]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/trap.c
xnu-3789.70.16.tar.gz
[apple/xnu.git] / osfmk / i386 / trap.c
1 /*
2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * Hardware trap/fault handler.
61 */
62
63 #include <mach_kdp.h>
64 #include <mach_ldebug.h>
65
66 #include <types.h>
67 #include <i386/eflags.h>
68 #include <i386/trap.h>
69 #include <i386/pmap.h>
70 #include <i386/fpu.h>
71 #include <i386/misc_protos.h> /* panic_io_port_read() */
72 #include <i386/lapic.h>
73
74 #include <mach/exception.h>
75 #include <mach/kern_return.h>
76 #include <mach/vm_param.h>
77 #include <mach/i386/thread_status.h>
78
79 #include <vm/vm_kern.h>
80 #include <vm/vm_fault.h>
81
82 #include <kern/kern_types.h>
83 #include <kern/processor.h>
84 #include <kern/thread.h>
85 #include <kern/task.h>
86 #include <kern/sched.h>
87 #include <kern/sched_prim.h>
88 #include <kern/exception.h>
89 #include <kern/spl.h>
90 #include <kern/misc_protos.h>
91 #include <kern/debug.h>
92 #if CONFIG_TELEMETRY
93 #include <kern/telemetry.h>
94 #endif
95 #include <sys/kdebug.h>
96 #include <prng/random.h>
97
98 #include <string.h>
99
100 #include <i386/postcode.h>
101 #include <i386/mp_desc.h>
102 #include <i386/proc_reg.h>
103 #if CONFIG_MCA
104 #include <i386/machine_check.h>
105 #endif
106 #include <mach/i386/syscall_sw.h>
107
108 #include <libkern/OSDebug.h>
109 #include <i386/cpu_threads.h>
110 #include <machine/pal_routines.h>
111
112 extern void throttle_lowpri_io(int);
113 extern void kprint_state(x86_saved_state64_t *saved_state);
114
115 /*
116 * Forward declarations
117 */
118 static void user_page_fault_continue(kern_return_t kret);
119 static void panic_trap(x86_saved_state64_t *saved_state, uint32_t pl, kern_return_t fault_result);
120 static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
121
122 volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
123
124 #if CONFIG_DTRACE
125 /* See <rdar://problem/4613924> */
126 perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
127
128 extern boolean_t dtrace_tally_fault(user_addr_t);
129 #endif
130
131 extern boolean_t pmap_smep_enabled;
132 extern boolean_t pmap_smap_enabled;
133
134 __attribute__((noreturn))
135 void
136 thread_syscall_return(
137 kern_return_t ret)
138 {
139 thread_t thr_act = current_thread();
140 boolean_t is_mach;
141 int code;
142
143 pal_register_cache_state(thr_act, DIRTY);
144
145 if (thread_is_64bit(thr_act)) {
146 x86_saved_state64_t *regs;
147
148 regs = USER_REGS64(thr_act);
149
150 code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
151 is_mach = (regs->rax & SYSCALL_CLASS_MASK)
152 == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
153 if (kdebug_enable && is_mach) {
154 /* Mach trap */
155 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
156 MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END,
157 ret, 0, 0, 0, 0);
158 }
159 regs->rax = ret;
160 #if DEBUG
161 if (is_mach)
162 DEBUG_KPRINT_SYSCALL_MACH(
163 "thread_syscall_return: 64-bit mach ret=%u\n",
164 ret);
165 else
166 DEBUG_KPRINT_SYSCALL_UNIX(
167 "thread_syscall_return: 64-bit unix ret=%u\n",
168 ret);
169 #endif
170 } else {
171 x86_saved_state32_t *regs;
172
173 regs = USER_REGS32(thr_act);
174
175 code = ((int) regs->eax);
176 is_mach = (code < 0);
177 if (kdebug_enable && is_mach) {
178 /* Mach trap */
179 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
180 MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END,
181 ret, 0, 0, 0, 0);
182 }
183 regs->eax = ret;
184 #if DEBUG
185 if (is_mach)
186 DEBUG_KPRINT_SYSCALL_MACH(
187 "thread_syscall_return: 32-bit mach ret=%u\n",
188 ret);
189 else
190 DEBUG_KPRINT_SYSCALL_UNIX(
191 "thread_syscall_return: 32-bit unix ret=%u\n",
192 ret);
193 #endif
194 }
195 throttle_lowpri_io(1);
196
197 thread_exception_return();
198 /*NOTREACHED*/
199 }
200
201
202 static inline void
203 user_page_fault_continue(
204 kern_return_t kr)
205 {
206 thread_t thread = current_thread();
207 user_addr_t vaddr;
208
209 if (thread_is_64bit(thread)) {
210 x86_saved_state64_t *uregs;
211
212 uregs = USER_REGS64(thread);
213
214 vaddr = (user_addr_t)uregs->cr2;
215 } else {
216 x86_saved_state32_t *uregs;
217
218 uregs = USER_REGS32(thread);
219
220 vaddr = uregs->cr2;
221 }
222
223
224 /* PAL debug hook */
225 pal_dbg_page_fault( thread, vaddr, kr );
226
227 i386_exception(EXC_BAD_ACCESS, kr, vaddr);
228 /*NOTREACHED*/
229 }
230
231 /*
232 * Fault recovery in copyin/copyout routines.
