2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
59 * File: mach/vm_param.h
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
63 * Machine independent virtual memory parameters.
67 #ifndef _MACH_VM_PARAM_H_
68 #define _MACH_VM_PARAM_H_
70 #include <mach/machine/vm_param.h>
75 #include <mach/vm_types.h>
76 #endif /* ASSEMBLER */
79 #include <os/overflow.h>
82 * The machine independent pages are refered to as PAGES. A page
83 * is some number of hardware pages, depending on the target machine.
88 #define PAGE_SIZE_64 (unsigned long long)PAGE_SIZE /* pagesize in addr units */
89 #define PAGE_MASK_64 (unsigned long long)PAGE_MASK /* mask for off in page */
92 * Convert addresses to pages and vice versa. No rounding is used.
93 * The atop_32 and ptoa_32 macros should not be use on 64 bit types.
94 * The round_page_64 and trunc_page_64 macros should be used instead.
97 #define atop_32(x) ((uint32_t)(x) >> PAGE_SHIFT)
98 #define ptoa_32(x) ((uint32_t)(x) << PAGE_SHIFT)
99 #define atop_64(x) ((uint64_t)(x) >> PAGE_SHIFT)
100 #define ptoa_64(x) ((uint64_t)(x) << PAGE_SHIFT)
102 #define atop_kernel(x) ((vm_address_t)(x) >> PAGE_SHIFT)
103 #define ptoa_kernel(x) ((vm_address_t)(x) << PAGE_SHIFT)
106 * While the following block is enabled, the legacy atop and ptoa
107 * macros will behave correctly. If not, they will generate
108 * invalid lvalue errors.
112 #define atop(x) ((vm_address_t)(x) >> PAGE_SHIFT)
113 #define ptoa(x) ((vm_address_t)(x) << PAGE_SHIFT)
115 #define atop(x) (0UL = 0)
116 #define ptoa(x) (0UL = 0)
120 * Page-size rounding macros for the Public fixed-width VM types.
122 #define mach_vm_round_page(x) (((mach_vm_offset_t)(x) + PAGE_MASK) & ~((signed)PAGE_MASK))
123 #define mach_vm_trunc_page(x) ((mach_vm_offset_t)(x) & ~((signed)PAGE_MASK))
125 #define round_page_overflow(in, out) __os_warn_unused(({ \
126 bool __ovr = os_add_overflow(in, (__typeof__(*out))PAGE_MASK, out); \
127 *out &= ~((__typeof__(*out))PAGE_MASK); \
131 static inline int OS_WARN_RESULT
132 mach_vm_round_page_overflow(mach_vm_offset_t in
, mach_vm_offset_t
*out
)
134 return round_page_overflow(in
, out
);
137 #define memory_object_round_page(x) (((memory_object_offset_t)(x) + PAGE_MASK) & ~((signed)PAGE_MASK))
138 #define memory_object_trunc_page(x) ((memory_object_offset_t)(x) & ~((signed)PAGE_MASK))
141 * Rounding macros for the legacy (scalable with the current task's
142 * address space size) VM types.
145 #define round_page(x) (((vm_offset_t)(x) + PAGE_MASK) & ~((vm_offset_t)PAGE_MASK))
146 #define trunc_page(x) ((vm_offset_t)(x) & ~((vm_offset_t)PAGE_MASK))
149 * Round off or truncate to the nearest page. These will work
150 * for either addresses or counts. (i.e. 1 byte rounds to 1 page
151 * bytes. The round_page_32 and trunc_page_32 macros should not be
152 * use on 64 bit types. The round_page_64 and trunc_page_64 macros
153 * should be used instead.
155 * These should only be used in the rare case the size of the address
156 * or length is hard-coded as 32 or 64 bit. Otherwise, the macros
157 * associated with the specific VM type should be used.
160 #define round_page_32(x) (((uint32_t)(x) + PAGE_MASK) & ~((uint32_t)PAGE_MASK))
161 #define trunc_page_32(x) ((uint32_t)(x) & ~((uint32_t)PAGE_MASK))
162 #define round_page_64(x) (((uint64_t)(x) + PAGE_MASK_64) & ~((uint64_t)PAGE_MASK_64))
163 #define trunc_page_64(x) ((uint64_t)(x) & ~((uint64_t)PAGE_MASK_64))
166 * Enable the following block to find uses of xxx_32 macros that should
167 * be xxx_64. These macros only work in C code, not C++. The resulting
168 * binaries are not functional. Look for invalid lvalue errors in
169 * the compiler output.
171 * Enabling the following block will also find use of the xxx_64 macros
172 * that have been passed pointers. The parameters should be case to an
173 * unsigned long type first. Look for invalid operands to binary + error
174 * in the compiler output.
190 (__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
195 (__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
199 #define round_page_32(x) \
200 (__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
204 #define trunc_page_32(x) \
205 (__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
210 #define atop_32(x) (0)
211 #define ptoa_32(x) (0)
212 #define round_page_32(x) (0)
213 #define trunc_page_32(x) (0)
215 #endif /* ! __cplusplus */
217 #define atop_64(x) ((uint64_t)((x) + (uint8_t *)0))
218 #define ptoa_64(x) ((uint64_t)((x) + (uint8_t *)0))
219 #define round_page_64(x) ((uint64_t)((x) + (uint8_t *)0))
220 #define trunc_page_64(x) ((uint64_t)((x) + (uint8_t *)0))
225 * Determine whether an address is page-aligned, or a count is
226 * an exact page multiple.
