlcpy(pdp
->dtpd_func
, prp
->dtpr_func
, DTRACE_FUNCNAMELEN
);
8280 (void) strlcpy(pdp
->dtpd_name
, prp
->dtpr_name
, DTRACE_NAMELEN
);
8284 * Called to indicate that a probe -- or probes -- should be provided by a
8285 * specfied provider. If the specified description is NULL, the provider will
8286 * be told to provide all of its probes. (This is done whenever a new
8287 * consumer comes along, or whenever a retained enabling is to be matched.) If
8288 * the specified description is non-NULL, the provider is given the
8289 * opportunity to dynamically provide the specified probe, allowing providers
8290 * to support the creation of probes on-the-fly. (So-called _autocreated_
8291 * probes.) If the provider is NULL, the operations will be applied to all
8292 * providers; if the provider is non-NULL the operations will only be applied
8293 * to the specified provider. The dtrace_provider_lock must be held, and the
8294 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8295 * will need to grab the dtrace_lock when it reenters the framework through
8296 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8299 dtrace_probe_provide(dtrace_probedesc_t
*desc
, dtrace_provider_t
*prv
)
8304 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
8308 prv
= dtrace_provider
;
8313 * First, call the blanket provide operation.
8315 prv
->dtpv_pops
.dtps_provide(prv
->dtpv_arg
, desc
);
8318 * Now call the per-module provide operation. We will grab
8319 * mod_lock to prevent the list from being modified. Note
8320 * that this also prevents the mod_busy bits from changing.
8321 * (mod_busy can only be changed with mod_lock held.)
8323 lck_mtx_lock(&mod_lock
);
8325 ctl
= dtrace_modctl_list
;
8327 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
8328 ctl
= ctl
->mod_next
;
8331 lck_mtx_unlock(&mod_lock
);
8332 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
8336 * Iterate over each probe, and call the Framework-to-Provider API function
8340 dtrace_probe_foreach(uintptr_t offs
)
8342 dtrace_provider_t
*prov
;
8343 void (*func
)(void *, dtrace_id_t
, void *);
8344 dtrace_probe_t
*probe
;
8345 dtrace_icookie_t cookie
;
8349 * We disable interrupts to walk through the probe array. This is
8350 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8351 * won't see stale data.
8353 cookie
= dtrace_interrupt_disable();
8355 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8356 if ((probe
= dtrace_probes
[i
]) == NULL
)
8359 if (probe
->dtpr_ecb
== NULL
) {
8361 * This probe isn't enabled -- don't call the function.
8366 prov
= probe
->dtpr_provider
;
8367 func
= *((void(**)(void *, dtrace_id_t
, void *))
8368 ((uintptr_t)&prov
->dtpv_pops
+ offs
));
8370 func(prov
->dtpv_arg
, i
+ 1, probe
->dtpr_arg
);
8373 dtrace_interrupt_enable(cookie
);
8377 dtrace_probe_enable(const dtrace_probedesc_t
*desc
, dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ep
)
8379 dtrace_probekey_t pkey
;
8384 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
8386 dtrace_ecb_create_cache
= NULL
;
8390 * If we're passed a NULL description, we're being asked to
8391 * create an ECB with a NULL probe.
8393 (void) dtrace_ecb_create_enable(NULL
, enab
, ep
);
8397 dtrace_probekey(desc
, &pkey
);
8398 dtrace_cred2priv(enab
->dten_vstate
->dtvs_state
->dts_cred
.dcr_cred
,
8399 &priv
, &uid
, &zoneid
);
8401 return (dtrace_match(&pkey
, priv
, uid
, zoneid
, dtrace_ecb_create_enable
,
8406 * DTrace Helper Provider Functions
8409 dtrace_dofattr2attr(dtrace_attribute_t
*attr
, const dof_attr_t dofattr
)
8411 attr
->dtat_name
= DOF_ATTR_NAME(dofattr
);
8412 attr
->dtat_data
= DOF_ATTR_DATA(dofattr
);
8413 attr
->dtat_class
= DOF_ATTR_CLASS(dofattr
);
8417 dtrace_dofprov2hprov(dtrace_helper_provdesc_t
*hprov
,
8418 const dof_provider_t
*dofprov
, char *strtab
)
8420 hprov
->dthpv_provname
= strtab
+ dofprov
->dofpv_name
;
8421 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_provider
,
8422 dofprov
->dofpv_provattr
);
8423 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_mod
,
8424 dofprov
->dofpv_modattr
);
8425 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_func
,
8426 dofprov
->dofpv_funcattr
);
8427 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_name
,
8428 dofprov
->dofpv_nameattr
);
8429 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_args
,
8430 dofprov
->dofpv_argsattr
);
8434 dtrace_helper_provide_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, proc_t
*p
)
8436 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8437 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8438 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
8439 dof_provider_t
*provider
;
8441 uint32_t *off
, *enoff
;
8445 dtrace_helper_provdesc_t dhpv
;
8446 dtrace_helper_probedesc_t dhpb
;
8447 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8448 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8451 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8452 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8453 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8454 prb_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8455 provider
->dofpv_probes
* dof
->dofh_secsize
);
8456 arg_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8457 provider
->dofpv_prargs
* dof
->dofh_secsize
);
8458 off_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8459 provider
->dofpv_proffs
* dof
->dofh_secsize
);
8461 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8462 off
= (uint32_t *)(uintptr_t)(daddr
+ off_sec
->dofs_offset
);
8463 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
8467 * See dtrace_helper_provider_validate().
8469 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
8470 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
) {
8471 enoff_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8472 provider
->dofpv_prenoffs
* dof
->dofh_secsize
);
8473 enoff
= (uint32_t *)(uintptr_t)(daddr
+ enoff_sec
->dofs_offset
);
8476 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
8479 * Create the provider.
8481 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8483 if ((parg
= mops
->dtms_provide_proc(meta
->dtm_arg
, &dhpv
, p
)) == NULL
)
8489 * Create the probes.
8491 for (i
= 0; i
< nprobes
; i
++) {
8492 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
8493 prb_sec
->dofs_offset
+ i
* prb_sec
->dofs_entsize
);
8495 dhpb
.dthpb_mod
= dhp
->dofhp_mod
;
8496 dhpb
.dthpb_func
= strtab
+ probe
->dofpr_func
;
8497 dhpb
.dthpb_name
= strtab
+ probe
->dofpr_name
;
8498 #if !defined(__APPLE__)
8499 dhpb
.dthpb_base
= probe
->dofpr_addr
;
8501 dhpb
.dthpb_base
= dhp
->dofhp_addr
; /* FIXME: James, why? */
8503 dhpb
.dthpb_offs
= (int32_t *)(off
+ probe
->dofpr_offidx
);
8504 dhpb
.dthpb_noffs
= probe
->dofpr_noffs
;
8505 if (enoff
!= NULL
) {
8506 dhpb
.dthpb_enoffs
= (int32_t *)(enoff
+ probe
->dofpr_enoffidx
);
8507 dhpb
.dthpb_nenoffs
= probe
->dofpr_nenoffs
;
8509 dhpb
.dthpb_enoffs
= NULL
;
8510 dhpb
.dthpb_nenoffs
= 0;
8512 dhpb
.dthpb_args
= arg
+ probe
->dofpr_argidx
;
8513 dhpb
.dthpb_nargc
= probe
->dofpr_nargc
;
8514 dhpb
.dthpb_xargc
= probe
->dofpr_xargc
;
8515 dhpb
.dthpb_ntypes
= strtab
+ probe
->dofpr_nargv
;
8516 dhpb
.dthpb_xtypes
= strtab
+ probe
->dofpr_xargv
;
8518 mops
->dtms_create_probe(meta
->dtm_arg
, parg
, &dhpb
);
8522 * Since we just created probes, we need to match our enablings
8523 * against those, with a precondition knowing that we have only
8524 * added probes from this provider
8526 char *prov_name
= mops
->dtms_provider_name(parg
);
8527 ASSERT(prov_name
!= NULL
);
8528 dtrace_match_cond_t cond
= {dtrace_cond_provider_match
, (void*)prov_name
};
8530 dtrace_enabling_matchall_with_cond(&cond
);
8534 dtrace_helper_provide(dof_helper_t
*dhp
, proc_t
*p
)
8536 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8537 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8540 LCK_MTX_ASSERT(&dtrace_meta_lock
, LCK_MTX_ASSERT_OWNED
);
8542 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
8543 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
8544 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
8546 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
8549 dtrace_helper_provide_one(dhp
, sec
, p
);
8554 dtrace_helper_provider_remove_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, proc_t
*p
)
8556 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8557 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8559 dof_provider_t
*provider
;
8561 dtrace_helper_provdesc_t dhpv
;
8562 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8563 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8565 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8566 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8567 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8569 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8572 * Create the provider.
8574 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8576 mops
->dtms_remove_proc(meta
->dtm_arg
, &dhpv
, p
);
8582 dtrace_helper_provider_remove(dof_helper_t
*dhp
, proc_t
*p
)
8584 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8585 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8588 LCK_MTX_ASSERT(&dtrace_meta_lock
, LCK_MTX_ASSERT_OWNED
);
8590 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
8591 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
8592 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
8594 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
8597 dtrace_helper_provider_remove_one(dhp
, sec
, p
);
8602 * DTrace Meta Provider-to-Framework API Functions
8604 * These functions implement the Meta Provider-to-Framework API, as described
8605 * in <sys/dtrace.h>.
8608 dtrace_meta_register(const char *name
, const dtrace_mops_t
*mops
, void *arg
,
8609 dtrace_meta_provider_id_t
*idp
)
8611 dtrace_meta_t
*meta
;
8612 dtrace_helpers_t
*help
, *next
;
8615 *idp
= DTRACE_METAPROVNONE
;
8618 * We strictly don't need the name, but we hold onto it for
8619 * debuggability. All hail error queues!
8622 cmn_err(CE_WARN
, "failed to register meta-provider: "
8628 mops
->dtms_create_probe
== NULL
||
8629 mops
->dtms_provide_proc
== NULL
||
8630 mops
->dtms_remove_proc
== NULL
) {
8631 cmn_err(CE_WARN
, "failed to register meta-register %s: "
8632 "invalid ops", name
);
8636 meta
= kmem_zalloc(sizeof (dtrace_meta_t
), KM_SLEEP
);
8637 meta
->dtm_mops
= *mops
;
8639 /* APPLE NOTE: Darwin employs size bounded string operation. */
8641 size_t bufsize
= strlen(name
) + 1;
8642 meta
->dtm_name
= kmem_alloc(bufsize
, KM_SLEEP
);
8643 (void) strlcpy(meta
->dtm_name
, name
, bufsize
);
8646 meta
->dtm_arg
= arg
;
8648 lck_mtx_lock(&dtrace_meta_lock
);
8649 lck_mtx_lock(&dtrace_lock
);
8651 if (dtrace_meta_pid
!= NULL
) {
8652 lck_mtx_unlock(&dtrace_lock
);
8653 lck_mtx_unlock(&dtrace_meta_lock
);
8654 cmn_err(CE_WARN
, "failed to register meta-register %s: "
8655 "user-land meta-provider exists", name
);
8656 kmem_free(meta
->dtm_name
, strlen(meta
->dtm_name
) + 1);
8657 kmem_free(meta
, sizeof (dtrace_meta_t
));
8661 dtrace_meta_pid
= meta
;
8662 *idp
= (dtrace_meta_provider_id_t
)meta
;
8665 * If there are providers and probes ready to go, pass them
8666 * off to the new meta provider now.
8669 help
= dtrace_deferred_pid
;
8670 dtrace_deferred_pid
= NULL
;
8672 lck_mtx_unlock(&dtrace_lock
);
8674 while (help
!= NULL
) {
8675 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
8676 proc_t
*p
= proc_find(help
->dthps_pid
);
8679 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
8684 next
= help
->dthps_next
;
8685 help
->dthps_next
= NULL
;
8686 help
->dthps_prev
= NULL
;
8687 help
->dthps_deferred
= 0;
8691 lck_mtx_unlock(&dtrace_meta_lock
);
8697 dtrace_meta_unregister(dtrace_meta_provider_id_t id
)
8699 dtrace_meta_t
**pp
, *old
= (dtrace_meta_t
*)id
;
8701 lck_mtx_lock(&dtrace_meta_lock
);
8702 lck_mtx_lock(&dtrace_lock
);
8704 if (old
== dtrace_meta_pid
) {
8705 pp
= &dtrace_meta_pid
;
8707 panic("attempt to unregister non-existent "
8708 "dtrace meta-provider %p\n", (void *)old
);
8711 if (old
->dtm_count
!= 0) {
8712 lck_mtx_unlock(&dtrace_lock
);
8713 lck_mtx_unlock(&dtrace_meta_lock
);
8719 lck_mtx_unlock(&dtrace_lock
);
8720 lck_mtx_unlock(&dtrace_meta_lock
);
8722 kmem_free(old
->dtm_name
, strlen(old
->dtm_name
) + 1);
8723 kmem_free(old
, sizeof (dtrace_meta_t
));
8730 * DTrace DIF Object Functions
8733 dtrace_difo_err(uint_t pc
, const char *format
, ...)
8735 if (dtrace_err_verbose
) {
8738 (void) uprintf("dtrace DIF object error: [%u]: ", pc
);
8739 va_start(alist
, format
);
8740 (void) vuprintf(format
, alist
);
8744 #ifdef DTRACE_ERRDEBUG
8745 dtrace_errdebug(format
);
8751 * Validate a DTrace DIF object by checking the IR instructions. The following
8752 * rules are currently enforced by dtrace_difo_validate():
8754 * 1. Each instruction must have a valid opcode
8755 * 2. Each register, string, variable, or subroutine reference must be valid
8756 * 3. No instruction can modify register %r0 (must be zero)
8757 * 4. All instruction reserved bits must be set to zero
8758 * 5. The last instruction must be a "ret" instruction
8759 * 6. All branch targets must reference a valid instruction _after_ the branch
8762 dtrace_difo_validate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
, uint_t nregs
,
8768 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
8771 int maxglobal
= -1, maxlocal
= -1, maxtlocal
= -1;
8773 kcheckload
= cr
== NULL
||
8774 (vstate
->dtvs_state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) == 0;
8776 dp
->dtdo_destructive
= 0;
8778 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
8779 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
8781 uint_t r1
= DIF_INSTR_R1(instr
);
8782 uint_t r2
= DIF_INSTR_R2(instr
);
8783 uint_t rd
= DIF_INSTR_RD(instr
);
8784 uint_t rs
= DIF_INSTR_RS(instr
);
8785 uint_t label
= DIF_INSTR_LABEL(instr
);
8786 uint_t v
= DIF_INSTR_VAR(instr
);
8787 uint_t subr
= DIF_INSTR_SUBR(instr
);
8788 uint_t type
= DIF_INSTR_TYPE(instr
);
8789 uint_t op
= DIF_INSTR_OP(instr
);
8807 err
+= efunc(pc
, "invalid register %u\n", r1
);
8809 err
+= efunc(pc
, "invalid register %u\n", r2
);
8811 err
+= efunc(pc
, "invalid register %u\n", rd
);
8813 err
+= efunc(pc
, "cannot write to %r0\n");
8819 err
+= efunc(pc
, "invalid register %u\n", r1
);
8821 err
+= efunc(pc
, "non-zero reserved bits\n");
8823 err
+= efunc(pc
, "invalid register %u\n", rd
);
8825 err
+= efunc(pc
, "cannot write to %r0\n");
8835 err
+= efunc(pc
, "invalid register %u\n", r1
);
8837 err
+= efunc(pc
, "non-zero reserved bits\n");
8839 err
+= efunc(pc
, "invalid register %u\n", rd
);
8841 err
+= efunc(pc
, "cannot write to %r0\n");
8843 dp
->dtdo_buf
[pc
] = DIF_INSTR_LOAD(op
+
8844 DIF_OP_RLDSB
- DIF_OP_LDSB
, r1
, rd
);
8854 err
+= efunc(pc
, "invalid register %u\n", r1
);
8856 err
+= efunc(pc
, "non-zero reserved bits\n");
8858 err
+= efunc(pc
, "invalid register %u\n", rd
);
8860 err
+= efunc(pc
, "cannot write to %r0\n");
8870 err
+= efunc(pc
, "invalid register %u\n", r1
);
8872 err
+= efunc(pc
, "non-zero reserved bits\n");
8874 err
+= efunc(pc
, "invalid register %u\n", rd
);
8876 err
+= efunc(pc
, "cannot write to %r0\n");
8883 err
+= efunc(pc
, "invalid register %u\n", r1
);
8885 err
+= efunc(pc
, "non-zero reserved bits\n");
8887 err
+= efunc(pc
, "invalid register %u\n", rd
);
8889 err
+= efunc(pc
, "cannot write to 0 address\n");
8894 err
+= efunc(pc
, "invalid register %u\n", r1
);
8896 err
+= efunc(pc
, "invalid register %u\n", r2
);
8898 err
+= efunc(pc
, "non-zero reserved bits\n");
8902 err
+= efunc(pc
, "invalid register %u\n", r1
);
8903 if (r2
!= 0 || rd
!= 0)
8904 err
+= efunc(pc
, "non-zero reserved bits\n");
8917 if (label
>= dp
->dtdo_len
) {
8918 err
+= efunc(pc
, "invalid branch target %u\n",
8922 err
+= efunc(pc
, "backward branch to %u\n",
8927 if (r1
!= 0 || r2
!= 0)
8928 err
+= efunc(pc
, "non-zero reserved bits\n");
8930 err
+= efunc(pc
, "invalid register %u\n", rd
);
8934 case DIF_OP_FLUSHTS
:
8935 if (r1
!= 0 || r2
!= 0 || rd
!= 0)
8936 err
+= efunc(pc
, "non-zero reserved bits\n");
8939 if (DIF_INSTR_INTEGER(instr
) >= dp
->dtdo_intlen
) {
8940 err
+= efunc(pc
, "invalid integer ref %u\n",
8941 DIF_INSTR_INTEGER(instr
));
8944 err
+= efunc(pc
, "invalid register %u\n", rd
);
8946 err
+= efunc(pc
, "cannot write to %r0\n");
8949 if (DIF_INSTR_STRING(instr
) >= dp
->dtdo_strlen
) {
8950 err
+= efunc(pc
, "invalid string ref %u\n",
8951 DIF_INSTR_STRING(instr
));
8954 err
+= efunc(pc
, "invalid register %u\n", rd
);
8956 err
+= efunc(pc
, "cannot write to %r0\n");
8960 if (r1
> DIF_VAR_ARRAY_MAX
)
8961 err
+= efunc(pc
, "invalid array %u\n", r1
);
8963 err
+= efunc(pc
, "invalid register %u\n", r2
);
8965 err
+= efunc(pc
, "invalid register %u\n", rd
);
8967 err
+= efunc(pc
, "cannot write to %r0\n");
8974 if (v
< DIF_VAR_OTHER_MIN
|| v
> DIF_VAR_OTHER_MAX
)
8975 err
+= efunc(pc
, "invalid variable %u\n", v
);
8977 err
+= efunc(pc
, "invalid register %u\n", rd
);
8979 err
+= efunc(pc
, "cannot write to %r0\n");
8986 if (v
< DIF_VAR_OTHER_UBASE
|| v
> DIF_VAR_OTHER_MAX
)
8987 err
+= efunc(pc
, "invalid variable %u\n", v
);
8989 err
+= efunc(pc
, "invalid register %u\n", rd
);
8992 if (subr
> DIF_SUBR_MAX
&&
8993 !(subr
>= DIF_SUBR_APPLE_MIN
&& subr
<= DIF_SUBR_APPLE_MAX
))
8994 err
+= efunc(pc
, "invalid subr %u\n", subr
);
8996 err
+= efunc(pc
, "invalid register %u\n", rd
);
8998 err
+= efunc(pc
, "cannot write to %r0\n");
9000 if (subr
== DIF_SUBR_COPYOUT
||
9001 subr
== DIF_SUBR_COPYOUTSTR
||
9002 subr
== DIF_SUBR_KDEBUG_TRACE
||
9003 subr
== DIF_SUBR_KDEBUG_TRACE_STRING
) {
9004 dp
->dtdo_destructive
= 1;
9008 if (type
!= DIF_TYPE_STRING
&& type
!= DIF_TYPE_CTF
)
9009 err
+= efunc(pc
, "invalid ref type %u\n", type
);
9011 err
+= efunc(pc
, "invalid register %u\n", r2
);
9013 err
+= efunc(pc
, "invalid register %u\n", rs
);
9016 if (type
!= DIF_TYPE_CTF
)
9017 err
+= efunc(pc
, "invalid val type %u\n", type
);
9019 err
+= efunc(pc
, "invalid register %u\n", r2
);
9021 err
+= efunc(pc
, "invalid register %u\n", rs
);
9024 err
+= efunc(pc
, "invalid opcode %u\n",
9025 DIF_INSTR_OP(instr
));
9029 if (dp
->dtdo_len
!= 0 &&
9030 DIF_INSTR_OP(dp
->dtdo_buf
[dp
->dtdo_len
- 1]) != DIF_OP_RET
) {
9031 err
+= efunc(dp
->dtdo_len
- 1,
9032 "expected 'ret' as last DIF instruction\n");
9035 if (!(dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
))) {
9037 * If we're not returning by reference, the size must be either
9038 * 0 or the size of one of the base types.
9040 switch (dp
->dtdo_rtype
.dtdt_size
) {
9042 case sizeof (uint8_t):
9043 case sizeof (uint16_t):
9044 case sizeof (uint32_t):
9045 case sizeof (uint64_t):
9049 err
+= efunc(dp
->dtdo_len
- 1, "bad return size\n");
9053 for (i
= 0; i
< dp
->dtdo_varlen
&& err
== 0; i
++) {
9054 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
], *existing
= NULL
;
9055 dtrace_diftype_t
*vt
, *et
;
9059 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
&&
9060 v
->dtdv_scope
!= DIFV_SCOPE_THREAD
&&
9061 v
->dtdv_scope
!= DIFV_SCOPE_LOCAL
) {
9062 err
+= efunc(i
, "unrecognized variable scope %d\n",
9067 if (v
->dtdv_kind
!= DIFV_KIND_ARRAY
&&
9068 v
->dtdv_kind
!= DIFV_KIND_SCALAR
) {
9069 err
+= efunc(i
, "unrecognized variable type %d\n",
9074 if ((id
= v
->dtdv_id
) > DIF_VARIABLE_MAX
) {
9075 err
+= efunc(i
, "%d exceeds variable id limit\n", id
);
9079 if (id
< DIF_VAR_OTHER_UBASE
)
9083 * For user-defined variables, we need to check that this
9084 * definition is identical to any previous definition that we
9087 ndx
= id
- DIF_VAR_OTHER_UBASE
;
9089 switch (v
->dtdv_scope
) {
9090 case DIFV_SCOPE_GLOBAL
:
9091 if (maxglobal
== -1 || ndx
> maxglobal
)
9094 if (ndx
< vstate
->dtvs_nglobals
) {
9095 dtrace_statvar_t
*svar
;
9097 if ((svar
= vstate
->dtvs_globals
[ndx
]) != NULL
)
9098 existing
= &svar
->dtsv_var
;
9103 case DIFV_SCOPE_THREAD
:
9104 if (maxtlocal
== -1 || ndx
> maxtlocal
)
9107 if (ndx
< vstate
->dtvs_ntlocals
)
9108 existing
= &vstate
->dtvs_tlocals
[ndx
];
9111 case DIFV_SCOPE_LOCAL
:
9112 if (maxlocal
== -1 || ndx
> maxlocal
)
9114 if (ndx
< vstate
->dtvs_nlocals
) {
9115 dtrace_statvar_t
*svar
;
9117 if ((svar
= vstate
->dtvs_locals
[ndx
]) != NULL
)
9118 existing
= &svar
->dtsv_var
;
9126 if (vt
->dtdt_flags
& DIF_TF_BYREF
) {
9127 if (vt
->dtdt_size
== 0) {
9128 err
+= efunc(i
, "zero-sized variable\n");
9132 if ((v
->dtdv_scope
== DIFV_SCOPE_GLOBAL
||
9133 v
->dtdv_scope
== DIFV_SCOPE_LOCAL
) &&
9134 vt
->dtdt_size
> dtrace_statvar_maxsize
) {
9135 err
+= efunc(i
, "oversized by-ref static\n");
9140 if (existing
== NULL
|| existing
->dtdv_id
== 0)
9143 ASSERT(existing
->dtdv_id
== v
->dtdv_id
);
9144 ASSERT(existing
->dtdv_scope
== v
->dtdv_scope
);
9146 if (existing
->dtdv_kind
!= v
->dtdv_kind
)
9147 err
+= efunc(i
, "%d changed variable kind\n", id
);
9149 et
= &existing
->dtdv_type
;
9151 if (vt
->dtdt_flags
!= et
->dtdt_flags
) {
9152 err
+= efunc(i
, "%d changed variable type flags\n", id
);
9156 if (vt
->dtdt_size
!= 0 && vt
->dtdt_size
!= et
->dtdt_size
) {
9157 err
+= efunc(i
, "%d changed variable type size\n", id
);
9162 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
9163 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9165 uint_t v
= DIF_INSTR_VAR(instr
);
9166 uint_t op
= DIF_INSTR_OP(instr
);
9173 if (v
> (uint_t
)(DIF_VAR_OTHER_UBASE
+ maxglobal
))
9174 err
+= efunc(pc
, "invalid variable %u\n", v
);
9180 if (v
> (uint_t
)(DIF_VAR_OTHER_UBASE
+ maxtlocal
))
9181 err
+= efunc(pc
, "invalid variable %u\n", v
);
9185 if (v
> (uint_t
)(DIF_VAR_OTHER_UBASE
+ maxlocal
))
9186 err
+= efunc(pc
, "invalid variable %u\n", v
);
9197 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9198 * are much more constrained than normal DIFOs. Specifically, they may
9201 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9202 * miscellaneous string routines
9203 * 2. Access DTrace variables other than the args[] array, and the
9204 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9205 * 3. Have thread-local variables.
9206 * 4. Have dynamic variables.
9209 dtrace_difo_validate_helper(dtrace_difo_t
*dp
)
9211 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
9215 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9216 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9218 uint_t v
= DIF_INSTR_VAR(instr
);
9219 uint_t subr
= DIF_INSTR_SUBR(instr
);
9220 uint_t op
= DIF_INSTR_OP(instr
);
9275 case DIF_OP_FLUSHTS
:
9287 if (v
>= DIF_VAR_OTHER_UBASE
)
9290 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
)
9293 if (v
== DIF_VAR_CURTHREAD
|| v
== DIF_VAR_PID
||
9294 v
== DIF_VAR_PPID
|| v
== DIF_VAR_TID
||
9295 v
== DIF_VAR_EXECNAME
|| v
== DIF_VAR_ZONENAME
||
9296 v
== DIF_VAR_UID
|| v
== DIF_VAR_GID
)
9299 err
+= efunc(pc
, "illegal variable %u\n", v
);
9306 err
+= efunc(pc
, "illegal dynamic variable load\n");
9312 err
+= efunc(pc
, "illegal dynamic variable store\n");
9316 if (subr
== DIF_SUBR_ALLOCA
||
9317 subr
== DIF_SUBR_BCOPY
||
9318 subr
== DIF_SUBR_COPYIN
||
9319 subr
== DIF_SUBR_COPYINTO
||
9320 subr
== DIF_SUBR_COPYINSTR
||
9321 subr
== DIF_SUBR_INDEX
||
9322 subr
== DIF_SUBR_INET_NTOA
||
9323 subr
== DIF_SUBR_INET_NTOA6
||
9324 subr
== DIF_SUBR_INET_NTOP
||
9325 subr
== DIF_SUBR_LLTOSTR
||
9326 subr
== DIF_SUBR_RINDEX
||
9327 subr
== DIF_SUBR_STRCHR
||
9328 subr
== DIF_SUBR_STRJOIN
||
9329 subr
== DIF_SUBR_STRRCHR
||
9330 subr
== DIF_SUBR_STRSTR
||
9331 subr
== DIF_SUBR_KDEBUG_TRACE
||
9332 subr
== DIF_SUBR_KDEBUG_TRACE_STRING
||
9333 subr
== DIF_SUBR_HTONS
||
9334 subr
== DIF_SUBR_HTONL
||
9335 subr
== DIF_SUBR_HTONLL
||
9336 subr
== DIF_SUBR_NTOHS
||
9337 subr
== DIF_SUBR_NTOHL
||
9338 subr
== DIF_SUBR_NTOHLL
)
9341 err
+= efunc(pc
, "invalid subr %u\n", subr
);
9345 err
+= efunc(pc
, "invalid opcode %u\n",
9346 DIF_INSTR_OP(instr
));
9354 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9358 dtrace_difo_cacheable(dtrace_difo_t
*dp
)
9365 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9366 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9368 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
)
9371 switch (v
->dtdv_id
) {
9372 case DIF_VAR_CURTHREAD
:
9375 case DIF_VAR_EXECNAME
:
9376 case DIF_VAR_ZONENAME
:
9385 * This DIF object may be cacheable. Now we need to look for any
9386 * array loading instructions, any memory loading instructions, or
9387 * any stores to thread-local variables.
9389 for (i
= 0; i
< dp
->dtdo_len
; i
++) {
9390 uint_t op
= DIF_INSTR_OP(dp
->dtdo_buf
[i
]);
9392 if ((op
>= DIF_OP_LDSB
&& op
<= DIF_OP_LDX
) ||
9393 (op
>= DIF_OP_ULDSB
&& op
<= DIF_OP_ULDX
) ||
9394 (op
>= DIF_OP_RLDSB
&& op
<= DIF_OP_RLDX
) ||
9395 op
== DIF_OP_LDGA
|| op
== DIF_OP_STTS
)
9403 dtrace_difo_hold(dtrace_difo_t
*dp
)
9407 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9410 ASSERT(dp
->dtdo_refcnt
!= 0);
9413 * We need to check this DIF object for references to the variable
9414 * DIF_VAR_VTIMESTAMP.
9416 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9417 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9419 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9422 if (dtrace_vtime_references
++ == 0)
9423 dtrace_vtime_enable();
9428 * This routine calculates the dynamic variable chunksize for a given DIF
9429 * object. The calculation is not fool-proof, and can probably be tricked by
9430 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9431 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9432 * if a dynamic variable size exceeds the chunksize.
9435 dtrace_difo_chunksize(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9438 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
9439 const dif_instr_t
*text
= dp
->dtdo_buf
;
9445 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9446 dif_instr_t instr
= text
[pc
];
9447 uint_t op
= DIF_INSTR_OP(instr
);
9448 uint_t rd
= DIF_INSTR_RD(instr
);
9449 uint_t r1
= DIF_INSTR_R1(instr
);
9453 dtrace_key_t
*key
= tupregs
;
9457 sval
= dp
->dtdo_inttab
[DIF_INSTR_INTEGER(instr
)];
9462 key
= &tupregs
[DIF_DTR_NREGS
];
9463 key
[0].dttk_size
= 0;
9464 key
[1].dttk_size
= 0;
9466 scope
= DIFV_SCOPE_THREAD
;
9473 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
)
9474 key
[nkeys
++].dttk_size
= 0;
9476 key
[nkeys
++].dttk_size
= 0;
9478 if (op
== DIF_OP_STTAA
) {
9479 scope
= DIFV_SCOPE_THREAD
;
9481 scope
= DIFV_SCOPE_GLOBAL
;
9487 if (ttop
== DIF_DTR_NREGS
)
9490 if ((srd
== 0 || sval
== 0) && r1
== DIF_TYPE_STRING
) {
9492 * If the register for the size of the "pushtr"
9493 * is %r0 (or the value is 0) and the type is
9494 * a string, we'll use the system-wide default
9497 tupregs
[ttop
++].dttk_size
=
9498 dtrace_strsize_default
;
9503 if (sval
> LONG_MAX
)
9506 tupregs
[ttop
++].dttk_size
= sval
;
9512 if (ttop
== DIF_DTR_NREGS
)
9515 tupregs
[ttop
++].dttk_size
= 0;
9518 case DIF_OP_FLUSHTS
:
9535 * We have a dynamic variable allocation; calculate its size.
9537 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
9538 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
9540 size
= sizeof (dtrace_dynvar_t
);
9541 size
+= sizeof (dtrace_key_t
) * (nkeys
- 1);
9545 * Now we need to determine the size of the stored data.
9547 id
= DIF_INSTR_VAR(instr
);
9549 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9550 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9552 if (v
->dtdv_id
== id
&& v
->dtdv_scope
== scope
) {
9553 size
+= v
->dtdv_type
.dtdt_size
;
9558 if (i
== dp
->dtdo_varlen
)
9562 * We have the size. If this is larger than the chunk size
9563 * for our dynamic variable state, reset the chunk size.
9565 size
= P2ROUNDUP(size
, sizeof (uint64_t));
9568 * Before setting the chunk size, check that we're not going
9569 * to set it to a negative value...
9571 if (size
> LONG_MAX
)
9575 * ...and make certain that we didn't badly overflow.
9577 if (size
< ksize
|| size
< sizeof (dtrace_dynvar_t
))
9580 if (size
> vstate
->dtvs_dynvars
.dtds_chunksize
)
9581 vstate
->dtvs_dynvars
.dtds_chunksize
= size
;
9586 dtrace_difo_init(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9588 int oldsvars
, osz
, nsz
, otlocals
, ntlocals
;
9591 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9592 ASSERT(dp
->dtdo_buf
!= NULL
&& dp
->dtdo_len
!= 0);
9594 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9595 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9596 dtrace_statvar_t
*svar
;
9597 dtrace_statvar_t
***svarp
= NULL
;
9599 uint8_t scope
= v
->dtdv_scope
;
9600 int *np
= (int *)NULL
;
9602 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
9605 id
-= DIF_VAR_OTHER_UBASE
;
9608 case DIFV_SCOPE_THREAD
:
9609 while (id
>= (uint_t
)(otlocals
= vstate
->dtvs_ntlocals
)) {
9610 dtrace_difv_t
*tlocals
;
9612 if ((ntlocals
= (otlocals
<< 1)) == 0)
9615 osz
= otlocals
* sizeof (dtrace_difv_t
);
9616 nsz
= ntlocals
* sizeof (dtrace_difv_t
);
9618 tlocals
= kmem_zalloc(nsz
, KM_SLEEP
);
9621 bcopy(vstate
->dtvs_tlocals
,
9623 kmem_free(vstate
->dtvs_tlocals
, osz
);
9626 vstate
->dtvs_tlocals
= tlocals
;
9627 vstate
->dtvs_ntlocals
= ntlocals
;
9630 vstate
->dtvs_tlocals
[id
] = *v
;
9633 case DIFV_SCOPE_LOCAL
:
9634 np
= &vstate
->dtvs_nlocals
;
9635 svarp
= &vstate
->dtvs_locals
;
9637 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
9638 dsize
= (int)NCPU
* (v
->dtdv_type
.dtdt_size
+
9641 dsize
= (int)NCPU
* sizeof (uint64_t);
9645 case DIFV_SCOPE_GLOBAL
:
9646 np
= &vstate
->dtvs_nglobals
;
9647 svarp
= &vstate
->dtvs_globals
;
9649 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
9650 dsize
= v
->dtdv_type
.dtdt_size
+
9659 while (id
>= (uint_t
)(oldsvars
= *np
)) {
9660 dtrace_statvar_t
**statics
;
9661 int newsvars
, oldsize
, newsize
;
9663 if ((newsvars
= (oldsvars
<< 1)) == 0)
9666 oldsize
= oldsvars
* sizeof (dtrace_statvar_t
*);
9667 newsize
= newsvars
* sizeof (dtrace_statvar_t
*);
9669 statics
= kmem_zalloc(newsize
, KM_SLEEP
);
9672 bcopy(*svarp
, statics
, oldsize
);
9673 kmem_free(*svarp
, oldsize
);
9680 if ((svar
= (*svarp
)[id
]) == NULL
) {
9681 svar
= kmem_zalloc(sizeof (dtrace_statvar_t
), KM_SLEEP
);
9682 svar
->dtsv_var
= *v
;
9684 if ((svar
->dtsv_size
= dsize
) != 0) {
9685 svar
->dtsv_data
= (uint64_t)(uintptr_t)
9686 kmem_zalloc(dsize
, KM_SLEEP
);
9689 (*svarp
)[id
] = svar
;
9692 svar
->dtsv_refcnt
++;
9695 dtrace_difo_chunksize(dp
, vstate
);
9696 dtrace_difo_hold(dp
);
9699 static dtrace_difo_t
*
9700 dtrace_difo_duplicate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9705 ASSERT(dp
->dtdo_buf
!= NULL
);
9706 ASSERT(dp
->dtdo_refcnt
!= 0);
9708 new = kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
9710 ASSERT(dp
->dtdo_buf
!= NULL
);
9711 sz
= dp
->dtdo_len
* sizeof (dif_instr_t
);
9712 new->dtdo_buf
= kmem_alloc(sz
, KM_SLEEP
);
9713 bcopy(dp
->dtdo_buf
, new->dtdo_buf
, sz
);
9714 new->dtdo_len
= dp
->dtdo_len
;
9716 if (dp
->dtdo_strtab
!= NULL
) {
9717 ASSERT(dp
->dtdo_strlen
!= 0);
9718 new->dtdo_strtab
= kmem_alloc(dp
->dtdo_strlen
, KM_SLEEP
);
9719 bcopy(dp
->dtdo_strtab
, new->dtdo_strtab
, dp
->dtdo_strlen
);
9720 new->dtdo_strlen
= dp
->dtdo_strlen
;
9723 if (dp
->dtdo_inttab
!= NULL
) {
9724 ASSERT(dp
->dtdo_intlen
!= 0);
9725 sz
= dp
->dtdo_intlen
* sizeof (uint64_t);
9726 new->dtdo_inttab
= kmem_alloc(sz
, KM_SLEEP
);
9727 bcopy(dp
->dtdo_inttab
, new->dtdo_inttab
, sz
);
9728 new->dtdo_intlen
= dp
->dtdo_intlen
;
9731 if (dp
->dtdo_vartab
!= NULL
) {
9732 ASSERT(dp
->dtdo_varlen
!= 0);
9733 sz
= dp
->dtdo_varlen
* sizeof (dtrace_difv_t
);
9734 new->dtdo_vartab
= kmem_alloc(sz
, KM_SLEEP
);
9735 bcopy(dp
->dtdo_vartab
, new->dtdo_vartab
, sz
);
9736 new->dtdo_varlen
= dp
->dtdo_varlen
;
9739 dtrace_difo_init(new, vstate
);
9744 dtrace_difo_destroy(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9748 ASSERT(dp
->dtdo_refcnt
== 0);
9750 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9751 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9752 dtrace_statvar_t
*svar
;
9753 dtrace_statvar_t
**svarp
= NULL
;
9755 uint8_t scope
= v
->dtdv_scope
;
9759 case DIFV_SCOPE_THREAD
:
9762 case DIFV_SCOPE_LOCAL
:
9763 np
= &vstate
->dtvs_nlocals
;
9764 svarp
= vstate
->dtvs_locals
;
9767 case DIFV_SCOPE_GLOBAL
:
9768 np
= &vstate
->dtvs_nglobals
;
9769 svarp
= vstate
->dtvs_globals
;
9776 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
9779 id
-= DIF_VAR_OTHER_UBASE
;
9781 ASSERT(id
< (uint_t
)*np
);
9784 ASSERT(svar
!= NULL
);
9785 ASSERT(svar
->dtsv_refcnt
> 0);
9787 if (--svar
->dtsv_refcnt
> 0)
9790 if (svar
->dtsv_size
!= 0) {
9791 ASSERT(svar
->dtsv_data
!= 0);
9792 kmem_free((void *)(uintptr_t)svar
->dtsv_data
,
9796 kmem_free(svar
, sizeof (dtrace_statvar_t
));
9800 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
9801 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
9802 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
9803 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
9805 kmem_free(dp
, sizeof (dtrace_difo_t
));
9809 dtrace_difo_release(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9813 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9814 ASSERT(dp
->dtdo_refcnt
!= 0);
9816 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9817 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9819 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9822 ASSERT(dtrace_vtime_references
> 0);
9823 if (--dtrace_vtime_references
== 0)
9824 dtrace_vtime_disable();
9827 if (--dp
->dtdo_refcnt
== 0)
9828 dtrace_difo_destroy(dp
, vstate
);
9832 * DTrace Format Functions
9835 dtrace_format_add(dtrace_state_t
*state
, char *str
)
9838 uint16_t ndx
, len
= strlen(str
) + 1;
9840 fmt
= kmem_zalloc(len
, KM_SLEEP
);
9841 bcopy(str
, fmt
, len
);
9843 for (ndx
= 0; ndx
< state
->dts_nformats
; ndx
++) {
9844 if (state
->dts_formats
[ndx
] == NULL
) {
9845 state
->dts_formats
[ndx
] = fmt
;
9850 if (state
->dts_nformats
== USHRT_MAX
) {
9852 * This is only likely if a denial-of-service attack is being
9853 * attempted. As such, it's okay to fail silently here.