233 */
234 struct recovery {
235 uintptr_t fault_addr;
236 uintptr_t recover_addr;
237 };
238
239 extern struct recovery recover_table[];
240 extern struct recovery recover_table_end[];
241
242 const char * trap_type[] = {TRAP_NAMES};
243 unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]);
244
245 extern void PE_incoming_interrupt(int interrupt);
246
247 #if defined(__x86_64__) && DEBUG
248 void
249 kprint_state(x86_saved_state64_t *saved_state)
250 {
251 kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
252 kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
253 kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
254 kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
255
256 kprintf(" rdi 0x%llx\n", saved_state->rdi);
257 kprintf(" rsi 0x%llx\n", saved_state->rsi);
258 kprintf(" rdx 0x%llx\n", saved_state->rdx);
259 kprintf(" r10 0x%llx\n", saved_state->r10);
260 kprintf(" r8 0x%llx\n", saved_state->r8);
261 kprintf(" r9 0x%llx\n", saved_state->r9);
262
263 kprintf(" cr2 0x%llx\n", saved_state->cr2);
264 kprintf("real cr2 0x%lx\n", get_cr2());
265 kprintf(" r15 0x%llx\n", saved_state->r15);
266 kprintf(" r14 0x%llx\n", saved_state->r14);
267 kprintf(" r13 0x%llx\n", saved_state->r13);
268 kprintf(" r12 0x%llx\n", saved_state->r12);
269 kprintf(" r11 0x%llx\n", saved_state->r11);
270 kprintf(" rbp 0x%llx\n", saved_state->rbp);
271 kprintf(" rbx 0x%llx\n", saved_state->rbx);
272 kprintf(" rcx 0x%llx\n", saved_state->rcx);
273 kprintf(" rax 0x%llx\n", saved_state->rax);
274
275 kprintf(" gs 0x%x\n", saved_state->gs);
276 kprintf(" fs 0x%x\n", saved_state->fs);
277
278 kprintf(" isf.trapno 0x%x\n", saved_state->isf.trapno);
279 kprintf(" isf._pad 0x%x\n", saved_state->isf._pad);
280 kprintf(" isf.trapfn 0x%llx\n", saved_state->isf.trapfn);
281 kprintf(" isf.err 0x%llx\n", saved_state->isf.err);
282 kprintf(" isf.rip 0x%llx\n", saved_state->isf.rip);
283 kprintf(" isf.cs 0x%llx\n", saved_state->isf.cs);
284 kprintf(" isf.rflags 0x%llx\n", saved_state->isf.rflags);
285 kprintf(" isf.rsp 0x%llx\n", saved_state->isf.rsp);
286 kprintf(" isf.ss 0x%llx\n", saved_state->isf.ss);
287 }
288 #endif
289
290
291 /*
292 * Non-zero indicates latency assert is enabled and capped at valued
293 * absolute time units.
294 */
295
296 uint64_t interrupt_latency_cap = 0;
297 boolean_t ilat_assert = FALSE;
298
299 void
300 interrupt_latency_tracker_setup(void) {
301 uint32_t ilat_cap_us;
302 if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
303 interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
304 nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap);
305 } else {
306 interrupt_latency_cap = LockTimeOut;
307 }
308 PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
309 }
310
311 void interrupt_reset_latency_stats(void) {
312 uint32_t i;
313 for (i = 0; i < real_ncpus; i++) {
314 cpu_data_ptr[i]->cpu_max_observed_int_latency =
315 cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0;
316 }
317 }
318
319 void interrupt_populate_latency_stats(char *buf, unsigned bufsize) {
320 uint32_t i, tcpu = ~0;
321 uint64_t cur_max = 0;
322
323 for (i = 0; i < real_ncpus; i++) {
324 if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) {
325 cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency;
326 tcpu = i;
327 }
328 }
329
330 if (tcpu < real_ncpus)
331 snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
332 }
333
334 uint32_t interrupt_timer_coalescing_enabled = 1;
335 uint64_t interrupt_coalesced_timers;
336
337 /*
338 * Handle interrupts:
339 * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
340 * - device interrupts go to the platform expert.
