2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <i386/machine_routines.h>
30 #include <i386/io_map_entries.h>
31 #include <i386/cpuid.h>
33 #include <mach/processor.h>
34 #include <kern/processor.h>
35 #include <kern/machine.h>
37 #include <kern/cpu_number.h>
38 #include <kern/thread.h>
39 #include <kern/thread_call.h>
40 #include <kern/policy_internal.h>
42 #include <prng/random.h>
43 #include <i386/machine_cpu.h>
44 #include <i386/lapic.h>
45 #include <i386/bit_routines.h>
46 #include <i386/mp_events.h>
47 #include <i386/pmCPU.h>
48 #include <i386/trap.h>
50 #include <i386/cpu_threads.h>
51 #include <i386/proc_reg.h>
52 #include <mach/vm_param.h>
53 #include <i386/pmap.h>
54 #include <i386/pmap_internal.h>
55 #include <i386/misc_protos.h>
56 #include <kern/timer_queue.h>
60 #include <architecture/i386/pio.h>
61 #include <i386/cpu_data.h>
63 #define DBG(x...) kprintf("DBG: " x)
68 extern void wakeup(void *);
70 static int max_cpus_initialized
= 0;
74 uint64_t LockTimeOutTSC
;
75 uint32_t LockTimeOutUsec
;
77 uint64_t LastDebuggerEntryAllowance
;
78 uint64_t delay_spin_threshold
;
80 extern uint64_t panic_restart_timeout
;
82 boolean_t virtualized
= FALSE
;
84 decl_simple_lock_data(static, ml_timer_evaluation_slock
);
85 uint32_t ml_timer_eager_evaluations
;
86 uint64_t ml_timer_eager_evaluation_max
;
87 static boolean_t ml_timer_evaluation_in_progress
= FALSE
;
90 #define MAX_CPUS_SET 0x1
91 #define MAX_CPUS_WAIT 0x2
93 /* IO memory map services */
95 /* Map memory map IO space */
96 vm_offset_t
ml_io_map(
97 vm_offset_t phys_addr
,
100 return(io_map(phys_addr
,size
,VM_WIMG_IO
));
103 /* boot memory allocation */
104 vm_offset_t
ml_static_malloc(
105 __unused vm_size_t size
)
107 return((vm_offset_t
)NULL
);
111 void ml_get_bouncepool_info(vm_offset_t
*phys_addr
, vm_size_t
*size
)
122 #if defined(__x86_64__)
123 return (vm_offset_t
)(((unsigned long) paddr
) | VM_MIN_KERNEL_ADDRESS
);
125 return (vm_offset_t
)((paddr
) | LINEAR_KERNEL_ADDRESS
);
131 * Routine: ml_static_mfree
141 uint32_t freed_pages
= 0;
142 assert(vaddr
>= VM_MIN_KERNEL_ADDRESS
);
144 assert((vaddr
& (PAGE_SIZE
-1)) == 0); /* must be page aligned */
146 for (vaddr_cur
= vaddr
;
147 vaddr_cur
< round_page_64(vaddr
+size
);
148 vaddr_cur
+= PAGE_SIZE
) {
149 ppn
= pmap_find_phys(kernel_pmap
, vaddr_cur
);
150 if (ppn
!= (vm_offset_t
)NULL
) {
151 kernel_pmap
->stats
.resident_count
++;
152 if (kernel_pmap
->stats
.resident_count
>
153 kernel_pmap
->stats
.resident_max
) {
154 kernel_pmap
->stats
.resident_max
=
155 kernel_pmap
->stats
.resident_count
;
157 pmap_remove(kernel_pmap
, vaddr_cur
, vaddr_cur
+PAGE_SIZE
);
158 assert(pmap_valid_page(ppn
));
159 if (IS_MANAGED_PAGE(ppn
)) {
160 vm_page_create(ppn
,(ppn
+1));
165 vm_page_lockspin_queues();
166 vm_page_wire_count
-= freed_pages
;
167 vm_page_wire_count_initial
-= freed_pages
;
168 vm_page_unlock_queues();
171 kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages
, (void *)vaddr
, (uint64_t)size
, ppn
);
176 /* virtual to physical on wired pages */
177 vm_offset_t
ml_vtophys(
180 return (vm_offset_t
)kvtophys(vaddr
);
184 * Routine: ml_nofault_copy
185 * Function: Perform a physical mode copy if the source and
186 * destination have valid translations in the kernel pmap.