9855 kmem_free(fmt
, len
);
9860 * For simplicity, we always resize the formats array to be exactly the
9861 * number of formats.
9863 ndx
= state
->dts_nformats
++;
9864 new = kmem_alloc((ndx
+ 1) * sizeof (char *), KM_SLEEP
);
9866 if (state
->dts_formats
!= NULL
) {
9868 bcopy(state
->dts_formats
, new, ndx
* sizeof (char *));
9869 kmem_free(state
->dts_formats
, ndx
* sizeof (char *));
9872 state
->dts_formats
= new;
9873 state
->dts_formats
[ndx
] = fmt
;
9879 dtrace_format_remove(dtrace_state_t
*state
, uint16_t format
)
9883 ASSERT(state
->dts_formats
!= NULL
);
9884 ASSERT(format
<= state
->dts_nformats
);
9885 ASSERT(state
->dts_formats
[format
- 1] != NULL
);
9887 fmt
= state
->dts_formats
[format
- 1];
9888 kmem_free(fmt
, strlen(fmt
) + 1);
9889 state
->dts_formats
[format
- 1] = NULL
;
9893 dtrace_format_destroy(dtrace_state_t
*state
)
9897 if (state
->dts_nformats
== 0) {
9898 ASSERT(state
->dts_formats
== NULL
);
9902 ASSERT(state
->dts_formats
!= NULL
);
9904 for (i
= 0; i
< state
->dts_nformats
; i
++) {
9905 char *fmt
= state
->dts_formats
[i
];
9910 kmem_free(fmt
, strlen(fmt
) + 1);
9913 kmem_free(state
->dts_formats
, state
->dts_nformats
* sizeof (char *));
9914 state
->dts_nformats
= 0;
9915 state
->dts_formats
= NULL
;
9919 * DTrace Predicate Functions
9921 static dtrace_predicate_t
*
9922 dtrace_predicate_create(dtrace_difo_t
*dp
)
9924 dtrace_predicate_t
*pred
;
9926 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9927 ASSERT(dp
->dtdo_refcnt
!= 0);
9929 pred
= kmem_zalloc(sizeof (dtrace_predicate_t
), KM_SLEEP
);
9930 pred
->dtp_difo
= dp
;
9931 pred
->dtp_refcnt
= 1;
9933 if (!dtrace_difo_cacheable(dp
))
9936 if (dtrace_predcache_id
== DTRACE_CACHEIDNONE
) {
9938 * This is only theoretically possible -- we have had 2^32
9939 * cacheable predicates on this machine. We cannot allow any
9940 * more predicates to become cacheable: as unlikely as it is,
9941 * there may be a thread caching a (now stale) predicate cache
9942 * ID. (N.B.: the temptation is being successfully resisted to
9943 * have this cmn_err() "Holy shit -- we executed this code!")
9948 pred
->dtp_cacheid
= dtrace_predcache_id
++;
9954 dtrace_predicate_hold(dtrace_predicate_t
*pred
)
9956 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9957 ASSERT(pred
->dtp_difo
!= NULL
&& pred
->dtp_difo
->dtdo_refcnt
!= 0);
9958 ASSERT(pred
->dtp_refcnt
> 0);
9964 dtrace_predicate_release(dtrace_predicate_t
*pred
, dtrace_vstate_t
*vstate
)
9966 dtrace_difo_t
*dp
= pred
->dtp_difo
;
9967 #pragma unused(dp) /* __APPLE__ */
9969 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9970 ASSERT(dp
!= NULL
&& dp
->dtdo_refcnt
!= 0);
9971 ASSERT(pred
->dtp_refcnt
> 0);
9973 if (--pred
->dtp_refcnt
== 0) {
9974 dtrace_difo_release(pred
->dtp_difo
, vstate
);
9975 kmem_free(pred
, sizeof (dtrace_predicate_t
));
9980 * DTrace Action Description Functions
9982 static dtrace_actdesc_t
*
9983 dtrace_actdesc_create(dtrace_actkind_t kind
, uint32_t ntuple
,
9984 uint64_t uarg
, uint64_t arg
)
9986 dtrace_actdesc_t
*act
;
9988 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind
) || (arg
!= 0 &&
9989 arg
>= KERNELBASE
) || (arg
== 0 && kind
== DTRACEACT_PRINTA
));
9991 act
= kmem_zalloc(sizeof (dtrace_actdesc_t
), KM_SLEEP
);
9992 act
->dtad_kind
= kind
;
9993 act
->dtad_ntuple
= ntuple
;
9994 act
->dtad_uarg
= uarg
;
9995 act
->dtad_arg
= arg
;
9996 act
->dtad_refcnt
= 1;
10002 dtrace_actdesc_hold(dtrace_actdesc_t
*act
)
10004 ASSERT(act
->dtad_refcnt
>= 1);
10005 act
->dtad_refcnt
++;
10009 dtrace_actdesc_release(dtrace_actdesc_t
*act
, dtrace_vstate_t
*vstate
)
10011 dtrace_actkind_t kind
= act
->dtad_kind
;
10014 ASSERT(act
->dtad_refcnt
>= 1);
10016 if (--act
->dtad_refcnt
!= 0)
10019 if ((dp
= act
->dtad_difo
) != NULL
)
10020 dtrace_difo_release(dp
, vstate
);
10022 if (DTRACEACT_ISPRINTFLIKE(kind
)) {
10023 char *str
= (char *)(uintptr_t)act
->dtad_arg
;
10025 ASSERT((str
!= NULL
&& (uintptr_t)str
>= KERNELBASE
) ||
10026 (str
== NULL
&& act
->dtad_kind
== DTRACEACT_PRINTA
));
10029 kmem_free(str
, strlen(str
) + 1);
10032 kmem_free(act
, sizeof (dtrace_actdesc_t
));
10036 * DTrace ECB Functions
10038 static dtrace_ecb_t
*
10039 dtrace_ecb_add(dtrace_state_t
*state
, dtrace_probe_t
*probe
)
10042 dtrace_epid_t epid
;
10044 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10046 ecb
= kmem_zalloc(sizeof (dtrace_ecb_t
), KM_SLEEP
);
10047 ecb
->dte_predicate
= NULL
;
10048 ecb
->dte_probe
= probe
;
10051 * The default size is the size of the default action: recording
10054 ecb
->dte_size
= ecb
->dte_needed
= sizeof (dtrace_rechdr_t
);
10055 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10057 epid
= state
->dts_epid
++;
10059 if (epid
- 1 >= (dtrace_epid_t
)state
->dts_necbs
) {
10060 dtrace_ecb_t
**oecbs
= state
->dts_ecbs
, **ecbs
;
10061 int necbs
= state
->dts_necbs
<< 1;
10063 ASSERT(epid
== (dtrace_epid_t
)state
->dts_necbs
+ 1);
10066 ASSERT(oecbs
== NULL
);
10070 ecbs
= kmem_zalloc(necbs
* sizeof (*ecbs
), KM_SLEEP
);
10073 bcopy(oecbs
, ecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10075 dtrace_membar_producer();
10076 state
->dts_ecbs
= ecbs
;
10078 if (oecbs
!= NULL
) {
10080 * If this state is active, we must dtrace_sync()
10081 * before we can free the old dts_ecbs array: we're
10082 * coming in hot, and there may be active ring
10083 * buffer processing (which indexes into the dts_ecbs
10084 * array) on another CPU.
10086 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
10089 kmem_free(oecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10092 dtrace_membar_producer();
10093 state
->dts_necbs
= necbs
;
10096 ecb
->dte_state
= state
;
10098 ASSERT(state
->dts_ecbs
[epid
- 1] == NULL
);
10099 dtrace_membar_producer();
10100 state
->dts_ecbs
[(ecb
->dte_epid
= epid
) - 1] = ecb
;
10106 dtrace_ecb_enable(dtrace_ecb_t
*ecb
)
10108 dtrace_probe_t
*probe
= ecb
->dte_probe
;
10110 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
10111 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10112 ASSERT(ecb
->dte_next
== NULL
);
10114 if (probe
== NULL
) {
10116 * This is the NULL probe -- there's nothing to do.
10121 probe
->dtpr_provider
->dtpv_ecb_count
++;
10122 if (probe
->dtpr_ecb
== NULL
) {
10123 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
10126 * We're the first ECB on this probe.
10128 probe
->dtpr_ecb
= probe
->dtpr_ecb_last
= ecb
;
10130 if (ecb
->dte_predicate
!= NULL
)
10131 probe
->dtpr_predcache
= ecb
->dte_predicate
->dtp_cacheid
;
10133 return (prov
->dtpv_pops
.dtps_enable(prov
->dtpv_arg
,
10134 probe
->dtpr_id
, probe
->dtpr_arg
));
10137 * This probe is already active. Swing the last pointer to
10138 * point to the new ECB, and issue a dtrace_sync() to assure
10139 * that all CPUs have seen the change.
10141 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
10142 probe
->dtpr_ecb_last
->dte_next
= ecb
;
10143 probe
->dtpr_ecb_last
= ecb
;
10144 probe
->dtpr_predcache
= 0;
10152 dtrace_ecb_resize(dtrace_ecb_t
*ecb
)
10154 dtrace_action_t
*act
;
10155 uint32_t curneeded
= UINT32_MAX
;
10156 uint32_t aggbase
= UINT32_MAX
;
10159 * If we record anything, we always record the dtrace_rechdr_t. (And
10160 * we always record it first.)
10162 ecb
->dte_size
= sizeof (dtrace_rechdr_t
);
10163 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10165 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10166 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
10167 ASSERT(rec
->dtrd_size
> 0 || rec
->dtrd_alignment
== 1);
10169 ecb
->dte_alignment
= MAX(ecb
->dte_alignment
, rec
->dtrd_alignment
);
10171 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
10172 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10174 ASSERT(rec
->dtrd_size
!= 0);
10175 ASSERT(agg
->dtag_first
!= NULL
);
10176 ASSERT(act
->dta_prev
->dta_intuple
);
10177 ASSERT(aggbase
!= UINT32_MAX
);
10178 ASSERT(curneeded
!= UINT32_MAX
);
10180 agg
->dtag_base
= aggbase
;
10181 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10182 rec
->dtrd_offset
= curneeded
;
10183 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10185 curneeded
+= rec
->dtrd_size
;
10186 ecb
->dte_needed
= MAX(ecb
->dte_needed
, curneeded
);
10188 aggbase
= UINT32_MAX
;
10189 curneeded
= UINT32_MAX
;
10190 } else if (act
->dta_intuple
) {
10191 if (curneeded
== UINT32_MAX
) {
10193 * This is the first record in a tuple. Align
10194 * curneeded to be at offset 4 in an 8-byte
10197 ASSERT(act
->dta_prev
== NULL
|| !act
->dta_prev
->dta_intuple
);
10198 ASSERT(aggbase
== UINT32_MAX
);
10200 curneeded
= P2PHASEUP(ecb
->dte_size
,
10201 sizeof (uint64_t), sizeof (dtrace_aggid_t
));
10203 aggbase
= curneeded
- sizeof (dtrace_aggid_t
);
10204 ASSERT(IS_P2ALIGNED(aggbase
,
10205 sizeof (uint64_t)));
10208 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10209 rec
->dtrd_offset
= curneeded
;
10210 curneeded
+= rec
->dtrd_size
;
10211 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10214 /* tuples must be followed by an aggregation */
10215 ASSERT(act
->dta_prev
== NULL
|| !act
->dta_prev
->dta_intuple
);
10216 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, rec
->dtrd_alignment
);
10217 rec
->dtrd_offset
= ecb
->dte_size
;
10218 if (ecb
->dte_size
+ rec
->dtrd_size
< ecb
->dte_size
)
10220 ecb
->dte_size
+= rec
->dtrd_size
;
10221 ecb
->dte_needed
= MAX(ecb
->dte_needed
, ecb
->dte_size
);
10225 if ((act
= ecb
->dte_action
) != NULL
&&
10226 !(act
->dta_kind
== DTRACEACT_SPECULATE
&& act
->dta_next
== NULL
) &&
10227 ecb
->dte_size
== sizeof (dtrace_rechdr_t
)) {
10229 * If the size is still sizeof (dtrace_rechdr_t), then all
10230 * actions store no data; set the size to 0.
10235 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, sizeof (dtrace_epid_t
));
10236 ecb
->dte_needed
= P2ROUNDUP(ecb
->dte_needed
, (sizeof (dtrace_epid_t
)));
10237 ecb
->dte_state
->dts_needed
= MAX(ecb
->dte_state
->dts_needed
, ecb
->dte_needed
);
10241 static dtrace_action_t
*
10242 dtrace_ecb_aggregation_create(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10244 dtrace_aggregation_t
*agg
;
10245 size_t size
= sizeof (uint64_t);
10246 int ntuple
= desc
->dtad_ntuple
;
10247 dtrace_action_t
*act
;
10248 dtrace_recdesc_t
*frec
;
10249 dtrace_aggid_t aggid
;
10250 dtrace_state_t
*state
= ecb
->dte_state
;
10252 agg
= kmem_zalloc(sizeof (dtrace_aggregation_t
), KM_SLEEP
);
10253 agg
->dtag_ecb
= ecb
;
10255 ASSERT(DTRACEACT_ISAGG(desc
->dtad_kind
));
10257 switch (desc
->dtad_kind
) {
10258 case DTRACEAGG_MIN
:
10259 agg
->dtag_initial
= INT64_MAX
;
10260 agg
->dtag_aggregate
= dtrace_aggregate_min
;
10263 case DTRACEAGG_MAX
:
10264 agg
->dtag_initial
= INT64_MIN
;
10265 agg
->dtag_aggregate
= dtrace_aggregate_max
;
10268 case DTRACEAGG_COUNT
:
10269 agg
->dtag_aggregate
= dtrace_aggregate_count
;
10272 case DTRACEAGG_QUANTIZE
:
10273 agg
->dtag_aggregate
= dtrace_aggregate_quantize
;
10274 size
= (((sizeof (uint64_t) * NBBY
) - 1) * 2 + 1) *
10278 case DTRACEAGG_LQUANTIZE
: {
10279 uint16_t step
= DTRACE_LQUANTIZE_STEP(desc
->dtad_arg
);
10280 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(desc
->dtad_arg
);
10282 agg
->dtag_initial
= desc
->dtad_arg
;
10283 agg
->dtag_aggregate
= dtrace_aggregate_lquantize
;
10285 if (step
== 0 || levels
== 0)
10288 size
= levels
* sizeof (uint64_t) + 3 * sizeof (uint64_t);
10292 case DTRACEAGG_LLQUANTIZE
: {
10293 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(desc
->dtad_arg
);
10294 uint16_t low
= DTRACE_LLQUANTIZE_LOW(desc
->dtad_arg
);
10295 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(desc
->dtad_arg
);
10296 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(desc
->dtad_arg
);
10299 agg
->dtag_initial
= desc
->dtad_arg
;
10300 agg
->dtag_aggregate
= dtrace_aggregate_llquantize
;
10302 if (factor
< 2 || low
>= high
|| nsteps
< factor
)
10306 * Now check that the number of steps evenly divides a power
10307 * of the factor. (This assures both integer bucket size and
10308 * linearity within each magnitude.)
10310 for (v
= factor
; v
< nsteps
; v
*= factor
)
10313 if ((v
% nsteps
) || (nsteps
% factor
))
10316 size
= (dtrace_aggregate_llquantize_bucket(factor
, low
, high
, nsteps
, INT64_MAX
) + 2) * sizeof (uint64_t);
10320 case DTRACEAGG_AVG
:
10321 agg
->dtag_aggregate
= dtrace_aggregate_avg
;
10322 size
= sizeof (uint64_t) * 2;
10325 case DTRACEAGG_STDDEV
:
10326 agg
->dtag_aggregate
= dtrace_aggregate_stddev
;
10327 size
= sizeof (uint64_t) * 4;
10330 case DTRACEAGG_SUM
:
10331 agg
->dtag_aggregate
= dtrace_aggregate_sum
;
10338 agg
->dtag_action
.dta_rec
.dtrd_size
= size
;
10344 * We must make sure that we have enough actions for the n-tuple.
10346 for (act
= ecb
->dte_action_last
; act
!= NULL
; act
= act
->dta_prev
) {
10347 if (DTRACEACT_ISAGG(act
->dta_kind
))
10350 if (--ntuple
== 0) {
10352 * This is the action with which our n-tuple begins.
10354 agg
->dtag_first
= act
;
10360 * This n-tuple is short by ntuple elements. Return failure.
10362 ASSERT(ntuple
!= 0);
10364 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10369 * If the last action in the tuple has a size of zero, it's actually
10370 * an expression argument for the aggregating action.
10372 ASSERT(ecb
->dte_action_last
!= NULL
);
10373 act
= ecb
->dte_action_last
;
10375 if (act
->dta_kind
== DTRACEACT_DIFEXPR
) {
10376 ASSERT(act
->dta_difo
!= NULL
);
10378 if (act
->dta_difo
->dtdo_rtype
.dtdt_size
== 0)
10379 agg
->dtag_hasarg
= 1;
10383 * We need to allocate an id for this aggregation.
10385 aggid
= (dtrace_aggid_t
)(uintptr_t)vmem_alloc(state
->dts_aggid_arena
, 1,
10386 VM_BESTFIT
| VM_SLEEP
);
10388 if (aggid
- 1 >= (dtrace_aggid_t
)state
->dts_naggregations
) {
10389 dtrace_aggregation_t
**oaggs
= state
->dts_aggregations
;
10390 dtrace_aggregation_t
**aggs
;
10391 int naggs
= state
->dts_naggregations
<< 1;
10392 int onaggs
= state
->dts_naggregations
;
10394 ASSERT(aggid
== (dtrace_aggid_t
)state
->dts_naggregations
+ 1);
10397 ASSERT(oaggs
== NULL
);
10401 aggs
= kmem_zalloc(naggs
* sizeof (*aggs
), KM_SLEEP
);
10403 if (oaggs
!= NULL
) {
10404 bcopy(oaggs
, aggs
, onaggs
* sizeof (*aggs
));
10405 kmem_free(oaggs
, onaggs
* sizeof (*aggs
));
10408 state
->dts_aggregations
= aggs
;
10409 state
->dts_naggregations
= naggs
;
10412 ASSERT(state
->dts_aggregations
[aggid
- 1] == NULL
);
10413 state
->dts_aggregations
[(agg
->dtag_id
= aggid
) - 1] = agg
;
10415 frec
= &agg
->dtag_first
->dta_rec
;
10416 if (frec
->dtrd_alignment
< sizeof (dtrace_aggid_t
))
10417 frec
->dtrd_alignment
= sizeof (dtrace_aggid_t
);
10419 for (act
= agg
->dtag_first
; act
!= NULL
; act
= act
->dta_next
) {
10420 ASSERT(!act
->dta_intuple
);
10421 act
->dta_intuple
= 1;
10424 return (&agg
->dtag_action
);
10428 dtrace_ecb_aggregation_destroy(dtrace_ecb_t
*ecb
, dtrace_action_t
*act
)
10430 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10431 dtrace_state_t
*state
= ecb
->dte_state
;
10432 dtrace_aggid_t aggid
= agg
->dtag_id
;
10434 ASSERT(DTRACEACT_ISAGG(act
->dta_kind
));
10435 vmem_free(state
->dts_aggid_arena
, (void *)(uintptr_t)aggid
, 1);
10437 ASSERT(state
->dts_aggregations
[aggid
- 1] == agg
);
10438 state
->dts_aggregations
[aggid
- 1] = NULL
;
10440 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10444 dtrace_ecb_action_add(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10446 dtrace_action_t
*action
, *last
;
10447 dtrace_difo_t
*dp
= desc
->dtad_difo
;
10448 uint32_t size
= 0, align
= sizeof (uint8_t), mask
;
10449 uint16_t format
= 0;
10450 dtrace_recdesc_t
*rec
;
10451 dtrace_state_t
*state
= ecb
->dte_state
;
10452 dtrace_optval_t
*opt
= state
->dts_options
;
10453 dtrace_optval_t nframes
=0, strsize
;
10454 uint64_t arg
= desc
->dtad_arg
;
10456 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10457 ASSERT(ecb
->dte_action
== NULL
|| ecb
->dte_action
->dta_refcnt
== 1);
10459 if (DTRACEACT_ISAGG(desc
->dtad_kind
)) {
10461 * If this is an aggregating action, there must be neither
10462 * a speculate nor a commit on the action chain.
10464 dtrace_action_t
*act
;
10466 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10467 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10470 if (act
->dta_kind
== DTRACEACT_SPECULATE
)
10474 action
= dtrace_ecb_aggregation_create(ecb
, desc
);
10476 if (action
== NULL
)
10479 if (DTRACEACT_ISDESTRUCTIVE(desc
->dtad_kind
) ||
10480 (desc
->dtad_kind
== DTRACEACT_DIFEXPR
&&
10481 dp
!= NULL
&& dp
->dtdo_destructive
)) {
10482 state
->dts_destructive
= 1;
10485 switch (desc
->dtad_kind
) {
10486 case DTRACEACT_PRINTF
:
10487 case DTRACEACT_PRINTA
:
10488 case DTRACEACT_SYSTEM
:
10489 case DTRACEACT_FREOPEN
:
10490 case DTRACEACT_DIFEXPR
:
10492 * We know that our arg is a string -- turn it into a
10496 ASSERT(desc
->dtad_kind
== DTRACEACT_PRINTA
||
10497 desc
->dtad_kind
== DTRACEACT_DIFEXPR
);
10501 ASSERT(arg
> KERNELBASE
);
10502 format
= dtrace_format_add(state
,
10503 (char *)(uintptr_t)arg
);
10507 case DTRACEACT_LIBACT
:
10508 case DTRACEACT_TRACEMEM
:
10509 case DTRACEACT_TRACEMEM_DYNSIZE
:
10510 case DTRACEACT_APPLEBINARY
: /* __APPLE__ */
10514 if ((size
= dp
->dtdo_rtype
.dtdt_size
) != 0)
10517 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
10518 if (!(dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10521 size
= opt
[DTRACEOPT_STRSIZE
];
10526 case DTRACEACT_STACK
:
10527 if ((nframes
= arg
) == 0) {
10528 nframes
= opt
[DTRACEOPT_STACKFRAMES
];
10529 ASSERT(nframes
> 0);
10533 size
= nframes
* sizeof (pc_t
);
10536 case DTRACEACT_JSTACK
:
10537 if ((strsize
= DTRACE_USTACK_STRSIZE(arg
)) == 0)
10538 strsize
= opt
[DTRACEOPT_JSTACKSTRSIZE
];
10540 if ((nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0)
10541 nframes
= opt
[DTRACEOPT_JSTACKFRAMES
];
10543 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10546 case DTRACEACT_USTACK
:
10547 if (desc
->dtad_kind
!= DTRACEACT_JSTACK
&&
10548 (nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0) {
10549 strsize
= DTRACE_USTACK_STRSIZE(arg
);
10550 nframes
= opt
[DTRACEOPT_USTACKFRAMES
];
10551 ASSERT(nframes
> 0);
10552 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10556 * Save a slot for the pid.
10558 size
= (nframes
+ 1) * sizeof (uint64_t);
10559 size
+= DTRACE_USTACK_STRSIZE(arg
);
10560 size
= P2ROUNDUP(size
, (uint32_t)(sizeof (uintptr_t)));
10564 case DTRACEACT_SYM
:
10565 case DTRACEACT_MOD
:
10566 if (dp
== NULL
|| ((size
= dp
->dtdo_rtype
.dtdt_size
) !=
10567 sizeof (uint64_t)) ||
10568 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10572 case DTRACEACT_USYM
:
10573 case DTRACEACT_UMOD
:
10574 case DTRACEACT_UADDR
:
10576 (dp
->dtdo_rtype
.dtdt_size
!= sizeof (uint64_t)) ||
10577 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10581 * We have a slot for the pid, plus a slot for the
10582 * argument. To keep things simple (aligned with
10583 * bitness-neutral sizing), we store each as a 64-bit
10586 size
= 2 * sizeof (uint64_t);
10589 case DTRACEACT_STOP
:
10590 case DTRACEACT_BREAKPOINT
:
10591 case DTRACEACT_PANIC
:
10594 case DTRACEACT_CHILL
:
10595 case DTRACEACT_DISCARD
:
10596 case DTRACEACT_RAISE
:
10597 case DTRACEACT_PIDRESUME
: /* __APPLE__ */
10602 case DTRACEACT_EXIT
:
10604 (size
= dp
->dtdo_rtype
.dtdt_size
) != sizeof (int) ||
10605 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10609 case DTRACEACT_SPECULATE
:
10610 if (ecb
->dte_size
> sizeof (dtrace_rechdr_t
))
10616 state
->dts_speculates
= 1;
10619 case DTRACEACT_COMMIT
: {
10620 dtrace_action_t
*act
= ecb
->dte_action
;
10622 for (; act
!= NULL
; act
= act
->dta_next
) {
10623 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10636 if (size
!= 0 || desc
->dtad_kind
== DTRACEACT_SPECULATE
) {
10638 * If this is a data-storing action or a speculate,
10639 * we must be sure that there isn't a commit on the
10642 dtrace_action_t
*act
= ecb
->dte_action
;
10644 for (; act
!= NULL
; act
= act
->dta_next
) {
10645 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10650 action
= kmem_zalloc(sizeof (dtrace_action_t
), KM_SLEEP
);
10651 action
->dta_rec
.dtrd_size
= size
;
10654 action
->dta_refcnt
= 1;
10655 rec
= &action
->dta_rec
;
10656 size
= rec
->dtrd_size
;
10658 for (mask
= sizeof (uint64_t) - 1; size
!= 0 && mask
> 0; mask
>>= 1) {
10659 if (!(size
& mask
)) {
10665 action
->dta_kind
= desc
->dtad_kind
;
10667 if ((action
->dta_difo
= dp
) != NULL
)
10668 dtrace_difo_hold(dp
);
10670 rec
->dtrd_action
= action
->dta_kind
;
10671 rec
->dtrd_arg
= arg
;
10672 rec
->dtrd_uarg
= desc
->dtad_uarg
;
10673 rec
->dtrd_alignment
= (uint16_t)align
;
10674 rec
->dtrd_format
= format
;
10676 if ((last
= ecb
->dte_action_last
) != NULL
) {
10677 ASSERT(ecb
->dte_action
!= NULL
);
10678 action
->dta_prev
= last
;
10679 last
->dta_next
= action
;
10681 ASSERT(ecb
->dte_action
== NULL
);
10682 ecb
->dte_action
= action
;
10685 ecb
->dte_action_last
= action
;
10691 dtrace_ecb_action_remove(dtrace_ecb_t
*ecb
)
10693 dtrace_action_t
*act
= ecb
->dte_action
, *next
;
10694 dtrace_vstate_t
*vstate
= &ecb
->dte_state
->dts_vstate
;
10698 if (act
!= NULL
&& act
->dta_refcnt
> 1) {
10699 ASSERT(act
->dta_next
== NULL
|| act
->dta_next
->dta_refcnt
== 1);
10702 for (; act
!= NULL
; act
= next
) {
10703 next
= act
->dta_next
;
10704 ASSERT(next
!= NULL
|| act
== ecb
->dte_action_last
);
10705 ASSERT(act
->dta_refcnt
== 1);
10707 if ((format
= act
->dta_rec
.dtrd_format
) != 0)
10708 dtrace_format_remove(ecb
->dte_state
, format
);
10710 if ((dp
= act
->dta_difo
) != NULL
)
10711 dtrace_difo_release(dp
, vstate
);
10713 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
10714 dtrace_ecb_aggregation_destroy(ecb
, act
);
10716 kmem_free(act
, sizeof (dtrace_action_t
));
10721 ecb
->dte_action
= NULL
;
10722 ecb
->dte_action_last
= NULL
;
10727 dtrace_ecb_disable(dtrace_ecb_t
*ecb
)
10730 * We disable the ECB by removing it from its probe.
10732 dtrace_ecb_t
*pecb
, *prev
= NULL
;
10733 dtrace_probe_t
*probe
= ecb
->dte_probe
;
10735 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10737 if (probe
== NULL
) {
10739 * This is the NULL probe; there is nothing to disable.
10744 for (pecb
= probe
->dtpr_ecb
; pecb
!= NULL
; pecb
= pecb
->dte_next
) {
10750 ASSERT(pecb
!= NULL
);
10752 if (prev
== NULL
) {
10753 probe
->dtpr_ecb
= ecb
->dte_next
;
10755 prev
->dte_next
= ecb
->dte_next
;
10758 if (ecb
== probe
->dtpr_ecb_last
) {
10759 ASSERT(ecb
->dte_next
== NULL
);
10760 probe
->dtpr_ecb_last
= prev
;
10763 probe
->dtpr_provider
->dtpv_ecb_count
--;
10765 * The ECB has been disconnected from the probe; now sync to assure
10766 * that all CPUs have seen the change before returning.
10770 if (probe
->dtpr_ecb
== NULL
) {
10772 * That was the last ECB on the probe; clear the predicate
10773 * cache ID for the probe, disable it and sync one more time
10774 * to assure that we'll never hit it again.
10776 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
10778 ASSERT(ecb
->dte_next
== NULL
);
10779 ASSERT(probe
->dtpr_ecb_last
== NULL
);
10780 probe
->dtpr_predcache
= DTRACE_CACHEIDNONE
;
10781 prov
->dtpv_pops
.dtps_disable(prov
->dtpv_arg
,
10782 probe
->dtpr_id
, probe
->dtpr_arg
);
10786 * There is at least one ECB remaining on the probe. If there
10787 * is _exactly_ one, set the probe's predicate cache ID to be
10788 * the predicate cache ID of the remaining ECB.
10790 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
10791 ASSERT(probe
->dtpr_predcache
== DTRACE_CACHEIDNONE
);
10793 if (probe
->dtpr_ecb
== probe
->dtpr_ecb_last
) {
10794 dtrace_predicate_t
*p
= probe
->dtpr_ecb
->dte_predicate
;
10796 ASSERT(probe
->dtpr_ecb
->dte_next
== NULL
);
10799 probe
->dtpr_predcache
= p
->dtp_cacheid
;
10802 ecb
->dte_next
= NULL
;
10807 dtrace_ecb_destroy(dtrace_ecb_t
*ecb
)
10809 dtrace_state_t
*state
= ecb
->dte_state
;
10810 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
10811 dtrace_predicate_t
*pred
;
10812 dtrace_epid_t epid
= ecb
->dte_epid
;
10814 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10815 ASSERT(ecb
->dte_next
== NULL
);
10816 ASSERT(ecb
->dte_probe
== NULL
|| ecb
->dte_probe
->dtpr_ecb
!= ecb
);
10818 if ((pred
= ecb
->dte_predicate
) != NULL
)
10819 dtrace_predicate_release(pred
, vstate
);
10821 dtrace_ecb_action_remove(ecb
);
10823 ASSERT(state
->dts_ecbs
[epid
- 1] == ecb
);
10824 state
->dts_ecbs
[epid
- 1] = NULL
;
10826 kmem_free(ecb
, sizeof (dtrace_ecb_t
));
10829 static dtrace_ecb_t
*
10830 dtrace_ecb_create(dtrace_state_t
*state
, dtrace_probe_t
*probe
,
10831 dtrace_enabling_t
*enab
)
10834 dtrace_predicate_t
*pred
;
10835 dtrace_actdesc_t
*act
;
10836 dtrace_provider_t
*prov
;
10837 dtrace_ecbdesc_t
*desc
= enab
->dten_current
;
10839 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10840 ASSERT(state
!= NULL
);
10842 ecb
= dtrace_ecb_add(state
, probe
);
10843 ecb
->dte_uarg
= desc
->dted_uarg
;
10845 if ((pred
= desc
->dted_pred
.dtpdd_predicate
) != NULL
) {
10846 dtrace_predicate_hold(pred
);
10847 ecb
->dte_predicate
= pred
;
10850 if (probe
!= NULL
) {
10852 * If the provider shows more leg than the consumer is old
10853 * enough to see, we need to enable the appropriate implicit
10854 * predicate bits to prevent the ecb from activating at
10857 * Providers specifying DTRACE_PRIV_USER at register time
10858 * are stating that they need the /proc-style privilege
10859 * model to be enforced, and this is what DTRACE_COND_OWNER
10860 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10862 prov
= probe
->dtpr_provider
;
10863 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLPROC
) &&
10864 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
10865 ecb
->dte_cond
|= DTRACE_COND_OWNER
;
10867 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLZONE
) &&
10868 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
10869 ecb
->dte_cond
|= DTRACE_COND_ZONEOWNER
;
10872 * If the provider shows us kernel innards and the user
10873 * is lacking sufficient privilege, enable the
10874 * DTRACE_COND_USERMODE implicit predicate.
10876 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) &&
10877 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_KERNEL
))
10878 ecb
->dte_cond
|= DTRACE_COND_USERMODE
;
10881 if (dtrace_ecb_create_cache
!= NULL
) {
10883 * If we have a cached ecb, we'll use its action list instead
10884 * of creating our own (saving both time and space).
10886 dtrace_ecb_t
*cached
= dtrace_ecb_create_cache
;
10887 dtrace_action_t
*act_if
= cached
->dte_action
;
10889 if (act_if
!= NULL
) {
10890 ASSERT(act_if
->dta_refcnt
> 0);
10891 act_if
->dta_refcnt
++;
10892 ecb
->dte_action
= act_if
;
10893 ecb
->dte_action_last
= cached
->dte_action_last
;
10894 ecb
->dte_needed
= cached
->dte_needed
;
10895 ecb
->dte_size
= cached
->dte_size
;
10896 ecb
->dte_alignment
= cached
->dte_alignment
;
10902 for (act
= desc
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
10903 if ((enab
->dten_error
= dtrace_ecb_action_add(ecb
, act
)) != 0) {
10904 dtrace_ecb_destroy(ecb
);
10909 if ((enab
->dten_error
= dtrace_ecb_resize(ecb
)) != 0) {
10910 dtrace_ecb_destroy(ecb
);
10914 return (dtrace_ecb_create_cache
= ecb
);
10918 dtrace_ecb_create_enable(dtrace_probe_t
*probe
, void *arg1
, void *arg2
)
10921 dtrace_enabling_t
*enab
= arg1
;
10922 dtrace_ecbdesc_t
*ep
= arg2
;
10923 dtrace_state_t
*state
= enab
->dten_vstate
->dtvs_state
;
10925 ASSERT(state
!= NULL
);
10927 if (probe
!= NULL
&& ep
!= NULL
&& probe
->dtpr_gen
< ep
->dted_probegen
) {
10929 * This probe was created in a generation for which this
10930 * enabling has previously created ECBs; we don't want to
10931 * enable it again, so just kick out.