341 */
342 void
343 interrupt(x86_saved_state_t *state)
344 {
345 uint64_t rip;
346 uint64_t rsp;
347 int interrupt_num;
348 boolean_t user_mode = FALSE;
349 int ipl;
350 int cnum = cpu_number();
351 cpu_data_t *cdp = cpu_data_ptr[cnum];
352 int itype = 0;
353
354 if (is_saved_state64(state) == TRUE) {
355 x86_saved_state64_t *state64;
356
357 state64 = saved_state64(state);
358 rip = state64->isf.rip;
359 rsp = state64->isf.rsp;
360 interrupt_num = state64->isf.trapno;
361 #ifdef __x86_64__
362 if(state64->isf.cs & 0x03)
363 #endif
364 user_mode = TRUE;
365 } else {
366 x86_saved_state32_t *state32;
367
368 state32 = saved_state32(state);
369 if (state32->cs & 0x03)
370 user_mode = TRUE;
371 rip = state32->eip;
372 rsp = state32->uesp;
373 interrupt_num = state32->trapno;
374 }
375
376 if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage)
377 cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
378
379 if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT))
380 itype = 1;
381 else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT))
382 itype = 2;
383 else
384 itype = 3;
385
386 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
387 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
388 interrupt_num,
389 (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
390 user_mode, itype, 0);
391
392 SCHED_STATS_INTERRUPT(current_processor());
393
394 #if CONFIG_TELEMETRY
395 if (telemetry_needs_record) {
396 telemetry_mark_curthread(user_mode);
397 }
398 #endif
399
400 ipl = get_preemption_level();
401
402 /*
403 * Handle local APIC interrupts
404 * else call platform expert for devices.
405 */
406 if (!lapic_interrupt(interrupt_num, state)) {
407 PE_incoming_interrupt(interrupt_num);
408 }
409
410 if (__improbable(get_preemption_level() != ipl)) {
411 panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num, ipl, get_preemption_level());
412 }
413
414
415 if (__improbable(cdp->cpu_nested_istack)) {
416 cdp->cpu_nested_istack_events++;
417 }
418 else {
419 uint64_t ctime = mach_absolute_time();
420 uint64_t int_latency = ctime - cdp->cpu_int_event_time;
421 uint64_t esdeadline, ehdeadline;
422 /* Attempt to process deferred timers in the context of
423 * this interrupt, unless interrupt time has already exceeded
424 * TCOAL_ILAT_THRESHOLD.
425 */
426 #define TCOAL_ILAT_THRESHOLD (30000ULL)
427
428 if ((int_latency < TCOAL_ILAT_THRESHOLD) &&
429 interrupt_timer_coalescing_enabled) {
430 esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline;
431 ehdeadline = cdp->rtclock_timer.deadline;
432 if ((ctime >= esdeadline) && (ctime < ehdeadline)) {
433 interrupt_coalesced_timers++;
434 TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0);
435 rtclock_intr(state);
436 TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0);
437 } else {
438 TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0);
439 }
440 }
441
442 if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) {
443 panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals);
444 }
445
446 if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) {
447 cdp->cpu_max_observed_int_latency = int_latency;
448 cdp->cpu_max_observed_int_latency_vector = interrupt_num;
449 }
450 }
451
452 /*
453 * Having serviced the interrupt first, look at the interrupted stack depth.
454 */
455 if (!user_mode) {
456 uint64_t depth = cdp->cpu_kernel_stack
457 + sizeof(struct x86_kernel_state)
458 + sizeof(struct i386_exception_link *)
459 - rsp;
460 if (__improbable(depth > kernel_stack_depth_max)) {
461 kernel_stack_depth_max = (vm_offset_t)depth;
462 KERNEL_DEBUG_CONSTANT(
463 MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
464 (long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
465 }
466 }
467
468 if (cnum == master_cpu)
469 ml_entropy_collect();
470
471 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
472 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
473 interrupt_num, 0, 0, 0, 0);
474
475 assert(ml_get_interrupts_enabled() == FALSE);
476 }
477
478 static inline void
479 reset_dr7(void)
480 {
481 long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
482 __asm__ volatile("mov %0,%%dr7" : : "r" (dr7));
483 }
484 #if MACH_KDP
485 unsigned kdp_has_active_watchpoints = 0;
486 #define NO_WATCHPOINTS (!kdp_has_active_watchpoints)
487 #else
488 #define NO_WATCHPOINTS 1
489 #endif
490 /*
491 * Trap from kernel mode. Only page-fault errors are recoverable,
492 * and then only in special circumstances. All other errors are
493 * fatal. Return value indicates if trap was handled.