187 * If translations are present, they are assumed to
188 * be wired; i.e. no attempt is made to guarantee that the
189 * translations obtained remained valid for
190 * the duration of the copy process.
193 vm_size_t
ml_nofault_copy(
194 vm_offset_t virtsrc
, vm_offset_t virtdst
, vm_size_t size
)
196 addr64_t cur_phys_dst
, cur_phys_src
;
197 uint32_t count
, nbytes
= 0;
200 if (!(cur_phys_src
= kvtophys(virtsrc
)))
202 if (!(cur_phys_dst
= kvtophys(virtdst
)))
204 if (!pmap_valid_page(i386_btop(cur_phys_dst
)) || !pmap_valid_page(i386_btop(cur_phys_src
)))
206 count
= (uint32_t)(PAGE_SIZE
- (cur_phys_src
& PAGE_MASK
));
207 if (count
> (PAGE_SIZE
- (cur_phys_dst
& PAGE_MASK
)))
208 count
= (uint32_t)(PAGE_SIZE
- (cur_phys_dst
& PAGE_MASK
));
210 count
= (uint32_t)size
;
212 bcopy_phys(cur_phys_src
, cur_phys_dst
, count
);
224 * Routine: ml_validate_nofault
225 * Function: Validate that ths address range has a valid translations
226 * in the kernel pmap. If translations are present, they are
227 * assumed to be wired; i.e. no attempt is made to guarantee
228 * that the translation persist after the check.
229 * Returns: TRUE if the range is mapped and will not cause a fault,
233 boolean_t
ml_validate_nofault(
234 vm_offset_t virtsrc
, vm_size_t size
)
236 addr64_t cur_phys_src
;
240 if (!(cur_phys_src
= kvtophys(virtsrc
)))
242 if (!pmap_valid_page(i386_btop(cur_phys_src
)))
244 count
= (uint32_t)(PAGE_SIZE
- (cur_phys_src
& PAGE_MASK
));
246 count
= (uint32_t)size
;
255 /* Interrupt handling */
257 /* Initialize Interrupts */
258 void ml_init_interrupt(void)
260 (void) ml_set_interrupts_enabled(TRUE
);
264 /* Get Interrupts Enabled */
265 boolean_t
ml_get_interrupts_enabled(void)
269 __asm__
volatile("pushf; pop %0" : "=r" (flags
));
270 return (flags
& EFL_IF
) != 0;
273 /* Set Interrupts Enabled */
274 boolean_t
ml_set_interrupts_enabled(boolean_t enable
)
279 __asm__
volatile("pushf; pop %0" : "=r" (flags
));
281 assert(get_interrupt_level() ? (enable
== FALSE
) : TRUE
);
283 istate
= ((flags
& EFL_IF
) != 0);
286 __asm__
volatile("sti;nop");
288 if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT
))
289 __asm__
volatile ("int %0" :: "N" (T_PREEMPT
));
293 __asm__
volatile("cli");
299 /* Check if running at interrupt context */
300 boolean_t
ml_at_interrupt_context(void)
302 return get_interrupt_level() != 0;
305 void ml_get_power_state(boolean_t
*icp
, boolean_t
*pidlep
) {
306 *icp
= (get_interrupt_level() != 0);
307 /* These will be technically inaccurate for interrupts that occur
308 * successively within a single "idle exit" event, but shouldn't
309 * matter statistically.