10933 return (DTRACE_MATCH_NEXT
);
10936 if ((ecb
= dtrace_ecb_create(state
, probe
, enab
)) == NULL
)
10937 return (DTRACE_MATCH_DONE
);
10939 if (dtrace_ecb_enable(ecb
) < 0)
10940 return (DTRACE_MATCH_FAIL
);
10942 return (DTRACE_MATCH_NEXT
);
10945 static dtrace_ecb_t
*
10946 dtrace_epid2ecb(dtrace_state_t
*state
, dtrace_epid_t id
)
10949 #pragma unused(ecb) /* __APPLE__ */
10951 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10953 if (id
== 0 || id
> (dtrace_epid_t
)state
->dts_necbs
)
10956 ASSERT(state
->dts_necbs
> 0 && state
->dts_ecbs
!= NULL
);
10957 ASSERT((ecb
= state
->dts_ecbs
[id
- 1]) == NULL
|| ecb
->dte_epid
== id
);
10959 return (state
->dts_ecbs
[id
- 1]);
10962 static dtrace_aggregation_t
*
10963 dtrace_aggid2agg(dtrace_state_t
*state
, dtrace_aggid_t id
)
10965 dtrace_aggregation_t
*agg
;
10966 #pragma unused(agg) /* __APPLE__ */
10968 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10970 if (id
== 0 || id
> (dtrace_aggid_t
)state
->dts_naggregations
)
10973 ASSERT(state
->dts_naggregations
> 0 && state
->dts_aggregations
!= NULL
);
10974 ASSERT((agg
= state
->dts_aggregations
[id
- 1]) == NULL
||
10975 agg
->dtag_id
== id
);
10977 return (state
->dts_aggregations
[id
- 1]);
10981 * DTrace Buffer Functions
10983 * The following functions manipulate DTrace buffers. Most of these functions
10984 * are called in the context of establishing or processing consumer state;
10985 * exceptions are explicitly noted.
10989 * Note: called from cross call context. This function switches the two
10990 * buffers on a given CPU. The atomicity of this operation is assured by
10991 * disabling interrupts while the actual switch takes place; the disabling of
10992 * interrupts serializes the execution with any execution of dtrace_probe() on
10996 dtrace_buffer_switch(dtrace_buffer_t
*buf
)
10998 caddr_t tomax
= buf
->dtb_tomax
;
10999 caddr_t xamot
= buf
->dtb_xamot
;
11000 dtrace_icookie_t cookie
;
11003 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11004 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_RING
));
11006 cookie
= dtrace_interrupt_disable();
11007 now
= dtrace_gethrtime();
11008 buf
->dtb_tomax
= xamot
;
11009 buf
->dtb_xamot
= tomax
;
11010 buf
->dtb_xamot_drops
= buf
->dtb_drops
;
11011 buf
->dtb_xamot_offset
= buf
->dtb_offset
;
11012 buf
->dtb_xamot_errors
= buf
->dtb_errors
;
11013 buf
->dtb_xamot_flags
= buf
->dtb_flags
;
11014 buf
->dtb_offset
= 0;
11015 buf
->dtb_drops
= 0;
11016 buf
->dtb_errors
= 0;
11017 buf
->dtb_flags
&= ~(DTRACEBUF_ERROR
| DTRACEBUF_DROPPED
);
11018 buf
->dtb_interval
= now
- buf
->dtb_switched
;
11019 buf
->dtb_switched
= now
;
11020 buf
->dtb_cur_limit
= buf
->dtb_limit
;
11022 dtrace_interrupt_enable(cookie
);
11026 * Note: called from cross call context. This function activates a buffer
11027 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11028 * is guaranteed by the disabling of interrupts.
11031 dtrace_buffer_activate(dtrace_state_t
*state
)
11033 dtrace_buffer_t
*buf
;
11034 dtrace_icookie_t cookie
= dtrace_interrupt_disable();
11036 buf
= &state
->dts_buffer
[CPU
->cpu_id
];
11038 if (buf
->dtb_tomax
!= NULL
) {
11040 * We might like to assert that the buffer is marked inactive,
11041 * but this isn't necessarily true: the buffer for the CPU
11042 * that processes the BEGIN probe has its buffer activated
11043 * manually. In this case, we take the (harmless) action
11044 * re-clearing the bit INACTIVE bit.
11046 buf
->dtb_flags
&= ~DTRACEBUF_INACTIVE
;
11049 dtrace_interrupt_enable(cookie
);
11053 dtrace_buffer_canalloc(size_t size
)
11055 if (size
> (UINT64_MAX
- dtrace_buffer_memory_inuse
))
11057 if ((size
+ dtrace_buffer_memory_inuse
) > dtrace_buffer_memory_maxsize
)
11064 dtrace_buffer_alloc(dtrace_buffer_t
*bufs
, size_t limit
, size_t size
, int flags
,
11068 dtrace_buffer_t
*buf
;
11069 size_t size_before_alloc
= dtrace_buffer_memory_inuse
;
11071 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
11072 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11074 if (size
> (size_t)dtrace_nonroot_maxsize
&&
11075 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL
, B_FALSE
))
11081 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11084 buf
= &bufs
[cp
->cpu_id
];
11087 * If there is already a buffer allocated for this CPU, it
11088 * is only possible that this is a DR event. In this case,
11089 * the buffer size must match our specified size.
11091 if (buf
->dtb_tomax
!= NULL
) {
11092 ASSERT(buf
->dtb_size
== size
);
11096 ASSERT(buf
->dtb_xamot
== NULL
);
11098 /* DTrace, please do not eat all the memory. */
11099 if (dtrace_buffer_canalloc(size
) == B_FALSE
)
11101 if ((buf
->dtb_tomax
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
11103 dtrace_buffer_memory_inuse
+= size
;
11105 /* Unsure that limit is always lower than size */
11106 limit
= limit
== size
? limit
- 1 : limit
;
11107 buf
->dtb_cur_limit
= limit
;
11108 buf
->dtb_limit
= limit
;
11109 buf
->dtb_size
= size
;
11110 buf
->dtb_flags
= flags
;
11111 buf
->dtb_offset
= 0;
11112 buf
->dtb_drops
= 0;
11114 if (flags
& DTRACEBUF_NOSWITCH
)
11117 /* DTrace, please do not eat all the memory. */
11118 if (dtrace_buffer_canalloc(size
) == B_FALSE
)
11120 if ((buf
->dtb_xamot
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
11122 dtrace_buffer_memory_inuse
+= size
;
11123 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11125 ASSERT(dtrace_buffer_memory_inuse
<= dtrace_buffer_memory_maxsize
);
11133 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11136 buf
= &bufs
[cp
->cpu_id
];
11138 if (buf
->dtb_xamot
!= NULL
) {
11139 ASSERT(buf
->dtb_tomax
!= NULL
);
11140 ASSERT(buf
->dtb_size
== size
);
11141 kmem_free(buf
->dtb_xamot
, size
);
11144 if (buf
->dtb_tomax
!= NULL
) {
11145 ASSERT(buf
->dtb_size
== size
);
11146 kmem_free(buf
->dtb_tomax
, size
);
11149 buf
->dtb_tomax
= NULL
;
11150 buf
->dtb_xamot
= NULL
;
11152 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11154 /* Restore the size saved before allocating memory */
11155 dtrace_buffer_memory_inuse
= size_before_alloc
;
11161 * Note: called from probe context. This function just increments the drop
11162 * count on a buffer. It has been made a function to allow for the
11163 * possibility of understanding the source of mysterious drop counts. (A
11164 * problem for which one may be particularly disappointed that DTrace cannot
11165 * be used to understand DTrace.)
11168 dtrace_buffer_drop(dtrace_buffer_t
*buf
)
11174 * Note: called from probe context. This function is called to reserve space
11175 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11176 * mstate. Returns the new offset in the buffer, or a negative value if an
11177 * error has occurred.
11180 dtrace_buffer_reserve(dtrace_buffer_t
*buf
, size_t needed
, size_t align
,
11181 dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
11183 intptr_t offs
= buf
->dtb_offset
, soffs
;
11188 if (buf
->dtb_flags
& DTRACEBUF_INACTIVE
)
11191 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
11192 dtrace_buffer_drop(buf
);
11196 if (!(buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
))) {
11197 while (offs
& (align
- 1)) {
11199 * Assert that our alignment is off by a number which
11200 * is itself sizeof (uint32_t) aligned.
11202 ASSERT(!((align
- (offs
& (align
- 1))) &
11203 (sizeof (uint32_t) - 1)));
11204 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11205 offs
+= sizeof (uint32_t);
11208 if ((uint64_t)(soffs
= offs
+ needed
) > buf
->dtb_cur_limit
) {
11209 if (buf
->dtb_cur_limit
== buf
->dtb_limit
) {
11210 buf
->dtb_cur_limit
= buf
->dtb_size
;
11212 atomic_add_32(&state
->dts_buf_over_limit
, 1);
11214 * Set an AST on the current processor
11215 * so that we can wake up the process
11216 * outside of probe context, when we know
11217 * it is safe to do so
11219 minor_t minor
= getminor(state
->dts_dev
);
11220 ASSERT(minor
< 32);
11222 atomic_or_32(&dtrace_wake_clients
, 1 << minor
);
11225 if ((uint64_t)soffs
> buf
->dtb_size
) {
11226 dtrace_buffer_drop(buf
);
11231 if (mstate
== NULL
)
11234 mstate
->dtms_scratch_base
= (uintptr_t)tomax
+ soffs
;
11235 mstate
->dtms_scratch_size
= buf
->dtb_size
- soffs
;
11236 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11241 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11242 if (state
->dts_activity
!= DTRACE_ACTIVITY_COOLDOWN
&&
11243 (buf
->dtb_flags
& DTRACEBUF_FULL
))
11248 total_off
= needed
+ (offs
& (align
- 1));
11251 * For a ring buffer, life is quite a bit more complicated. Before
11252 * we can store any padding, we need to adjust our wrapping offset.
11253 * (If we've never before wrapped or we're not about to, no adjustment
11256 if ((buf
->dtb_flags
& DTRACEBUF_WRAPPED
) ||
11257 offs
+ total_off
> buf
->dtb_size
) {
11258 woffs
= buf
->dtb_xamot_offset
;
11260 if (offs
+ total_off
> buf
->dtb_size
) {
11262 * We can't fit in the end of the buffer. First, a
11263 * sanity check that we can fit in the buffer at all.
11265 if (total_off
> buf
->dtb_size
) {
11266 dtrace_buffer_drop(buf
);
11271 * We're going to be storing at the top of the buffer,
11272 * so now we need to deal with the wrapped offset. We
11273 * only reset our wrapped offset to 0 if it is
11274 * currently greater than the current offset. If it
11275 * is less than the current offset, it is because a
11276 * previous allocation induced a wrap -- but the
11277 * allocation didn't subsequently take the space due
11278 * to an error or false predicate evaluation. In this
11279 * case, we'll just leave the wrapped offset alone: if
11280 * the wrapped offset hasn't been advanced far enough
11281 * for this allocation, it will be adjusted in the
11284 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
11292 * Now we know that we're going to be storing to the
11293 * top of the buffer and that there is room for us
11294 * there. We need to clear the buffer from the current
11295 * offset to the end (there may be old gunk there).
11297 while ((uint64_t)offs
< buf
->dtb_size
)
11301 * We need to set our offset to zero. And because we
11302 * are wrapping, we need to set the bit indicating as
11303 * much. We can also adjust our needed space back
11304 * down to the space required by the ECB -- we know
11305 * that the top of the buffer is aligned.
11308 total_off
= needed
;
11309 buf
->dtb_flags
|= DTRACEBUF_WRAPPED
;
11312 * There is room for us in the buffer, so we simply
11313 * need to check the wrapped offset.
11315 if (woffs
< offs
) {
11317 * The wrapped offset is less than the offset.
11318 * This can happen if we allocated buffer space
11319 * that induced a wrap, but then we didn't
11320 * subsequently take the space due to an error
11321 * or false predicate evaluation. This is
11322 * okay; we know that _this_ allocation isn't
11323 * going to induce a wrap. We still can't
11324 * reset the wrapped offset to be zero,
11325 * however: the space may have been trashed in
11326 * the previous failed probe attempt. But at
11327 * least the wrapped offset doesn't need to
11328 * be adjusted at all...
11334 while (offs
+ total_off
> (size_t)woffs
) {
11335 dtrace_epid_t epid
= *(uint32_t *)(tomax
+ woffs
);
11338 if (epid
== DTRACE_EPIDNONE
) {
11339 size
= sizeof (uint32_t);
11341 ASSERT(epid
<= (dtrace_epid_t
)state
->dts_necbs
);
11342 ASSERT(state
->dts_ecbs
[epid
- 1] != NULL
);
11344 size
= state
->dts_ecbs
[epid
- 1]->dte_size
;
11347 ASSERT(woffs
+ size
<= buf
->dtb_size
);
11350 if (woffs
+ size
== buf
->dtb_size
) {
11352 * We've reached the end of the buffer; we want
11353 * to set the wrapped offset to 0 and break
11354 * out. However, if the offs is 0, then we're
11355 * in a strange edge-condition: the amount of
11356 * space that we want to reserve plus the size
11357 * of the record that we're overwriting is
11358 * greater than the size of the buffer. This
11359 * is problematic because if we reserve the
11360 * space but subsequently don't consume it (due
11361 * to a failed predicate or error) the wrapped
11362 * offset will be 0 -- yet the EPID at offset 0
11363 * will not be committed. This situation is
11364 * relatively easy to deal with: if we're in
11365 * this case, the buffer is indistinguishable
11366 * from one that hasn't wrapped; we need only
11367 * finish the job by clearing the wrapped bit,
11368 * explicitly setting the offset to be 0, and
11369 * zero'ing out the old data in the buffer.
11372 buf
->dtb_flags
&= ~DTRACEBUF_WRAPPED
;
11373 buf
->dtb_offset
= 0;
11376 while ((uint64_t)woffs
< buf
->dtb_size
)
11377 tomax
[woffs
++] = 0;
11388 * We have a wrapped offset. It may be that the wrapped offset
11389 * has become zero -- that's okay.
11391 buf
->dtb_xamot_offset
= woffs
;
11396 * Now we can plow the buffer with any necessary padding.
11398 while (offs
& (align
- 1)) {
11400 * Assert that our alignment is off by a number which
11401 * is itself sizeof (uint32_t) aligned.
11403 ASSERT(!((align
- (offs
& (align
- 1))) &
11404 (sizeof (uint32_t) - 1)));
11405 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11406 offs
+= sizeof (uint32_t);
11409 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11410 if (offs
+ needed
> buf
->dtb_size
- state
->dts_reserve
) {
11411 buf
->dtb_flags
|= DTRACEBUF_FULL
;
11416 if (mstate
== NULL
)
11420 * For ring buffers and fill buffers, the scratch space is always
11421 * the inactive buffer.
11423 mstate
->dtms_scratch_base
= (uintptr_t)buf
->dtb_xamot
;
11424 mstate
->dtms_scratch_size
= buf
->dtb_size
;
11425 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11431 dtrace_buffer_polish(dtrace_buffer_t
*buf
)
11433 ASSERT(buf
->dtb_flags
& DTRACEBUF_RING
);
11434 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11436 if (!(buf
->dtb_flags
& DTRACEBUF_WRAPPED
))
11440 * We need to polish the ring buffer. There are three cases:
11442 * - The first (and presumably most common) is that there is no gap
11443 * between the buffer offset and the wrapped offset. In this case,
11444 * there is nothing in the buffer that isn't valid data; we can
11445 * mark the buffer as polished and return.
11447 * - The second (less common than the first but still more common
11448 * than the third) is that there is a gap between the buffer offset
11449 * and the wrapped offset, and the wrapped offset is larger than the
11450 * buffer offset. This can happen because of an alignment issue, or
11451 * can happen because of a call to dtrace_buffer_reserve() that
11452 * didn't subsequently consume the buffer space. In this case,
11453 * we need to zero the data from the buffer offset to the wrapped
11456 * - The third (and least common) is that there is a gap between the
11457 * buffer offset and the wrapped offset, but the wrapped offset is
11458 * _less_ than the buffer offset. This can only happen because a
11459 * call to dtrace_buffer_reserve() induced a wrap, but the space
11460 * was not subsequently consumed. In this case, we need to zero the
11461 * space from the offset to the end of the buffer _and_ from the
11462 * top of the buffer to the wrapped offset.
11464 if (buf
->dtb_offset
< buf
->dtb_xamot_offset
) {
11465 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11466 buf
->dtb_xamot_offset
- buf
->dtb_offset
);
11469 if (buf
->dtb_offset
> buf
->dtb_xamot_offset
) {
11470 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11471 buf
->dtb_size
- buf
->dtb_offset
);
11472 bzero(buf
->dtb_tomax
, buf
->dtb_xamot_offset
);
11477 dtrace_buffer_free(dtrace_buffer_t
*bufs
)
11481 for (i
= 0; i
< (int)NCPU
; i
++) {
11482 dtrace_buffer_t
*buf
= &bufs
[i
];
11484 if (buf
->dtb_tomax
== NULL
) {
11485 ASSERT(buf
->dtb_xamot
== NULL
);
11486 ASSERT(buf
->dtb_size
== 0);
11490 if (buf
->dtb_xamot
!= NULL
) {
11491 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11492 kmem_free(buf
->dtb_xamot
, buf
->dtb_size
);
11494 ASSERT(dtrace_buffer_memory_inuse
>= buf
->dtb_size
);
11495 dtrace_buffer_memory_inuse
-= buf
->dtb_size
;
11498 kmem_free(buf
->dtb_tomax
, buf
->dtb_size
);
11499 ASSERT(dtrace_buffer_memory_inuse
>= buf
->dtb_size
);
11500 dtrace_buffer_memory_inuse
-= buf
->dtb_size
;
11503 buf
->dtb_tomax
= NULL
;
11504 buf
->dtb_xamot
= NULL
;
11509 * DTrace Enabling Functions
11511 static dtrace_enabling_t
*
11512 dtrace_enabling_create(dtrace_vstate_t
*vstate
)
11514 dtrace_enabling_t
*enab
;
11516 enab
= kmem_zalloc(sizeof (dtrace_enabling_t
), KM_SLEEP
);
11517 enab
->dten_vstate
= vstate
;
11523 dtrace_enabling_add(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
)
11525 dtrace_ecbdesc_t
**ndesc
;
11526 size_t osize
, nsize
;
11529 * We can't add to enablings after we've enabled them, or after we've
11532 ASSERT(enab
->dten_probegen
== 0);
11533 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
11535 /* APPLE NOTE: this protects against gcc 4.0 botch on x86 */
11536 if (ecb
== NULL
) return;
11538 if (enab
->dten_ndesc
< enab
->dten_maxdesc
) {
11539 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11543 osize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11545 if (enab
->dten_maxdesc
== 0) {
11546 enab
->dten_maxdesc
= 1;
11548 enab
->dten_maxdesc
<<= 1;
11551 ASSERT(enab
->dten_ndesc
< enab
->dten_maxdesc
);
11553 nsize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11554 ndesc
= kmem_zalloc(nsize
, KM_SLEEP
);
11555 bcopy(enab
->dten_desc
, ndesc
, osize
);
11556 kmem_free(enab
->dten_desc
, osize
);
11558 enab
->dten_desc
= ndesc
;
11559 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11563 dtrace_enabling_addlike(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
,
11564 dtrace_probedesc_t
*pd
)
11566 dtrace_ecbdesc_t
*new;
11567 dtrace_predicate_t
*pred
;
11568 dtrace_actdesc_t
*act
;
11571 * We're going to create a new ECB description that matches the
11572 * specified ECB in every way, but has the specified probe description.
11574 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
11576 if ((pred
= ecb
->dted_pred
.dtpdd_predicate
) != NULL
)
11577 dtrace_predicate_hold(pred
);
11579 for (act
= ecb
->dted_action
; act
!= NULL
; act
= act
->dtad_next
)
11580 dtrace_actdesc_hold(act
);
11582 new->dted_action
= ecb
->dted_action
;
11583 new->dted_pred
= ecb
->dted_pred
;
11584 new->dted_probe
= *pd
;
11585 new->dted_uarg
= ecb
->dted_uarg
;
11587 dtrace_enabling_add(enab
, new);
11591 dtrace_enabling_dump(dtrace_enabling_t
*enab
)
11595 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11596 dtrace_probedesc_t
*desc
= &enab
->dten_desc
[i
]->dted_probe
;
11598 cmn_err(CE_NOTE
, "enabling probe %d (%s:%s:%s:%s)", i
,
11599 desc
->dtpd_provider
, desc
->dtpd_mod
,
11600 desc
->dtpd_func
, desc
->dtpd_name
);
11605 dtrace_enabling_destroy(dtrace_enabling_t
*enab
)
11608 dtrace_ecbdesc_t
*ep
;
11609 dtrace_vstate_t
*vstate
= enab
->dten_vstate
;
11611 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11613 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11614 dtrace_actdesc_t
*act
, *next
;
11615 dtrace_predicate_t
*pred
;
11617 ep
= enab
->dten_desc
[i
];
11619 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
)
11620 dtrace_predicate_release(pred
, vstate
);
11622 for (act
= ep
->dted_action
; act
!= NULL
; act
= next
) {
11623 next
= act
->dtad_next
;
11624 dtrace_actdesc_release(act
, vstate
);
11627 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
11630 kmem_free(enab
->dten_desc
,
11631 enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*));
11634 * If this was a retained enabling, decrement the dts_nretained count
11635 * and take it off of the dtrace_retained list.
11637 if (enab
->dten_prev
!= NULL
|| enab
->dten_next
!= NULL
||
11638 dtrace_retained
== enab
) {
11639 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11640 ASSERT(enab
->dten_vstate
->dtvs_state
->dts_nretained
> 0);
11641 enab
->dten_vstate
->dtvs_state
->dts_nretained
--;
11642 dtrace_retained_gen
++;
11645 if (enab
->dten_prev
== NULL
) {
11646 if (dtrace_retained
== enab
) {
11647 dtrace_retained
= enab
->dten_next
;
11649 if (dtrace_retained
!= NULL
)
11650 dtrace_retained
->dten_prev
= NULL
;
11653 ASSERT(enab
!= dtrace_retained
);
11654 ASSERT(dtrace_retained
!= NULL
);
11655 enab
->dten_prev
->dten_next
= enab
->dten_next
;
11658 if (enab
->dten_next
!= NULL
) {
11659 ASSERT(dtrace_retained
!= NULL
);
11660 enab
->dten_next
->dten_prev
= enab
->dten_prev
;
11663 kmem_free(enab
, sizeof (dtrace_enabling_t
));
11667 dtrace_enabling_retain(dtrace_enabling_t
*enab
)
11669 dtrace_state_t
*state
;
11671 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11672 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
11673 ASSERT(enab
->dten_vstate
!= NULL
);
11675 state
= enab
->dten_vstate
->dtvs_state
;
11676 ASSERT(state
!= NULL
);
11679 * We only allow each state to retain dtrace_retain_max enablings.
11681 if (state
->dts_nretained
>= dtrace_retain_max
)
11684 state
->dts_nretained
++;
11685 dtrace_retained_gen
++;
11687 if (dtrace_retained
== NULL
) {
11688 dtrace_retained
= enab
;
11692 enab
->dten_next
= dtrace_retained
;
11693 dtrace_retained
->dten_prev
= enab
;
11694 dtrace_retained
= enab
;
11700 dtrace_enabling_replicate(dtrace_state_t
*state
, dtrace_probedesc_t
*match
,
11701 dtrace_probedesc_t
*create
)
11703 dtrace_enabling_t
*new, *enab
;
11704 int found
= 0, err
= ENOENT
;
11706 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11707 ASSERT(strlen(match
->dtpd_provider
) < DTRACE_PROVNAMELEN
);
11708 ASSERT(strlen(match
->dtpd_mod
) < DTRACE_MODNAMELEN
);
11709 ASSERT(strlen(match
->dtpd_func
) < DTRACE_FUNCNAMELEN
);
11710 ASSERT(strlen(match
->dtpd_name
) < DTRACE_NAMELEN
);
11712 new = dtrace_enabling_create(&state
->dts_vstate
);
11715 * Iterate over all retained enablings, looking for enablings that
11716 * match the specified state.
11718 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11722 * dtvs_state can only be NULL for helper enablings -- and
11723 * helper enablings can't be retained.
11725 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11727 if (enab
->dten_vstate
->dtvs_state
!= state
)
11731 * Now iterate over each probe description; we're looking for
11732 * an exact match to the specified probe description.
11734 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11735 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
11736 dtrace_probedesc_t
*pd
= &ep
->dted_probe
;
11738 /* APPLE NOTE: Darwin employs size bounded string operation. */
11739 if (strncmp(pd
->dtpd_provider
, match
->dtpd_provider
, DTRACE_PROVNAMELEN
))
11742 if (strncmp(pd
->dtpd_mod
, match
->dtpd_mod
, DTRACE_MODNAMELEN
))
11745 if (strncmp(pd
->dtpd_func
, match
->dtpd_func
, DTRACE_FUNCNAMELEN
))
11748 if (strncmp(pd
->dtpd_name
, match
->dtpd_name
, DTRACE_NAMELEN
))
11752 * We have a winning probe! Add it to our growing
11756 dtrace_enabling_addlike(new, ep
, create
);
11760 if (!found
|| (err
= dtrace_enabling_retain(new)) != 0) {
11761 dtrace_enabling_destroy(new);
11769 dtrace_enabling_retract(dtrace_state_t
*state
)
11771 dtrace_enabling_t
*enab
, *next
;
11773 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11776 * Iterate over all retained enablings, destroy the enablings retained
11777 * for the specified state.
11779 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= next
) {
11780 next
= enab
->dten_next
;
11783 * dtvs_state can only be NULL for helper enablings -- and
11784 * helper enablings can't be retained.
11786 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11788 if (enab
->dten_vstate
->dtvs_state
== state
) {
11789 ASSERT(state
->dts_nretained
> 0);
11790 dtrace_enabling_destroy(enab
);
11794 ASSERT(state
->dts_nretained
== 0);
11798 dtrace_enabling_match(dtrace_enabling_t
*enab
, int *nmatched
, dtrace_match_cond_t
*cond
)
11801 int total_matched
= 0, matched
= 0;
11803 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
11804 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11806 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11807 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
11809 enab
->dten_current
= ep
;
11810 enab
->dten_error
= 0;
11813 * Before doing a dtrace_probe_enable, which is really
11814 * expensive, check that this enabling matches the matching precondition
11817 if (cond
&& (cond
->dmc_func(&ep
->dted_probe
, cond
->dmc_data
) == 0)) {
11821 * If a provider failed to enable a probe then get out and
11822 * let the consumer know we failed.
11824 if ((matched
= dtrace_probe_enable(&ep
->dted_probe
, enab
, ep
)) < 0)
11827 total_matched
+= matched
;
11829 if (enab
->dten_error
!= 0) {
11831 * If we get an error half-way through enabling the
11832 * probes, we kick out -- perhaps with some number of
11833 * them enabled. Leaving enabled probes enabled may
11834 * be slightly confusing for user-level, but we expect
11835 * that no one will attempt to actually drive on in
11836 * the face of such errors. If this is an anonymous
11837 * enabling (indicated with a NULL nmatched pointer),
11838 * we cmn_err() a message. We aren't expecting to
11839 * get such an error -- such as it can exist at all,
11840 * it would be a result of corrupted DOF in the driver
11843 if (nmatched
== NULL
) {
11844 cmn_err(CE_WARN
, "dtrace_enabling_match() "
11845 "error on %p: %d", (void *)ep
,
11849 return (enab
->dten_error
);
11852 ep
->dted_probegen
= dtrace_probegen
;
11855 if (nmatched
!= NULL
)
11856 *nmatched
= total_matched
;
11862 dtrace_enabling_matchall_with_cond(dtrace_match_cond_t
*cond
)
11864 dtrace_enabling_t
*enab
;
11866 lck_mtx_lock(&cpu_lock
);
11867 lck_mtx_lock(&dtrace_lock
);
11870 * Iterate over all retained enablings to see if any probes match
11871 * against them. We only perform this operation on enablings for which
11872 * we have sufficient permissions by virtue of being in the global zone
11873 * or in the same zone as the DTrace client. Because we can be called
11874 * after dtrace_detach() has been called, we cannot assert that there
11875 * are retained enablings. We can safely load from dtrace_retained,
11876 * however: the taskq_destroy() at the end of dtrace_detach() will
11877 * block pending our completion.
11881 * Darwin doesn't do zones.
11882 * Behave as if always in "global" zone."
11884 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11885 (void) dtrace_enabling_match(enab
, NULL
, cond
);
11888 lck_mtx_unlock(&dtrace_lock
);
11889 lck_mtx_unlock(&cpu_lock
);
11894 dtrace_enabling_matchall(void)
11896 dtrace_enabling_matchall_with_cond(NULL
);
11902 * If an enabling is to be enabled without having matched probes (that is, if
11903 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11904 * enabling must be _primed_ by creating an ECB for every ECB description.
11905 * This must be done to assure that we know the number of speculations, the
11906 * number of aggregations, the minimum buffer size needed, etc. before we
11907 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
11908 * enabling any probes, we create ECBs for every ECB decription, but with a
11909 * NULL probe -- which is exactly what this function does.
11912 dtrace_enabling_prime(dtrace_state_t
*state
)
11914 dtrace_enabling_t
*enab
;
11917 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11918 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11920 if (enab
->dten_vstate
->dtvs_state
!= state
)
11924 * We don't want to prime an enabling more than once, lest
11925 * we allow a malicious user to induce resource exhaustion.
11926 * (The ECBs that result from priming an enabling aren't
11927 * leaked -- but they also aren't deallocated until the
11928 * consumer state is destroyed.)
11930 if (enab
->dten_primed
)
11933 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11934 enab
->dten_current
= enab
->dten_desc
[i
];
11935 (void) dtrace_probe_enable(NULL
, enab
, NULL
);
11938 enab
->dten_primed
= 1;
11943 * Called to indicate that probes should be provided due to retained
11944 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
11945 * must take an initial lap through the enabling calling the dtps_provide()
11946 * entry point explicitly to allow for autocreated probes.
11949 dtrace_enabling_provide(dtrace_provider_t
*prv
)
11952 dtrace_probedesc_t desc
;
11953 dtrace_genid_t gen
;
11955 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11956 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
11960 prv
= dtrace_provider
;
11964 dtrace_enabling_t
*enab
;
11965 void *parg
= prv
->dtpv_arg
;
11968 gen
= dtrace_retained_gen
;
11969 for (enab
= dtrace_retained
; enab
!= NULL
;
11970 enab
= enab
->dten_next
) {
11971 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11972 desc
= enab
->dten_desc
[i
]->dted_probe
;
11973 lck_mtx_unlock(&dtrace_lock
);
11974 prv
->dtpv_pops
.dtps_provide(parg
, &desc
);
11975 lck_mtx_lock(&dtrace_lock
);
11977 * Process the retained enablings again if
11978 * they have changed while we weren't holding
11981 if (gen
!= dtrace_retained_gen
)
11985 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
11987 lck_mtx_unlock(&dtrace_lock
);
11988 dtrace_probe_provide(NULL
, all
? NULL
: prv
);
11989 lck_mtx_lock(&dtrace_lock
);
11993 * DTrace DOF Functions
11997 dtrace_dof_error(dof_hdr_t
*dof
, const char *str
)
11999 #pragma unused(dof) /* __APPLE__ */
12000 if (dtrace_err_verbose
)
12001 cmn_err(CE_WARN
, "failed to process DOF: %s", str
);
12003 #ifdef DTRACE_ERRDEBUG
12004 dtrace_errdebug(str
);
12009 * Create DOF out of a currently enabled state. Right now, we only create
12010 * DOF containing the run-time options -- but this could be expanded to create
12011 * complete DOF representing the enabled state.
12014 dtrace_dof_create(dtrace_state_t
*state
)
12018 dof_optdesc_t
*opt
;
12019 int i
, len
= sizeof (dof_hdr_t
) +
12020 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)) +
12021 sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12023 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12025 dof
= dt_kmem_zalloc_aligned(len
, 8, KM_SLEEP
);
12026 dof
->dofh_ident
[DOF_ID_MAG0
] = DOF_MAG_MAG0
;
12027 dof
->dofh_ident
[DOF_ID_MAG1
] = DOF_MAG_MAG1
;
12028 dof
->dofh_ident
[DOF_ID_MAG2
] = DOF_MAG_MAG2
;
12029 dof
->dofh_ident
[DOF_ID_MAG3
] = DOF_MAG_MAG3
;
12031 dof
->dofh_ident
[DOF_ID_MODEL
] = DOF_MODEL_NATIVE
;
12032 dof
->dofh_ident
[DOF_ID_ENCODING
] = DOF_ENCODE_NATIVE
;
12033 dof
->dofh_ident
[DOF_ID_VERSION
] = DOF_VERSION
;
12034 dof
->dofh_ident
[DOF_ID_DIFVERS
] = DIF_VERSION
;
12035 dof
->dofh_ident
[DOF_ID_DIFIREG
] = DIF_DIR_NREGS
;
12036 dof
->dofh_ident
[DOF_ID_DIFTREG
] = DIF_DTR_NREGS
;
12038 dof
->dofh_flags
= 0;
12039 dof
->dofh_hdrsize
= sizeof (dof_hdr_t
);
12040 dof
->dofh_secsize
= sizeof (dof_sec_t
);
12041 dof
->dofh_secnum
= 1; /* only DOF_SECT_OPTDESC */
12042 dof
->dofh_secoff
= sizeof (dof_hdr_t
);
12043 dof
->dofh_loadsz
= len
;
12044 dof
->dofh_filesz
= len
;
12048 * Fill in the option section header...
12050 sec
= (dof_sec_t
*)((uintptr_t)dof
+ sizeof (dof_hdr_t
));
12051 sec
->dofs_type
= DOF_SECT_OPTDESC
;
12052 sec
->dofs_align
= sizeof (uint64_t);
12053 sec
->dofs_flags
= DOF_SECF_LOAD
;
12054 sec
->dofs_entsize
= sizeof (dof_optdesc_t
);
12056 opt
= (dof_optdesc_t
*)((uintptr_t)sec
+
12057 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)));
12059 sec
->dofs_offset
= (uintptr_t)opt
- (uintptr_t)dof
;
12060 sec
->dofs_size
= sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12062 for (i
= 0; i
< DTRACEOPT_MAX
; i
++) {
12063 opt
[i
].dofo_option
= i
;
12064 opt
[i
].dofo_strtab
= DOF_SECIDX_NONE
;
12065 opt
[i
].dofo_value
= state
->dts_options
[i
];
12072 dtrace_dof_copyin(user_addr_t uarg
, int *errp
)
12074 dof_hdr_t hdr
, *dof
;
12076 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
12079 * First, we're going to copyin() the sizeof (dof_hdr_t).
12081 if (copyin(uarg
, &hdr
, sizeof (hdr
)) != 0) {
12082 dtrace_dof_error(NULL
, "failed to copyin DOF header");
12088 * Now we'll allocate the entire DOF and copy it in -- provided
12089 * that the length isn't outrageous.
12091 if (hdr
.dofh_loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
12092 dtrace_dof_error(&hdr
, "load size exceeds maximum");
12097 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
12098 dtrace_dof_error(&hdr
, "invalid load size");
12103 dof
= dt_kmem_alloc_aligned(hdr
.dofh_loadsz
, 8, KM_SLEEP
);
12105 if (copyin(uarg
, dof
, hdr
.dofh_loadsz
) != 0 ||
12106 dof
->dofh_loadsz
!= hdr
.dofh_loadsz
) {
12107 dt_kmem_free_aligned(dof
, hdr
.dofh_loadsz
);
12116 dtrace_dof_copyin_from_proc(proc_t
* p
, user_addr_t uarg
, int *errp
)
12118 dof_hdr_t hdr
, *dof
;
12120 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
12123 * First, we're going to copyin() the sizeof (dof_hdr_t).
12125 if (uread(p
, &hdr
, sizeof(hdr
), uarg
) != KERN_SUCCESS
) {
12126 dtrace_dof_error(NULL
, "failed to copyin DOF header");
12132 * Now we'll allocate the entire DOF and copy it in -- provided
12133 * that the length isn't outrageous.
12135 if (hdr
.dofh_loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
12136 dtrace_dof_error(&hdr
, "load size exceeds maximum");
12141 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
12142 dtrace_dof_error(&hdr
, "invalid load size");
12147 dof
= dt_kmem_alloc_aligned(hdr
.dofh_loadsz
, 8, KM_SLEEP
);
12149 if (uread(p
, dof
, hdr
.dofh_loadsz
, uarg
) != KERN_SUCCESS
) {
12150 dt_kmem_free_aligned(dof
, hdr
.dofh_loadsz
);
12159 dtrace_dof_property(const char *name
)
12163 unsigned int len
, i
;
12167 * Unfortunately, array of values in .conf files are always (and
12168 * only) interpreted to be integer arrays. We must read our DOF
12169 * as an integer array, and then squeeze it into a byte array.
12171 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY
, dtrace_devi
, 0,
12172 name
, (int **)&buf
, &len
) != DDI_PROP_SUCCESS
)
12175 for (i
= 0; i
< len
; i
++)
12176 buf
[i
] = (uchar_t
)(((int *)buf
)[i
]);
12178 if (len
< sizeof (dof_hdr_t
)) {
12179 ddi_prop_free(buf
);
12180 dtrace_dof_error(NULL
, "truncated header");
12184 if (len
< (loadsz
= ((dof_hdr_t
*)buf
)->dofh_loadsz
)) {
12185 ddi_prop_free(buf
);
12186 dtrace_dof_error(NULL
, "truncated DOF");
12190 if (loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
12191 ddi_prop_free(buf
);
12192 dtrace_dof_error(NULL
, "oversized DOF");
12196 dof
= dt_kmem_alloc_aligned(loadsz
, 8, KM_SLEEP
);
12197 bcopy(buf
, dof
, loadsz
);
12198 ddi_prop_free(buf
);
12204 dtrace_dof_destroy(dof_hdr_t
*dof
)
12206 dt_kmem_free_aligned(dof
, dof
->dofh_loadsz
);
12210 * Return the dof_sec_t pointer corresponding to a given section index. If the
12211 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12212 * a type other than DOF_SECT_NONE is specified, the header is checked against
12213 * this type and NULL is returned if the types do not match.