494 */
495
496 void
497 kernel_trap(
498 x86_saved_state_t *state,
499 uintptr_t *lo_spp)
500 {
501 x86_saved_state64_t *saved_state;
502 int code;
503 user_addr_t vaddr;
504 int type;
505 vm_map_t map = 0; /* protected by T_PAGE_FAULT */
506 kern_return_t result = KERN_FAILURE;
507 kern_return_t fault_result = KERN_SUCCESS;
508 thread_t thread;
509 ast_t *myast;
510 boolean_t intr;
511 vm_prot_t prot;
512 struct recovery *rp;
513 vm_offset_t kern_ip;
514 #if NCOPY_WINDOWS > 0
515 int fault_in_copy_window = -1;
516 #endif
517 int is_user;
518 int trap_pl = get_preemption_level();
519
520 thread = current_thread();
521
522 if (__improbable(is_saved_state32(state)))
523 panic("kernel_trap(%p) with 32-bit state", state);
524 saved_state = saved_state64(state);
525
526 /* Record cpu where state was captured */
527 saved_state->isf.cpu = cpu_number();
528
529 vaddr = (user_addr_t)saved_state->cr2;
530 type = saved_state->isf.trapno;
531 code = (int)(saved_state->isf.err & 0xffff);
532 intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
533 kern_ip = (vm_offset_t)saved_state->isf.rip;
534
535 myast = ast_pending();
536
537 is_user = (vaddr < VM_MAX_USER_PAGE_ADDRESS);
538
539 perfASTCallback astfn = perfASTHook;
540 if (__improbable(astfn != NULL)) {
541 if (*myast & AST_CHUD_ALL)
542 astfn(AST_CHUD_ALL, myast);
543 } else
544 *myast &= ~AST_CHUD_ALL;
545
546
547 #if CONFIG_DTRACE
548 /*
549 * Is there a DTrace hook?
550 */
551 if (__improbable(tempDTraceTrapHook != NULL)) {
552 if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
553 /*
554 * If it succeeds, we are done...
555 */
556 return;
557 }
558 }
559 #endif /* CONFIG_DTRACE */
560
561 /*
562 * we come here with interrupts off as we don't want to recurse
563 * on preemption below. but we do want to re-enable interrupts
564 * as soon we possibly can to hold latency down
565 */
566 if (__improbable(T_PREEMPT == type)) {
567 ast_taken(AST_PREEMPTION, FALSE);
568
569 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
570 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
571 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
572 return;
573 }
574
575 user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
576 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
577 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
578 (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
579 VM_KERNEL_UNSLIDE(kern_ip), 0);
580
581
582 if (T_PAGE_FAULT == type) {
583 /*
584 * assume we're faulting in the kernel map
585 */
586 map = kernel_map;
587
588 if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) {
589 #if NCOPY_WINDOWS > 0
590 vm_offset_t copy_window_base;
591 vm_offset_t kvaddr;
592 int window_index;
593
594 kvaddr = (vm_offset_t)vaddr;
595 /*
596 * must determine if fault occurred in
597 * the copy window while pre-emption is
598 * disabled for this processor so that
599 * we only need to look at the window
600 * associated with this processor
601 */
602 copy_window_base = current_cpu_datap()->cpu_copywindow_base;
603
604 if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) {
605
606 window_index = (int)((kvaddr - copy_window_base) / NBPDE);
607
608 if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) {
609
610 kvaddr -= (copy_window_base + (NBPDE * window_index));
611 vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
612
613 map = thread->map;
614 fault_in_copy_window = window_index;
615 }
616 }
617 #else
618 if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) {
619 /* fault occurred in userspace */
620 map = thread->map;
621
622 /* Intercept a potential Supervisor Mode Execute
623 * Protection fault. These criteria identify
624 * both NX faults and SMEP faults, but both
625 * are fatal. We avoid checking PTEs (racy).
626 * (The VM could just redrive a SMEP fault, hence
627 * the intercept).
628 */
629 if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) &&
630 (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
631 goto debugger_entry;
632 }
633
634 /*
635 * Additionally check for SMAP faults...
636 * which are characterized by page-present and
637 * the AC bit unset (i.e. not from copyin/out path).
638 */
639 if (__improbable(code & T_PF_PROT &&
640 pmap_smap_enabled &&
641 (saved_state->isf.rflags & EFL_AC) == 0)) {
642 goto debugger_entry;
643 }
644
645 /*
646 * If we're not sharing cr3 with the user
647 * and we faulted in copyio,
648 * then switch cr3 here and dismiss the fault.
649 */
650 if (no_shared_cr3 &&
651 (thread->machine.specFlags&CopyIOActive) &&
652 map->pmap->pm_cr3 != get_cr3_base()) {
653 pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
654 set_cr3_raw(map->pmap->pm_cr3);
655 return;
656 }
657 if (__improbable(vaddr < PAGE_SIZE) &&
658 ((thread->machine.specFlags & CopyIOActive) == 0)) {
659 goto debugger_entry;
660 }
661 }
662 #endif
663 }
664 }
665
666 (void) ml_set_interrupts_enabled(intr);
667
668 switch (type) {
669
670 case T_NO_FPU:
671 fpnoextflt();
672 return;
673
674 case T_FPU_FAULT:
675 fpextovrflt();
676 return;
677
678 case T_FLOATING_POINT_ERROR:
679 fpexterrflt();
680 return;
681
682 case T_SSE_FLOAT_ERROR:
683 fpSSEexterrflt();
684 return;
685 case T_DEBUG:
686 if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS)
687 {
688 /* We've somehow encountered a debug
689 * register match that does not belong
690 * to the kernel debugger.