311 *pidlep
= (current_cpu_datap()->lcpu
.package
->num_idle
== topoParms
.nLThreadsPerPackage
);
314 /* Generate a fake interrupt */
315 void ml_cause_interrupt(void)
317 panic("ml_cause_interrupt not defined yet on Intel");
321 * TODO: transition users of this to kernel_thread_start_priority
322 * ml_thread_policy is an unsupported KPI
324 void ml_thread_policy(
326 __unused
unsigned policy_id
,
327 unsigned policy_info
)
329 if (policy_info
& MACHINE_NETWORK_WORKLOOP
) {
330 thread_precedence_policy_data_t info
;
331 __assert_only kern_return_t kret
;
335 kret
= thread_policy_set_internal(thread
, THREAD_PRECEDENCE_POLICY
,
336 (thread_policy_t
)&info
,
337 THREAD_PRECEDENCE_POLICY_COUNT
);
338 assert(kret
== KERN_SUCCESS
);
342 /* Initialize Interrupts */
343 void ml_install_interrupt_handler(
347 IOInterruptHandler handler
,
350 boolean_t current_state
;
352 current_state
= ml_get_interrupts_enabled();
354 PE_install_interrupt_handler(nub
, source
, target
,
355 (IOInterruptHandler
) handler
, refCon
);
357 (void) ml_set_interrupts_enabled(current_state
);
359 initialize_screen(NULL
, kPEAcquireScreen
);
365 processor_t processor
)
367 cpu_interrupt(processor
->cpu_id
);
371 machine_signal_idle_deferred(
372 __unused processor_t processor
)
374 panic("Unimplemented");
378 machine_signal_idle_cancel(
379 __unused processor_t processor
)
381 panic("Unimplemented");
387 processor_t
*processor_out
,
391 cpu_data_t
*this_cpu_datap
;
393 this_cpu_datap
= cpu_data_alloc(boot_cpu
);
394 if (this_cpu_datap
== NULL
) {
397 target_cpu
= this_cpu_datap
->cpu_number
;
398 assert((boot_cpu
&& (target_cpu
== 0)) ||
399 (!boot_cpu
&& (target_cpu
!= 0)));
401 lapic_cpu_map(lapic_id
, target_cpu
);
403 /* The cpu_id is not known at registration phase. Just do
406 this_cpu_datap
->cpu_phys_number
= lapic_id
;
408 this_cpu_datap
->cpu_console_buf
= console_cpu_alloc(boot_cpu
);
409 if (this_cpu_datap
->cpu_console_buf
== NULL
)
412 this_cpu_datap
->cpu_chud
= chudxnu_cpu_alloc(boot_cpu
);
413 if (this_cpu_datap
->cpu_chud
== NULL
)
417 if (kpc_register_cpu(this_cpu_datap
) != TRUE
)
422 cpu_thread_alloc(this_cpu_datap
->cpu_number
);
423 if (this_cpu_datap
->lcpu
.core
== NULL
)
426 #if NCOPY_WINDOWS > 0
427 this_cpu_datap
->cpu_pmap
= pmap_cpu_alloc(boot_cpu
);
428 if (this_cpu_datap
->cpu_pmap
== NULL
)
432 this_cpu_datap
->cpu_processor
= cpu_processor_alloc(boot_cpu
);
433 if (this_cpu_datap
->cpu_processor
== NULL
)
436 * processor_init() deferred to topology start
437 * because "slot numbers" a.k.a. logical processor numbers
438 * are not yet finalized.
442 *processor_out
= this_cpu_datap
->cpu_processor
;
447 cpu_processor_free(this_cpu_datap
->cpu_processor
);
448 #if NCOPY_WINDOWS > 0
449 pmap_cpu_free(this_cpu_datap
->cpu_pmap
);
451 chudxnu_cpu_free(this_cpu_datap
->cpu_chud
);
452 console_cpu_free(this_cpu_datap
->cpu_console_buf
);
454 kpc_unregister_cpu(this_cpu_datap
);
462 ml_processor_register(
465 processor_t
*processor_out
,
469 static boolean_t done_topo_sort
= FALSE
;
470 static uint32_t num_registered
= 0;
472 /* Register all CPUs first, and track max */
477 DBG( "registering CPU lapic id %d\n", lapic_id
);
479 return register_cpu( lapic_id
, processor_out
, boot_cpu
);
482 /* Sort by topology before we start anything */
483 if( !done_topo_sort
)
485 DBG( "about to start CPUs. %d registered\n", num_registered
);
487 cpu_topology_sort( num_registered
);
488 done_topo_sort
= TRUE
;
491 /* Assign the cpu ID */
492 uint32_t cpunum
= -1;
493 cpu_data_t
*this_cpu_datap
= NULL
;
495 /* find cpu num and pointer */
496 cpunum
= ml_get_cpuid( lapic_id
);
498 if( cpunum
== 0xFFFFFFFF ) /* never heard of it? */
499 panic( "trying to start invalid/unregistered CPU %d\n", lapic_id
);
501 this_cpu_datap
= cpu_datap(cpunum
);
504 this_cpu_datap
->cpu_id
= cpu_id
;
506 /* allocate and initialize other per-cpu structures */
508 mp_cpus_call_cpu_init(cpunum
);
509 prng_cpu_init(cpunum
);
513 *processor_out
= this_cpu_datap
->cpu_processor
;
515 /* OK, try and start this CPU */
516 return cpu_topology_start_cpu( cpunum
);
521 ml_cpu_get_info(ml_cpu_info_t
*cpu_infop
)
523 boolean_t os_supports_sse
;
524 i386_cpu_info_t
*cpuid_infop
;
526 if (cpu_infop
== NULL
)
530 * Are we supporting MMX/SSE/SSE2/SSE3?