12216 dtrace_dof_sect(dof_hdr_t
*dof
, uint32_t type
, dof_secidx_t i
)
12218 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)
12219 ((uintptr_t)dof
+ dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12221 if (i
>= dof
->dofh_secnum
) {
12222 dtrace_dof_error(dof
, "referenced section index is invalid");
12226 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
)) {
12227 dtrace_dof_error(dof
, "referenced section is not loadable");
12231 if (type
!= DOF_SECT_NONE
&& type
!= sec
->dofs_type
) {
12232 dtrace_dof_error(dof
, "referenced section is the wrong type");
12239 static dtrace_probedesc_t
*
12240 dtrace_dof_probedesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_probedesc_t
*desc
)
12242 dof_probedesc_t
*probe
;
12244 uintptr_t daddr
= (uintptr_t)dof
;
12248 if (sec
->dofs_type
!= DOF_SECT_PROBEDESC
) {
12249 dtrace_dof_error(dof
, "invalid probe section");
12253 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12254 dtrace_dof_error(dof
, "bad alignment in probe description");
12258 if (sec
->dofs_offset
+ sizeof (dof_probedesc_t
) > dof
->dofh_loadsz
) {
12259 dtrace_dof_error(dof
, "truncated probe description");
12263 probe
= (dof_probedesc_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12264 strtab
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, probe
->dofp_strtab
);
12266 if (strtab
== NULL
)
12269 str
= daddr
+ strtab
->dofs_offset
;
12270 size
= strtab
->dofs_size
;
12272 if (probe
->dofp_provider
>= strtab
->dofs_size
) {
12273 dtrace_dof_error(dof
, "corrupt probe provider");
12277 (void) strncpy(desc
->dtpd_provider
,
12278 (char *)(str
+ probe
->dofp_provider
),
12279 MIN(DTRACE_PROVNAMELEN
- 1, size
- probe
->dofp_provider
));
12281 /* APPLE NOTE: Darwin employs size bounded string operation. */
12282 desc
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
12284 if (probe
->dofp_mod
>= strtab
->dofs_size
) {
12285 dtrace_dof_error(dof
, "corrupt probe module");
12289 (void) strncpy(desc
->dtpd_mod
, (char *)(str
+ probe
->dofp_mod
),
12290 MIN(DTRACE_MODNAMELEN
- 1, size
- probe
->dofp_mod
));
12292 /* APPLE NOTE: Darwin employs size bounded string operation. */
12293 desc
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
12295 if (probe
->dofp_func
>= strtab
->dofs_size
) {
12296 dtrace_dof_error(dof
, "corrupt probe function");
12300 (void) strncpy(desc
->dtpd_func
, (char *)(str
+ probe
->dofp_func
),
12301 MIN(DTRACE_FUNCNAMELEN
- 1, size
- probe
->dofp_func
));
12303 /* APPLE NOTE: Darwin employs size bounded string operation. */
12304 desc
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
12306 if (probe
->dofp_name
>= strtab
->dofs_size
) {
12307 dtrace_dof_error(dof
, "corrupt probe name");
12311 (void) strncpy(desc
->dtpd_name
, (char *)(str
+ probe
->dofp_name
),
12312 MIN(DTRACE_NAMELEN
- 1, size
- probe
->dofp_name
));
12314 /* APPLE NOTE: Darwin employs size bounded string operation. */
12315 desc
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
12320 static dtrace_difo_t
*
12321 dtrace_dof_difo(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12326 dof_difohdr_t
*dofd
;
12327 uintptr_t daddr
= (uintptr_t)dof
;
12328 size_t max_size
= dtrace_difo_maxsize
;
12333 static const struct {
12341 { DOF_SECT_DIF
, offsetof(dtrace_difo_t
, dtdo_buf
),
12342 offsetof(dtrace_difo_t
, dtdo_len
), sizeof (dif_instr_t
),
12343 sizeof (dif_instr_t
), "multiple DIF sections" },
12345 { DOF_SECT_INTTAB
, offsetof(dtrace_difo_t
, dtdo_inttab
),
12346 offsetof(dtrace_difo_t
, dtdo_intlen
), sizeof (uint64_t),
12347 sizeof (uint64_t), "multiple integer tables" },
12349 { DOF_SECT_STRTAB
, offsetof(dtrace_difo_t
, dtdo_strtab
),
12350 offsetof(dtrace_difo_t
, dtdo_strlen
), 0,
12351 sizeof (char), "multiple string tables" },
12353 { DOF_SECT_VARTAB
, offsetof(dtrace_difo_t
, dtdo_vartab
),
12354 offsetof(dtrace_difo_t
, dtdo_varlen
), sizeof (dtrace_difv_t
),
12355 sizeof (uint_t
), "multiple variable tables" },
12357 { DOF_SECT_NONE
, 0, 0, 0, 0, NULL
}
12360 if (sec
->dofs_type
!= DOF_SECT_DIFOHDR
) {
12361 dtrace_dof_error(dof
, "invalid DIFO header section");
12365 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12366 dtrace_dof_error(dof
, "bad alignment in DIFO header");
12370 if (sec
->dofs_size
< sizeof (dof_difohdr_t
) ||
12371 sec
->dofs_size
% sizeof (dof_secidx_t
)) {
12372 dtrace_dof_error(dof
, "bad size in DIFO header");
12376 dofd
= (dof_difohdr_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12377 n
= (sec
->dofs_size
- sizeof (*dofd
)) / sizeof (dof_secidx_t
) + 1;
12379 dp
= kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
12380 dp
->dtdo_rtype
= dofd
->dofd_rtype
;
12382 for (l
= 0; l
< n
; l
++) {
12387 if ((subsec
= dtrace_dof_sect(dof
, DOF_SECT_NONE
,
12388 dofd
->dofd_links
[l
])) == NULL
)
12389 goto err
; /* invalid section link */
12391 if (ttl
+ subsec
->dofs_size
> max_size
) {
12392 dtrace_dof_error(dof
, "exceeds maximum size");
12396 ttl
+= subsec
->dofs_size
;
12398 for (i
= 0; difo
[i
].section
!= DOF_SECT_NONE
; i
++) {
12400 if (subsec
->dofs_type
!= (uint32_t)difo
[i
].section
)
12403 if (!(subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12404 dtrace_dof_error(dof
, "section not loaded");
12408 if (subsec
->dofs_align
!= (uint32_t)difo
[i
].align
) {
12409 dtrace_dof_error(dof
, "bad alignment");
12413 bufp
= (void **)((uintptr_t)dp
+ difo
[i
].bufoffs
);
12414 lenp
= (uint32_t *)((uintptr_t)dp
+ difo
[i
].lenoffs
);
12416 if (*bufp
!= NULL
) {
12417 dtrace_dof_error(dof
, difo
[i
].msg
);
12421 if ((uint32_t)difo
[i
].entsize
!= subsec
->dofs_entsize
) {
12422 dtrace_dof_error(dof
, "entry size mismatch");
12426 if (subsec
->dofs_entsize
!= 0 &&
12427 (subsec
->dofs_size
% subsec
->dofs_entsize
) != 0) {
12428 dtrace_dof_error(dof
, "corrupt entry size");
12432 *lenp
= subsec
->dofs_size
;
12433 *bufp
= kmem_alloc(subsec
->dofs_size
, KM_SLEEP
);
12434 bcopy((char *)(uintptr_t)(daddr
+ subsec
->dofs_offset
),
12435 *bufp
, subsec
->dofs_size
);
12437 if (subsec
->dofs_entsize
!= 0)
12438 *lenp
/= subsec
->dofs_entsize
;
12444 * If we encounter a loadable DIFO sub-section that is not
12445 * known to us, assume this is a broken program and fail.
12447 if (difo
[i
].section
== DOF_SECT_NONE
&&
12448 (subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12449 dtrace_dof_error(dof
, "unrecognized DIFO subsection");
12454 if (dp
->dtdo_buf
== NULL
) {
12456 * We can't have a DIF object without DIF text.
12458 dtrace_dof_error(dof
, "missing DIF text");
12463 * Before we validate the DIF object, run through the variable table
12464 * looking for the strings -- if any of their size are under, we'll set
12465 * their size to be the system-wide default string size. Note that
12466 * this should _not_ happen if the "strsize" option has been set --
12467 * in this case, the compiler should have set the size to reflect the
12468 * setting of the option.
12470 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
12471 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
12472 dtrace_diftype_t
*t
= &v
->dtdv_type
;
12474 if (v
->dtdv_id
< DIF_VAR_OTHER_UBASE
)
12477 if (t
->dtdt_kind
== DIF_TYPE_STRING
&& t
->dtdt_size
== 0)
12478 t
->dtdt_size
= dtrace_strsize_default
;
12481 if (dtrace_difo_validate(dp
, vstate
, DIF_DIR_NREGS
, cr
) != 0)
12484 dtrace_difo_init(dp
, vstate
);
12488 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
12489 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
12490 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
12491 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
12493 kmem_free(dp
, sizeof (dtrace_difo_t
));
12497 static dtrace_predicate_t
*
12498 dtrace_dof_predicate(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12503 if ((dp
= dtrace_dof_difo(dof
, sec
, vstate
, cr
)) == NULL
)
12506 return (dtrace_predicate_create(dp
));
12509 static dtrace_actdesc_t
*
12510 dtrace_dof_actdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12513 dtrace_actdesc_t
*act
, *first
= NULL
, *last
= NULL
, *next
;
12514 dof_actdesc_t
*desc
;
12515 dof_sec_t
*difosec
;
12517 uintptr_t daddr
= (uintptr_t)dof
;
12519 dtrace_actkind_t kind
;
12521 if (sec
->dofs_type
!= DOF_SECT_ACTDESC
) {
12522 dtrace_dof_error(dof
, "invalid action section");
12526 if (sec
->dofs_offset
+ sizeof (dof_actdesc_t
) > dof
->dofh_loadsz
) {
12527 dtrace_dof_error(dof
, "truncated action description");
12531 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12532 dtrace_dof_error(dof
, "bad alignment in action description");
12536 if (sec
->dofs_size
< sec
->dofs_entsize
) {
12537 dtrace_dof_error(dof
, "section entry size exceeds total size");
12541 if (sec
->dofs_entsize
!= sizeof (dof_actdesc_t
)) {
12542 dtrace_dof_error(dof
, "bad entry size in action description");
12546 if (sec
->dofs_size
/ sec
->dofs_entsize
> dtrace_actions_max
) {
12547 dtrace_dof_error(dof
, "actions exceed dtrace_actions_max");
12551 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= sec
->dofs_entsize
) {
12552 desc
= (dof_actdesc_t
*)(daddr
+
12553 (uintptr_t)sec
->dofs_offset
+ offs
);
12554 kind
= (dtrace_actkind_t
)desc
->dofa_kind
;
12556 if ((DTRACEACT_ISPRINTFLIKE(kind
) &&
12557 (kind
!= DTRACEACT_PRINTA
|| desc
->dofa_strtab
!= DOF_SECIDX_NONE
)) ||
12558 (kind
== DTRACEACT_DIFEXPR
&& desc
->dofa_strtab
!= DOF_SECIDX_NONE
))
12565 * The argument to these actions is an index into the
12566 * DOF string table. For printf()-like actions, this
12567 * is the format string. For print(), this is the
12568 * CTF type of the expression result.
12570 if ((strtab
= dtrace_dof_sect(dof
,
12571 DOF_SECT_STRTAB
, desc
->dofa_strtab
)) == NULL
)
12574 str
= (char *)((uintptr_t)dof
+
12575 (uintptr_t)strtab
->dofs_offset
);
12577 for (i
= desc
->dofa_arg
; i
< strtab
->dofs_size
; i
++) {
12578 if (str
[i
] == '\0')
12582 if (i
>= strtab
->dofs_size
) {
12583 dtrace_dof_error(dof
, "bogus format string");
12587 if (i
== desc
->dofa_arg
) {
12588 dtrace_dof_error(dof
, "empty format string");
12592 i
-= desc
->dofa_arg
;
12593 fmt
= kmem_alloc(i
+ 1, KM_SLEEP
);
12594 bcopy(&str
[desc
->dofa_arg
], fmt
, i
+ 1);
12595 arg
= (uint64_t)(uintptr_t)fmt
;
12597 if (kind
== DTRACEACT_PRINTA
) {
12598 ASSERT(desc
->dofa_strtab
== DOF_SECIDX_NONE
);
12601 arg
= desc
->dofa_arg
;
12605 act
= dtrace_actdesc_create(kind
, desc
->dofa_ntuple
,
12606 desc
->dofa_uarg
, arg
);
12608 if (last
!= NULL
) {
12609 last
->dtad_next
= act
;
12616 if (desc
->dofa_difo
== DOF_SECIDX_NONE
)
12619 if ((difosec
= dtrace_dof_sect(dof
,
12620 DOF_SECT_DIFOHDR
, desc
->dofa_difo
)) == NULL
)
12623 act
->dtad_difo
= dtrace_dof_difo(dof
, difosec
, vstate
, cr
);
12625 if (act
->dtad_difo
== NULL
)
12629 ASSERT(first
!= NULL
);
12633 for (act
= first
; act
!= NULL
; act
= next
) {
12634 next
= act
->dtad_next
;
12635 dtrace_actdesc_release(act
, vstate
);
12641 static dtrace_ecbdesc_t
*
12642 dtrace_dof_ecbdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12645 dtrace_ecbdesc_t
*ep
;
12646 dof_ecbdesc_t
*ecb
;
12647 dtrace_probedesc_t
*desc
;
12648 dtrace_predicate_t
*pred
= NULL
;
12650 if (sec
->dofs_size
< sizeof (dof_ecbdesc_t
)) {
12651 dtrace_dof_error(dof
, "truncated ECB description");
12655 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12656 dtrace_dof_error(dof
, "bad alignment in ECB description");
12660 ecb
= (dof_ecbdesc_t
*)((uintptr_t)dof
+ (uintptr_t)sec
->dofs_offset
);
12661 sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBEDESC
, ecb
->dofe_probes
);
12666 ep
= kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
12667 ep
->dted_uarg
= ecb
->dofe_uarg
;
12668 desc
= &ep
->dted_probe
;
12670 if (dtrace_dof_probedesc(dof
, sec
, desc
) == NULL
)
12673 if (ecb
->dofe_pred
!= DOF_SECIDX_NONE
) {
12674 if ((sec
= dtrace_dof_sect(dof
,
12675 DOF_SECT_DIFOHDR
, ecb
->dofe_pred
)) == NULL
)
12678 if ((pred
= dtrace_dof_predicate(dof
, sec
, vstate
, cr
)) == NULL
)
12681 ep
->dted_pred
.dtpdd_predicate
= pred
;
12684 if (ecb
->dofe_actions
!= DOF_SECIDX_NONE
) {
12685 if ((sec
= dtrace_dof_sect(dof
,
12686 DOF_SECT_ACTDESC
, ecb
->dofe_actions
)) == NULL
)
12689 ep
->dted_action
= dtrace_dof_actdesc(dof
, sec
, vstate
, cr
);
12691 if (ep
->dted_action
== NULL
)
12699 dtrace_predicate_release(pred
, vstate
);
12700 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
12705 * APPLE NOTE: dyld handles dof relocation.
12706 * Darwin does not need dtrace_dof_relocate()
12710 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12711 * header: it should be at the front of a memory region that is at least
12712 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12713 * size. It need not be validated in any other way.
12716 dtrace_dof_slurp(dof_hdr_t
*dof
, dtrace_vstate_t
*vstate
, cred_t
*cr
,
12717 dtrace_enabling_t
**enabp
, uint64_t ubase
, int noprobes
)
12719 #pragma unused(ubase) /* __APPLE__ */
12720 uint64_t len
= dof
->dofh_loadsz
, seclen
;
12721 uintptr_t daddr
= (uintptr_t)dof
;
12722 dtrace_ecbdesc_t
*ep
;
12723 dtrace_enabling_t
*enab
;
12726 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12727 ASSERT(dof
->dofh_loadsz
>= sizeof (dof_hdr_t
));
12730 * Check the DOF header identification bytes. In addition to checking
12731 * valid settings, we also verify that unused bits/bytes are zeroed so
12732 * we can use them later without fear of regressing existing binaries.
12734 if (bcmp(&dof
->dofh_ident
[DOF_ID_MAG0
],
12735 DOF_MAG_STRING
, DOF_MAG_STRLEN
) != 0) {
12736 dtrace_dof_error(dof
, "DOF magic string mismatch");
12740 if (dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_ILP32
&&
12741 dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_LP64
) {
12742 dtrace_dof_error(dof
, "DOF has invalid data model");
12746 if (dof
->dofh_ident
[DOF_ID_ENCODING
] != DOF_ENCODE_NATIVE
) {
12747 dtrace_dof_error(dof
, "DOF encoding mismatch");
12752 * APPLE NOTE: Darwin only supports DOF_VERSION_3 for now.
12754 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_3
) {
12755 dtrace_dof_error(dof
, "DOF version mismatch");
12759 if (dof
->dofh_ident
[DOF_ID_DIFVERS
] != DIF_VERSION_2
) {
12760 dtrace_dof_error(dof
, "DOF uses unsupported instruction set");
12764 if (dof
->dofh_ident
[DOF_ID_DIFIREG
] > DIF_DIR_NREGS
) {
12765 dtrace_dof_error(dof
, "DOF uses too many integer registers");
12769 if (dof
->dofh_ident
[DOF_ID_DIFTREG
] > DIF_DTR_NREGS
) {
12770 dtrace_dof_error(dof
, "DOF uses too many tuple registers");
12774 for (i
= DOF_ID_PAD
; i
< DOF_ID_SIZE
; i
++) {
12775 if (dof
->dofh_ident
[i
] != 0) {
12776 dtrace_dof_error(dof
, "DOF has invalid ident byte set");
12781 if (dof
->dofh_flags
& ~DOF_FL_VALID
) {
12782 dtrace_dof_error(dof
, "DOF has invalid flag bits set");
12786 if (dof
->dofh_secsize
== 0) {
12787 dtrace_dof_error(dof
, "zero section header size");
12792 * Check that the section headers don't exceed the amount of DOF
12793 * data. Note that we cast the section size and number of sections
12794 * to uint64_t's to prevent possible overflow in the multiplication.
12796 seclen
= (uint64_t)dof
->dofh_secnum
* (uint64_t)dof
->dofh_secsize
;
12798 if (dof
->dofh_secoff
> len
|| seclen
> len
||
12799 dof
->dofh_secoff
+ seclen
> len
) {
12800 dtrace_dof_error(dof
, "truncated section headers");
12804 if (!IS_P2ALIGNED(dof
->dofh_secoff
, sizeof (uint64_t))) {
12805 dtrace_dof_error(dof
, "misaligned section headers");
12809 if (!IS_P2ALIGNED(dof
->dofh_secsize
, sizeof (uint64_t))) {
12810 dtrace_dof_error(dof
, "misaligned section size");
12815 * Take an initial pass through the section headers to be sure that
12816 * the headers don't have stray offsets. If the 'noprobes' flag is
12817 * set, do not permit sections relating to providers, probes, or args.
12819 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12820 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
12821 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12824 switch (sec
->dofs_type
) {
12825 case DOF_SECT_PROVIDER
:
12826 case DOF_SECT_PROBES
:
12827 case DOF_SECT_PRARGS
:
12828 case DOF_SECT_PROFFS
:
12829 dtrace_dof_error(dof
, "illegal sections "
12835 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
))
12836 continue; /* just ignore non-loadable sections */
12838 if (sec
->dofs_align
& (sec
->dofs_align
- 1)) {
12839 dtrace_dof_error(dof
, "bad section alignment");
12843 if (sec
->dofs_offset
& (sec
->dofs_align
- 1)) {
12844 dtrace_dof_error(dof
, "misaligned section");
12848 if (sec
->dofs_offset
> len
|| sec
->dofs_size
> len
||
12849 sec
->dofs_offset
+ sec
->dofs_size
> len
) {
12850 dtrace_dof_error(dof
, "corrupt section header");
12854 if (sec
->dofs_type
== DOF_SECT_STRTAB
&& *((char *)daddr
+
12855 sec
->dofs_offset
+ sec
->dofs_size
- 1) != '\0') {
12856 dtrace_dof_error(dof
, "non-terminating string table");
12862 * APPLE NOTE: We have no further relocation to perform.
12863 * All dof values are relative offsets.
12866 if ((enab
= *enabp
) == NULL
)
12867 enab
= *enabp
= dtrace_enabling_create(vstate
);
12869 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12870 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
12871 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12873 if (sec
->dofs_type
!= DOF_SECT_ECBDESC
)
12877 * APPLE NOTE: Defend against gcc 4.0 botch on x86.
12878 * not all paths out of inlined dtrace_dof_ecbdesc
12879 * are checked for the NULL return value.
12880 * Check for NULL explicitly here.
12882 ep
= dtrace_dof_ecbdesc(dof
, sec
, vstate
, cr
);
12884 dtrace_enabling_destroy(enab
);
12889 dtrace_enabling_add(enab
, ep
);
12896 * Process DOF for any options. This routine assumes that the DOF has been
12897 * at least processed by dtrace_dof_slurp().
12900 dtrace_dof_options(dof_hdr_t
*dof
, dtrace_state_t
*state
)
12906 dof_optdesc_t
*desc
;
12908 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12909 dof_sec_t
*sec
= (dof_sec_t
*)((uintptr_t)dof
+
12910 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12912 if (sec
->dofs_type
!= DOF_SECT_OPTDESC
)
12915 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12916 dtrace_dof_error(dof
, "bad alignment in "
12917 "option description");
12921 if ((entsize
= sec
->dofs_entsize
) == 0) {
12922 dtrace_dof_error(dof
, "zeroed option entry size");
12926 if (entsize
< sizeof (dof_optdesc_t
)) {
12927 dtrace_dof_error(dof
, "bad option entry size");
12931 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= entsize
) {
12932 desc
= (dof_optdesc_t
*)((uintptr_t)dof
+
12933 (uintptr_t)sec
->dofs_offset
+ offs
);
12935 if (desc
->dofo_strtab
!= DOF_SECIDX_NONE
) {
12936 dtrace_dof_error(dof
, "non-zero option string");
12940 if (desc
->dofo_value
== (uint64_t)DTRACEOPT_UNSET
) {
12941 dtrace_dof_error(dof
, "unset option");
12945 if ((rval
= dtrace_state_option(state
,
12946 desc
->dofo_option
, desc
->dofo_value
)) != 0) {
12947 dtrace_dof_error(dof
, "rejected option");
12957 * DTrace Consumer State Functions
12960 dtrace_dstate_init(dtrace_dstate_t
*dstate
, size_t size
)
12962 size_t hashsize
, maxper
, min_size
, chunksize
= dstate
->dtds_chunksize
;
12965 dtrace_dynvar_t
*dvar
, *next
, *start
;
12968 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12969 ASSERT(dstate
->dtds_base
== NULL
&& dstate
->dtds_percpu
== NULL
);
12971 bzero(dstate
, sizeof (dtrace_dstate_t
));
12973 if ((dstate
->dtds_chunksize
= chunksize
) == 0)
12974 dstate
->dtds_chunksize
= DTRACE_DYNVAR_CHUNKSIZE
;
12976 VERIFY(dstate
->dtds_chunksize
< (LONG_MAX
- sizeof (dtrace_dynhash_t
)));
12978 if (size
< (min_size
= dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
)))
12981 if ((base
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
12984 dstate
->dtds_size
= size
;
12985 dstate
->dtds_base
= base
;
12986 dstate
->dtds_percpu
= kmem_cache_alloc(dtrace_state_cache
, KM_SLEEP
);
12987 bzero(dstate
->dtds_percpu
, (int)NCPU
* sizeof (dtrace_dstate_percpu_t
));
12989 hashsize
= size
/ (dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
));
12991 if (hashsize
!= 1 && (hashsize
& 1))
12994 dstate
->dtds_hashsize
= hashsize
;
12995 dstate
->dtds_hash
= dstate
->dtds_base
;
12998 * Set all of our hash buckets to point to the single sink, and (if
12999 * it hasn't already been set), set the sink's hash value to be the
13000 * sink sentinel value. The sink is needed for dynamic variable
13001 * lookups to know that they have iterated over an entire, valid hash
13004 for (i
= 0; i
< hashsize
; i
++)
13005 dstate
->dtds_hash
[i
].dtdh_chain
= &dtrace_dynhash_sink
;
13007 if (dtrace_dynhash_sink
.dtdv_hashval
!= DTRACE_DYNHASH_SINK
)
13008 dtrace_dynhash_sink
.dtdv_hashval
= DTRACE_DYNHASH_SINK
;
13011 * Determine number of active CPUs. Divide free list evenly among
13014 start
= (dtrace_dynvar_t
*)
13015 ((uintptr_t)base
+ hashsize
* sizeof (dtrace_dynhash_t
));
13016 limit
= (uintptr_t)base
+ size
;
13018 VERIFY((uintptr_t)start
< limit
);
13019 VERIFY((uintptr_t)start
>= (uintptr_t)base
);
13021 maxper
= (limit
- (uintptr_t)start
) / (int)NCPU
;
13022 maxper
= (maxper
/ dstate
->dtds_chunksize
) * dstate
->dtds_chunksize
;
13024 for (i
= 0; i
< NCPU
; i
++) {
13025 dstate
->dtds_percpu
[i
].dtdsc_free
= dvar
= start
;
13028 * If we don't even have enough chunks to make it once through
13029 * NCPUs, we're just going to allocate everything to the first
13030 * CPU. And if we're on the last CPU, we're going to allocate
13031 * whatever is left over. In either case, we set the limit to
13032 * be the limit of the dynamic variable space.
13034 if (maxper
== 0 || i
== NCPU
- 1) {
13035 limit
= (uintptr_t)base
+ size
;
13038 limit
= (uintptr_t)start
+ maxper
;
13039 start
= (dtrace_dynvar_t
*)limit
;
13042 VERIFY(limit
<= (uintptr_t)base
+ size
);
13045 next
= (dtrace_dynvar_t
*)((uintptr_t)dvar
+
13046 dstate
->dtds_chunksize
);
13048 if ((uintptr_t)next
+ dstate
->dtds_chunksize
>= limit
)
13051 VERIFY((uintptr_t)dvar
>= (uintptr_t)base
&&
13052 (uintptr_t)dvar
<= (uintptr_t)base
+ size
);
13053 dvar
->dtdv_next
= next
;
13065 dtrace_dstate_fini(dtrace_dstate_t
*dstate
)
13067 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13069 if (dstate
->dtds_base
== NULL
)
13072 kmem_free(dstate
->dtds_base
, dstate
->dtds_size
);
13073 kmem_cache_free(dtrace_state_cache
, dstate
->dtds_percpu
);
13077 dtrace_vstate_fini(dtrace_vstate_t
*vstate
)
13080 * Logical XOR, where are you?
13082 ASSERT((vstate
->dtvs_nglobals
== 0) ^ (vstate
->dtvs_globals
!= NULL
));
13084 if (vstate
->dtvs_nglobals
> 0) {
13085 kmem_free(vstate
->dtvs_globals
, vstate
->dtvs_nglobals
*
13086 sizeof (dtrace_statvar_t
*));
13089 if (vstate
->dtvs_ntlocals
> 0) {
13090 kmem_free(vstate
->dtvs_tlocals
, vstate
->dtvs_ntlocals
*
13091 sizeof (dtrace_difv_t
));
13094 ASSERT((vstate
->dtvs_nlocals
== 0) ^ (vstate
->dtvs_locals
!= NULL
));
13096 if (vstate
->dtvs_nlocals
> 0) {
13097 kmem_free(vstate
->dtvs_locals
, vstate
->dtvs_nlocals
*
13098 sizeof (dtrace_statvar_t
*));
13103 dtrace_state_clean(dtrace_state_t
*state
)
13105 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
)
13108 dtrace_dynvar_clean(&state
->dts_vstate
.dtvs_dynvars
);
13109 dtrace_speculation_clean(state
);
13113 dtrace_state_deadman(dtrace_state_t
*state
)
13119 now
= dtrace_gethrtime();
13121 if (state
!= dtrace_anon
.dta_state
&&
13122 now
- state
->dts_laststatus
>= dtrace_deadman_user
)
13126 * We must be sure that dts_alive never appears to be less than the
13127 * value upon entry to dtrace_state_deadman(), and because we lack a
13128 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13129 * store INT64_MAX to it, followed by a memory barrier, followed by
13130 * the new value. This assures that dts_alive never appears to be
13131 * less than its true value, regardless of the order in which the
13132 * stores to the underlying storage are issued.
13134 state
->dts_alive
= INT64_MAX
;
13135 dtrace_membar_producer();
13136 state
->dts_alive
= now
;
13140 dtrace_state_create(dev_t
*devp
, cred_t
*cr
, dtrace_state_t
**new_state
)
13145 dtrace_state_t
*state
;
13146 dtrace_optval_t
*opt
;
13147 int bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
), i
;
13149 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13150 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13152 /* Cause restart */
13155 if (devp
!= NULL
) {
13156 minor
= getminor(*devp
);
13159 minor
= DTRACE_NCLIENTS
- 1;
13162 state
= dtrace_state_allocate(minor
);
13163 if (NULL
== state
) {
13164 printf("dtrace_open: couldn't acquire minor number %d. This usually means that too many DTrace clients are in use at the moment", minor
);
13165 return (ERESTART
); /* can't reacquire */
13168 state
->dts_epid
= DTRACE_EPIDNONE
+ 1;
13170 (void) snprintf(c
, sizeof (c
), "dtrace_aggid_%d", minor
);
13171 state
->dts_aggid_arena
= vmem_create(c
, (void *)1, UINT32_MAX
, 1,
13172 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
13174 if (devp
!= NULL
) {
13175 major
= getemajor(*devp
);
13177 major
= ddi_driver_major(dtrace_devi
);
13180 state
->dts_dev
= makedevice(major
, minor
);
13183 *devp
= state
->dts_dev
;
13186 * We allocate NCPU buffers. On the one hand, this can be quite
13187 * a bit of memory per instance (nearly 36K on a Starcat). On the
13188 * other hand, it saves an additional memory reference in the probe
13191 state
->dts_buffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13192 state
->dts_aggbuffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13193 state
->dts_buf_over_limit
= 0;
13194 state
->dts_cleaner
= CYCLIC_NONE
;
13195 state
->dts_deadman
= CYCLIC_NONE
;
13196 state
->dts_vstate
.dtvs_state
= state
;
13198 for (i
= 0; i
< DTRACEOPT_MAX
; i
++)
13199 state
->dts_options
[i
] = DTRACEOPT_UNSET
;
13202 * Set the default options.
13204 opt
= state
->dts_options
;
13205 opt
[DTRACEOPT_BUFPOLICY
] = DTRACEOPT_BUFPOLICY_SWITCH
;
13206 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_AUTO
;
13207 opt
[DTRACEOPT_NSPEC
] = dtrace_nspec_default
;
13208 opt
[DTRACEOPT_SPECSIZE
] = dtrace_specsize_default
;
13209 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)DTRACE_CPUALL
;
13210 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_default
;
13211 opt
[DTRACEOPT_STACKFRAMES
] = dtrace_stackframes_default
;
13212 opt
[DTRACEOPT_USTACKFRAMES
] = dtrace_ustackframes_default
;
13213 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_default
;
13214 opt
[DTRACEOPT_AGGRATE
] = dtrace_aggrate_default
;
13215 opt
[DTRACEOPT_SWITCHRATE
] = dtrace_switchrate_default
;
13216 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_default
;
13217 opt
[DTRACEOPT_JSTACKFRAMES
] = dtrace_jstackframes_default
;
13218 opt
[DTRACEOPT_JSTACKSTRSIZE
] = dtrace_jstackstrsize_default
;
13219 opt
[DTRACEOPT_BUFLIMIT
] = dtrace_buflimit_default
;
13222 * Depending on the user credentials, we set flag bits which alter probe
13223 * visibility or the amount of destructiveness allowed. In the case of
13224 * actual anonymous tracing, or the possession of all privileges, all of
13225 * the normal checks are bypassed.
13227 #if defined(__APPLE__)
13228 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
13229 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) {
13231 * Allow only proc credentials when DTrace is
13232 * restricted by the current security policy
13234 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALLPROC
;
13235 state
->dts_cred
.dcr_action
= DTRACE_CRA_PROC
| DTRACE_CRA_PROC_CONTROL
| DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13238 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALL
;
13239 state
->dts_cred
.dcr_action
= DTRACE_CRA_ALL
;
13244 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
13245 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALL
;
13246 state
->dts_cred
.dcr_action
= DTRACE_CRA_ALL
;
13250 * Set up the credentials for this instantiation. We take a
13251 * hold on the credential to prevent it from disappearing on
13252 * us; this in turn prevents the zone_t referenced by this
13253 * credential from disappearing. This means that we can
13254 * examine the credential and the zone from probe context.
13257 state
->dts_cred
.dcr_cred
= cr
;
13260 * CRA_PROC means "we have *some* privilege for dtrace" and
13261 * unlocks the use of variables like pid, zonename, etc.
13263 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
) ||
13264 PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13265 state
->dts_cred
.dcr_action
|= DTRACE_CRA_PROC
;
13269 * dtrace_user allows use of syscall and profile providers.
13270 * If the user also has proc_owner and/or proc_zone, we
13271 * extend the scope to include additional visibility and
13272 * destructive power.
13274 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
)) {
13275 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
)) {
13276 state
->dts_cred
.dcr_visible
|=
13277 DTRACE_CRV_ALLPROC
;
13279 state
->dts_cred
.dcr_action
|=
13280 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13283 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
)) {
13284 state
->dts_cred
.dcr_visible
|=
13285 DTRACE_CRV_ALLZONE
;
13287 state
->dts_cred
.dcr_action
|=
13288 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13292 * If we have all privs in whatever zone this is,
13293 * we can do destructive things to processes which
13294 * have altered credentials.
13296 * APPLE NOTE: Darwin doesn't do zones.
13297 * Behave as if zone always has destructive privs.
13300 state
->dts_cred
.dcr_action
|=
13301 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13305 * Holding the dtrace_kernel privilege also implies that
13306 * the user has the dtrace_user privilege from a visibility
13307 * perspective. But without further privileges, some
13308 * destructive actions are not available.
13310 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
)) {
13312 * Make all probes in all zones visible. However,
13313 * this doesn't mean that all actions become available
13316 state
->dts_cred
.dcr_visible
|= DTRACE_CRV_KERNEL
|
13317 DTRACE_CRV_ALLPROC
| DTRACE_CRV_ALLZONE
;
13319 state
->dts_cred
.dcr_action
|= DTRACE_CRA_KERNEL
|
13322 * Holding proc_owner means that destructive actions
13323 * for *this* zone are allowed.
13325 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13326 state
->dts_cred
.dcr_action
|=
13327 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13330 * Holding proc_zone means that destructive actions
13331 * for this user/group ID in all zones is allowed.
13333 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13334 state
->dts_cred
.dcr_action
|=
13335 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13338 * If we have all privs in whatever zone this is,
13339 * we can do destructive things to processes which
13340 * have altered credentials.
13342 * APPLE NOTE: Darwin doesn't do zones.
13343 * Behave as if zone always has destructive privs.
13345 state
->dts_cred
.dcr_action
|=
13346 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13350 * Holding the dtrace_proc privilege gives control over fasttrap
13351 * and pid providers. We need to grant wider destructive
13352 * privileges in the event that the user has proc_owner and/or
13355 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13356 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13357 state
->dts_cred
.dcr_action
|=
13358 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13360 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13361 state
->dts_cred
.dcr_action
|=
13362 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13367 *new_state
= state
;
13368 return(0); /* Success */
13372 dtrace_state_buffer(dtrace_state_t
*state
, dtrace_buffer_t
*buf
, int which
)
13374 dtrace_optval_t
*opt
= state
->dts_options
, size
;
13375 processorid_t cpu
= 0;
13376 size_t limit
= buf
->dtb_size
;
13377 int flags
= 0, rval
;
13379 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13380 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13381 ASSERT(which
< DTRACEOPT_MAX
);
13382 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
||
13383 (state
== dtrace_anon
.dta_state
&&
13384 state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
));
13386 if (opt
[which
] == DTRACEOPT_UNSET
|| opt
[which
] == 0)
13389 if (opt
[DTRACEOPT_CPU
] != DTRACEOPT_UNSET
)
13390 cpu
= opt
[DTRACEOPT_CPU
];
13392 if (which
== DTRACEOPT_SPECSIZE
)
13393 flags
|= DTRACEBUF_NOSWITCH
;
13395 if (which
== DTRACEOPT_BUFSIZE
) {
13396 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_RING
)
13397 flags
|= DTRACEBUF_RING
;
13399 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_FILL
)
13400 flags
|= DTRACEBUF_FILL
;
13402 if (state
!= dtrace_anon
.dta_state
||
13403 state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
13404 flags
|= DTRACEBUF_INACTIVE
;
13407 for (size
= opt
[which
]; (size_t)size
>= sizeof (uint64_t); size
>>= 1) {
13409 * The size must be 8-byte aligned. If the size is not 8-byte
13410 * aligned, drop it down by the difference.
13412 if (size
& (sizeof (uint64_t) - 1))
13413 size
-= size
& (sizeof (uint64_t) - 1);
13415 if (size
< state
->dts_reserve
) {
13417 * Buffers always must be large enough to accommodate
13418 * their prereserved space. We return E2BIG instead
13419 * of ENOMEM in this case to allow for user-level
13420 * software to differentiate the cases.
13424 limit
= opt
[DTRACEOPT_BUFLIMIT
] * size
/ 100;
13425 rval
= dtrace_buffer_alloc(buf
, limit
, size
, flags
, cpu
);
13427 if (rval
!= ENOMEM
) {
13432 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
13440 dtrace_state_buffers(dtrace_state_t
*state
)
13442 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13445 if ((rval
= dtrace_state_buffer(state
, state
->dts_buffer
,
13446 DTRACEOPT_BUFSIZE
)) != 0)
13449 if ((rval
= dtrace_state_buffer(state
, state
->dts_aggbuffer
,
13450 DTRACEOPT_AGGSIZE
)) != 0)
13453 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13454 if ((rval
= dtrace_state_buffer(state
,
13455 spec
[i
].dtsp_buffer
, DTRACEOPT_SPECSIZE
)) != 0)
13463 dtrace_state_prereserve(dtrace_state_t
*state
)
13466 dtrace_probe_t
*probe
;
13468 state
->dts_reserve
= 0;
13470 if (state
->dts_options
[DTRACEOPT_BUFPOLICY
] != DTRACEOPT_BUFPOLICY_FILL
)
13474 * If our buffer policy is a "fill" buffer policy, we need to set the
13475 * prereserved space to be the space required by the END probes.