691 * This isn't supposed to happen.
692 */
693 reset_dr7();
694 return;
695 }
696 goto debugger_entry;
697 #ifdef __x86_64__
698 case T_INT3:
699 goto debugger_entry;
700 #endif
701 case T_PAGE_FAULT:
702
703 #if CONFIG_DTRACE
704 if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
705 if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
706 /*
707 * DTrace has "anticipated" the possibility of this fault, and has
708 * established the suitable recovery state. Drop down now into the
709 * recovery handling code in "case T_GENERAL_PROTECTION:".
710 */
711 goto FALL_THROUGH;
712 }
713 }
714 #endif /* CONFIG_DTRACE */
715
716 prot = VM_PROT_READ;
717
718 if (code & T_PF_WRITE)
719 prot |= VM_PROT_WRITE;
720 if (code & T_PF_EXECUTE)
721 prot |= VM_PROT_EXECUTE;
722
723 fault_result = result = vm_fault(map,
724 vaddr,
725 prot,
726 FALSE,
727 THREAD_UNINT, NULL, 0);
728
729 if (result == KERN_SUCCESS) {
730 #if NCOPY_WINDOWS > 0
731 if (fault_in_copy_window != -1) {
732 ml_set_interrupts_enabled(FALSE);
733 copy_window_fault(thread, map,
734 fault_in_copy_window);
735 (void) ml_set_interrupts_enabled(intr);
736 }
737 #endif /* NCOPY_WINDOWS > 0 */
738 return;
739 }
740 /*
741 * fall through
742 */
743 #if CONFIG_DTRACE
744 FALL_THROUGH:
745 #endif /* CONFIG_DTRACE */
746
747 case T_GENERAL_PROTECTION:
748 /*
749 * If there is a failure recovery address
750 * for this fault, go there.
751 */
752 for (rp = recover_table; rp < recover_table_end; rp++) {
753 if (kern_ip == rp->fault_addr) {
754 set_recovery_ip(saved_state, rp->recover_addr);
755 return;
756 }
757 }
758
759 /*
760 * Check thread recovery address also.
761 */
762 if (thread != THREAD_NULL && thread->recover) {
763 set_recovery_ip(saved_state, thread->recover);
764 thread->recover = 0;
765 return;
766 }
767 /*
768 * Unanticipated page-fault errors in kernel
769 * should not happen.
770 *
771 * fall through...
772 */
773 default:
774 /*
775 * Exception 15 is reserved but some chips may generate it
776 * spuriously. Seen at startup on AMD Athlon-64.
777 */
778 if (type == 15) {
779 kprintf("kernel_trap() ignoring spurious trap 15\n");
780 return;
781 }
782 debugger_entry:
783 /* Ensure that the i386_kernel_state at the base of the
784 * current thread's stack (if any) is synchronized with the
785 * context at the moment of the trap, to facilitate
786 * access through the debugger.
787 */
788 sync_iss_to_iks(state);
789 #if MACH_KDP
790 if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr))
791 return;
792 #endif
793 }
794 pal_cli();
795 panic_trap(saved_state, trap_pl, fault_result);
796 /*
797 * NO RETURN
798 */
799 }
800
801
802 static void
803 set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
804 {
805 saved_state->isf.rip = ip;
806 }
807
808 static void
809 panic_trap(x86_saved_state64_t *regs, uint32_t pl, kern_return_t fault_result)
810 {
811 const char *trapname = "Unknown";
812 pal_cr_t cr0, cr2, cr3, cr4;
813 boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
814 boolean_t potential_smap_fault = FALSE;
815
816 pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
817 assert(ml_get_interrupts_enabled() == FALSE);
818 current_cpu_datap()->cpu_fatal_trap_state = regs;
819 /*
820 * Issue an I/O port read if one has been requested - this is an
821 * event logic analyzers can use as a trigger point.