229 #define page_aligned(x) (((x) & PAGE_MASK) == 0)
231 extern vm_size_t mem_size
; /* 32-bit size of memory - limited by maxmem - deprecated */
232 extern uint64_t max_mem
; /* 64-bit size of memory - limited by maxmem */
235 * The default pager does not handle 64-bit offsets inside its objects,
236 * so this limits the size of anonymous memory objects to 4GB minus 1 page.
237 * When we need to allocate a chunk of anonymous memory over that size,
238 * we have to allocate more than one chunk.
240 #define ANON_MAX_SIZE 0xFFFFF000ULL
242 * Work-around for <rdar://problem/6626493>
243 * Break large anonymous memory areas into 128MB chunks to alleviate
244 * the cost of copying when copy-on-write is not possible because a small
245 * portion of it being wired.
247 #define ANON_CHUNK_SIZE (128ULL * 1024 * 1024) /* 128MB */
249 #ifdef XNU_KERNEL_PRIVATE
251 extern uint64_t mem_actual
; /* 64-bit size of memory - not limited by maxmem */
252 extern uint64_t sane_size
; /* Memory size to use for defaults calculations */
253 extern addr64_t vm_last_addr
; /* Highest kernel virtual address known to the VM system */
255 extern const vm_offset_t vm_min_kernel_address
;
256 extern const vm_offset_t vm_max_kernel_address
;
258 extern vm_offset_t vm_kernel_stext
;
259 extern vm_offset_t vm_kernel_etext
;
260 extern vm_offset_t vm_kernel_slid_base
;
261 extern vm_offset_t vm_kernel_slid_top
;
262 extern vm_offset_t vm_kernel_slide
;
263 extern vm_offset_t vm_kernel_addrperm
;
264 extern vm_offset_t vm_kext_base
;
265 extern vm_offset_t vm_kext_top
;
266 extern vm_offset_t vm_kernel_base
;
267 extern vm_offset_t vm_kernel_top
;
268 extern vm_offset_t vm_hib_base
;
270 #define VM_KERNEL_IS_SLID(_o) \
271 (((vm_offset_t)(_o) >= vm_kernel_slid_base) && \
272 ((vm_offset_t)(_o) < vm_kernel_slid_top))
274 #define VM_KERNEL_SLIDE(_u) \
275 ((vm_offset_t)(_u) + vm_kernel_slide)
278 * The following macros are to be used when exposing kernel addresses to
279 * userspace via any of the various debug or info facilities that might exist
280 * (e.g. stackshot, proc_info syscall, etc.). It is important to understand
281 * the goal of each macro and choose the right one depending on what you are
282 * trying to do. Misuse of these macros can result in critical data leaks
283 * which in turn lead to all sorts of system vulnerabilities.
285 * Note that in general the ideal goal is to protect addresses from userspace
286 * in a way that is reversible assuming you know the permutation and/or slide.
288 * The macros are as follows:
291 * Use this macro when you are exposing an address to userspace which is
292 * a "static" kernel or kext address (i.e. coming from text or data
293 * sections). These are the addresses which get "slid" via ASLR on kernel
294 * or kext load, and it's precisely the slide value we are trying to
295 * protect from userspace.
297 * VM_KERNEL_ADDRPERM:
298 * Use this macro when you are exposing an address to userspace which is
299 * coming from the kernel's "heap". Since these adresses are not "loaded"
300 * from anywhere, there is no slide applied and we instead apply the
301 * permutation value to obscure the address.
303 * VM_KERNEL_UNSLIDE_OR_ADDRPERM:
304 * Use this macro when you are exposing an address to userspace that could
305 * come from either kernel text/data *or* the heap. This is a rare case,
306 * but one that does come up and must be handled correctly. If the argument
307 * is known to be lower than any potential heap address, no transformation
308 * is applied, to avoid revealing the operation on a constant.
310 * Nesting of these macros should be considered invalid.
312 #define VM_KERNEL_UNSLIDE(_v) \
313 ((VM_KERNEL_IS_SLID(_v)) ? \
314 (vm_offset_t)(_v) - vm_kernel_slide : \
317 #define VM_KERNEL_ADDRPERM(_v) \
318 (((vm_offset_t)(_v) == 0) ? \
320 (vm_offset_t)(_v) + vm_kernel_addrperm)
322 #define VM_KERNEL_UNSLIDE_OR_PERM(_v) \
323 ((VM_KERNEL_IS_SLID(_v)) ? \
324 (vm_offset_t)(_v) - vm_kernel_slide : \
325 ((vm_offset_t)(_v) >= VM_MIN_KERNEL_AND_KEXT_ADDRESS ? VM_KERNEL_ADDRPERM(_v) : (vm_offset_t)(_v)))
328 #endif /* XNU_KERNEL_PRIVATE */
330 extern vm_size_t page_size
;
331 extern vm_size_t page_mask
;
332 extern int page_shift
;
334 /* We need a way to get rid of compiler warnings when we cast from */
335 /* a 64 bit value to an address (which may be 32 bits or 64-bits). */
336 /* An intptr_t is used convert the value to the right precision, and */
337 /* then to an address. This macro is also used to convert addresses */
338 /* to 32-bit integers, which is a hard failure for a 64-bit kernel */
340 #ifndef __CAST_DOWN_CHECK
341 #define __CAST_DOWN_CHECK
343 #define CAST_DOWN( type, addr ) \
344 ( ((type)((uintptr_t) (addr)/(sizeof(type) < sizeof(uintptr_t) ? 0 : 1))) )
346 #define CAST_DOWN_EXPLICIT( type, addr ) ( ((type)((uintptr_t) (addr))) )
348 #endif /* __CAST_DOWN_CHECK */
350 #endif /* ASSEMBLER */
354 #endif /* _MACH_VM_PARAM_H_ */