13477 probe
= dtrace_probes
[dtrace_probeid_end
- 1];
13478 ASSERT(probe
!= NULL
);
13480 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
13481 if (ecb
->dte_state
!= state
)
13484 state
->dts_reserve
+= ecb
->dte_needed
+ ecb
->dte_alignment
;
13489 dtrace_state_go(dtrace_state_t
*state
, processorid_t
*cpu
)
13491 dtrace_optval_t
*opt
= state
->dts_options
, sz
, nspec
;
13492 dtrace_speculation_t
*spec
;
13493 dtrace_buffer_t
*buf
;
13494 cyc_handler_t hdlr
;
13496 int rval
= 0, i
, bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
);
13497 dtrace_icookie_t cookie
;
13499 lck_mtx_lock(&cpu_lock
);
13500 lck_mtx_lock(&dtrace_lock
);
13502 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
13508 * Before we can perform any checks, we must prime all of the
13509 * retained enablings that correspond to this state.
13511 dtrace_enabling_prime(state
);
13513 if (state
->dts_destructive
&& !state
->dts_cred
.dcr_destructive
) {
13518 dtrace_state_prereserve(state
);
13521 * Now we want to do is try to allocate our speculations.
13522 * We do not automatically resize the number of speculations; if
13523 * this fails, we will fail the operation.
13525 nspec
= opt
[DTRACEOPT_NSPEC
];
13526 ASSERT(nspec
!= DTRACEOPT_UNSET
);
13528 if (nspec
> INT_MAX
) {
13533 spec
= kmem_zalloc(nspec
* sizeof (dtrace_speculation_t
), KM_NOSLEEP
);
13535 if (spec
== NULL
) {
13540 state
->dts_speculations
= spec
;
13541 state
->dts_nspeculations
= (int)nspec
;
13543 for (i
= 0; i
< nspec
; i
++) {
13544 if ((buf
= kmem_zalloc(bufsize
, KM_NOSLEEP
)) == NULL
) {
13549 spec
[i
].dtsp_buffer
= buf
;
13552 if (opt
[DTRACEOPT_GRABANON
] != DTRACEOPT_UNSET
) {
13553 if (dtrace_anon
.dta_state
== NULL
) {
13558 if (state
->dts_necbs
!= 0) {
13563 state
->dts_anon
= dtrace_anon_grab();
13564 ASSERT(state
->dts_anon
!= NULL
);
13565 state
= state
->dts_anon
;
13568 * We want "grabanon" to be set in the grabbed state, so we'll
13569 * copy that option value from the grabbing state into the
13572 state
->dts_options
[DTRACEOPT_GRABANON
] =
13573 opt
[DTRACEOPT_GRABANON
];
13575 *cpu
= dtrace_anon
.dta_beganon
;
13578 * If the anonymous state is active (as it almost certainly
13579 * is if the anonymous enabling ultimately matched anything),
13580 * we don't allow any further option processing -- but we
13581 * don't return failure.
13583 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
13587 if (opt
[DTRACEOPT_AGGSIZE
] != DTRACEOPT_UNSET
&&
13588 opt
[DTRACEOPT_AGGSIZE
] != 0) {
13589 if (state
->dts_aggregations
== NULL
) {
13591 * We're not going to create an aggregation buffer
13592 * because we don't have any ECBs that contain
13593 * aggregations -- set this option to 0.
13595 opt
[DTRACEOPT_AGGSIZE
] = 0;
13598 * If we have an aggregation buffer, we must also have
13599 * a buffer to use as scratch.
13601 if (opt
[DTRACEOPT_BUFSIZE
] == DTRACEOPT_UNSET
||
13602 (size_t)opt
[DTRACEOPT_BUFSIZE
] < state
->dts_needed
) {
13603 opt
[DTRACEOPT_BUFSIZE
] = state
->dts_needed
;
13608 if (opt
[DTRACEOPT_SPECSIZE
] != DTRACEOPT_UNSET
&&
13609 opt
[DTRACEOPT_SPECSIZE
] != 0) {
13610 if (!state
->dts_speculates
) {
13612 * We're not going to create speculation buffers
13613 * because we don't have any ECBs that actually
13614 * speculate -- set the speculation size to 0.
13616 opt
[DTRACEOPT_SPECSIZE
] = 0;
13621 * The bare minimum size for any buffer that we're actually going to
13622 * do anything to is sizeof (uint64_t).
13624 sz
= sizeof (uint64_t);
13626 if ((state
->dts_needed
!= 0 && opt
[DTRACEOPT_BUFSIZE
] < sz
) ||
13627 (state
->dts_speculates
&& opt
[DTRACEOPT_SPECSIZE
] < sz
) ||
13628 (state
->dts_aggregations
!= NULL
&& opt
[DTRACEOPT_AGGSIZE
] < sz
)) {
13630 * A buffer size has been explicitly set to 0 (or to a size
13631 * that will be adjusted to 0) and we need the space -- we
13632 * need to return failure. We return ENOSPC to differentiate
13633 * it from failing to allocate a buffer due to failure to meet
13634 * the reserve (for which we return E2BIG).
13640 if ((rval
= dtrace_state_buffers(state
)) != 0)
13643 if ((sz
= opt
[DTRACEOPT_DYNVARSIZE
]) == DTRACEOPT_UNSET
)
13644 sz
= dtrace_dstate_defsize
;
13647 rval
= dtrace_dstate_init(&state
->dts_vstate
.dtvs_dynvars
, sz
);
13652 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
13654 } while (sz
>>= 1);
13656 opt
[DTRACEOPT_DYNVARSIZE
] = sz
;
13661 if (opt
[DTRACEOPT_STATUSRATE
] > dtrace_statusrate_max
)
13662 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_max
;
13664 if (opt
[DTRACEOPT_CLEANRATE
] == 0)
13665 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
13667 if (opt
[DTRACEOPT_CLEANRATE
] < dtrace_cleanrate_min
)
13668 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_min
;
13670 if (opt
[DTRACEOPT_CLEANRATE
] > dtrace_cleanrate_max
)
13671 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
13673 if (opt
[DTRACEOPT_STRSIZE
] > dtrace_strsize_max
)
13674 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_max
;
13676 if (opt
[DTRACEOPT_STRSIZE
] < dtrace_strsize_min
)
13677 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_min
;
13679 if (opt
[DTRACEOPT_BUFLIMIT
] > dtrace_buflimit_max
)
13680 opt
[DTRACEOPT_BUFLIMIT
] = dtrace_buflimit_max
;
13682 if (opt
[DTRACEOPT_BUFLIMIT
] < dtrace_buflimit_min
)
13683 opt
[DTRACEOPT_BUFLIMIT
] = dtrace_buflimit_min
;
13685 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_clean
;
13686 hdlr
.cyh_arg
= state
;
13687 hdlr
.cyh_level
= CY_LOW_LEVEL
;
13690 when
.cyt_interval
= opt
[DTRACEOPT_CLEANRATE
];
13692 state
->dts_cleaner
= cyclic_add(&hdlr
, &when
);
13694 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_deadman
;
13695 hdlr
.cyh_arg
= state
;
13696 hdlr
.cyh_level
= CY_LOW_LEVEL
;
13699 when
.cyt_interval
= dtrace_deadman_interval
;
13701 state
->dts_alive
= state
->dts_laststatus
= dtrace_gethrtime();
13702 state
->dts_deadman
= cyclic_add(&hdlr
, &when
);
13704 state
->dts_activity
= DTRACE_ACTIVITY_WARMUP
;
13707 * Now it's time to actually fire the BEGIN probe. We need to disable
13708 * interrupts here both to record the CPU on which we fired the BEGIN
13709 * probe (the data from this CPU will be processed first at user
13710 * level) and to manually activate the buffer for this CPU.
13712 cookie
= dtrace_interrupt_disable();
13713 *cpu
= CPU
->cpu_id
;
13714 ASSERT(state
->dts_buffer
[*cpu
].dtb_flags
& DTRACEBUF_INACTIVE
);
13715 state
->dts_buffer
[*cpu
].dtb_flags
&= ~DTRACEBUF_INACTIVE
;
13717 dtrace_probe(dtrace_probeid_begin
,
13718 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
13719 dtrace_interrupt_enable(cookie
);
13721 * We may have had an exit action from a BEGIN probe; only change our
13722 * state to ACTIVE if we're still in WARMUP.
13724 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
||
13725 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
);
13727 if (state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
)
13728 state
->dts_activity
= DTRACE_ACTIVITY_ACTIVE
;
13731 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13732 * want each CPU to transition its principal buffer out of the
13733 * INACTIVE state. Doing this assures that no CPU will suddenly begin
13734 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13735 * atomically transition from processing none of a state's ECBs to
13736 * processing all of them.
13738 dtrace_xcall(DTRACE_CPUALL
,
13739 (dtrace_xcall_t
)dtrace_buffer_activate
, state
);
13743 dtrace_buffer_free(state
->dts_buffer
);
13744 dtrace_buffer_free(state
->dts_aggbuffer
);
13746 if ((nspec
= state
->dts_nspeculations
) == 0) {
13747 ASSERT(state
->dts_speculations
== NULL
);
13751 spec
= state
->dts_speculations
;
13752 ASSERT(spec
!= NULL
);
13754 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13755 if ((buf
= spec
[i
].dtsp_buffer
) == NULL
)
13758 dtrace_buffer_free(buf
);
13759 kmem_free(buf
, bufsize
);
13762 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
13763 state
->dts_nspeculations
= 0;
13764 state
->dts_speculations
= NULL
;
13767 lck_mtx_unlock(&dtrace_lock
);
13768 lck_mtx_unlock(&cpu_lock
);
13774 dtrace_state_stop(dtrace_state_t
*state
, processorid_t
*cpu
)
13776 dtrace_icookie_t cookie
;
13778 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13780 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
&&
13781 state
->dts_activity
!= DTRACE_ACTIVITY_DRAINING
)
13785 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13786 * to be sure that every CPU has seen it. See below for the details
13787 * on why this is done.
13789 state
->dts_activity
= DTRACE_ACTIVITY_DRAINING
;
13793 * By this point, it is impossible for any CPU to be still processing
13794 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13795 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13796 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13797 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13798 * iff we're in the END probe.
13800 state
->dts_activity
= DTRACE_ACTIVITY_COOLDOWN
;
13802 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_COOLDOWN
);
13805 * Finally, we can release the reserve and call the END probe. We
13806 * disable interrupts across calling the END probe to allow us to
13807 * return the CPU on which we actually called the END probe. This
13808 * allows user-land to be sure that this CPU's principal buffer is
13811 state
->dts_reserve
= 0;
13813 cookie
= dtrace_interrupt_disable();
13814 *cpu
= CPU
->cpu_id
;
13815 dtrace_probe(dtrace_probeid_end
,
13816 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
13817 dtrace_interrupt_enable(cookie
);
13819 state
->dts_activity
= DTRACE_ACTIVITY_STOPPED
;
13826 dtrace_state_option(dtrace_state_t
*state
, dtrace_optid_t option
,
13827 dtrace_optval_t val
)
13829 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13831 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
13834 if (option
>= DTRACEOPT_MAX
)
13837 if (option
!= DTRACEOPT_CPU
&& val
< 0)
13841 case DTRACEOPT_DESTRUCTIVE
:
13843 * Prevent consumers from enabling destructive actions if DTrace
13844 * is running in a restricted environment, or if actions are
13847 if (dtrace_is_restricted() || dtrace_destructive_disallow
)
13850 state
->dts_cred
.dcr_destructive
= 1;
13853 case DTRACEOPT_BUFSIZE
:
13854 case DTRACEOPT_DYNVARSIZE
:
13855 case DTRACEOPT_AGGSIZE
:
13856 case DTRACEOPT_SPECSIZE
:
13857 case DTRACEOPT_STRSIZE
:
13861 if (val
>= LONG_MAX
) {
13863 * If this is an otherwise negative value, set it to
13864 * the highest multiple of 128m less than LONG_MAX.
13865 * Technically, we're adjusting the size without
13866 * regard to the buffer resizing policy, but in fact,
13867 * this has no effect -- if we set the buffer size to
13868 * ~LONG_MAX and the buffer policy is ultimately set to
13869 * be "manual", the buffer allocation is guaranteed to
13870 * fail, if only because the allocation requires two
13871 * buffers. (We set the the size to the highest
13872 * multiple of 128m because it ensures that the size
13873 * will remain a multiple of a megabyte when
13874 * repeatedly halved -- all the way down to 15m.)
13876 val
= LONG_MAX
- (1 << 27) + 1;
13880 state
->dts_options
[option
] = val
;
13886 dtrace_state_destroy(dtrace_state_t
*state
)
13889 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
13890 minor_t minor
= getminor(state
->dts_dev
);
13891 int i
, bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
);
13892 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13893 int nspec
= state
->dts_nspeculations
;
13896 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13897 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13900 * First, retract any retained enablings for this state.
13902 dtrace_enabling_retract(state
);
13903 ASSERT(state
->dts_nretained
== 0);
13905 if (state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
||
13906 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
) {
13908 * We have managed to come into dtrace_state_destroy() on a
13909 * hot enabling -- almost certainly because of a disorderly
13910 * shutdown of a consumer. (That is, a consumer that is
13911 * exiting without having called dtrace_stop().) In this case,
13912 * we're going to set our activity to be KILLED, and then
13913 * issue a sync to be sure that everyone is out of probe
13914 * context before we start blowing away ECBs.
13916 state
->dts_activity
= DTRACE_ACTIVITY_KILLED
;
13921 * Release the credential hold we took in dtrace_state_create().
13923 if (state
->dts_cred
.dcr_cred
!= NULL
)
13924 crfree(state
->dts_cred
.dcr_cred
);
13927 * Now we can safely disable and destroy any enabled probes. Because
13928 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13929 * (especially if they're all enabled), we take two passes through the
13930 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13931 * in the second we disable whatever is left over.
13933 for (match
= DTRACE_PRIV_KERNEL
; ; match
= 0) {
13934 for (i
= 0; i
< state
->dts_necbs
; i
++) {
13935 if ((ecb
= state
->dts_ecbs
[i
]) == NULL
)
13938 if (match
&& ecb
->dte_probe
!= NULL
) {
13939 dtrace_probe_t
*probe
= ecb
->dte_probe
;
13940 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
13942 if (!(prov
->dtpv_priv
.dtpp_flags
& match
))
13946 dtrace_ecb_disable(ecb
);
13947 dtrace_ecb_destroy(ecb
);
13955 * Before we free the buffers, perform one more sync to assure that
13956 * every CPU is out of probe context.
13960 dtrace_buffer_free(state
->dts_buffer
);
13961 dtrace_buffer_free(state
->dts_aggbuffer
);
13963 for (i
= 0; i
< nspec
; i
++)
13964 dtrace_buffer_free(spec
[i
].dtsp_buffer
);
13966 if (state
->dts_cleaner
!= CYCLIC_NONE
)
13967 cyclic_remove(state
->dts_cleaner
);
13969 if (state
->dts_deadman
!= CYCLIC_NONE
)
13970 cyclic_remove(state
->dts_deadman
);
13972 dtrace_dstate_fini(&vstate
->dtvs_dynvars
);
13973 dtrace_vstate_fini(vstate
);
13974 kmem_free(state
->dts_ecbs
, state
->dts_necbs
* sizeof (dtrace_ecb_t
*));
13976 if (state
->dts_aggregations
!= NULL
) {
13978 for (i
= 0; i
< state
->dts_naggregations
; i
++)
13979 ASSERT(state
->dts_aggregations
[i
] == NULL
);
13981 ASSERT(state
->dts_naggregations
> 0);
13982 kmem_free(state
->dts_aggregations
,
13983 state
->dts_naggregations
* sizeof (dtrace_aggregation_t
*));
13986 kmem_free(state
->dts_buffer
, bufsize
);
13987 kmem_free(state
->dts_aggbuffer
, bufsize
);
13989 for (i
= 0; i
< nspec
; i
++)
13990 kmem_free(spec
[i
].dtsp_buffer
, bufsize
);
13992 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
13994 dtrace_format_destroy(state
);
13996 vmem_destroy(state
->dts_aggid_arena
);
13997 dtrace_state_free(minor
);
14001 * DTrace Anonymous Enabling Functions
14003 static dtrace_state_t
*
14004 dtrace_anon_grab(void)
14006 dtrace_state_t
*state
;
14008 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14010 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14011 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14015 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14016 ASSERT(dtrace_retained
!= NULL
);
14018 dtrace_enabling_destroy(dtrace_anon
.dta_enabling
);
14019 dtrace_anon
.dta_enabling
= NULL
;
14020 dtrace_anon
.dta_state
= NULL
;
14026 dtrace_anon_property(void)
14029 dtrace_state_t
*state
;
14031 char c
[32]; /* enough for "dof-data-" + digits */
14033 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14034 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
14036 for (i
= 0; ; i
++) {
14037 (void) snprintf(c
, sizeof (c
), "dof-data-%d", i
);
14039 dtrace_err_verbose
= 1;
14041 if ((dof
= dtrace_dof_property(c
)) == NULL
) {
14042 dtrace_err_verbose
= 0;
14047 * We want to create anonymous state, so we need to transition
14048 * the kernel debugger to indicate that DTrace is active. If
14049 * this fails (e.g. because the debugger has modified text in
14050 * some way), we won't continue with the processing.
14052 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
14053 cmn_err(CE_NOTE
, "kernel debugger active; anonymous "
14054 "enabling ignored.");
14055 dtrace_dof_destroy(dof
);
14060 * If we haven't allocated an anonymous state, we'll do so now.
14062 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14063 rv
= dtrace_state_create(NULL
, NULL
, &state
);
14064 dtrace_anon
.dta_state
= state
;
14065 if (rv
!= 0 || state
== NULL
) {
14067 * This basically shouldn't happen: the only
14068 * failure mode from dtrace_state_create() is a
14069 * failure of ddi_soft_state_zalloc() that
14070 * itself should never happen. Still, the
14071 * interface allows for a failure mode, and
14072 * we want to fail as gracefully as possible:
14073 * we'll emit an error message and cease
14074 * processing anonymous state in this case.
14076 cmn_err(CE_WARN
, "failed to create "
14077 "anonymous state");
14078 dtrace_dof_destroy(dof
);
14083 rv
= dtrace_dof_slurp(dof
, &state
->dts_vstate
, CRED(),
14084 &dtrace_anon
.dta_enabling
, 0, B_TRUE
);
14087 rv
= dtrace_dof_options(dof
, state
);
14089 dtrace_err_verbose
= 0;
14090 dtrace_dof_destroy(dof
);
14094 * This is malformed DOF; chuck any anonymous state
14097 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14098 dtrace_state_destroy(state
);
14099 dtrace_anon
.dta_state
= NULL
;
14103 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14106 if (dtrace_anon
.dta_enabling
!= NULL
) {
14110 * dtrace_enabling_retain() can only fail because we are
14111 * trying to retain more enablings than are allowed -- but
14112 * we only have one anonymous enabling, and we are guaranteed
14113 * to be allowed at least one retained enabling; we assert
14114 * that dtrace_enabling_retain() returns success.
14116 rval
= dtrace_enabling_retain(dtrace_anon
.dta_enabling
);
14119 dtrace_enabling_dump(dtrace_anon
.dta_enabling
);
14124 * DTrace Helper Functions
14127 dtrace_helper_trace(dtrace_helper_action_t
*helper
,
14128 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
, int where
)
14130 uint32_t size
, next
, nnext
;
14132 dtrace_helptrace_t
*ent
;
14133 uint16_t flags
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14135 if (!dtrace_helptrace_enabled
)
14138 ASSERT((uint32_t)vstate
->dtvs_nlocals
<= dtrace_helptrace_nlocals
);
14141 * What would a tracing framework be without its own tracing
14142 * framework? (Well, a hell of a lot simpler, for starters...)
14144 size
= sizeof (dtrace_helptrace_t
) + dtrace_helptrace_nlocals
*
14145 sizeof (uint64_t) - sizeof (uint64_t);
14148 * Iterate until we can allocate a slot in the trace buffer.
14151 next
= dtrace_helptrace_next
;
14153 if (next
+ size
< dtrace_helptrace_bufsize
) {
14154 nnext
= next
+ size
;
14158 } while (dtrace_cas32(&dtrace_helptrace_next
, next
, nnext
) != next
);
14161 * We have our slot; fill it in.
14166 ent
= (dtrace_helptrace_t
*)&dtrace_helptrace_buffer
[next
];
14167 ent
->dtht_helper
= helper
;
14168 ent
->dtht_where
= where
;
14169 ent
->dtht_nlocals
= vstate
->dtvs_nlocals
;
14171 ent
->dtht_fltoffs
= (mstate
->dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
14172 mstate
->dtms_fltoffs
: -1;
14173 ent
->dtht_fault
= DTRACE_FLAGS2FLT(flags
);
14174 ent
->dtht_illval
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
14176 for (i
= 0; i
< vstate
->dtvs_nlocals
; i
++) {
14177 dtrace_statvar_t
*svar
;
14179 if ((svar
= vstate
->dtvs_locals
[i
]) == NULL
)
14182 ASSERT(svar
->dtsv_size
>= (int)NCPU
* sizeof (uint64_t));
14183 ent
->dtht_locals
[i
] =
14184 ((uint64_t *)(uintptr_t)svar
->dtsv_data
)[CPU
->cpu_id
];
14189 dtrace_helper(int which
, dtrace_mstate_t
*mstate
,
14190 dtrace_state_t
*state
, uint64_t arg0
, uint64_t arg1
)
14192 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14193 uint64_t sarg0
= mstate
->dtms_arg
[0];
14194 uint64_t sarg1
= mstate
->dtms_arg
[1];
14196 dtrace_helpers_t
*helpers
= curproc
->p_dtrace_helpers
;
14197 dtrace_helper_action_t
*helper
;
14198 dtrace_vstate_t
*vstate
;
14199 dtrace_difo_t
*pred
;
14200 int i
, trace
= dtrace_helptrace_enabled
;
14202 ASSERT(which
>= 0 && which
< DTRACE_NHELPER_ACTIONS
);
14204 if (helpers
== NULL
)
14207 if ((helper
= helpers
->dthps_actions
[which
]) == NULL
)
14210 vstate
= &helpers
->dthps_vstate
;
14211 mstate
->dtms_arg
[0] = arg0
;
14212 mstate
->dtms_arg
[1] = arg1
;
14215 * Now iterate over each helper. If its predicate evaluates to 'true',
14216 * we'll call the corresponding actions. Note that the below calls
14217 * to dtrace_dif_emulate() may set faults in machine state. This is
14218 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14219 * the stored DIF offset with its own (which is the desired behavior).
14220 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14221 * from machine state; this is okay, too.
14223 for (; helper
!= NULL
; helper
= helper
->dtha_next
) {
14224 if ((pred
= helper
->dtha_predicate
) != NULL
) {
14226 dtrace_helper_trace(helper
, mstate
, vstate
, 0);
14228 if (!dtrace_dif_emulate(pred
, mstate
, vstate
, state
))
14231 if (*flags
& CPU_DTRACE_FAULT
)
14235 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14237 dtrace_helper_trace(helper
,
14238 mstate
, vstate
, i
+ 1);
14240 rval
= dtrace_dif_emulate(helper
->dtha_actions
[i
],
14241 mstate
, vstate
, state
);
14243 if (*flags
& CPU_DTRACE_FAULT
)
14249 dtrace_helper_trace(helper
, mstate
, vstate
,
14250 DTRACE_HELPTRACE_NEXT
);
14254 dtrace_helper_trace(helper
, mstate
, vstate
,
14255 DTRACE_HELPTRACE_DONE
);
14258 * Restore the arg0 that we saved upon entry.
14260 mstate
->dtms_arg
[0] = sarg0
;
14261 mstate
->dtms_arg
[1] = sarg1
;
14267 dtrace_helper_trace(helper
, mstate
, vstate
,
14268 DTRACE_HELPTRACE_ERR
);
14271 * Restore the arg0 that we saved upon entry.
14273 mstate
->dtms_arg
[0] = sarg0
;
14274 mstate
->dtms_arg
[1] = sarg1
;
14280 dtrace_helper_action_destroy(dtrace_helper_action_t
*helper
,
14281 dtrace_vstate_t
*vstate
)
14285 if (helper
->dtha_predicate
!= NULL
)
14286 dtrace_difo_release(helper
->dtha_predicate
, vstate
);
14288 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14289 ASSERT(helper
->dtha_actions
[i
] != NULL
);
14290 dtrace_difo_release(helper
->dtha_actions
[i
], vstate
);
14293 kmem_free(helper
->dtha_actions
,
14294 helper
->dtha_nactions
* sizeof (dtrace_difo_t
*));
14295 kmem_free(helper
, sizeof (dtrace_helper_action_t
));
14299 dtrace_helper_destroygen(proc_t
* p
, int gen
)
14301 dtrace_helpers_t
*help
= p
->p_dtrace_helpers
;
14302 dtrace_vstate_t
*vstate
;
14305 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14307 if (help
== NULL
|| gen
> help
->dthps_generation
)
14310 vstate
= &help
->dthps_vstate
;
14312 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
14313 dtrace_helper_action_t
*last
= NULL
, *h
, *next
;
14315 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
14316 next
= h
->dtha_next
;
14318 if (h
->dtha_generation
== gen
) {
14319 if (last
!= NULL
) {
14320 last
->dtha_next
= next
;
14322 help
->dthps_actions
[i
] = next
;
14325 dtrace_helper_action_destroy(h
, vstate
);
14333 * Interate until we've cleared out all helper providers with the
14334 * given generation number.
14337 dtrace_helper_provider_t
*prov
= NULL
;
14340 * Look for a helper provider with the right generation. We
14341 * have to start back at the beginning of the list each time
14342 * because we drop dtrace_lock. It's unlikely that we'll make
14343 * more than two passes.
14345 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14346 prov
= help
->dthps_provs
[i
];
14348 if (prov
->dthp_generation
== gen
)
14353 * If there were no matches, we're done.
14355 if (i
== help
->dthps_nprovs
)
14359 * Move the last helper provider into this slot.
14361 help
->dthps_nprovs
--;
14362 help
->dthps_provs
[i
] = help
->dthps_provs
[help
->dthps_nprovs
];
14363 help
->dthps_provs
[help
->dthps_nprovs
] = NULL
;
14365 lck_mtx_unlock(&dtrace_lock
);
14368 * If we have a meta provider, remove this helper provider.
14370 lck_mtx_lock(&dtrace_meta_lock
);
14371 if (dtrace_meta_pid
!= NULL
) {
14372 ASSERT(dtrace_deferred_pid
== NULL
);
14373 dtrace_helper_provider_remove(&prov
->dthp_prov
,
14376 lck_mtx_unlock(&dtrace_meta_lock
);
14378 dtrace_helper_provider_destroy(prov
);
14380 lck_mtx_lock(&dtrace_lock
);
14387 dtrace_helper_validate(dtrace_helper_action_t
*helper
)
14392 if ((dp
= helper
->dtha_predicate
) != NULL
)
14393 err
+= dtrace_difo_validate_helper(dp
);
14395 for (i
= 0; i
< helper
->dtha_nactions
; i
++)
14396 err
+= dtrace_difo_validate_helper(helper
->dtha_actions
[i
]);
14402 dtrace_helper_action_add(proc_t
* p
, int which
, dtrace_ecbdesc_t
*ep
)
14404 dtrace_helpers_t
*help
;
14405 dtrace_helper_action_t
*helper
, *last
;
14406 dtrace_actdesc_t
*act
;
14407 dtrace_vstate_t
*vstate
;
14408 dtrace_predicate_t
*pred
;
14409 int count
= 0, nactions
= 0, i
;
14411 if (which
< 0 || which
>= DTRACE_NHELPER_ACTIONS
)
14414 help
= p
->p_dtrace_helpers
;
14415 last
= help
->dthps_actions
[which
];
14416 vstate
= &help
->dthps_vstate
;
14418 for (count
= 0; last
!= NULL
; last
= last
->dtha_next
) {
14420 if (last
->dtha_next
== NULL
)
14425 * If we already have dtrace_helper_actions_max helper actions for this
14426 * helper action type, we'll refuse to add a new one.
14428 if (count
>= dtrace_helper_actions_max
)
14431 helper
= kmem_zalloc(sizeof (dtrace_helper_action_t
), KM_SLEEP
);
14432 helper
->dtha_generation
= help
->dthps_generation
;
14434 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
) {
14435 ASSERT(pred
->dtp_difo
!= NULL
);
14436 dtrace_difo_hold(pred
->dtp_difo
);
14437 helper
->dtha_predicate
= pred
->dtp_difo
;
14440 for (act
= ep
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
14441 if (act
->dtad_kind
!= DTRACEACT_DIFEXPR
)
14444 if (act
->dtad_difo
== NULL
)
14450 helper
->dtha_actions
= kmem_zalloc(sizeof (dtrace_difo_t
*) *
14451 (helper
->dtha_nactions
= nactions
), KM_SLEEP
);
14453 for (act
= ep
->dted_action
, i
= 0; act
!= NULL
; act
= act
->dtad_next
) {
14454 dtrace_difo_hold(act
->dtad_difo
);
14455 helper
->dtha_actions
[i
++] = act
->dtad_difo
;
14458 if (!dtrace_helper_validate(helper
))
14461 if (last
== NULL
) {
14462 help
->dthps_actions
[which
] = helper
;
14464 last
->dtha_next
= helper
;
14467 if ((uint32_t)vstate
->dtvs_nlocals
> dtrace_helptrace_nlocals
) {
14468 dtrace_helptrace_nlocals
= vstate
->dtvs_nlocals
;
14469 dtrace_helptrace_next
= 0;
14474 dtrace_helper_action_destroy(helper
, vstate
);
14479 dtrace_helper_provider_register(proc_t
*p
, dtrace_helpers_t
*help
,
14480 dof_helper_t
*dofhp
)
14482 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
14484 lck_mtx_lock(&dtrace_meta_lock
);
14485 lck_mtx_lock(&dtrace_lock
);
14487 if (!dtrace_attached() || dtrace_meta_pid
== NULL
) {
14489 * If the dtrace module is loaded but not attached, or if
14490 * there aren't isn't a meta provider registered to deal with
14491 * these provider descriptions, we need to postpone creating
14492 * the actual providers until later.
14495 if (help
->dthps_next
== NULL
&& help
->dthps_prev
== NULL
&&
14496 dtrace_deferred_pid
!= help
) {
14497 help
->dthps_deferred
= 1;
14498 help
->dthps_pid
= p
->p_pid
;
14499 help
->dthps_next
= dtrace_deferred_pid
;
14500 help
->dthps_prev
= NULL
;
14501 if (dtrace_deferred_pid
!= NULL
)
14502 dtrace_deferred_pid
->dthps_prev
= help
;
14503 dtrace_deferred_pid
= help
;
14506 lck_mtx_unlock(&dtrace_lock
);
14508 } else if (dofhp
!= NULL
) {
14510 * If the dtrace module is loaded and we have a particular
14511 * helper provider description, pass that off to the
14515 lck_mtx_unlock(&dtrace_lock
);
14517 dtrace_helper_provide(dofhp
, p
);
14521 * Otherwise, just pass all the helper provider descriptions
14522 * off to the meta provider.
14526 lck_mtx_unlock(&dtrace_lock
);
14528 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14529 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
14534 lck_mtx_unlock(&dtrace_meta_lock
);
14538 dtrace_helper_provider_add(proc_t
* p
, dof_helper_t
*dofhp
, int gen
)
14540 dtrace_helpers_t
*help
;
14541 dtrace_helper_provider_t
*hprov
, **tmp_provs
;
14542 uint_t tmp_maxprovs
, i
;
14544 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14545 help
= p
->p_dtrace_helpers
;
14546 ASSERT(help
!= NULL
);
14549 * If we already have dtrace_helper_providers_max helper providers,
14550 * we're refuse to add a new one.
14552 if (help
->dthps_nprovs
>= dtrace_helper_providers_max
)
14556 * Check to make sure this isn't a duplicate.
14558 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14559 if (dofhp
->dofhp_addr
==
14560 help
->dthps_provs
[i
]->dthp_prov
.dofhp_addr
)
14564 hprov
= kmem_zalloc(sizeof (dtrace_helper_provider_t
), KM_SLEEP
);
14565 hprov
->dthp_prov
= *dofhp
;
14566 hprov
->dthp_ref
= 1;
14567 hprov
->dthp_generation
= gen
;
14570 * Allocate a bigger table for helper providers if it's already full.
14572 if (help
->dthps_maxprovs
== help
->dthps_nprovs
) {
14573 tmp_maxprovs
= help
->dthps_maxprovs
;
14574 tmp_provs
= help
->dthps_provs
;
14576 if (help
->dthps_maxprovs
== 0)
14577 help
->dthps_maxprovs
= 2;
14579 help
->dthps_maxprovs
*= 2;
14580 if (help
->dthps_maxprovs
> dtrace_helper_providers_max
)
14581 help
->dthps_maxprovs
= dtrace_helper_providers_max
;
14583 ASSERT(tmp_maxprovs
< help
->dthps_maxprovs
);
14585 help
->dthps_provs
= kmem_zalloc(help
->dthps_maxprovs
*
14586 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
14588 if (tmp_provs
!= NULL
) {
14589 bcopy(tmp_provs
, help
->dthps_provs
, tmp_maxprovs
*
14590 sizeof (dtrace_helper_provider_t
*));
14591 kmem_free(tmp_provs
, tmp_maxprovs
*
14592 sizeof (dtrace_helper_provider_t
*));
14596 help
->dthps_provs
[help
->dthps_nprovs
] = hprov
;
14597 help
->dthps_nprovs
++;
14603 dtrace_helper_provider_destroy(dtrace_helper_provider_t
*hprov
)
14605 lck_mtx_lock(&dtrace_lock
);
14607 if (--hprov
->dthp_ref
== 0) {
14609 lck_mtx_unlock(&dtrace_lock
);
14610 dof
= (dof_hdr_t
*)(uintptr_t)hprov
->dthp_prov
.dofhp_dof
;
14611 dtrace_dof_destroy(dof
);
14612 kmem_free(hprov
, sizeof (dtrace_helper_provider_t
));
14614 lck_mtx_unlock(&dtrace_lock
);
14619 dtrace_helper_provider_validate(dof_hdr_t
*dof
, dof_sec_t
*sec
)
14621 uintptr_t daddr
= (uintptr_t)dof
;
14622 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
14623 dof_provider_t
*provider
;
14624 dof_probe_t
*probe
;
14626 char *strtab
, *typestr
;
14627 dof_stridx_t typeidx
;
14629 uint_t nprobes
, j
, k
;
14631 ASSERT(sec
->dofs_type
== DOF_SECT_PROVIDER
);
14633 if (sec
->dofs_offset
& (sizeof (uint_t
) - 1)) {
14634 dtrace_dof_error(dof
, "misaligned section offset");
14639 * The section needs to be large enough to contain the DOF provider
14640 * structure appropriate for the given version.
14642 if (sec
->dofs_size
<
14643 ((dof
->dofh_ident
[DOF_ID_VERSION
] == DOF_VERSION_1
) ?
14644 offsetof(dof_provider_t
, dofpv_prenoffs
) :
14645 sizeof (dof_provider_t
))) {
14646 dtrace_dof_error(dof
, "provider section too small");
14650 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
14651 str_sec
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, provider
->dofpv_strtab
);
14652 prb_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBES
, provider
->dofpv_probes
);
14653 arg_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRARGS
, provider
->dofpv_prargs
);
14654 off_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROFFS
, provider
->dofpv_proffs
);
14656 if (str_sec
== NULL
|| prb_sec
== NULL
||
14657 arg_sec
== NULL
|| off_sec
== NULL
)
14662 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
14663 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
&&
14664 (enoff_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRENOFFS
,
14665 provider
->dofpv_prenoffs
)) == NULL
)
14668 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
14670 if (provider
->dofpv_name
>= str_sec
->dofs_size
||
14671 strlen(strtab
+ provider
->dofpv_name
) >= DTRACE_PROVNAMELEN
) {
14672 dtrace_dof_error(dof
, "invalid provider name");
14676 if (prb_sec
->dofs_entsize
== 0 ||
14677 prb_sec
->dofs_entsize
> prb_sec
->dofs_size
) {
14678 dtrace_dof_error(dof
, "invalid entry size");
14682 if (prb_sec
->dofs_entsize
& (sizeof (uintptr_t) - 1)) {
14683 dtrace_dof_error(dof
, "misaligned entry size");
14687 if (off_sec
->dofs_entsize
!= sizeof (uint32_t)) {
14688 dtrace_dof_error(dof
, "invalid entry size");
14692 if (off_sec
->dofs_offset
& (sizeof (uint32_t) - 1)) {
14693 dtrace_dof_error(dof
, "misaligned section offset");
14697 if (arg_sec
->dofs_entsize
!= sizeof (uint8_t)) {
14698 dtrace_dof_error(dof
, "invalid entry size");
14702 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
14704 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
14707 * Take a pass through the probes to check for errors.
14709 for (j
= 0; j
< nprobes
; j
++) {
14710 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
14711 prb_sec
->dofs_offset
+ j
* prb_sec
->dofs_entsize
);
14713 if (probe
->dofpr_func
>= str_sec
->dofs_size
) {
14714 dtrace_dof_error(dof
, "invalid function name");
14718 if (strlen(strtab
+ probe
->dofpr_func
) >= DTRACE_FUNCNAMELEN
) {
14719 dtrace_dof_error(dof
, "function name too long");
14723 if (probe
->dofpr_name
>= str_sec
->dofs_size
||
14724 strlen(strtab
+ probe
->dofpr_name
) >= DTRACE_NAMELEN
) {
14725 dtrace_dof_error(dof
, "invalid probe name");
14730 * The offset count must not wrap the index, and the offsets
14731 * must also not overflow the section's data.