822 */
823 panic_io_port_read();
824
825 kprintf("panic trap number 0x%x, rip 0x%016llx\n",
826 regs->isf.trapno, regs->isf.rip);
827 kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
828 cr0, cr2, cr3, cr4);
829
830 if (regs->isf.trapno < TRAP_TYPES)
831 trapname = trap_type[regs->isf.trapno];
832
833 if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
834 if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
835 potential_smep_fault = TRUE;
836 } else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
837 potential_kernel_NX_fault = TRUE;
838 }
839 } else if (pmap_smap_enabled &&
840 regs->isf.trapno == T_PAGE_FAULT &&
841 regs->isf.err & T_PF_PROT &&
842 regs->cr2 < VM_MAX_USER_PAGE_ADDRESS &&
843 regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
844 potential_smap_fault = TRUE;
845 }
846
847 #undef panic
848 panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
849 "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
850 "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
851 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
852 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
853 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
854 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
855 "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n",
856 regs->isf.rip, regs->isf.trapno, trapname,
857 cr0, cr2, cr3, cr4,
858 regs->rax, regs->rbx, regs->rcx, regs->rdx,
859 regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
860 regs->r8, regs->r9, regs->r10, regs->r11,
861 regs->r12, regs->r13, regs->r14, regs->r15,
862 regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
863 regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu,
864 virtualized ? " VMM" : "",
865 potential_kernel_NX_fault ? " Kernel NX fault" : "",
866 potential_smep_fault ? " SMEP/User NX fault" : "",
867 potential_smap_fault ? " SMAP fault" : "",
868 pl,
869 fault_result);
870 /*
871 * This next statement is not executed,
872 * but it's needed to stop the compiler using tail call optimization
873 * for the panic call - which confuses the subsequent backtrace.
874 */
875 cr0 = 0;
876 }
877
878 #if CONFIG_DTRACE
879 extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
880 #endif
881
882 /*
883 * Trap from user mode.
884 */
885 void
886 user_trap(
887 x86_saved_state_t *saved_state)
888 {
889 int exc;
890 int err;
891 mach_exception_code_t code;
892 mach_exception_subcode_t subcode;
893 int type;
894 user_addr_t vaddr;
895 vm_prot_t prot;
896 thread_t thread = current_thread();
897 ast_t *myast;
898 kern_return_t kret;
899 user_addr_t rip;
900 unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
901
902 assert((is_saved_state32(saved_state) && !thread_is_64bit(thread)) ||
903 (is_saved_state64(saved_state) && thread_is_64bit(thread)));
904
905 if (is_saved_state64(saved_state)) {
906 x86_saved_state64_t *regs;
907
908 regs = saved_state64(saved_state);
909
910 /* Record cpu where state was captured */
911 regs->isf.cpu = cpu_number();
912
913 type = regs->isf.trapno;
914 err = (int)regs->isf.err & 0xffff;
915 vaddr = (user_addr_t)regs->cr2;
916 rip = (user_addr_t)regs->isf.rip;
917 } else {
918 x86_saved_state32_t *regs;
919
920 regs = saved_state32(saved_state);
921
922 /* Record cpu where state was captured */
923 regs->cpu = cpu_number();
924
925 type = regs->trapno;
926 err = regs->err & 0xffff;
927 vaddr = (user_addr_t)regs->cr2;
928 rip = (user_addr_t)regs->eip;
929 }
930
931 if ((type == T_DEBUG) && thread->machine.ids) {
932 unsigned long clear = 0;
933 /* Stash and clear this processor's DR6 value, in the event
934 * this was a debug register match
935 */
936 __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
937 __asm__ volatile ("mov %0, %%db6" : : "r" (clear));
938 }
939
940 pal_sti();
941
942 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
943 (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
944 (unsigned)(vaddr>>32), (unsigned)vaddr,
945 (unsigned)(rip>>32), (unsigned)rip, 0);
946
947 code = 0;
948 subcode = 0;
949 exc = 0;
950
951 #if DEBUG_TRACE
952 kprintf("user_trap(0x%08x) type=%d vaddr=0x%016llx\n",
953 saved_state, type, vaddr);
954 #endif
955
956 perfASTCallback astfn = perfASTHook;
957 if (__improbable(astfn != NULL)) {
958 myast = ast_pending();
959 if (*myast & AST_CHUD_ALL) {
960 astfn(AST_CHUD_ALL, myast);
961 }
962 }
963
964 /* Is there a hook? */
965 perfCallback fn = perfTrapHook;
966 if (__improbable(fn != NULL)) {
967 if (fn(type, saved_state, 0, 0) == KERN_SUCCESS)
968 return; /* If it succeeds, we are done... */
969 }
970
971 #if CONFIG_DTRACE
972 /*
973 * DTrace does not consume all user traps, only INT_3's for now.
974 * Avoid needlessly calling tempDTraceTrapHook here, and let the
975 * INT_3 case handle them.
976 */
977 #endif
978
979 DEBUG_KPRINT_SYSCALL_MASK(1,
980 "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
981 type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
982
983 switch (type) {
984
985 case T_DIVIDE_ERROR:
986 exc = EXC_ARITHMETIC;
987 code = EXC_I386_DIV;
988 break;
989
990 case T_DEBUG:
991 {
992 pcb_t pcb;
993 /*
994 * Update the PCB with this processor's DR6 value
995 * in the event this was a debug register match.