531 * As distinct from whether the cpu has these capabilities.
533 os_supports_sse
= !!(get_cr4() & CR4_OSXMM
);
535 if (ml_fpu_avx_enabled())
536 cpu_infop
->vector_unit
= 9;
537 else if ((cpuid_features() & CPUID_FEATURE_SSE4_2
) && os_supports_sse
)
538 cpu_infop
->vector_unit
= 8;
539 else if ((cpuid_features() & CPUID_FEATURE_SSE4_1
) && os_supports_sse
)
540 cpu_infop
->vector_unit
= 7;
541 else if ((cpuid_features() & CPUID_FEATURE_SSSE3
) && os_supports_sse
)
542 cpu_infop
->vector_unit
= 6;
543 else if ((cpuid_features() & CPUID_FEATURE_SSE3
) && os_supports_sse
)
544 cpu_infop
->vector_unit
= 5;
545 else if ((cpuid_features() & CPUID_FEATURE_SSE2
) && os_supports_sse
)
546 cpu_infop
->vector_unit
= 4;
547 else if ((cpuid_features() & CPUID_FEATURE_SSE
) && os_supports_sse
)
548 cpu_infop
->vector_unit
= 3;
549 else if (cpuid_features() & CPUID_FEATURE_MMX
)
550 cpu_infop
->vector_unit
= 2;
552 cpu_infop
->vector_unit
= 0;
554 cpuid_infop
= cpuid_info();
556 cpu_infop
->cache_line_size
= cpuid_infop
->cache_linesize
;
558 cpu_infop
->l1_icache_size
= cpuid_infop
->cache_size
[L1I
];
559 cpu_infop
->l1_dcache_size
= cpuid_infop
->cache_size
[L1D
];
561 if (cpuid_infop
->cache_size
[L2U
] > 0) {
562 cpu_infop
->l2_settings
= 1;
563 cpu_infop
->l2_cache_size
= cpuid_infop
->cache_size
[L2U
];
565 cpu_infop
->l2_settings
= 0;
566 cpu_infop
->l2_cache_size
= 0xFFFFFFFF;
569 if (cpuid_infop
->cache_size
[L3U
] > 0) {
570 cpu_infop
->l3_settings
= 1;
571 cpu_infop
->l3_cache_size
= cpuid_infop
->cache_size
[L3U
];
573 cpu_infop
->l3_settings
= 0;
574 cpu_infop
->l3_cache_size
= 0xFFFFFFFF;
579 ml_init_max_cpus(unsigned long max_cpus
)
581 boolean_t current_state
;
583 current_state
= ml_set_interrupts_enabled(FALSE
);
584 if (max_cpus_initialized
!= MAX_CPUS_SET
) {
585 if (max_cpus
> 0 && max_cpus
<= MAX_CPUS
) {
587 * Note: max_cpus is the number of enabled processors
588 * that ACPI found; max_ncpus is the maximum number
589 * that the kernel supports or that the "cpus="
590 * boot-arg has set. Here we take int minimum.