14733 if (probe
->dofpr_offidx
+ probe
->dofpr_noffs
<
14734 probe
->dofpr_offidx
||
14735 (probe
->dofpr_offidx
+ probe
->dofpr_noffs
) *
14736 off_sec
->dofs_entsize
> off_sec
->dofs_size
) {
14737 dtrace_dof_error(dof
, "invalid probe offset");
14741 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
) {
14743 * If there's no is-enabled offset section, make sure
14744 * there aren't any is-enabled offsets. Otherwise
14745 * perform the same checks as for probe offsets
14746 * (immediately above).
14748 if (enoff_sec
== NULL
) {
14749 if (probe
->dofpr_enoffidx
!= 0 ||
14750 probe
->dofpr_nenoffs
!= 0) {
14751 dtrace_dof_error(dof
, "is-enabled "
14752 "offsets with null section");
14755 } else if (probe
->dofpr_enoffidx
+
14756 probe
->dofpr_nenoffs
< probe
->dofpr_enoffidx
||
14757 (probe
->dofpr_enoffidx
+ probe
->dofpr_nenoffs
) *
14758 enoff_sec
->dofs_entsize
> enoff_sec
->dofs_size
) {
14759 dtrace_dof_error(dof
, "invalid is-enabled "
14764 if (probe
->dofpr_noffs
+ probe
->dofpr_nenoffs
== 0) {
14765 dtrace_dof_error(dof
, "zero probe and "
14766 "is-enabled offsets");
14769 } else if (probe
->dofpr_noffs
== 0) {
14770 dtrace_dof_error(dof
, "zero probe offsets");
14774 if (probe
->dofpr_argidx
+ probe
->dofpr_xargc
<
14775 probe
->dofpr_argidx
||
14776 (probe
->dofpr_argidx
+ probe
->dofpr_xargc
) *
14777 arg_sec
->dofs_entsize
> arg_sec
->dofs_size
) {
14778 dtrace_dof_error(dof
, "invalid args");
14782 typeidx
= probe
->dofpr_nargv
;
14783 typestr
= strtab
+ probe
->dofpr_nargv
;
14784 for (k
= 0; k
< probe
->dofpr_nargc
; k
++) {
14785 if (typeidx
>= str_sec
->dofs_size
) {
14786 dtrace_dof_error(dof
, "bad "
14787 "native argument type");
14791 typesz
= strlen(typestr
) + 1;
14792 if (typesz
> DTRACE_ARGTYPELEN
) {
14793 dtrace_dof_error(dof
, "native "
14794 "argument type too long");
14801 typeidx
= probe
->dofpr_xargv
;
14802 typestr
= strtab
+ probe
->dofpr_xargv
;
14803 for (k
= 0; k
< probe
->dofpr_xargc
; k
++) {
14804 if (arg
[probe
->dofpr_argidx
+ k
] > probe
->dofpr_nargc
) {
14805 dtrace_dof_error(dof
, "bad "
14806 "native argument index");
14810 if (typeidx
>= str_sec
->dofs_size
) {
14811 dtrace_dof_error(dof
, "bad "
14812 "translated argument type");
14816 typesz
= strlen(typestr
) + 1;
14817 if (typesz
> DTRACE_ARGTYPELEN
) {
14818 dtrace_dof_error(dof
, "translated argument "
14832 dtrace_helper_slurp(proc_t
* p
, dof_hdr_t
*dof
, dof_helper_t
*dhp
)
14834 dtrace_helpers_t
*help
;
14835 dtrace_vstate_t
*vstate
;
14836 dtrace_enabling_t
*enab
= NULL
;
14837 int i
, gen
, rv
, nhelpers
= 0, nprovs
= 0, destroy
= 1;
14838 uintptr_t daddr
= (uintptr_t)dof
;
14840 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14842 if ((help
= p
->p_dtrace_helpers
) == NULL
)
14843 help
= dtrace_helpers_create(p
);
14845 vstate
= &help
->dthps_vstate
;
14847 if ((rv
= dtrace_dof_slurp(dof
, vstate
, NULL
, &enab
,
14848 dhp
!= NULL
? dhp
->dofhp_addr
: 0, B_FALSE
)) != 0) {
14849 dtrace_dof_destroy(dof
);
14854 * Look for helper providers and validate their descriptions.
14857 for (i
= 0; (uint32_t)i
< dof
->dofh_secnum
; i
++) {
14858 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
14859 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
14861 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
14864 if (dtrace_helper_provider_validate(dof
, sec
) != 0) {
14865 dtrace_enabling_destroy(enab
);
14866 dtrace_dof_destroy(dof
);
14875 * Now we need to walk through the ECB descriptions in the enabling.
14877 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
14878 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
14879 dtrace_probedesc_t
*desc
= &ep
->dted_probe
;
14881 /* APPLE NOTE: Darwin employs size bounded string operation. */
14882 if (!LIT_STRNEQL(desc
->dtpd_provider
, "dtrace"))
14885 if (!LIT_STRNEQL(desc
->dtpd_mod
, "helper"))
14888 if (!LIT_STRNEQL(desc
->dtpd_func
, "ustack"))
14891 if ((rv
= dtrace_helper_action_add(p
, DTRACE_HELPER_ACTION_USTACK
,
14894 * Adding this helper action failed -- we are now going
14895 * to rip out the entire generation and return failure.
14897 (void) dtrace_helper_destroygen(p
, help
->dthps_generation
);
14898 dtrace_enabling_destroy(enab
);
14899 dtrace_dof_destroy(dof
);
14906 if (nhelpers
< enab
->dten_ndesc
)
14907 dtrace_dof_error(dof
, "unmatched helpers");
14909 gen
= help
->dthps_generation
++;
14910 dtrace_enabling_destroy(enab
);
14912 if (dhp
!= NULL
&& nprovs
> 0) {
14913 dhp
->dofhp_dof
= (uint64_t)(uintptr_t)dof
;
14914 if (dtrace_helper_provider_add(p
, dhp
, gen
) == 0) {
14915 lck_mtx_unlock(&dtrace_lock
);
14916 dtrace_helper_provider_register(p
, help
, dhp
);
14917 lck_mtx_lock(&dtrace_lock
);
14924 dtrace_dof_destroy(dof
);
14930 * APPLE NOTE: DTrace lazy dof implementation
14932 * DTrace user static probes (USDT probes) and helper actions are loaded
14933 * in a process by proccessing dof sections. The dof sections are passed
14934 * into the kernel by dyld, in a dof_ioctl_data_t block. It is rather
14935 * expensive to process dof for a process that will never use it. There
14936 * is a memory cost (allocating the providers/probes), and a cpu cost
14937 * (creating the providers/probes).
14939 * To reduce this cost, we use "lazy dof". The normal proceedure for
14940 * dof processing is to copyin the dof(s) pointed to by the dof_ioctl_data_t
14941 * block, and invoke dof_slurp_helper() on them. When "lazy dof" is
14942 * used, each process retains the dof_ioctl_data_t block, instead of
14943 * copying in the data it points to.
14945 * The dof_ioctl_data_t blocks are managed as if they were the actual
14946 * processed dof; on fork the block is copied to the child, on exec and
14947 * exit the block is freed.
14949 * If the process loads library(s) containing additional dof, the
14950 * new dof_ioctl_data_t is merged with the existing block.
14952 * There are a few catches that make this slightly more difficult.
14953 * When dyld registers dof_ioctl_data_t blocks, it expects a unique
14954 * identifier value for each dof in the block. In non-lazy dof terms,
14955 * this is the generation that dof was loaded in. If we hand back
14956 * a UID for a lazy dof, that same UID must be able to unload the
14957 * dof once it has become non-lazy. To meet this requirement, the
14958 * code that loads lazy dof requires that the UID's for dof(s) in
14959 * the lazy dof be sorted, and in ascending order. It is okay to skip
14960 * UID's, I.E., 1 -> 5 -> 6 is legal.
14962 * Once a process has become non-lazy, it will stay non-lazy. All
14963 * future dof operations for that process will be non-lazy, even
14964 * if the dof mode transitions back to lazy.
14966 * Always do lazy dof checks before non-lazy (I.E. In fork, exit, exec.).
14967 * That way if the lazy check fails due to transitioning to non-lazy, the
14968 * right thing is done with the newly faulted in dof.
14972 * This method is a bit squicky. It must handle:
14974 * dof should not be lazy.
14975 * dof should have been handled lazily, but there was an error
14976 * dof was handled lazily, and needs to be freed.
14977 * dof was handled lazily, and must not be freed.
14980 * Returns EACCESS if dof should be handled non-lazily.
14982 * KERN_SUCCESS and all other return codes indicate lazy handling of dof.
14984 * If the dofs data is claimed by this method, dofs_claimed will be set.
14985 * Callers should not free claimed dofs.
14988 dtrace_lazy_dofs_add(proc_t
*p
, dof_ioctl_data_t
* incoming_dofs
, int *dofs_claimed
)
14991 ASSERT(incoming_dofs
&& incoming_dofs
->dofiod_count
> 0);
14996 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
14998 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
14999 ASSERT(dtrace_dof_mode
!= DTRACE_DOF_MODE_NEVER
);
15002 * Any existing helpers force non-lazy behavior.
15004 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
&& (p
->p_dtrace_helpers
== NULL
)) {
15005 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15007 dof_ioctl_data_t
* existing_dofs
= p
->p_dtrace_lazy_dofs
;
15008 unsigned int existing_dofs_count
= (existing_dofs
) ? existing_dofs
->dofiod_count
: 0;
15009 unsigned int i
, merged_dofs_count
= incoming_dofs
->dofiod_count
+ existing_dofs_count
;
15014 if (merged_dofs_count
== 0 || merged_dofs_count
> 1024) {
15015 dtrace_dof_error(NULL
, "lazy_dofs_add merged_dofs_count out of range");
15021 * Each dof being added must be assigned a unique generation.
15023 uint64_t generation
= (existing_dofs
) ? existing_dofs
->dofiod_helpers
[existing_dofs_count
- 1].dofhp_dof
+ 1 : 1;
15024 for (i
=0; i
<incoming_dofs
->dofiod_count
; i
++) {
15026 * We rely on these being the same so we can overwrite dofhp_dof and not lose info.
15028 ASSERT(incoming_dofs
->dofiod_helpers
[i
].dofhp_dof
== incoming_dofs
->dofiod_helpers
[i
].dofhp_addr
);
15029 incoming_dofs
->dofiod_helpers
[i
].dofhp_dof
= generation
++;
15033 if (existing_dofs
) {
15035 * Merge the existing and incoming dofs
15037 size_t merged_dofs_size
= DOF_IOCTL_DATA_T_SIZE(merged_dofs_count
);
15038 dof_ioctl_data_t
* merged_dofs
= kmem_alloc(merged_dofs_size
, KM_SLEEP
);
15040 bcopy(&existing_dofs
->dofiod_helpers
[0],
15041 &merged_dofs
->dofiod_helpers
[0],
15042 sizeof(dof_helper_t
) * existing_dofs_count
);
15043 bcopy(&incoming_dofs
->dofiod_helpers
[0],
15044 &merged_dofs
->dofiod_helpers
[existing_dofs_count
],
15045 sizeof(dof_helper_t
) * incoming_dofs
->dofiod_count
);
15047 merged_dofs
->dofiod_count
= merged_dofs_count
;
15049 kmem_free(existing_dofs
, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count
));
15051 p
->p_dtrace_lazy_dofs
= merged_dofs
;
15054 * Claim the incoming dofs
15057 p
->p_dtrace_lazy_dofs
= incoming_dofs
;
15061 dof_ioctl_data_t
* all_dofs
= p
->p_dtrace_lazy_dofs
;
15062 for (i
=0; i
<all_dofs
->dofiod_count
-1; i
++) {
15063 ASSERT(all_dofs
->dofiod_helpers
[i
].dofhp_dof
< all_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
15068 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15073 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15081 * EINVAL: lazy dof is enabled, but the requested generation was not found.
15082 * EACCES: This removal needs to be handled non-lazily.
15085 dtrace_lazy_dofs_remove(proc_t
*p
, int generation
)
15089 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
15091 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
15092 ASSERT(dtrace_dof_mode
!= DTRACE_DOF_MODE_NEVER
);
15095 * Any existing helpers force non-lazy behavior.
15097 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
&& (p
->p_dtrace_helpers
== NULL
)) {
15098 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15100 dof_ioctl_data_t
* existing_dofs
= p
->p_dtrace_lazy_dofs
;
15102 if (existing_dofs
) {
15103 int index
, existing_dofs_count
= existing_dofs
->dofiod_count
;
15104 for (index
=0; index
<existing_dofs_count
; index
++) {
15105 if ((int)existing_dofs
->dofiod_helpers
[index
].dofhp_dof
== generation
) {
15106 dof_ioctl_data_t
* removed_dofs
= NULL
;
15109 * If there is only 1 dof, we'll delete it and swap in NULL.
15111 if (existing_dofs_count
> 1) {
15112 int removed_dofs_count
= existing_dofs_count
- 1;
15113 size_t removed_dofs_size
= DOF_IOCTL_DATA_T_SIZE(removed_dofs_count
);
15115 removed_dofs
= kmem_alloc(removed_dofs_size
, KM_SLEEP
);
15116 removed_dofs
->dofiod_count
= removed_dofs_count
;
15119 * copy the remaining data.
15122 bcopy(&existing_dofs
->dofiod_helpers
[0],
15123 &removed_dofs
->dofiod_helpers
[0],
15124 index
* sizeof(dof_helper_t
));
15127 if (index
< existing_dofs_count
-1) {
15128 bcopy(&existing_dofs
->dofiod_helpers
[index
+1],
15129 &removed_dofs
->dofiod_helpers
[index
],
15130 (existing_dofs_count
- index
- 1) * sizeof(dof_helper_t
));
15134 kmem_free(existing_dofs
, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count
));
15136 p
->p_dtrace_lazy_dofs
= removed_dofs
;
15138 rval
= KERN_SUCCESS
;
15145 dof_ioctl_data_t
* all_dofs
= p
->p_dtrace_lazy_dofs
;
15148 for (i
=0; i
<all_dofs
->dofiod_count
-1; i
++) {
15149 ASSERT(all_dofs
->dofiod_helpers
[i
].dofhp_dof
< all_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
15156 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15161 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15167 dtrace_lazy_dofs_destroy(proc_t
*p
)
15169 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
15170 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15172 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
15174 dof_ioctl_data_t
* lazy_dofs
= p
->p_dtrace_lazy_dofs
;
15175 p
->p_dtrace_lazy_dofs
= NULL
;
15177 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15178 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15181 kmem_free(lazy_dofs
, DOF_IOCTL_DATA_T_SIZE(lazy_dofs
->dofiod_count
));
15186 dtrace_lazy_dofs_proc_iterate_filter(proc_t
*p
, void* ignored
)
15188 #pragma unused(ignored)
15190 * Okay to NULL test without taking the sprlock.
15192 return p
->p_dtrace_lazy_dofs
!= NULL
;
15196 dtrace_lazy_dofs_process(proc_t
*p
) {
15198 * It is possible this process may exit during our attempt to
15199 * fault in the dof. We could fix this by holding locks longer,
15200 * but the errors are benign.
15202 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15205 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
15206 ASSERT(dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
);
15208 dof_ioctl_data_t
* lazy_dofs
= p
->p_dtrace_lazy_dofs
;
15209 p
->p_dtrace_lazy_dofs
= NULL
;
15211 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15214 * Process each dof_helper_t
15216 if (lazy_dofs
!= NULL
) {
15220 for (i
=0; i
<lazy_dofs
->dofiod_count
; i
++) {
15222 * When loading lazy dof, we depend on the generations being sorted in ascending order.
15224 ASSERT(i
>= (lazy_dofs
->dofiod_count
- 1) || lazy_dofs
->dofiod_helpers
[i
].dofhp_dof
< lazy_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
15226 dof_helper_t
*dhp
= &lazy_dofs
->dofiod_helpers
[i
];
15229 * We stored the generation in dofhp_dof. Save it, and restore the original value.
15231 int generation
= dhp
->dofhp_dof
;
15232 dhp
->dofhp_dof
= dhp
->dofhp_addr
;
15234 dof_hdr_t
*dof
= dtrace_dof_copyin_from_proc(p
, dhp
->dofhp_dof
, &rval
);
15237 dtrace_helpers_t
*help
;
15239 lck_mtx_lock(&dtrace_lock
);
15242 * This must be done with the dtrace_lock held
15244 if ((help
= p
->p_dtrace_helpers
) == NULL
)
15245 help
= dtrace_helpers_create(p
);
15248 * If the generation value has been bumped, someone snuck in
15249 * when we released the dtrace lock. We have to dump this generation,
15250 * there is no safe way to load it.
15252 if (help
->dthps_generation
<= generation
) {
15253 help
->dthps_generation
= generation
;
15256 * dtrace_helper_slurp() takes responsibility for the dof --
15257 * it may free it now or it may save it and free it later.
15259 if ((rval
= dtrace_helper_slurp(p
, dof
, dhp
)) != generation
) {
15260 dtrace_dof_error(NULL
, "returned value did not match expected generation");
15264 lck_mtx_unlock(&dtrace_lock
);
15268 kmem_free(lazy_dofs
, DOF_IOCTL_DATA_T_SIZE(lazy_dofs
->dofiod_count
));
15273 dtrace_lazy_dofs_proc_iterate_doit(proc_t
*p
, void* ignored
)
15275 #pragma unused(ignored)
15277 dtrace_lazy_dofs_process(p
);
15279 return PROC_RETURNED
;
15282 #define DTRACE_LAZY_DOFS_DUPLICATED 1
15285 dtrace_lazy_dofs_duplicate(proc_t
*parent
, proc_t
*child
)
15287 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
15288 LCK_MTX_ASSERT(&parent
->p_dtrace_sprlock
, LCK_MTX_ASSERT_NOTOWNED
);
15289 LCK_MTX_ASSERT(&child
->p_dtrace_sprlock
, LCK_MTX_ASSERT_NOTOWNED
);
15291 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
15292 lck_mtx_lock(&parent
->p_dtrace_sprlock
);
15295 * We need to make sure that the transition to lazy dofs -> helpers
15296 * was atomic for our parent
15298 ASSERT(parent
->p_dtrace_lazy_dofs
== NULL
|| parent
->p_dtrace_helpers
== NULL
);
15300 * In theory we should hold the child sprlock, but this is safe...
15302 ASSERT(child
->p_dtrace_lazy_dofs
== NULL
&& child
->p_dtrace_helpers
== NULL
);
15304 dof_ioctl_data_t
* parent_dofs
= parent
->p_dtrace_lazy_dofs
;
15305 dof_ioctl_data_t
* child_dofs
= NULL
;
15307 size_t parent_dofs_size
= DOF_IOCTL_DATA_T_SIZE(parent_dofs
->dofiod_count
);
15308 child_dofs
= kmem_alloc(parent_dofs_size
, KM_SLEEP
);
15309 bcopy(parent_dofs
, child_dofs
, parent_dofs_size
);
15312 lck_mtx_unlock(&parent
->p_dtrace_sprlock
);
15315 lck_mtx_lock(&child
->p_dtrace_sprlock
);
15316 child
->p_dtrace_lazy_dofs
= child_dofs
;
15317 lck_mtx_unlock(&child
->p_dtrace_sprlock
);
15319 * We process the DOF at this point if the mode is set to
15320 * LAZY_OFF. This can happen if DTrace is still processing the
15321 * DOF of other process (which can happen because the
15322 * protected pager can have a huge latency)
15323 * but has not processed our parent yet
15325 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
) {
15326 dtrace_lazy_dofs_process(child
);
15328 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15330 return DTRACE_LAZY_DOFS_DUPLICATED
;
15332 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15337 static dtrace_helpers_t
*
15338 dtrace_helpers_create(proc_t
*p
)
15340 dtrace_helpers_t
*help
;
15342 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
15343 ASSERT(p
->p_dtrace_helpers
== NULL
);
15345 help
= kmem_zalloc(sizeof (dtrace_helpers_t
), KM_SLEEP
);
15346 help
->dthps_actions
= kmem_zalloc(sizeof (dtrace_helper_action_t
*) *
15347 DTRACE_NHELPER_ACTIONS
, KM_SLEEP
);
15349 p
->p_dtrace_helpers
= help
;
15356 dtrace_helpers_destroy(proc_t
* p
)
15358 dtrace_helpers_t
*help
;
15359 dtrace_vstate_t
*vstate
;
15362 lck_mtx_lock(&dtrace_lock
);
15364 ASSERT(p
->p_dtrace_helpers
!= NULL
);
15365 ASSERT(dtrace_helpers
> 0);
15367 help
= p
->p_dtrace_helpers
;
15368 vstate
= &help
->dthps_vstate
;
15371 * We're now going to lose the help from this process.
15373 p
->p_dtrace_helpers
= NULL
;
15377 * Destory the helper actions.
15379 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15380 dtrace_helper_action_t
*h
, *next
;
15382 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
15383 next
= h
->dtha_next
;
15384 dtrace_helper_action_destroy(h
, vstate
);
15389 lck_mtx_unlock(&dtrace_lock
);
15392 * Destroy the helper providers.
15394 if (help
->dthps_maxprovs
> 0) {
15395 lck_mtx_lock(&dtrace_meta_lock
);
15396 if (dtrace_meta_pid
!= NULL
) {
15397 ASSERT(dtrace_deferred_pid
== NULL
);
15399 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15400 dtrace_helper_provider_remove(
15401 &help
->dthps_provs
[i
]->dthp_prov
, p
);
15404 lck_mtx_lock(&dtrace_lock
);
15405 ASSERT(help
->dthps_deferred
== 0 ||
15406 help
->dthps_next
!= NULL
||
15407 help
->dthps_prev
!= NULL
||
15408 help
== dtrace_deferred_pid
);
15411 * Remove the helper from the deferred list.
15413 if (help
->dthps_next
!= NULL
)
15414 help
->dthps_next
->dthps_prev
= help
->dthps_prev
;
15415 if (help
->dthps_prev
!= NULL
)
15416 help
->dthps_prev
->dthps_next
= help
->dthps_next
;
15417 if (dtrace_deferred_pid
== help
) {
15418 dtrace_deferred_pid
= help
->dthps_next
;
15419 ASSERT(help
->dthps_prev
== NULL
);
15422 lck_mtx_unlock(&dtrace_lock
);
15425 lck_mtx_unlock(&dtrace_meta_lock
);
15427 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15428 dtrace_helper_provider_destroy(help
->dthps_provs
[i
]);
15431 kmem_free(help
->dthps_provs
, help
->dthps_maxprovs
*
15432 sizeof (dtrace_helper_provider_t
*));
15435 lck_mtx_lock(&dtrace_lock
);
15437 dtrace_vstate_fini(&help
->dthps_vstate
);
15438 kmem_free(help
->dthps_actions
,
15439 sizeof (dtrace_helper_action_t
*) * DTRACE_NHELPER_ACTIONS
);
15440 kmem_free(help
, sizeof (dtrace_helpers_t
));
15443 lck_mtx_unlock(&dtrace_lock
);
15447 dtrace_helpers_duplicate(proc_t
*from
, proc_t
*to
)
15449 dtrace_helpers_t
*help
, *newhelp
;
15450 dtrace_helper_action_t
*helper
, *new, *last
;
15452 dtrace_vstate_t
*vstate
;
15454 int j
, sz
, hasprovs
= 0;
15456 lck_mtx_lock(&dtrace_lock
);
15457 ASSERT(from
->p_dtrace_helpers
!= NULL
);
15458 ASSERT(dtrace_helpers
> 0);
15460 help
= from
->p_dtrace_helpers
;
15461 newhelp
= dtrace_helpers_create(to
);
15462 ASSERT(to
->p_dtrace_helpers
!= NULL
);
15464 newhelp
->dthps_generation
= help
->dthps_generation
;
15465 vstate
= &newhelp
->dthps_vstate
;
15468 * Duplicate the helper actions.
15470 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15471 if ((helper
= help
->dthps_actions
[i
]) == NULL
)
15474 for (last
= NULL
; helper
!= NULL
; helper
= helper
->dtha_next
) {
15475 new = kmem_zalloc(sizeof (dtrace_helper_action_t
),
15477 new->dtha_generation
= helper
->dtha_generation
;
15479 if ((dp
= helper
->dtha_predicate
) != NULL
) {
15480 dp
= dtrace_difo_duplicate(dp
, vstate
);
15481 new->dtha_predicate
= dp
;
15484 new->dtha_nactions
= helper
->dtha_nactions
;
15485 sz
= sizeof (dtrace_difo_t
*) * new->dtha_nactions
;
15486 new->dtha_actions
= kmem_alloc(sz
, KM_SLEEP
);
15488 for (j
= 0; j
< new->dtha_nactions
; j
++) {
15489 dtrace_difo_t
*dpj
= helper
->dtha_actions
[j
];
15491 ASSERT(dpj
!= NULL
);
15492 dpj
= dtrace_difo_duplicate(dpj
, vstate
);
15493 new->dtha_actions
[j
] = dpj
;
15496 if (last
!= NULL
) {
15497 last
->dtha_next
= new;
15499 newhelp
->dthps_actions
[i
] = new;
15507 * Duplicate the helper providers and register them with the
15508 * DTrace framework.
15510 if (help
->dthps_nprovs
> 0) {
15511 newhelp
->dthps_nprovs
= help
->dthps_nprovs
;
15512 newhelp
->dthps_maxprovs
= help
->dthps_nprovs
;
15513 newhelp
->dthps_provs
= kmem_alloc(newhelp
->dthps_nprovs
*
15514 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
15515 for (i
= 0; i
< newhelp
->dthps_nprovs
; i
++) {
15516 newhelp
->dthps_provs
[i
] = help
->dthps_provs
[i
];
15517 newhelp
->dthps_provs
[i
]->dthp_ref
++;
15523 lck_mtx_unlock(&dtrace_lock
);
15526 dtrace_helper_provider_register(to
, newhelp
, NULL
);
15530 * DTrace Process functions
15534 dtrace_proc_fork(proc_t
*parent_proc
, proc_t
*child_proc
, int spawn
)
15537 * This code applies to new processes who are copying the task
15538 * and thread state and address spaces of their parent process.
15542 * APPLE NOTE: Solaris does a sprlock() and drops the
15543 * proc_lock here. We're cheating a bit and only taking
15544 * the p_dtrace_sprlock lock. A full sprlock would
15545 * task_suspend the parent.
15547 lck_mtx_lock(&parent_proc
->p_dtrace_sprlock
);
15550 * Remove all DTrace tracepoints from the child process. We
15551 * need to do this _before_ duplicating USDT providers since
15552 * any associated probes may be immediately enabled.
15554 if (parent_proc
->p_dtrace_count
> 0) {
15555 dtrace_fasttrap_fork(parent_proc
, child_proc
);
15558 lck_mtx_unlock(&parent_proc
->p_dtrace_sprlock
);
15561 * Duplicate any lazy dof(s). This must be done while NOT
15562 * holding the parent sprlock! Lock ordering is
15563 * dtrace_dof_mode_lock, then sprlock. It is imperative we
15564 * always call dtrace_lazy_dofs_duplicate, rather than null
15565 * check and call if !NULL. If we NULL test, during lazy dof
15566 * faulting we can race with the faulting code and proceed
15567 * from here to beyond the helpers copy. The lazy dof
15568 * faulting will then fail to copy the helpers to the child
15569 * process. We return if we duplicated lazy dofs as a process
15570 * can only have one at the same time to avoid a race between
15571 * a dtrace client and dtrace_proc_fork where a process would
15572 * end up with both lazy dofs and helpers.
15574 if (dtrace_lazy_dofs_duplicate(parent_proc
, child_proc
) == DTRACE_LAZY_DOFS_DUPLICATED
) {
15579 * Duplicate any helper actions and providers if they haven't
15582 #if !defined(__APPLE__)
15585 * we set above informs the code to enable USDT probes that
15586 * sprlock() may fail because the child is being forked.
15590 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
15591 * never fails to find the child. We do not set SFORKING.
15593 if (parent_proc
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_fork
) {
15594 (*dtrace_helpers_fork
)(parent_proc
, child_proc
);
15600 dtrace_proc_exec(proc_t
*p
)
15603 * Invalidate any predicate evaluation already cached for this thread by DTrace.
15604 * That's because we've just stored to p_comm and DTrace refers to that when it
15605 * evaluates the "execname" special variable. uid and gid may have changed as well.
15607 dtrace_set_thread_predcache(current_thread(), 0);
15610 * Free any outstanding lazy dof entries. It is imperative we
15611 * always call dtrace_lazy_dofs_destroy, rather than null check
15612 * and call if !NULL. If we NULL test, during lazy dof faulting
15613 * we can race with the faulting code and proceed from here to
15614 * beyond the helpers cleanup. The lazy dof faulting will then
15615 * install new helpers which no longer belong to this process!
15617 dtrace_lazy_dofs_destroy(p
);
15621 * Clean up any DTrace helpers for the process.
15623 if (p
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_cleanup
) {
15624 (*dtrace_helpers_cleanup
)(p
);
15628 * Cleanup the DTrace provider associated with this process.
15631 if (p
->p_dtrace_probes
&& dtrace_fasttrap_exec_ptr
) {
15632 (*dtrace_fasttrap_exec_ptr
)(p
);
15638 dtrace_proc_exit(proc_t
*p
)
15641 * Free any outstanding lazy dof entries. It is imperative we
15642 * always call dtrace_lazy_dofs_destroy, rather than null check
15643 * and call if !NULL. If we NULL test, during lazy dof faulting
15644 * we can race with the faulting code and proceed from here to
15645 * beyond the helpers cleanup. The lazy dof faulting will then
15646 * install new helpers which will never be cleaned up, and leak.
15648 dtrace_lazy_dofs_destroy(p
);
15651 * Clean up any DTrace helper actions or probes for the process.
15653 if (p
->p_dtrace_helpers
!= NULL
) {
15654 (*dtrace_helpers_cleanup
)(p
);
15658 * Clean up any DTrace probes associated with this process.
15661 * APPLE NOTE: We release ptss pages/entries in dtrace_fasttrap_exit_ptr(),
15662 * call this after dtrace_helpers_cleanup()
15665 if (p
->p_dtrace_probes
&& dtrace_fasttrap_exit_ptr
) {
15666 (*dtrace_fasttrap_exit_ptr
)(p
);
15672 * DTrace Hook Functions
15676 * APPLE NOTE: dtrace_modctl_* routines for kext support.
15677 * Used to manipulate the modctl list within dtrace xnu.
15680 modctl_t
*dtrace_modctl_list
;
15683 dtrace_modctl_add(struct modctl
* newctl
)
15685 struct modctl
*nextp
, *prevp
;
15687 ASSERT(newctl
!= NULL
);
15688 LCK_MTX_ASSERT(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15690 // Insert new module at the front of the list,
15692 newctl
->mod_next
= dtrace_modctl_list
;
15693 dtrace_modctl_list
= newctl
;
15696 * If a module exists with the same name, then that module
15697 * must have been unloaded with enabled probes. We will move
15698 * the unloaded module to the new module's stale chain and
15699 * then stop traversing the list.
15703 nextp
= newctl
->mod_next
;
15705 while (nextp
!= NULL
) {
15706 if (nextp
->mod_loaded
) {
15707 /* This is a loaded module. Keep traversing. */
15709 nextp
= nextp
->mod_next
;
15713 /* Found an unloaded module */
15714 if (strncmp (newctl
->mod_modname
, nextp
->mod_modname
, KMOD_MAX_NAME
)) {
15715 /* Names don't match. Keep traversing. */
15717 nextp
= nextp
->mod_next
;
15721 /* We found a stale entry, move it. We're done. */
15722 prevp
->mod_next
= nextp
->mod_next
;
15723 newctl
->mod_stale
= nextp
;
15724 nextp
->mod_next
= NULL
;
15732 dtrace_modctl_lookup(struct kmod_info
* kmod
)
15734 LCK_MTX_ASSERT(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15736 struct modctl
* ctl
;
15738 for (ctl
= dtrace_modctl_list
; ctl
; ctl
=ctl
->mod_next
) {
15739 if (ctl
->mod_id
== kmod
->id
)
15746 * This routine is called from dtrace_module_unloaded().
15747 * It removes a modctl structure and its stale chain
15748 * from the kext shadow list.
15751 dtrace_modctl_remove(struct modctl
* ctl
)
15753 ASSERT(ctl
!= NULL
);
15754 LCK_MTX_ASSERT(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15755 modctl_t
*prevp
, *nextp
, *curp
;
15757 // Remove stale chain first
15758 for (curp
=ctl
->mod_stale
; curp
!= NULL
; curp
=nextp
) {
15759 nextp
= curp
->mod_stale
;
15760 /* There should NEVER be user symbols allocated at this point */
15761 ASSERT(curp
->mod_user_symbols
== NULL
);
15762 kmem_free(curp
, sizeof(modctl_t
));
15766 curp
= dtrace_modctl_list
;
15768 while (curp
!= ctl
) {
15770 curp
= curp
->mod_next
;
15773 if (prevp
!= NULL
) {
15774 prevp
->mod_next
= ctl
->mod_next
;
15777 dtrace_modctl_list
= ctl
->mod_next
;
15780 /* There should NEVER be user symbols allocated at this point */
15781 ASSERT(ctl
->mod_user_symbols
== NULL
);
15783 kmem_free (ctl
, sizeof(modctl_t
));
15787 * APPLE NOTE: The kext loader will call dtrace_module_loaded
15788 * when the kext is loaded in memory, but before calling the
15789 * kext's start routine.
15791 * Return 0 on success
15792 * Return -1 on failure
15796 dtrace_module_loaded(struct kmod_info
*kmod
, uint32_t flag
)
15798 dtrace_provider_t
*prv
;
15801 * If kernel symbols have been disabled, return immediately
15802 * DTRACE_KERNEL_SYMBOLS_NEVER is a permanent mode, it is safe to test without holding locks
15804 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
)
15807 struct modctl
*ctl
= NULL
;
15808 if (!kmod
|| kmod
->address
== 0 || kmod
->size
== 0)
15811 lck_mtx_lock(&dtrace_provider_lock
);
15812 lck_mtx_lock(&mod_lock
);
15815 * Have we seen this kext before?
15818 ctl
= dtrace_modctl_lookup(kmod
);
15821 /* bail... we already have this kext in the modctl list */
15822 lck_mtx_unlock(&mod_lock
);
15823 lck_mtx_unlock(&dtrace_provider_lock
);
15824 if (dtrace_err_verbose
)
15825 cmn_err(CE_WARN
, "dtrace load module already exists '%s %u' is failing against '%s %u'", kmod
->name
, (uint_t
)kmod
->id
, ctl
->mod_modname
, ctl
->mod_id
);
15829 ctl
= kmem_alloc(sizeof(struct modctl
), KM_SLEEP
);
15831 if (dtrace_err_verbose
)
15832 cmn_err(CE_WARN
, "dtrace module load '%s %u' is failing ", kmod
->name
, (uint_t
)kmod
->id
);
15833 lck_mtx_unlock(&mod_lock
);
15834 lck_mtx_unlock(&dtrace_provider_lock
);
15837 ctl
->mod_next
= NULL
;
15838 ctl
->mod_stale
= NULL
;
15839 strlcpy (ctl
->mod_modname
, kmod
->name
, sizeof(ctl
->mod_modname
));
15840 ctl
->mod_loadcnt
= kmod
->id
;
15841 ctl
->mod_nenabled
= 0;
15842 ctl
->mod_address
= kmod
->address
;
15843 ctl
->mod_size
= kmod
->size
;
15844 ctl
->mod_id
= kmod
->id
;
15845 ctl
->mod_loaded
= 1;
15846 ctl
->mod_flags
= 0;
15847 ctl
->mod_user_symbols
= NULL
;
15850 * Find the UUID for this module, if it has one
15852 kernel_mach_header_t
* header
= (kernel_mach_header_t
*)ctl
->mod_address
;
15853 struct load_command
* load_cmd
= (struct load_command
*)&header
[1];
15855 for (i
= 0; i
< header
->ncmds
; i
++) {
15856 if (load_cmd
->cmd
== LC_UUID
) {
15857 struct uuid_command
* uuid_cmd
= (struct uuid_command
*)load_cmd
;
15858 memcpy(ctl
->mod_uuid
, uuid_cmd
->uuid
, sizeof(uuid_cmd
->uuid
));
15859 ctl
->mod_flags
|= MODCTL_HAS_UUID
;
15862 load_cmd
= (struct load_command
*)((caddr_t
)load_cmd
+ load_cmd
->cmdsize
);
15865 if (ctl
->mod_address
== g_kernel_kmod_info
.address
) {
15866 ctl
->mod_flags
|= MODCTL_IS_MACH_KERNEL
;
15869 dtrace_modctl_add(ctl
);
15872 * We must hold the dtrace_lock to safely test non permanent dtrace_fbt_symbol_mode(s)
15874 lck_mtx_lock(&dtrace_lock
);
15877 * DTrace must decide if it will instrument modules lazily via
15878 * userspace symbols (default mode), or instrument immediately via
15879 * kernel symbols (non-default mode)
15881 * When in default/lazy mode, DTrace will only support modules
15882 * built with a valid UUID.
15884 * Overriding the default can be done explicitly in one of
15885 * the following two ways.
15887 * A module can force symbols from kernel space using the plist key,
15888 * OSBundleForceDTraceInit (see kmod.h). If this per kext state is set,
15889 * we fall through and instrument this module now.
15891 * Or, the boot-arg, dtrace_kernel_symbol_mode, can be set to force symbols
15892 * from kernel space (see dtrace_impl.h). If this system state is set
15893 * to a non-userspace mode, we fall through and instrument the module now.
15896 if ((dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) &&
15897 (!(flag
& KMOD_DTRACE_FORCE_INIT
)))
15899 /* We will instrument the module lazily -- this is the default */
15900 lck_mtx_unlock(&dtrace_lock
);
15901 lck_mtx_unlock(&mod_lock
);
15902 lck_mtx_unlock(&dtrace_provider_lock
);
15906 /* We will instrument the module immediately using kernel symbols */
15907 ctl
->mod_flags
|= MODCTL_HAS_KERNEL_SYMBOLS
;
15909 lck_mtx_unlock(&dtrace_lock
);
15912 * We're going to call each providers per-module provide operation
15913 * specifying only this module.