996 */
997 pcb = THREAD_TO_PCB(thread);
998 if (pcb->ids) {
999 /*
1000 * We can get and set the status register
1001 * in 32-bit mode even on a 64-bit thread
1002 * because the high order bits are not
1003 * used on x86_64
1004 */
1005 if (thread_is_64bit(thread)) {
1006 x86_debug_state64_t *ids = pcb->ids;
1007 ids->dr6 = dr6;
1008 } else { /* 32 bit thread */
1009 x86_debug_state32_t *ids = pcb->ids;
1010 ids->dr6 = (uint32_t) dr6;
1011 }
1012 }
1013 exc = EXC_BREAKPOINT;
1014 code = EXC_I386_SGL;
1015 break;
1016 }
1017 case T_INT3:
1018 #if CONFIG_DTRACE
1019 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1020 return; /* If it succeeds, we are done... */
1021 #endif
1022 exc = EXC_BREAKPOINT;
1023 code = EXC_I386_BPT;
1024 break;
1025
1026 case T_OVERFLOW:
1027 exc = EXC_ARITHMETIC;
1028 code = EXC_I386_INTO;
1029 break;
1030
1031 case T_OUT_OF_BOUNDS:
1032 exc = EXC_SOFTWARE;
1033 code = EXC_I386_BOUND;
1034 break;
1035
1036 case T_INVALID_OPCODE:
1037 exc = EXC_BAD_INSTRUCTION;
1038 code = EXC_I386_INVOP;
1039 break;
1040
1041 case T_NO_FPU:
1042 fpnoextflt();
1043 return;
1044
1045 case T_FPU_FAULT:
1046 fpextovrflt(); /* Propagates exception directly, doesn't return */
1047 return;
1048
1049 case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
1050 exc = EXC_BAD_INSTRUCTION;
1051 code = EXC_I386_INVTSSFLT;
1052 subcode = err;
1053 break;
1054
1055 case T_SEGMENT_NOT_PRESENT:
1056 exc = EXC_BAD_INSTRUCTION;
1057 code = EXC_I386_SEGNPFLT;
1058 subcode = err;
1059 break;
1060
1061 case T_STACK_FAULT:
1062 exc = EXC_BAD_INSTRUCTION;
1063 code = EXC_I386_STKFLT;
1064 subcode = err;
1065 break;
1066
1067 case T_GENERAL_PROTECTION:
1068 /*
1069 * There's a wide range of circumstances which generate this
1070 * class of exception. From user-space, many involve bad
1071 * addresses (such as a non-canonical 64-bit address).
1072 * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV).
1073 * The trouble is cr2 doesn't contain the faulting address;
1074 * we'd need to decode the faulting instruction to really
1075 * determine this. We'll leave that to debuggers.
1076 * However, attempted execution of privileged instructions
1077 * (e.g. cli) also generate GP faults and so we map these to
1078 * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
1079 * EXC_BAD_INSTRUCTION which is more accurate. We just can't
1080 * win!
1081 */
1082 exc = EXC_BAD_ACCESS;
1083 code = EXC_I386_GPFLT;
1084 subcode = err;
1085 break;
1086
1087 case T_PAGE_FAULT:
1088 {
1089 prot = VM_PROT_READ;
1090
1091 if (err & T_PF_WRITE)
1092 prot |= VM_PROT_WRITE;
1093 if (__improbable(err & T_PF_EXECUTE))
1094 prot |= VM_PROT_EXECUTE;
1095 kret = vm_fault(thread->map,
1096 vaddr,
1097 prot, FALSE,
1098 THREAD_ABORTSAFE, NULL, 0);
1099
1100 if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
1101 thread_exception_return();
1102 /*NOTREACHED*/
1103 }
1104
1105 user_page_fault_continue(kret);
1106 } /* NOTREACHED */
1107 break;
1108
1109 case T_SSE_FLOAT_ERROR:
1110 fpSSEexterrflt(); /* Propagates exception directly, doesn't return */
1111 return;
1112
1113
1114 case T_FLOATING_POINT_ERROR:
1115 fpexterrflt(); /* Propagates exception directly, doesn't return */
1116 return;
1117
1118 case T_DTRACE_RET:
1119 #if CONFIG_DTRACE
1120 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1121 return; /* If it succeeds, we are done... */
1122 #endif
1123 /*
1124 * If we get an INT 0x7f when we do not expect to,
1125 * treat it as an illegal instruction
1126 */
1127 exc = EXC_BAD_INSTRUCTION;
1128 code = EXC_I386_INVOP;
1129 break;
1130
1131 default:
1132 panic("Unexpected user trap, type %d", type);
1133 return;
1134 }
1135 /* Note: Codepaths that directly return from user_trap() have pending
1136 * ASTs processed in locore
1137 */
1138 i386_exception(exc, code, subcode);
1139 /* NOTREACHED */
1140 }
1141
1142
1143 /*
1144 * Handle AST traps for i386.
1145 */
1146
1147 extern void log_thread_action (thread_t, char *);
1148
1149 void
1150 i386_astintr(int preemption)
1151 {
1152 ast_t mask = AST_ALL;
1153 spl_t s;
1154
1155 if (preemption)
1156 mask = AST_PREEMPTION;
1157
1158 s = splsched();
1159
1160 ast_taken(mask, s);
1161
1162 splx(s);
1163 }
1164
1165 /*
1166 * Handle exceptions for i386.
1167 *
1168 * If we are an AT bus machine, we must turn off the AST for a
1169 * delayed floating-point exception.
1170 *
1171 * If we are providing floating-point emulation, we may have
1172 * to retrieve the real register values from the floating point
1173 * emulator.
1174 */
1175 void
1176 i386_exception(
1177 int exc,
1178 mach_exception_code_t code,
1179 mach_exception_subcode_t subcode)
1180 {
1181 mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
1182
1183 DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
1184 exc, code, subcode);
1185 codes[0] = code; /* new exception interface */
1186 codes[1] = subcode;
1187 exception_triage(exc, codes, 2);
1188 /*NOTREACHED*/
1189 }
1190
1191
1192 /* Synchronize a thread's x86_kernel_state (if any) with the given
1193 * x86_saved_state_t obtained from the trap/IPI handler; called in
1194 * kernel_trap() prior to entering the debugger, and when receiving
1195 * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
1196 * was detected from the kernel while spinning with interrupts masked.
1197 */
1198
1199 void
1200 sync_iss_to_iks(x86_saved_state_t *saved_state)
1201 {
1202 struct x86_kernel_state *iks;
1203 vm_offset_t kstack;
1204 boolean_t record_active_regs = FALSE;
1205
1206 /* The PAL may have a special way to sync registers */
1207 if (saved_state && saved_state->flavor == THREAD_STATE_NONE)
1208 pal_get_kern_regs( saved_state );
1209
1210 if ((kstack = current_thread()->kernel_stack) != 0) {
1211 x86_saved_state64_t *regs = saved_state64(saved_state);
1212
1213 iks = STACK_IKS(kstack);
1214
1215 /* Did we take the trap/interrupt in kernel mode? */
1216 if (saved_state == NULL || /* NULL => polling in kernel */
1217 regs == USER_REGS64(current_thread()))
1218 record_active_regs = TRUE;
1219 else {
1220 iks->k_rbx = regs->rbx;
1221 iks->k_rsp = regs->isf.rsp;
1222 iks->k_rbp = regs->rbp;
1223 iks->k_r12 = regs->r12;
1224 iks->k_r13 = regs->r13;
1225 iks->k_r14 = regs->r14;
1226 iks->k_r15 = regs->r15;
1227 iks->k_rip = regs->isf.rip;
1228 }
1229 }
1230
1231 if (record_active_regs == TRUE) {
1232 /* Show the trap handler path */
1233 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1234 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1235 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1236 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1237 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1238 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1239 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1240 /* "Current" instruction pointer */
1241 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
1242 : "=m" (iks->k_rip)
1243 :
1244 : "rax");
1245 }
1246 }
1247
1248 /*
1249 * This is used by the NMI interrupt handler (from mp.c) to
1250 * uncondtionally sync the trap handler context to the IKS
1251 * irrespective of whether the NMI was fielded in kernel
1252 * or user space.
1253 */
1254 void
1255 sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) {
1256 struct x86_kernel_state *iks;
1257 vm_offset_t kstack;
1258
1259 if ((kstack = current_thread()->kernel_stack) != 0) {
1260 iks = STACK_IKS(kstack);
1261 /* Display the trap handler path */
1262 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1263 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1264 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1265 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1266 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1267 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1268 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1269 /* "Current" instruction pointer */
1270 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
1271 }
1272 }
1273
1274 #if DEBUG
1275 extern void thread_exception_return_internal(void) __dead2;
1276
1277 void thread_exception_return(void) {
1278 thread_t thread = current_thread();
1279 ml_set_interrupts_enabled(FALSE);
1280 if (thread_is_64bit(thread) != task_has_64BitAddr(thread->task)) {
1281 panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d", thread, thread->task, thread_is_64bit(thread), task_has_64BitAddr(thread->task));
1282 }
1283
1284 if (thread_is_64bit(thread)) {
1285 if ((gdt_desc_p(USER64_CS)->access & ACC_PL_U) == 0) {
1286 panic("64-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER64_CS));
1287 }
1288 } else {
1289 if ((gdt_desc_p(USER_CS)->access & ACC_PL_U) == 0) {
1290 panic("32-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER_CS));
1291
1292 }
1293 }
1294 thread_exception_return_internal();
1295 }
1296 #endif