15915 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
15916 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
15919 * APPLE NOTE: The contract with the kext loader is that once this function
15920 * has completed, it may delete kernel symbols at will.
15921 * We must set this while still holding the mod_lock.
15923 ctl
->mod_flags
&= ~MODCTL_HAS_KERNEL_SYMBOLS
;
15925 lck_mtx_unlock(&mod_lock
);
15926 lck_mtx_unlock(&dtrace_provider_lock
);
15929 * If we have any retained enablings, we need to match against them.
15930 * Enabling probes requires that cpu_lock be held, and we cannot hold
15931 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15932 * module. (In particular, this happens when loading scheduling
15933 * classes.) So if we have any retained enablings, we need to dispatch
15934 * our task queue to do the match for us.
15936 lck_mtx_lock(&dtrace_lock
);
15938 if (dtrace_retained
== NULL
) {
15939 lck_mtx_unlock(&dtrace_lock
);
15945 * The cpu_lock mentioned above is only held by dtrace code, Apple's xnu never actually
15946 * holds it for any reason. Thus the comment above is invalid, we can directly invoke
15947 * dtrace_enabling_matchall without jumping through all the hoops, and we can avoid
15948 * the delay call as well.
15950 lck_mtx_unlock(&dtrace_lock
);
15952 dtrace_enabling_matchall();
15958 * Return 0 on success
15959 * Return -1 on failure
15962 dtrace_module_unloaded(struct kmod_info
*kmod
)
15964 dtrace_probe_t
template, *probe
, *first
, *next
;
15965 dtrace_provider_t
*prov
;
15966 struct modctl
*ctl
= NULL
;
15967 struct modctl
*syncctl
= NULL
;
15968 struct modctl
*nextsyncctl
= NULL
;
15971 lck_mtx_lock(&dtrace_provider_lock
);
15972 lck_mtx_lock(&mod_lock
);
15973 lck_mtx_lock(&dtrace_lock
);
15975 if (kmod
== NULL
) {
15979 ctl
= dtrace_modctl_lookup(kmod
);
15982 lck_mtx_unlock(&dtrace_lock
);
15983 lck_mtx_unlock(&mod_lock
);
15984 lck_mtx_unlock(&dtrace_provider_lock
);
15987 ctl
->mod_loaded
= 0;
15988 ctl
->mod_address
= 0;
15992 if (dtrace_bymod
== NULL
) {
15994 * The DTrace module is loaded (obviously) but not attached;
15995 * we don't have any work to do.
15998 (void)dtrace_modctl_remove(ctl
);
15999 lck_mtx_unlock(&dtrace_lock
);
16000 lck_mtx_unlock(&mod_lock
);
16001 lck_mtx_unlock(&dtrace_provider_lock
);
16005 /* Syncmode set means we target and traverse entire modctl list. */
16007 nextsyncctl
= dtrace_modctl_list
;
16012 /* find a stale modctl struct */
16013 for (syncctl
= nextsyncctl
; syncctl
!= NULL
; syncctl
=syncctl
->mod_next
) {
16014 if (syncctl
->mod_address
== 0)
16019 /* We have no more work to do */
16020 lck_mtx_unlock(&dtrace_lock
);
16021 lck_mtx_unlock(&mod_lock
);
16022 lck_mtx_unlock(&dtrace_provider_lock
);
16026 /* keep track of next syncctl in case this one is removed */
16027 nextsyncctl
= syncctl
->mod_next
;
16032 template.dtpr_mod
= ctl
->mod_modname
;
16034 for (probe
= first
= dtrace_hash_lookup(dtrace_bymod
, &template);
16035 probe
!= NULL
; probe
= probe
->dtpr_nextmod
) {
16036 if (probe
->dtpr_ecb
!= NULL
) {
16038 * This shouldn't _actually_ be possible -- we're
16039 * unloading a module that has an enabled probe in it.
16040 * (It's normally up to the provider to make sure that
16041 * this can't happen.) However, because dtps_enable()
16042 * doesn't have a failure mode, there can be an
16043 * enable/unload race. Upshot: we don't want to
16044 * assert, but we're not going to disable the
16050 /* We're syncing, let's look at next in list */
16054 lck_mtx_unlock(&dtrace_lock
);
16055 lck_mtx_unlock(&mod_lock
);
16056 lck_mtx_unlock(&dtrace_provider_lock
);
16058 if (dtrace_err_verbose
) {
16059 cmn_err(CE_WARN
, "unloaded module '%s' had "
16060 "enabled probes", ctl
->mod_modname
);
16068 for (first
= NULL
; probe
!= NULL
; probe
= next
) {
16069 ASSERT(dtrace_probes
[probe
->dtpr_id
- 1] == probe
);
16071 dtrace_probes
[probe
->dtpr_id
- 1] = NULL
;
16072 probe
->dtpr_provider
->dtpv_probe_count
--;
16074 next
= probe
->dtpr_nextmod
;
16075 dtrace_hash_remove(dtrace_bymod
, probe
);
16076 dtrace_hash_remove(dtrace_byfunc
, probe
);
16077 dtrace_hash_remove(dtrace_byname
, probe
);
16079 if (first
== NULL
) {
16081 probe
->dtpr_nextmod
= NULL
;
16083 probe
->dtpr_nextmod
= first
;
16089 * We've removed all of the module's probes from the hash chains and
16090 * from the probe array. Now issue a dtrace_sync() to be sure that
16091 * everyone has cleared out from any probe array processing.
16095 for (probe
= first
; probe
!= NULL
; probe
= first
) {
16096 first
= probe
->dtpr_nextmod
;
16097 prov
= probe
->dtpr_provider
;
16098 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, probe
->dtpr_id
,
16100 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
16101 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
16102 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
16103 vmem_free(dtrace_arena
, (void *)(uintptr_t)probe
->dtpr_id
, 1);
16105 zfree(dtrace_probe_t_zone
, probe
);
16108 dtrace_modctl_remove(ctl
);
16113 lck_mtx_unlock(&dtrace_lock
);
16114 lck_mtx_unlock(&mod_lock
);
16115 lck_mtx_unlock(&dtrace_provider_lock
);
16121 dtrace_suspend(void)
16123 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_suspend
));
16127 dtrace_resume(void)
16129 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_resume
));
16133 dtrace_cpu_setup(cpu_setup_t what
, processorid_t cpu
)
16135 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
16136 lck_mtx_lock(&dtrace_lock
);
16140 dtrace_state_t
*state
;
16141 dtrace_optval_t
*opt
, rs
, c
;
16144 * For now, we only allocate a new buffer for anonymous state.
16146 if ((state
= dtrace_anon
.dta_state
) == NULL
)
16149 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
16152 opt
= state
->dts_options
;
16153 c
= opt
[DTRACEOPT_CPU
];
16155 if (c
!= DTRACE_CPUALL
&& c
!= DTRACEOPT_UNSET
&& c
!= cpu
)
16159 * Regardless of what the actual policy is, we're going to
16160 * temporarily set our resize policy to be manual. We're
16161 * also going to temporarily set our CPU option to denote
16162 * the newly configured CPU.
16164 rs
= opt
[DTRACEOPT_BUFRESIZE
];
16165 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_MANUAL
;
16166 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)cpu
;
16168 (void) dtrace_state_buffers(state
);
16170 opt
[DTRACEOPT_BUFRESIZE
] = rs
;
16171 opt
[DTRACEOPT_CPU
] = c
;
16178 * We don't free the buffer in the CPU_UNCONFIG case. (The
16179 * buffer will be freed when the consumer exits.)
16187 lck_mtx_unlock(&dtrace_lock
);
16192 dtrace_cpu_setup_initial(processorid_t cpu
)
16194 (void) dtrace_cpu_setup(CPU_CONFIG
, cpu
);
16198 dtrace_toxrange_add(uintptr_t base
, uintptr_t limit
)
16200 if (dtrace_toxranges
>= dtrace_toxranges_max
) {
16202 dtrace_toxrange_t
*range
;
16204 osize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
16207 ASSERT(dtrace_toxrange
== NULL
);
16208 ASSERT(dtrace_toxranges_max
== 0);
16209 dtrace_toxranges_max
= 1;
16211 dtrace_toxranges_max
<<= 1;
16214 nsize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
16215 range
= kmem_zalloc(nsize
, KM_SLEEP
);
16217 if (dtrace_toxrange
!= NULL
) {
16218 ASSERT(osize
!= 0);
16219 bcopy(dtrace_toxrange
, range
, osize
);
16220 kmem_free(dtrace_toxrange
, osize
);
16223 dtrace_toxrange
= range
;
16226 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_base
== 0);
16227 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_limit
== 0);
16229 dtrace_toxrange
[dtrace_toxranges
].dtt_base
= base
;
16230 dtrace_toxrange
[dtrace_toxranges
].dtt_limit
= limit
;
16231 dtrace_toxranges
++;
16235 * DTrace Driver Cookbook Functions
16239 dtrace_attach(dev_info_t
*devi
, ddi_attach_cmd_t cmd
)
16241 #pragma unused(cmd) /* __APPLE__ */
16242 dtrace_provider_id_t id
;
16243 dtrace_state_t
*state
= NULL
;
16244 dtrace_enabling_t
*enab
;
16246 lck_mtx_lock(&cpu_lock
);
16247 lck_mtx_lock(&dtrace_provider_lock
);
16248 lck_mtx_lock(&dtrace_lock
);
16250 /* Darwin uses BSD cloning device driver to automagically obtain minor device number. */
16252 ddi_report_dev(devi
);
16253 dtrace_devi
= devi
;
16255 dtrace_modload
= dtrace_module_loaded
;
16256 dtrace_modunload
= dtrace_module_unloaded
;
16257 dtrace_cpu_init
= dtrace_cpu_setup_initial
;
16258 dtrace_helpers_cleanup
= dtrace_helpers_destroy
;
16259 dtrace_helpers_fork
= dtrace_helpers_duplicate
;
16260 dtrace_cpustart_init
= dtrace_suspend
;
16261 dtrace_cpustart_fini
= dtrace_resume
;
16262 dtrace_debugger_init
= dtrace_suspend
;
16263 dtrace_debugger_fini
= dtrace_resume
;
16265 register_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
16267 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
16269 dtrace_arena
= vmem_create("dtrace", (void *)1, UINT32_MAX
, 1,
16270 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
16271 dtrace_taskq
= taskq_create("dtrace_taskq", 1, maxclsyspri
,
16274 dtrace_state_cache
= kmem_cache_create("dtrace_state_cache",
16275 sizeof (dtrace_dstate_percpu_t
) * (int)NCPU
, DTRACE_STATE_ALIGN
,
16276 NULL
, NULL
, NULL
, NULL
, NULL
, 0);
16278 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
16280 dtrace_bymod
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_mod
),
16281 offsetof(dtrace_probe_t
, dtpr_nextmod
),
16282 offsetof(dtrace_probe_t
, dtpr_prevmod
));
16284 dtrace_byfunc
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_func
),
16285 offsetof(dtrace_probe_t
, dtpr_nextfunc
),
16286 offsetof(dtrace_probe_t
, dtpr_prevfunc
));
16288 dtrace_byname
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_name
),
16289 offsetof(dtrace_probe_t
, dtpr_nextname
),
16290 offsetof(dtrace_probe_t
, dtpr_prevname
));
16292 if (dtrace_retain_max
< 1) {
16293 cmn_err(CE_WARN
, "illegal value (%lu) for dtrace_retain_max; "
16294 "setting to 1", dtrace_retain_max
);
16295 dtrace_retain_max
= 1;
16299 * Now discover our toxic ranges.
16301 dtrace_toxic_ranges(dtrace_toxrange_add
);
16304 * Before we register ourselves as a provider to our own framework,
16305 * we would like to assert that dtrace_provider is NULL -- but that's
16306 * not true if we were loaded as a dependency of a DTrace provider.
16307 * Once we've registered, we can assert that dtrace_provider is our
16310 (void) dtrace_register("dtrace", &dtrace_provider_attr
,
16311 DTRACE_PRIV_NONE
, 0, &dtrace_provider_ops
, NULL
, &id
);
16313 ASSERT(dtrace_provider
!= NULL
);
16314 ASSERT((dtrace_provider_id_t
)dtrace_provider
== id
);
16316 #if defined (__x86_64__)
16317 dtrace_probeid_begin
= dtrace_probe_create((dtrace_provider_id_t
)
16318 dtrace_provider
, NULL
, NULL
, "BEGIN", 1, NULL
);
16319 dtrace_probeid_end
= dtrace_probe_create((dtrace_provider_id_t
)
16320 dtrace_provider
, NULL
, NULL
, "END", 0, NULL
);
16321 dtrace_probeid_error
= dtrace_probe_create((dtrace_provider_id_t
)
16322 dtrace_provider
, NULL
, NULL
, "ERROR", 3, NULL
);
16323 #elif (defined(__arm__) || defined(__arm64__))
16324 dtrace_probeid_begin
= dtrace_probe_create((dtrace_provider_id_t
)
16325 dtrace_provider
, NULL
, NULL
, "BEGIN", 2, NULL
);
16326 dtrace_probeid_end
= dtrace_probe_create((dtrace_provider_id_t
)
16327 dtrace_provider
, NULL
, NULL
, "END", 1, NULL
);
16328 dtrace_probeid_error
= dtrace_probe_create((dtrace_provider_id_t
)
16329 dtrace_provider
, NULL
, NULL
, "ERROR", 4, NULL
);
16331 #error Unknown Architecture
16334 dtrace_anon_property();
16335 lck_mtx_unlock(&cpu_lock
);
16338 * If DTrace helper tracing is enabled, we need to allocate the
16339 * trace buffer and initialize the values.
16341 if (dtrace_helptrace_enabled
) {
16342 ASSERT(dtrace_helptrace_buffer
== NULL
);
16343 dtrace_helptrace_buffer
=
16344 kmem_zalloc(dtrace_helptrace_bufsize
, KM_SLEEP
);
16345 dtrace_helptrace_next
= 0;
16349 * If there are already providers, we must ask them to provide their
16350 * probes, and then match any anonymous enabling against them. Note
16351 * that there should be no other retained enablings at this time:
16352 * the only retained enablings at this time should be the anonymous
16355 if (dtrace_anon
.dta_enabling
!= NULL
) {
16356 ASSERT(dtrace_retained
== dtrace_anon
.dta_enabling
);
16359 * APPLE NOTE: if handling anonymous dof, switch symbol modes.
16361 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) {
16362 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
;
16365 dtrace_enabling_provide(NULL
);
16366 state
= dtrace_anon
.dta_state
;
16369 * We couldn't hold cpu_lock across the above call to
16370 * dtrace_enabling_provide(), but we must hold it to actually
16371 * enable the probes. We have to drop all of our locks, pick
16372 * up cpu_lock, and regain our locks before matching the
16373 * retained anonymous enabling.
16375 lck_mtx_unlock(&dtrace_lock
);
16376 lck_mtx_unlock(&dtrace_provider_lock
);
16378 lck_mtx_lock(&cpu_lock
);
16379 lck_mtx_lock(&dtrace_provider_lock
);
16380 lck_mtx_lock(&dtrace_lock
);
16382 if ((enab
= dtrace_anon
.dta_enabling
) != NULL
)
16383 (void) dtrace_enabling_match(enab
, NULL
, NULL
);
16385 lck_mtx_unlock(&cpu_lock
);
16388 lck_mtx_unlock(&dtrace_lock
);
16389 lck_mtx_unlock(&dtrace_provider_lock
);
16391 if (state
!= NULL
) {
16393 * If we created any anonymous state, set it going now.
16395 (void) dtrace_state_go(state
, &dtrace_anon
.dta_beganon
);
16398 return (DDI_SUCCESS
);
16403 dtrace_open(dev_t
*devp
, int flag
, int otyp
, cred_t
*cred_p
)
16405 #pragma unused(flag, otyp)
16406 dtrace_state_t
*state
;
16412 /* APPLE: Darwin puts Helper on its own major device. */
16415 * If no DTRACE_PRIV_* bits are set in the credential, then the
16416 * caller lacks sufficient permission to do anything with DTrace.
16418 dtrace_cred2priv(cred_p
, &priv
, &uid
, &zoneid
);
16419 if (priv
== DTRACE_PRIV_NONE
)
16423 * APPLE NOTE: We delay the initialization of fasttrap as late as possible.
16424 * It certainly can't be later than now!
16429 * Ask all providers to provide all their probes.
16431 lck_mtx_lock(&dtrace_provider_lock
);
16432 dtrace_probe_provide(NULL
, NULL
);
16433 lck_mtx_unlock(&dtrace_provider_lock
);
16435 lck_mtx_lock(&cpu_lock
);
16436 lck_mtx_lock(&dtrace_lock
);
16438 dtrace_membar_producer();
16441 * If the kernel debugger is active (that is, if the kernel debugger
16442 * modified text in some way), we won't allow the open.
16444 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
16446 lck_mtx_unlock(&dtrace_lock
);
16447 lck_mtx_unlock(&cpu_lock
);
16451 rv
= dtrace_state_create(devp
, cred_p
, &state
);
16452 lck_mtx_unlock(&cpu_lock
);
16454 if (rv
!= 0 || state
== NULL
) {
16455 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16456 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16457 lck_mtx_unlock(&dtrace_lock
);
16458 /* propagate EAGAIN or ERESTART */
16462 lck_mtx_unlock(&dtrace_lock
);
16464 lck_rw_lock_exclusive(&dtrace_dof_mode_lock
);
16467 * If we are currently lazy, transition states.
16469 * Unlike dtrace_close, we do not need to check the
16470 * value of dtrace_opens, as any positive value (and
16471 * we count as 1) means we transition states.
16473 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
) {
16474 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_OFF
;
16476 * We do not need to hold the exclusive lock while processing
16477 * DOF on processes. We do need to make sure the mode does not get
16478 * changed to DTRACE_DOF_MODE_LAZY_ON during that stage though
16479 * (which should not happen anyway since it only happens in
16480 * dtrace_close). There is no way imcomplete USDT probes can be
16481 * activate by any DTrace clients here since they all have to
16482 * call dtrace_open and be blocked on dtrace_dof_mode_lock
16484 lck_rw_lock_exclusive_to_shared(&dtrace_dof_mode_lock
);
16486 * Iterate all existing processes and load lazy dofs.
16488 proc_iterate(PROC_ALLPROCLIST
| PROC_NOWAITTRANS
,
16489 dtrace_lazy_dofs_proc_iterate_doit
,
16491 dtrace_lazy_dofs_proc_iterate_filter
,
16494 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
16497 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock
);
16502 * Update kernel symbol state.
16504 * We must own the provider and dtrace locks.
16506 * NOTE! It may appear there is a race by setting this value so late
16507 * after dtrace_probe_provide. However, any kext loaded after the
16508 * call to probe provide and before we set LAZY_OFF will be marked as
16509 * eligible for symbols from userspace. The same dtrace that is currently
16510 * calling dtrace_open() (this call!) will get a list of kexts needing
16511 * symbols and fill them in, thus closing the race window.
16513 * We want to set this value only after it certain it will succeed, as
16514 * this significantly reduces the complexity of error exits.
16516 lck_mtx_lock(&dtrace_lock
);
16517 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) {
16518 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
;
16520 lck_mtx_unlock(&dtrace_lock
);
16527 dtrace_close(dev_t dev
, int flag
, int otyp
, cred_t
*cred_p
)
16529 #pragma unused(flag, otyp, cred_p) /* __APPLE__ */
16530 minor_t minor
= getminor(dev
);
16531 dtrace_state_t
*state
;
16533 /* APPLE NOTE: Darwin puts Helper on its own major device. */
16534 state
= dtrace_state_get(minor
);
16536 lck_mtx_lock(&cpu_lock
);
16537 lck_mtx_lock(&dtrace_lock
);
16539 if (state
->dts_anon
) {
16541 * There is anonymous state. Destroy that first.
16543 ASSERT(dtrace_anon
.dta_state
== NULL
);
16544 dtrace_state_destroy(state
->dts_anon
);
16547 dtrace_state_destroy(state
);
16548 ASSERT(dtrace_opens
> 0);
16551 * Only relinquish control of the kernel debugger interface when there
16552 * are no consumers and no anonymous enablings.
16554 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16555 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16557 lck_mtx_unlock(&dtrace_lock
);
16558 lck_mtx_unlock(&cpu_lock
);
16561 * Lock ordering requires the dof mode lock be taken before
16564 lck_rw_lock_exclusive(&dtrace_dof_mode_lock
);
16565 lck_mtx_lock(&dtrace_lock
);
16567 if (dtrace_opens
== 0) {
16569 * If we are currently lazy-off, and this is the last close, transition to
16572 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
) {
16573 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_ON
;
16577 * If we are the last dtrace client, switch back to lazy (from userspace) symbols
16579 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
) {
16580 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
;
16584 lck_mtx_unlock(&dtrace_lock
);
16585 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock
);
16588 * Kext probes may be retained past the end of the kext's lifespan. The
16589 * probes are kept until the last reference to them has been removed.
16590 * Since closing an active dtrace context is likely to drop that last reference,
16591 * lets take a shot at cleaning out the orphaned probes now.
16593 dtrace_module_unloaded(NULL
);
16600 dtrace_ioctl_helper(u_long cmd
, caddr_t arg
, int *rv
)
16604 * Safe to check this outside the dof mode lock
16606 if (dtrace_dof_mode
== DTRACE_DOF_MODE_NEVER
)
16607 return KERN_SUCCESS
;
16610 #if defined (__arm64__)
16611 case DTRACEHIOC_ADDDOF_U32
:
16612 case DTRACEHIOC_ADDDOF_U64
:
16614 case DTRACEHIOC_ADDDOF
:
16615 #endif /* __arm64__*/
16617 dof_helper_t
*dhp
= NULL
;
16618 size_t dof_ioctl_data_size
;
16619 dof_ioctl_data_t
* multi_dof
;
16622 user_addr_t user_address
= *(user_addr_t
*)arg
;
16623 uint64_t dof_count
;
16624 int multi_dof_claimed
= 0;
16625 proc_t
* p
= current_proc();
16628 * If this is a restricted process and dtrace is restricted,
16629 * do not allow DOFs to be registered
16631 if (dtrace_is_restricted() &&
16632 !dtrace_are_restrictions_relaxed() &&
16633 !dtrace_can_attach_to_proc(current_proc())) {
16638 * Read the number of DOF sections being passed in.
16640 if (copyin(user_address
+ offsetof(dof_ioctl_data_t
, dofiod_count
),
16642 sizeof(dof_count
))) {
16643 dtrace_dof_error(NULL
, "failed to copyin dofiod_count");
16648 * Range check the count.
16650 if (dof_count
== 0 || dof_count
> 1024) {
16651 dtrace_dof_error(NULL
, "dofiod_count is not valid");
16656 * Allocate a correctly sized structure and copyin the data.
16658 dof_ioctl_data_size
= DOF_IOCTL_DATA_T_SIZE(dof_count
);
16659 if ((multi_dof
= kmem_alloc(dof_ioctl_data_size
, KM_SLEEP
)) == NULL
)
16662 /* NOTE! We can no longer exit this method via return */
16663 if (copyin(user_address
, multi_dof
, dof_ioctl_data_size
) != 0) {
16664 dtrace_dof_error(NULL
, "failed copyin of dof_ioctl_data_t");
16670 * Check that the count didn't change between the first copyin and the second.
16672 if (multi_dof
->dofiod_count
!= dof_count
) {
16678 * Try to process lazily first.
16680 rval
= dtrace_lazy_dofs_add(p
, multi_dof
, &multi_dof_claimed
);
16683 * If rval is EACCES, we must be non-lazy.
16685 if (rval
== EACCES
) {
16688 * Process each dof_helper_t
16692 dhp
= &multi_dof
->dofiod_helpers
[i
];
16694 dof_hdr_t
*dof
= dtrace_dof_copyin(dhp
->dofhp_dof
, &rval
);
16697 lck_mtx_lock(&dtrace_lock
);
16700 * dtrace_helper_slurp() takes responsibility for the dof --
16701 * it may free it now or it may save it and free it later.
16703 if ((dhp
->dofhp_dof
= (uint64_t)dtrace_helper_slurp(p
, dof
, dhp
)) == -1ULL) {
16707 lck_mtx_unlock(&dtrace_lock
);
16709 } while (++i
< multi_dof
->dofiod_count
&& rval
== 0);
16713 * We need to copyout the multi_dof struct, because it contains
16714 * the generation (unique id) values needed to call DTRACEHIOC_REMOVE
16716 * This could certainly be better optimized.
16718 if (copyout(multi_dof
, user_address
, dof_ioctl_data_size
) != 0) {
16719 dtrace_dof_error(NULL
, "failed copyout of dof_ioctl_data_t");
16720 /* Don't overwrite pre-existing error code */
16721 if (rval
== 0) rval
= EFAULT
;
16726 * If we had to allocate struct memory, free it.
16728 if (multi_dof
!= NULL
&& !multi_dof_claimed
) {
16729 kmem_free(multi_dof
, dof_ioctl_data_size
);
16735 case DTRACEHIOC_REMOVE
: {
16736 int generation
= *(int*)arg
;
16737 proc_t
* p
= current_proc();
16742 int rval
= dtrace_lazy_dofs_remove(p
, generation
);
16745 * EACCES means non-lazy
16747 if (rval
== EACCES
) {
16748 lck_mtx_lock(&dtrace_lock
);
16749 rval
= dtrace_helper_destroygen(p
, generation
);
16750 lck_mtx_unlock(&dtrace_lock
);
16765 dtrace_ioctl(dev_t dev
, u_long cmd
, user_addr_t arg
, int md
, cred_t
*cr
, int *rv
)
16768 minor_t minor
= getminor(dev
);
16769 dtrace_state_t
*state
;
16772 /* Darwin puts Helper on its own major device. */
16774 state
= dtrace_state_get(minor
);
16776 if (state
->dts_anon
) {
16777 ASSERT(dtrace_anon
.dta_state
== NULL
);
16778 state
= state
->dts_anon
;
16782 case DTRACEIOC_PROVIDER
: {
16783 dtrace_providerdesc_t pvd
;
16784 dtrace_provider_t
*pvp
;
16786 if (copyin(arg
, &pvd
, sizeof (pvd
)) != 0)
16789 pvd
.dtvd_name
[DTRACE_PROVNAMELEN
- 1] = '\0';
16790 lck_mtx_lock(&dtrace_provider_lock
);
16792 for (pvp
= dtrace_provider
; pvp
!= NULL
; pvp
= pvp
->dtpv_next
) {
16793 if (strncmp(pvp
->dtpv_name
, pvd
.dtvd_name
, DTRACE_PROVNAMELEN
) == 0)
16797 lck_mtx_unlock(&dtrace_provider_lock
);
16802 bcopy(&pvp
->dtpv_priv
, &pvd
.dtvd_priv
, sizeof (dtrace_ppriv_t
));
16803 bcopy(&pvp
->dtpv_attr
, &pvd
.dtvd_attr
, sizeof (dtrace_pattr_t
));
16804 if (copyout(&pvd
, arg
, sizeof (pvd
)) != 0)
16810 case DTRACEIOC_EPROBE
: {
16811 dtrace_eprobedesc_t epdesc
;
16813 dtrace_action_t
*act
;
16819 if (copyin(arg
, &epdesc
, sizeof (epdesc
)) != 0)
16822 lck_mtx_lock(&dtrace_lock
);
16824 if ((ecb
= dtrace_epid2ecb(state
, epdesc
.dtepd_epid
)) == NULL
) {
16825 lck_mtx_unlock(&dtrace_lock
);
16829 if (ecb
->dte_probe
== NULL
) {
16830 lck_mtx_unlock(&dtrace_lock
);
16834 epdesc
.dtepd_probeid
= ecb
->dte_probe
->dtpr_id
;
16835 epdesc
.dtepd_uarg
= ecb
->dte_uarg
;
16836 epdesc
.dtepd_size
= ecb
->dte_size
;
16838 nrecs
= epdesc
.dtepd_nrecs
;
16839 epdesc
.dtepd_nrecs
= 0;
16840 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16841 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16844 epdesc
.dtepd_nrecs
++;
16848 * Now that we have the size, we need to allocate a temporary
16849 * buffer in which to store the complete description. We need
16850 * the temporary buffer to be able to drop dtrace_lock()
16851 * across the copyout(), below.
16853 size
= sizeof (dtrace_eprobedesc_t
) +
16854 (epdesc
.dtepd_nrecs
* sizeof (dtrace_recdesc_t
));
16856 buf
= kmem_alloc(size
, KM_SLEEP
);
16857 dest
= (uintptr_t)buf
;
16859 bcopy(&epdesc
, (void *)dest
, sizeof (epdesc
));
16860 dest
+= offsetof(dtrace_eprobedesc_t
, dtepd_rec
[0]);
16862 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16863 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16869 bcopy(&act
->dta_rec
, (void *)dest
,
16870 sizeof (dtrace_recdesc_t
));
16871 dest
+= sizeof (dtrace_recdesc_t
);
16874 lck_mtx_unlock(&dtrace_lock
);
16876 if (copyout(buf
, arg
, dest
- (uintptr_t)buf
) != 0) {
16877 kmem_free(buf
, size
);
16881 kmem_free(buf
, size
);
16885 case DTRACEIOC_AGGDESC
: {
16886 dtrace_aggdesc_t aggdesc
;
16887 dtrace_action_t
*act
;
16888 dtrace_aggregation_t
*agg
;
16891 dtrace_recdesc_t
*lrec
;
16896 if (copyin(arg
, &aggdesc
, sizeof (aggdesc
)) != 0)
16899 lck_mtx_lock(&dtrace_lock
);
16901 if ((agg
= dtrace_aggid2agg(state
, aggdesc
.dtagd_id
)) == NULL
) {
16902 lck_mtx_unlock(&dtrace_lock
);
16906 aggdesc
.dtagd_epid
= agg
->dtag_ecb
->dte_epid
;
16908 nrecs
= aggdesc
.dtagd_nrecs
;
16909 aggdesc
.dtagd_nrecs
= 0;
16911 offs
= agg
->dtag_base
;
16912 lrec
= &agg
->dtag_action
.dta_rec
;
16913 aggdesc
.dtagd_size
= lrec
->dtrd_offset
+ lrec
->dtrd_size
- offs
;
16915 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16916 ASSERT(act
->dta_intuple
||
16917 DTRACEACT_ISAGG(act
->dta_kind
));
16920 * If this action has a record size of zero, it
16921 * denotes an argument to the aggregating action.
16922 * Because the presence of this record doesn't (or
16923 * shouldn't) affect the way the data is interpreted,
16924 * we don't copy it out to save user-level the
16925 * confusion of dealing with a zero-length record.
16927 if (act
->dta_rec
.dtrd_size
== 0) {
16928 ASSERT(agg
->dtag_hasarg
);
16932 aggdesc
.dtagd_nrecs
++;
16934 if (act
== &agg
->dtag_action
)
16939 * Now that we have the size, we need to allocate a temporary
16940 * buffer in which to store the complete description. We need
16941 * the temporary buffer to be able to drop dtrace_lock()
16942 * across the copyout(), below.
16944 size
= sizeof (dtrace_aggdesc_t
) +
16945 (aggdesc
.dtagd_nrecs
* sizeof (dtrace_recdesc_t
));
16947 buf
= kmem_alloc(size
, KM_SLEEP
);
16948 dest
= (uintptr_t)buf
;
16950 bcopy(&aggdesc
, (void *)dest
, sizeof (aggdesc
));
16951 dest
+= offsetof(dtrace_aggdesc_t
, dtagd_rec
[0]);
16953 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16954 dtrace_recdesc_t rec
= act
->dta_rec
;
16957 * See the comment in the above loop for why we pass
16958 * over zero-length records.
16960 if (rec
.dtrd_size
== 0) {
16961 ASSERT(agg
->dtag_hasarg
);
16968 rec
.dtrd_offset
-= offs
;
16969 bcopy(&rec
, (void *)dest
, sizeof (rec
));
16970 dest
+= sizeof (dtrace_recdesc_t
);
16972 if (act
== &agg
->dtag_action
)
16976 lck_mtx_unlock(&dtrace_lock
);
16978 if (copyout(buf
, arg
, dest
- (uintptr_t)buf
) != 0) {
16979 kmem_free(buf
, size
);
16983 kmem_free(buf
, size
);
16987 case DTRACEIOC_ENABLE
: {
16989 dtrace_enabling_t
*enab
= NULL
;
16990 dtrace_vstate_t
*vstate
;
16996 * If a NULL argument has been passed, we take this as our
16997 * cue to reevaluate our enablings.
17000 dtrace_enabling_matchall();
17005 if ((dof
= dtrace_dof_copyin(arg
, &rval
)) == NULL
)
17008 lck_mtx_lock(&cpu_lock
);
17009 lck_mtx_lock(&dtrace_lock
);
17010 vstate
= &state
->dts_vstate
;
17012 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
17013 lck_mtx_unlock(&dtrace_lock
);
17014 lck_mtx_unlock(&cpu_lock
);
17015 dtrace_dof_destroy(dof
);
17019 if (dtrace_dof_slurp(dof
, vstate
, cr
, &enab
, 0, B_TRUE
) != 0) {
17020 lck_mtx_unlock(&dtrace_lock
);
17021 lck_mtx_unlock(&cpu_lock
);
17022 dtrace_dof_destroy(dof
);
17026 if ((rval
= dtrace_dof_options(dof
, state
)) != 0) {
17027 dtrace_enabling_destroy(enab
);
17028 lck_mtx_unlock(&dtrace_lock
);
17029 lck_mtx_unlock(&cpu_lock
);
17030 dtrace_dof_destroy(dof
);
17034 if ((err
= dtrace_enabling_match(enab
, rv
, NULL
)) == 0) {
17035 err
= dtrace_enabling_retain(enab
);
17037 dtrace_enabling_destroy(enab
);
17040 lck_mtx_unlock(&dtrace_lock
);
17041 lck_mtx_unlock(&cpu_lock
);
17042 dtrace_dof_destroy(dof
);
17047 case DTRACEIOC_REPLICATE
: {
17048 dtrace_repldesc_t desc
;
17049 dtrace_probedesc_t
*match
= &desc
.dtrpd_match
;
17050 dtrace_probedesc_t
*create
= &desc
.dtrpd_create
;
17053 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17056 match
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
17057 match
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
17058 match
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
17059 match
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
17061 create
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
17062 create
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
17063 create
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
17064 create
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
17066 lck_mtx_lock(&dtrace_lock
);
17067 err
= dtrace_enabling_replicate(state
, match
, create
);
17068 lck_mtx_unlock(&dtrace_lock
);
17073 case DTRACEIOC_PROBEMATCH
:
17074 case DTRACEIOC_PROBES
: {
17075 dtrace_probe_t
*probe
= NULL
;
17076 dtrace_probedesc_t desc
;
17077 dtrace_probekey_t pkey
;
17084 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17087 desc
.dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
17088 desc
.dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
17089 desc
.dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
17090 desc
.dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
17093 * Before we attempt to match this probe, we want to give
17094 * all providers the opportunity to provide it.
17096 if (desc
.dtpd_id
== DTRACE_IDNONE
) {
17097 lck_mtx_lock(&dtrace_provider_lock
);
17098 dtrace_probe_provide(&desc
, NULL
);
17099 lck_mtx_unlock(&dtrace_provider_lock
);
17103 if (cmd
== DTRACEIOC_PROBEMATCH
) {
17104 dtrace_probekey(&desc
, &pkey
);
17105 pkey
.dtpk_id
= DTRACE_IDNONE
;
17108 dtrace_cred2priv(cr
, &priv
, &uid
, &zoneid
);
17110 lck_mtx_lock(&dtrace_lock
);
17112 if (cmd
== DTRACEIOC_PROBEMATCH
) {
17113 /* Quiet compiler warning */
17114 for (i
= desc
.dtpd_id
; i
<= (dtrace_id_t
)dtrace_nprobes
; i
++) {
17115 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
17116 (m
= dtrace_match_probe(probe
, &pkey
,
17117 priv
, uid
, zoneid
)) != 0)
17122 lck_mtx_unlock(&dtrace_lock
);
17127 /* Quiet compiler warning */
17128 for (i
= desc
.dtpd_id
; i
<= (dtrace_id_t
)dtrace_nprobes
; i
++) {
17129 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
17130 dtrace_match_priv(probe
, priv
, uid
, zoneid
))
17135 if (probe
== NULL
) {
17136 lck_mtx_unlock(&dtrace_lock
);
17140 dtrace_probe_description(probe
, &desc
);
17141 lck_mtx_unlock(&dtrace_lock
);
17143 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17149 case DTRACEIOC_PROBEARG
: {
17150 dtrace_argdesc_t desc
;
17151 dtrace_probe_t
*probe
;
17152 dtrace_provider_t
*prov
;
17154 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17157 if (desc
.dtargd_id
== DTRACE_IDNONE
)
17160 if (desc
.dtargd_ndx
== DTRACE_ARGNONE
)
17163 lck_mtx_lock(&dtrace_provider_lock
);
17164 lck_mtx_lock(&mod_lock
);
17165 lck_mtx_lock(&dtrace_lock
);
17167 /* Quiet compiler warning */
17168 if (desc
.dtargd_id
> (dtrace_id_t
)dtrace_nprobes
) {
17169 lck_mtx_unlock(&dtrace_lock
);
17170 lck_mtx_unlock(&mod_lock
);
17171 lck_mtx_unlock(&dtrace_provider_lock
);
17175 if ((probe
= dtrace_probes
[desc
.dtargd_id
- 1]) == NULL
) {
17176 lck_mtx_unlock(&dtrace_lock
);
17177 lck_mtx_unlock(&mod_lock
);
17178 lck_mtx_unlock(&dtrace_provider_lock
);
17182 lck_mtx_unlock(&dtrace_lock
);
17184 prov
= probe
->dtpr_provider
;
17186 if (prov
->dtpv_pops
.dtps_getargdesc
== NULL
) {
17188 * There isn't any typed information for this probe.
17189 * Set the argument number to DTRACE_ARGNONE.
17191 desc
.dtargd_ndx
= DTRACE_ARGNONE
;
17193 desc
.dtargd_native
[0] = '\0';
17194 desc
.dtargd_xlate
[0] = '\0';
17195 desc
.dtargd_mapping
= desc
.dtargd_ndx
;
17197 prov
->dtpv_pops
.dtps_getargdesc(prov
->dtpv_arg
,
17198 probe
->dtpr_id
, probe
->dtpr_arg
, &desc
);
17201 lck_mtx_unlock(&mod_lock
);
17202 lck_mtx_unlock(&dtrace_provider_lock
);
17204 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17210 case DTRACEIOC_GO
: {
17211 processorid_t cpuid
;
17212 rval
= dtrace_state_go(state
, &cpuid
);
17217 if (copyout(&cpuid
, arg
, sizeof (cpuid
)) != 0)
17223 case DTRACEIOC_STOP
: {
17224 processorid_t cpuid
;
17226 lck_mtx_lock(&dtrace_lock
);
17227 rval
= dtrace_state_stop(state
, &cpuid
);
17228 lck_mtx_unlock(&dtrace_lock
);
17233 if (copyout(&cpuid
, arg
, sizeof (cpuid
)) != 0)
17239 case DTRACEIOC_DOFGET
: {
17240 dof_hdr_t hdr
, *dof
;
17243 if (copyin(arg
, &hdr
, sizeof (hdr
)) != 0)
17246 lck_mtx_lock(&dtrace_lock
);
17247 dof
= dtrace_dof_create(state
);
17248 lck_mtx_unlock(&dtrace_lock
);
17250 len
= MIN(hdr
.dofh_loadsz
, dof
->dofh_loadsz
);
17251 rval
= copyout(dof
, arg
, len
);
17252 dtrace_dof_destroy(dof
);
17254 return (rval
== 0 ? 0 : EFAULT
);
17257 case DTRACEIOC_SLEEP
: {
17260 uint64_t rvalue
= DTRACE_WAKE_TIMEOUT
;
17262 if (copyin(arg
, &time
, sizeof(time
)) != 0)
17265 nanoseconds_to_absolutetime((uint64_t)time
, &abstime
);
17266 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
17268 if (assert_wait_deadline(state
, THREAD_ABORTSAFE
, abstime
) == THREAD_WAITING
) {
17269 if (state
->dts_buf_over_limit
> 0) {
17270 clear_wait(current_thread(), THREAD_INTERRUPTED
);
17271 rvalue
= DTRACE_WAKE_BUF_LIMIT
;
17273 thread_block(THREAD_CONTINUE_NULL
);
17274 if (state
->dts_buf_over_limit
> 0) {
17275 rvalue
= DTRACE_WAKE_BUF_LIMIT
;
17280 if (copyout(&rvalue
, arg
, sizeof(rvalue
)) != 0)
17286 case DTRACEIOC_SIGNAL
: {
17291 case DTRACEIOC_AGGSNAP
:
17292 case DTRACEIOC_BUFSNAP
: {
17293 dtrace_bufdesc_t desc
;
17295 boolean_t over_limit
;
17296 dtrace_buffer_t
*buf
;
17298 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17301 if ((int)desc
.dtbd_cpu
< 0 || desc
.dtbd_cpu
>= NCPU
)
17304 lck_mtx_lock(&dtrace_lock
);
17306 if (cmd
== DTRACEIOC_BUFSNAP
) {
17307 buf
= &state
->dts_buffer
[desc
.dtbd_cpu
];
17309 buf
= &state
->dts_aggbuffer
[desc
.dtbd_cpu
];
17312 if (buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
)) {
17313 size_t sz
= buf
->dtb_offset
;
17315 if (state
->dts_activity
!= DTRACE_ACTIVITY_STOPPED
) {
17316 lck_mtx_unlock(&dtrace_lock
);
17321 * If this buffer has already been consumed, we're
17322 * going to indicate that there's nothing left here
17325 if (buf
->dtb_flags
& DTRACEBUF_CONSUMED
) {
17326 lck_mtx_unlock(&dtrace_lock
);
17328 desc
.dtbd_size
= 0;
17329 desc
.dtbd_drops
= 0;
17330 desc
.dtbd_errors
= 0;
17331 desc
.dtbd_oldest
= 0;
17332 sz
= sizeof (desc
);
17334 if (copyout(&desc
, arg
, sz
) != 0)
17341 * If this is a ring buffer that has wrapped, we want
17342 * to copy the whole thing out.
17344 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
17345 dtrace_buffer_polish(buf
);
17346 sz
= buf
->dtb_size
;
17349 if (copyout(buf
->dtb_tomax
, (user_addr_t
)desc
.dtbd_data
, sz
) != 0) {
17350 lck_mtx_unlock(&dtrace_lock
);
17354 desc
.dtbd_size
= sz
;
17355 desc
.dtbd_drops
= buf
->dtb_drops
;
17356 desc
.dtbd_errors
= buf
->dtb_errors
;
17357 desc
.dtbd_oldest
= buf
->dtb_xamot_offset
;
17358 desc
.dtbd_timestamp
= dtrace_gethrtime();
17360 lck_mtx_unlock(&dtrace_lock
);
17362 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17365 buf
->dtb_flags
|= DTRACEBUF_CONSUMED
;
17370 if (buf
->dtb_tomax
== NULL
) {
17371 ASSERT(buf
->dtb_xamot
== NULL
);
17372 lck_mtx_unlock(&dtrace_lock
);
17376 cached
= buf
->dtb_tomax
;
17377 over_limit
= buf
->dtb_cur_limit
== buf
->dtb_size
;
17379 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
17381 dtrace_xcall(desc
.dtbd_cpu
,
17382 (dtrace_xcall_t
)dtrace_buffer_switch
, buf
);
17384 state
->dts_errors
+= buf
->dtb_xamot_errors
;
17387 * If the buffers did not actually switch, then the cross call
17388 * did not take place -- presumably because the given CPU is
17389 * not in the ready set. If this is the case, we'll return
17392 if (buf
->dtb_tomax
== cached
) {
17393 ASSERT(buf
->dtb_xamot
!= cached
);
17394 lck_mtx_unlock(&dtrace_lock
);
17398 ASSERT(cached
== buf
->dtb_xamot
);
17400 * At this point we know the buffer have switched, so we
17401 * can decrement the over limit count if the buffer was over
17402 * its limit. The new buffer might already be over its limit
17403 * yet, but we don't care since we're guaranteed not to be
17404 * checking the buffer over limit count at this point.
17407 uint32_t old
= atomic_add_32(&state
->dts_buf_over_limit
, -1);
17408 #pragma unused(old)
17411 * Verify that we didn't underflow the value
17417 * We have our snapshot; now copy it out.
17419 if (dtrace_buffer_copyout(buf
->dtb_xamot
,
17420 (user_addr_t
)desc
.dtbd_data
,
17421 buf
->dtb_xamot_offset
) != 0) {
17422 lck_mtx_unlock(&dtrace_lock
);
17426 desc
.dtbd_size
= buf
->dtb_xamot_offset
;
17427 desc
.dtbd_drops
= buf
->dtb_xamot_drops
;
17428 desc
.dtbd_errors
= buf
->dtb_xamot_errors
;
17429 desc
.dtbd_oldest
= 0;
17430 desc
.dtbd_timestamp
= buf
->dtb_switched
;
17432 lck_mtx_unlock(&dtrace_lock
);
17435 * Finally, copy out the buffer description.
17437 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17443 case DTRACEIOC_CONF
: {
17444 dtrace_conf_t conf
;
17446 bzero(&conf
, sizeof (conf
));
17447 conf
.dtc_difversion
= DIF_VERSION
;
17448 conf
.dtc_difintregs
= DIF_DIR_NREGS
;
17449 conf
.dtc_diftupregs
= DIF_DTR_NREGS
;
17450 conf
.dtc_ctfmodel
= CTF_MODEL_NATIVE
;
17452 if (copyout(&conf
, arg
, sizeof (conf
)) != 0)
17458 case DTRACEIOC_STATUS
: {
17459 dtrace_status_t stat
;
17460 dtrace_dstate_t
*dstate
;
17465 * See the comment in dtrace_state_deadman() for the reason
17466 * for setting dts_laststatus to INT64_MAX before setting
17467 * it to the correct value.
17469 state
->dts_laststatus
= INT64_MAX
;
17470 dtrace_membar_producer();
17471 state
->dts_laststatus
= dtrace_gethrtime();
17473 bzero(&stat
, sizeof (stat
));
17475 lck_mtx_lock(&dtrace_lock
);
17477 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
) {
17478 lck_mtx_unlock(&dtrace_lock
);
17482 if (state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
)
17483 stat
.dtst_exiting
= 1;
17485 nerrs
= state
->dts_errors
;
17486 dstate
= &state
->dts_vstate
.dtvs_dynvars
;
17488 for (i
= 0; i
< (int)NCPU
; i
++) {
17489 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[i
];
17491 stat
.dtst_dyndrops
+= dcpu
->dtdsc_drops
;
17492 stat
.dtst_dyndrops_dirty
+= dcpu
->dtdsc_dirty_drops
;
17493 stat
.dtst_dyndrops_rinsing
+= dcpu
->dtdsc_rinsing_drops
;
17495 if (state
->dts_buffer
[i
].dtb_flags
& DTRACEBUF_FULL
)
17496 stat
.dtst_filled
++;
17498 nerrs
+= state
->dts_buffer
[i
].dtb_errors
;
17500 for (j
= 0; j
< state
->dts_nspeculations
; j
++) {
17501 dtrace_speculation_t
*spec
;
17502 dtrace_buffer_t
*buf
;
17504 spec
= &state
->dts_speculations
[j
];
17505 buf
= &spec
->dtsp_buffer
[i
];
17506 stat
.dtst_specdrops
+= buf
->dtb_xamot_drops
;
17510 stat
.dtst_specdrops_busy
= state
->dts_speculations_busy
;
17511 stat
.dtst_specdrops_unavail
= state
->dts_speculations_unavail
;
17512 stat
.dtst_stkstroverflows
= state
->dts_stkstroverflows
;
17513 stat
.dtst_dblerrors
= state
->dts_dblerrors
;
17515 (state
->dts_activity
== DTRACE_ACTIVITY_KILLED
);
17516 stat
.dtst_errors
= nerrs
;
17518 lck_mtx_unlock(&dtrace_lock
);
17520 if (copyout(&stat
, arg
, sizeof (stat
)) != 0)
17526 case DTRACEIOC_FORMAT
: {
17527 dtrace_fmtdesc_t fmt
;
17531 if (copyin(arg
, &fmt
, sizeof (fmt
)) != 0)
17534 lck_mtx_lock(&dtrace_lock
);
17536 if (fmt
.dtfd_format
== 0 ||
17537 fmt
.dtfd_format
> state
->dts_nformats
) {
17538 lck_mtx_unlock(&dtrace_lock
);
17543 * Format strings are allocated contiguously and they are
17544 * never freed; if a format index is less than the number
17545 * of formats, we can assert that the format map is non-NULL
17546 * and that the format for the specified index is non-NULL.
17548 ASSERT(state
->dts_formats
!= NULL
);
17549 str
= state
->dts_formats
[fmt
.dtfd_format
- 1];
17550 ASSERT(str
!= NULL
);
17552 len
= strlen(str
) + 1;
17554 if (len
> fmt
.dtfd_length
) {
17555 fmt
.dtfd_length
= len
;
17557 if (copyout(&fmt
, arg
, sizeof (fmt
)) != 0) {
17558 lck_mtx_unlock(&dtrace_lock
);
17562 if (copyout(str
, (user_addr_t
)fmt
.dtfd_string
, len
) != 0) {
17563 lck_mtx_unlock(&dtrace_lock
);
17568 lck_mtx_unlock(&dtrace_lock
);
17572 case DTRACEIOC_MODUUIDSLIST
: {
17573 size_t module_uuids_list_size
;
17574 dtrace_module_uuids_list_t
* uuids_list
;
17575 uint64_t dtmul_count
;
17578 * Security restrictions make this operation illegal, if this is enabled DTrace
17579 * must refuse to provide any fbt probes.
17581 if (dtrace_fbt_probes_restricted()) {
17582 cmn_err(CE_WARN
, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
17587 * Fail if the kernel symbol mode makes this operation illegal.
17588 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
17589 * for them without holding the dtrace_lock.
17591 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
||
17592 dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL
) {
17593 cmn_err(CE_WARN
, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_MODUUIDSLIST", dtrace_kernel_symbol_mode
);
17598 * Read the number of symbolsdesc structs being passed in.
17600 if (copyin(arg
+ offsetof(dtrace_module_uuids_list_t
, dtmul_count
),
17602 sizeof(dtmul_count
))) {
17603 cmn_err(CE_WARN
, "failed to copyin dtmul_count");
17608 * Range check the count. More than 2k kexts is probably an error.
17610 if (dtmul_count
> 2048) {
17611 cmn_err(CE_WARN
, "dtmul_count is not valid");
17616 * For all queries, we return EINVAL when the user specified
17617 * count does not match the actual number of modules we find
17620 * If the user specified count is zero, then this serves as a
17621 * simple query to count the available modules in need of symbols.
17626 if (dtmul_count
== 0)
17628 lck_mtx_lock(&mod_lock
);
17629 struct modctl
* ctl
= dtrace_modctl_list
;
17631 /* Update the private probes bit */
17632 if (dtrace_provide_private_probes
)
17633 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17635 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17636 if (!MOD_SYMBOLS_DONE(ctl
)) {
17640 ctl
= ctl
->mod_next
;
17642 lck_mtx_unlock(&mod_lock
);
17644 if (copyout(&dtmul_count
, arg
, sizeof (dtmul_count
)) != 0)
17651 * If we reach this point, then we have a request for full list data.
17652 * Allocate a correctly sized structure and copyin the data.
17654 module_uuids_list_size
= DTRACE_MODULE_UUIDS_LIST_SIZE(dtmul_count
);
17655 if ((uuids_list
= kmem_alloc(module_uuids_list_size
, KM_SLEEP
)) == NULL
)
17658 /* NOTE! We can no longer exit this method via return */
17659 if (copyin(arg
, uuids_list
, module_uuids_list_size
) != 0) {
17660 cmn_err(CE_WARN
, "failed copyin of dtrace_module_uuids_list_t");
17662 goto moduuidslist_cleanup
;
17666 * Check that the count didn't change between the first copyin and the second.
17668 if (uuids_list
->dtmul_count
!= dtmul_count
) {
17670 goto moduuidslist_cleanup
;
17674 * Build the list of UUID's that need symbols
17676 lck_mtx_lock(&mod_lock
);
17680 struct modctl
* ctl
= dtrace_modctl_list
;
17682 /* Update the private probes bit */
17683 if (dtrace_provide_private_probes
)
17684 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17687 * We assume that userspace symbols will be "better" than kernel level symbols,
17688 * as userspace can search for dSYM(s) and symbol'd binaries. Even if kernel syms
17689 * are available, add user syms if the module might use them.
17691 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17692 if (!MOD_SYMBOLS_DONE(ctl
)) {
17693 UUID
* uuid
= &uuids_list
->dtmul_uuid
[dtmul_count
];
17694 if (dtmul_count
++ < uuids_list
->dtmul_count
) {
17695 memcpy(uuid
, ctl
->mod_uuid
, sizeof(UUID
));
17698 ctl
= ctl
->mod_next
;
17701 lck_mtx_unlock(&mod_lock
);
17703 if (uuids_list
->dtmul_count
< dtmul_count
)
17706 uuids_list
->dtmul_count
= dtmul_count
;
17709 * Copyout the symbols list (or at least the count!)
17711 if (copyout(uuids_list
, arg
, module_uuids_list_size
) != 0) {
17712 cmn_err(CE_WARN
, "failed copyout of dtrace_symbolsdesc_list_t");
17716 moduuidslist_cleanup
:
17718 * If we had to allocate struct memory, free it.
17720 if (uuids_list
!= NULL
) {
17721 kmem_free(uuids_list
, module_uuids_list_size
);
17727 case DTRACEIOC_PROVMODSYMS
: {
17728 size_t module_symbols_size
;
17729 dtrace_module_symbols_t
* module_symbols
;
17730 uint64_t dtmodsyms_count
;
17733 * Security restrictions make this operation illegal, if this is enabled DTrace
17734 * must refuse to provide any fbt probes.
17736 if (dtrace_fbt_probes_restricted()) {
17737 cmn_err(CE_WARN
, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
17742 * Fail if the kernel symbol mode makes this operation illegal.
17743 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
17744 * for them without holding the dtrace_lock.
17746 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
||
17747 dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL
) {
17748 cmn_err(CE_WARN
, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_PROVMODSYMS", dtrace_kernel_symbol_mode
);
17753 * Read the number of module symbols structs being passed in.
17755 if (copyin(arg
+ offsetof(dtrace_module_symbols_t
, dtmodsyms_count
),
17757 sizeof(dtmodsyms_count
))) {
17758 cmn_err(CE_WARN
, "failed to copyin dtmodsyms_count");
17763 * Range check the count. How much data can we pass around?
17766 if (dtmodsyms_count
== 0 || (dtmodsyms_count
> 100 * 1024)) {
17767 cmn_err(CE_WARN
, "dtmodsyms_count is not valid");
17772 * Allocate a correctly sized structure and copyin the data.
17774 module_symbols_size
= DTRACE_MODULE_SYMBOLS_SIZE(dtmodsyms_count
);
17775 if ((module_symbols
= kmem_alloc(module_symbols_size
, KM_SLEEP
)) == NULL
)
17780 /* NOTE! We can no longer exit this method via return */
17781 if (copyin(arg
, module_symbols
, module_symbols_size
) != 0) {
17782 cmn_err(CE_WARN
, "failed copyin of dtrace_module_symbols_t");
17784 goto module_symbols_cleanup
;
17788 * Check that the count didn't change between the first copyin and the second.
17790 if (module_symbols
->dtmodsyms_count
!= dtmodsyms_count
) {
17792 goto module_symbols_cleanup
;
17796 * Find the modctl to add symbols to.
17798 lck_mtx_lock(&dtrace_provider_lock
);
17799 lck_mtx_lock(&mod_lock
);
17801 struct modctl
* ctl
= dtrace_modctl_list
;
17803 /* Update the private probes bit */
17804 if (dtrace_provide_private_probes
)
17805 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17807 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17808 if (MOD_HAS_UUID(ctl
) && !MOD_SYMBOLS_DONE(ctl
)) {
17809 if (memcmp(module_symbols
->dtmodsyms_uuid
, ctl
->mod_uuid
, sizeof(UUID
)) == 0) {
17811 ctl
->mod_user_symbols
= module_symbols
;
17815 ctl
= ctl
->mod_next
;
17819 dtrace_provider_t
*prv
;
17822 * We're going to call each providers per-module provide operation
17823 * specifying only this module.
17825 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
17826 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
17829 * We gave every provider a chance to provide with the user syms, go ahead and clear them
17831 ctl
->mod_user_symbols
= NULL
; /* MUST reset this to clear HAS_USERSPACE_SYMBOLS */
17834 lck_mtx_unlock(&mod_lock
);
17835 lck_mtx_unlock(&dtrace_provider_lock
);
17837 module_symbols_cleanup
:
17839 * If we had to allocate struct memory, free it.
17841 if (module_symbols
!= NULL
) {
17842 kmem_free(module_symbols
, module_symbols_size
);
17848 case DTRACEIOC_PROCWAITFOR
: {
17849 dtrace_procdesc_t pdesc
= {
17854 if ((rval
= copyin(arg
, &pdesc
, sizeof(pdesc
))) != 0)
17855 goto proc_waitfor_error
;
17857 if ((rval
= dtrace_proc_waitfor(&pdesc
)) != 0)
17858 goto proc_waitfor_error
;
17860 if ((rval
= copyout(&pdesc
, arg
, sizeof(pdesc
))) != 0)
17861 goto proc_waitfor_error
;
17865 proc_waitfor_error
:
17866 /* The process was suspended, revert this since the client will not do it. */
17867 if (pdesc
.p_pid
!= -1) {
17868 proc_t
*proc
= proc_find(pdesc
.p_pid
);
17869 if (proc
!= PROC_NULL
) {
17870 task_pidresume(proc
->task
);
17886 * APPLE NOTE: dtrace_detach not implemented
17888 #if !defined(__APPLE__)
17891 dtrace_detach(dev_info_t
*dip
, ddi_detach_cmd_t cmd
)
17893 dtrace_state_t
*state
;
17900 return (DDI_SUCCESS
);
17903 return (DDI_FAILURE
);
17906 lck_mtx_lock(&cpu_lock
);
17907 lck_mtx_lock(&dtrace_provider_lock
);
17908 lck_mtx_lock(&dtrace_lock
);
17910 ASSERT(dtrace_opens
== 0);
17912 if (dtrace_helpers
> 0) {
17913 lck_mtx_unlock(&dtrace_lock
);
17914 lck_mtx_unlock(&dtrace_provider_lock
);
17915 lck_mtx_unlock(&cpu_lock
);
17916 return (DDI_FAILURE
);
17919 if (dtrace_unregister((dtrace_provider_id_t
)dtrace_provider
) != 0) {
17920 lck_mtx_unlock(&dtrace_lock
);
17921 lck_mtx_unlock(&dtrace_provider_lock
);
17922 lck_mtx_unlock(&cpu_lock
);
17923 return (DDI_FAILURE
);
17926 dtrace_provider
= NULL
;
17928 if ((state
= dtrace_anon_grab()) != NULL
) {
17930 * If there were ECBs on this state, the provider should
17931 * have not been allowed to detach; assert that there is
17934 ASSERT(state
->dts_necbs
== 0);
17935 dtrace_state_destroy(state
);
17938 * If we're being detached with anonymous state, we need to
17939 * indicate to the kernel debugger that DTrace is now inactive.
17941 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
17944 bzero(&dtrace_anon
, sizeof (dtrace_anon_t
));
17945 unregister_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
17946 dtrace_cpu_init
= NULL
;
17947 dtrace_helpers_cleanup
= NULL
;
17948 dtrace_helpers_fork
= NULL
;
17949 dtrace_cpustart_init
= NULL
;
17950 dtrace_cpustart_fini
= NULL
;
17951 dtrace_debugger_init
= NULL
;
17952 dtrace_debugger_fini
= NULL
;
17953 dtrace_kreloc_init
= NULL
;
17954 dtrace_kreloc_fini
= NULL
;
17955 dtrace_modload
= NULL
;
17956 dtrace_modunload
= NULL
;
17958 lck_mtx_unlock(&cpu_lock
);
17960 if (dtrace_helptrace_enabled
) {
17961 kmem_free(dtrace_helptrace_buffer
, dtrace_helptrace_bufsize
);
17962 dtrace_helptrace_buffer
= NULL
;
17965 kmem_free(dtrace_probes
, dtrace_nprobes
* sizeof (dtrace_probe_t
*));
17966 dtrace_probes
= NULL
;
17967 dtrace_nprobes
= 0;
17969 dtrace_hash_destroy(dtrace_bymod
);
17970 dtrace_hash_destroy(dtrace_byfunc
);
17971 dtrace_hash_destroy(dtrace_byname
);
17972 dtrace_bymod
= NULL
;
17973 dtrace_byfunc
= NULL
;
17974 dtrace_byname
= NULL
;
17976 kmem_cache_destroy(dtrace_state_cache
);
17977 vmem_destroy(dtrace_arena
);
17979 if (dtrace_toxrange
!= NULL
) {
17980 kmem_free(dtrace_toxrange
,
17981 dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
));
17982 dtrace_toxrange
= NULL
;
17983 dtrace_toxranges
= 0;
17984 dtrace_toxranges_max
= 0;
17987 ddi_remove_minor_node(dtrace_devi
, NULL
);
17988 dtrace_devi
= NULL
;
17990 ddi_soft_state_fini(&dtrace_softstate
);
17992 ASSERT(dtrace_vtime_references
== 0);
17993 ASSERT(dtrace_opens
== 0);
17994 ASSERT(dtrace_retained
== NULL
);
17996 lck_mtx_unlock(&dtrace_lock
);
17997 lck_mtx_unlock(&dtrace_provider_lock
);
18000 * We don't destroy the task queue until after we have dropped our
18001 * locks (taskq_destroy() may block on running tasks). To prevent
18002 * attempting to do work after we have effectively detached but before
18003 * the task queue has been destroyed, all tasks dispatched via the
18004 * task queue must check that DTrace is still attached before
18005 * performing any operation.
18007 taskq_destroy(dtrace_taskq
);
18008 dtrace_taskq
= NULL
;
18010 return (DDI_SUCCESS
);
18012 #endif /* __APPLE__ */
18014 d_open_t _dtrace_open
, helper_open
;
18015 d_close_t _dtrace_close
, helper_close
;
18016 d_ioctl_t _dtrace_ioctl
, helper_ioctl
;
18019 _dtrace_open(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18022 dev_t locdev
= dev
;
18024 return dtrace_open( &locdev
, flags
, devtype
, CRED());
18028 helper_open(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18030 #pragma unused(dev,flags,devtype,p)
18035 _dtrace_close(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18038 return dtrace_close( dev
, flags
, devtype
, CRED());
18042 helper_close(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18044 #pragma unused(dev,flags,devtype,p)
18049 _dtrace_ioctl(dev_t dev
, u_long cmd
, caddr_t data
, int fflag
, struct proc
*p
)
18053 user_addr_t uaddrp
;
18055 if (proc_is64bit(p
))
18056 uaddrp
= *(user_addr_t
*)data
;
18058 uaddrp
= (user_addr_t
) *(uint32_t *)data
;
18060 err
= dtrace_ioctl(dev
, cmd
, uaddrp
, fflag
, CRED(), &rv
);
18062 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
18064 ASSERT( (err
& 0xfffff000) == 0 );
18065 return (err
& 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
18066 } else if (rv
!= 0) {
18067 ASSERT( (rv
& 0xfff00000) == 0 );
18068 return (((rv
& 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
18074 helper_ioctl(dev_t dev
, u_long cmd
, caddr_t data
, int fflag
, struct proc
*p
)
18076 #pragma unused(dev,fflag,p)
18079 err
= dtrace_ioctl_helper(cmd
, data
, &rv
);
18080 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
18082 ASSERT( (err
& 0xfffff000) == 0 );
18083 return (err
& 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
18084 } else if (rv
!= 0) {
18085 ASSERT( (rv
& 0xfff00000) == 0 );
18086 return (((rv
& 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
18091 #define HELPER_MAJOR -24 /* let the kernel pick the device number */
18094 * A struct describing which functions will get invoked for certain
18097 static struct cdevsw helper_cdevsw
=
18099 helper_open
, /* open */
18100 helper_close
, /* close */
18101 eno_rdwrt
, /* read */
18102 eno_rdwrt
, /* write */
18103 helper_ioctl
, /* ioctl */
18104 (stop_fcn_t
*)nulldev
, /* stop */
18105 (reset_fcn_t
*)nulldev
, /* reset */
18107 eno_select
, /* select */
18108 eno_mmap
, /* mmap */
18109 eno_strat
, /* strategy */
18110 eno_getc
, /* getc */
18111 eno_putc
, /* putc */
18115 static int helper_majdevno
= 0;
18117 static int gDTraceInited
= 0;
18120 helper_init( void )
18123 * Once the "helper" is initialized, it can take ioctl calls that use locks
18124 * and zones initialized in dtrace_init. Make certain dtrace_init was called
18128 if (!gDTraceInited
) {
18129 panic("helper_init before dtrace_init\n");
18132 if (0 >= helper_majdevno
)
18134 helper_majdevno
= cdevsw_add(HELPER_MAJOR
, &helper_cdevsw
);
18136 if (helper_majdevno
< 0) {
18137 printf("helper_init: failed to allocate a major number!\n");
18141 if (NULL
== devfs_make_node( makedev(helper_majdevno
, 0), DEVFS_CHAR
, UID_ROOT
, GID_WHEEL
, 0666,
18142 DTRACEMNR_HELPER
, 0 )) {
18143 printf("dtrace_init: failed to devfs_make_node for helper!\n");
18147 panic("helper_init: called twice!\n");
18150 #undef HELPER_MAJOR
18153 dtrace_clone_func(dev_t dev
, int action
)
18155 #pragma unused(dev)
18157 if (action
== DEVFS_CLONE_ALLOC
) {
18158 return dtrace_state_reserve();
18160 else if (action
== DEVFS_CLONE_FREE
) {
18166 void dtrace_ast(void);
18172 uint32_t clients
= atomic_and_32(&dtrace_wake_clients
, 0);
18176 * We disable preemption here to be sure that we won't get
18177 * interrupted by a wakeup to a thread that is higher
18178 * priority than us, so that we do issue all wakeups
18180 disable_preemption();
18181 for (i
= 0; i
< DTRACE_NCLIENTS
; i
++) {
18182 if (clients
& (1 << i
)) {
18183 dtrace_state_t
*state
= dtrace_state_get(i
);
18190 enable_preemption();
18194 #define DTRACE_MAJOR -24 /* let the kernel pick the device number */
18196 static struct cdevsw dtrace_cdevsw
=
18198 _dtrace_open
, /* open */
18199 _dtrace_close
, /* close */
18200 eno_rdwrt
, /* read */
18201 eno_rdwrt
, /* write */
18202 _dtrace_ioctl
, /* ioctl */
18203 (stop_fcn_t
*)nulldev
, /* stop */
18204 (reset_fcn_t
*)nulldev
, /* reset */
18206 eno_select
, /* select */
18207 eno_mmap
, /* mmap */
18208 eno_strat
, /* strategy */
18209 eno_getc
, /* getc */
18210 eno_putc
, /* putc */
18214 lck_attr_t
* dtrace_lck_attr
;
18215 lck_grp_attr_t
* dtrace_lck_grp_attr
;
18216 lck_grp_t
* dtrace_lck_grp
;
18218 static int gMajDevNo
;
18221 dtrace_init( void )
18223 if (0 == gDTraceInited
) {
18225 size_t size
= sizeof(dtrace_buffer_memory_maxsize
);
18228 * DTrace allocates buffers based on the maximum number
18229 * of enabled cpus. This call avoids any race when finding
18232 ASSERT(dtrace_max_cpus
== 0);
18233 ncpu
= dtrace_max_cpus
= ml_get_max_cpus();
18236 * Retrieve the size of the physical memory in order to define
18237 * the state buffer memory maximal size. If we cannot retrieve
18238 * this value, we'll consider that we have 1Gb of memory per CPU, that's
18239 * still better than raising a kernel panic.
18241 if (0 != kernel_sysctlbyname("hw.memsize", &dtrace_buffer_memory_maxsize
,
18244 dtrace_buffer_memory_maxsize
= ncpu
* 1024 * 1024 * 1024;
18245 printf("dtrace_init: failed to retrieve the hw.memsize, defaulted to %lld bytes\n",
18246 dtrace_buffer_memory_maxsize
);
18250 * Finally, divide by three to prevent DTrace from eating too
18253 dtrace_buffer_memory_maxsize
/= 3;
18254 ASSERT(dtrace_buffer_memory_maxsize
> 0);
18256 gMajDevNo
= cdevsw_add(DTRACE_MAJOR
, &dtrace_cdevsw
);
18258 if (gMajDevNo
< 0) {
18259 printf("dtrace_init: failed to allocate a major number!\n");
18264 if (NULL
== devfs_make_node_clone( makedev(gMajDevNo
, 0), DEVFS_CHAR
, UID_ROOT
, GID_WHEEL
, 0666,
18265 dtrace_clone_func
, DTRACEMNR_DTRACE
, 0 )) {
18266 printf("dtrace_init: failed to devfs_make_node_clone for dtrace!\n");
18271 #if defined(DTRACE_MEMORY_ZONES)
18273 * Initialize the dtrace kalloc-emulation zones.
18275 dtrace_alloc_init();
18276 #endif /* DTRACE_MEMORY_ZONES */
18279 * Allocate the dtrace_probe_t zone
18281 dtrace_probe_t_zone
= zinit(sizeof(dtrace_probe_t
),
18282 1024 * sizeof(dtrace_probe_t
),
18283 sizeof(dtrace_probe_t
),
18284 "dtrace.dtrace_probe_t");
18287 * Create the dtrace lock group and attrs.
18289 dtrace_lck_attr
= lck_attr_alloc_init();
18290 dtrace_lck_grp_attr
= lck_grp_attr_alloc_init();
18291 dtrace_lck_grp
= lck_grp_alloc_init("dtrace", dtrace_lck_grp_attr
);
18294 * We have to initialize all locks explicitly
18296 lck_mtx_init(&dtrace_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18297 lck_mtx_init(&dtrace_provider_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18298 lck_mtx_init(&dtrace_meta_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18299 lck_mtx_init(&dtrace_procwaitfor_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18301 lck_mtx_init(&dtrace_errlock
, dtrace_lck_grp
, dtrace_lck_attr
);
18303 lck_rw_init(&dtrace_dof_mode_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18306 * The cpu_core structure consists of per-CPU state available in any context.
18307 * On some architectures, this may mean that the page(s) containing the
18308 * NCPU-sized array of cpu_core structures must be locked in the TLB -- it
18309 * is up to the platform to assure that this is performed properly. Note that
18310 * the structure is sized to avoid false sharing.
18312 lck_mtx_init(&cpu_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18313 lck_mtx_init(&cyc_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18314 lck_mtx_init(&mod_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18317 * Initialize the CPU offline/online hooks.
18319 dtrace_install_cpu_hooks();
18321 dtrace_modctl_list
= NULL
;
18323 cpu_core
= (cpu_core_t
*)kmem_zalloc( ncpu
* sizeof(cpu_core_t
), KM_SLEEP
);
18324 for (i
= 0; i
< ncpu
; ++i
) {
18325 lck_mtx_init(&cpu_core
[i
].cpuc_pid_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18328 cpu_list
= (dtrace_cpu_t
*)kmem_zalloc( ncpu
* sizeof(dtrace_cpu_t
), KM_SLEEP
);
18329 for (i
= 0; i
< ncpu
; ++i
) {
18330 cpu_list
[i
].cpu_id
= (processorid_t
)i
;
18331 cpu_list
[i
].cpu_next
= &(cpu_list
[(i
+1) % ncpu
]);
18332 LIST_INIT(&cpu_list
[i
].cpu_cyc_list
);
18333 lck_rw_init(&cpu_list
[i
].cpu_ft_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18336 lck_mtx_lock(&cpu_lock
);
18337 for (i
= 0; i
< ncpu
; ++i
)
18338 /* FIXME: track CPU configuration */
18339 dtrace_cpu_setup_initial( (processorid_t
)i
); /* In lieu of register_cpu_setup_func() callback */
18340 lck_mtx_unlock(&cpu_lock
);
18342 (void)dtrace_abs_to_nano(0LL); /* Force once only call to clock_timebase_info (which can take a lock) */
18346 * See dtrace_impl.h for a description of dof modes.
18347 * The default is lazy dof.
18349 * FIXME: Warn if state is LAZY_OFF? It won't break anything, but
18350 * makes no sense...
18352 if (!PE_parse_boot_argn("dtrace_dof_mode", &dtrace_dof_mode
, sizeof (dtrace_dof_mode
))) {
18353 #if CONFIG_EMBEDDED
18354 /* Disable DOF mode by default for performance reasons */
18355 dtrace_dof_mode
= DTRACE_DOF_MODE_NEVER
;
18357 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_ON
;
18362 * Sanity check of dof mode value.
18364 switch (dtrace_dof_mode
) {
18365 case DTRACE_DOF_MODE_NEVER
:
18366 case DTRACE_DOF_MODE_LAZY_ON
:
18367 /* valid modes, but nothing else we need to do */
18370 case DTRACE_DOF_MODE_LAZY_OFF
:
18371 case DTRACE_DOF_MODE_NON_LAZY
:
18372 /* Cannot wait for a dtrace_open to init fasttrap */
18377 /* Invalid, clamp to non lazy */
18378 dtrace_dof_mode
= DTRACE_DOF_MODE_NON_LAZY
;
18384 * See dtrace_impl.h for a description of kernel symbol modes.
18385 * The default is to wait for symbols from userspace (lazy symbols).
18387 if (!PE_parse_boot_argn("dtrace_kernel_symbol_mode", &dtrace_kernel_symbol_mode
, sizeof (dtrace_kernel_symbol_mode
))) {
18388 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
;
18391 dtrace_restriction_policy_load();
18396 panic("dtrace_init: called twice!\n");
18400 dtrace_postinit(void)
18403 * Called from bsd_init after all provider's *_init() routines have been
18404 * run. That way, anonymous DOF enabled under dtrace_attach() is safe
18407 dtrace_attach( (dev_info_t
*)(uintptr_t)makedev(gMajDevNo
, 0), 0 ); /* Punning a dev_t to a dev_info_t* */
18410 * Add the mach_kernel to the module list for lazy processing
18412 struct kmod_info fake_kernel_kmod
;
18413 memset(&fake_kernel_kmod
, 0, sizeof(fake_kernel_kmod
));
18415 strlcpy(fake_kernel_kmod
.name
, "mach_kernel", sizeof(fake_kernel_kmod
.name
));
18416 fake_kernel_kmod
.id
= 1;
18417 fake_kernel_kmod
.address
= g_kernel_kmod_info
.address
;
18418 fake_kernel_kmod
.size
= g_kernel_kmod_info
.size
;
18420 if (dtrace_module_loaded(&fake_kernel_kmod
, 0) != 0) {
18421 printf("dtrace_postinit: Could not register mach_kernel modctl\n");
18424 if (!PE_parse_boot_argn("dtrace_provide_private_probes", &dtrace_provide_private_probes
, sizeof (dtrace_provide_private_probes
))) {
18425 dtrace_provide_private_probes
= 0;
18428 (void)OSKextRegisterKextsWithDTrace();
18430 #undef DTRACE_MAJOR
18433 * Routines used to register interest in cpu's being added to or removed
18437 register_cpu_setup_func(cpu_setup_func_t
*ignore1
, void *ignore2
)
18439 #pragma unused(ignore1,ignore2)
18443 unregister_cpu_setup_func(cpu_setup_func_t
*ignore1
, void *ignore2
)
18445 #pragma unused(ignore1,ignore2)