592 machine_info
.max_cpus
= (integer_t
)MIN(max_cpus
, max_ncpus
);
594 if (max_cpus_initialized
== MAX_CPUS_WAIT
)
595 wakeup((event_t
)&max_cpus_initialized
);
596 max_cpus_initialized
= MAX_CPUS_SET
;
598 (void) ml_set_interrupts_enabled(current_state
);
602 ml_get_max_cpus(void)
604 boolean_t current_state
;
606 current_state
= ml_set_interrupts_enabled(FALSE
);
607 if (max_cpus_initialized
!= MAX_CPUS_SET
) {
608 max_cpus_initialized
= MAX_CPUS_WAIT
;
609 assert_wait((event_t
)&max_cpus_initialized
, THREAD_UNINT
);
610 (void)thread_block(THREAD_CONTINUE_NULL
);
612 (void) ml_set_interrupts_enabled(current_state
);
613 return(machine_info
.max_cpus
);
616 * Routine: ml_init_lock_timeout
620 ml_init_lock_timeout(void)
624 #if DEVELOPMENT || DEBUG
625 uint64_t default_timeout_ns
= NSEC_PER_SEC
>>2;
627 uint64_t default_timeout_ns
= NSEC_PER_SEC
>>1;
632 if (PE_parse_boot_argn("slto_us", &slto
, sizeof (slto
)))
633 default_timeout_ns
= slto
* NSEC_PER_USEC
;
636 * LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks,
637 * and LockTimeOutUsec is in microseconds and it's 32-bits.
639 LockTimeOutUsec
= (uint32_t) (default_timeout_ns
/ NSEC_PER_USEC
);
640 nanoseconds_to_absolutetime(default_timeout_ns
, &abstime
);
641 LockTimeOut
= abstime
;
642 LockTimeOutTSC
= tmrCvt(abstime
, tscFCvtn2t
);
645 * TLBTimeOut dictates the TLB flush timeout period. It defaults to
646 * LockTimeOut but can be overriden separately. In particular, a
647 * zero value inhibits the timeout-panic and cuts a trace evnt instead
648 * - see pmap_flush_tlbs().
650 if (PE_parse_boot_argn("tlbto_us", &slto
, sizeof (slto
))) {
651 default_timeout_ns
= slto
* NSEC_PER_USEC
;
652 nanoseconds_to_absolutetime(default_timeout_ns
, &abstime
);
653 TLBTimeOut
= (uint32_t) abstime
;
655 TLBTimeOut
= LockTimeOut
;
658 #if DEVELOPMENT || DEBUG
659 reportphyreaddelayabs
= LockTimeOut
;
661 if (PE_parse_boot_argn("phyreadmaxus", &slto
, sizeof (slto
))) {
662 default_timeout_ns
= slto
* NSEC_PER_USEC
;
663 nanoseconds_to_absolutetime(default_timeout_ns
, &abstime
);
664 reportphyreaddelayabs
= abstime
;
667 if (PE_parse_boot_argn("mtxspin", &mtxspin
, sizeof (mtxspin
))) {
668 if (mtxspin
> USEC_PER_SEC
>>4)
669 mtxspin
= USEC_PER_SEC
>>4;
670 nanoseconds_to_absolutetime(mtxspin
*NSEC_PER_USEC
, &abstime
);
672 nanoseconds_to_absolutetime(10*NSEC_PER_USEC
, &abstime
);
674 MutexSpin
= (unsigned int)abstime
;
676 nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC
, &LastDebuggerEntryAllowance
);
677 if (PE_parse_boot_argn("panic_restart_timeout", &prt
, sizeof (prt
)))
678 nanoseconds_to_absolutetime(prt
* NSEC_PER_SEC
, &panic_restart_timeout
);
680 virtualized
= ((cpuid_features() & CPUID_FEATURE_VMM
) != 0);
684 if (!PE_parse_boot_argn("vti", &vti
, sizeof (vti
)))
686 printf("Timeouts adjusted for virtualization (<<%d)\n", vti
);
687 kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti
);
688 #define VIRTUAL_TIMEOUT_INFLATE64(_timeout) \
690 kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \
692 kprintf("-> 0x%016llx\n", _timeout); \
694 #define VIRTUAL_TIMEOUT_INFLATE32(_timeout) \
696 kprintf("%24s: 0x%08x ", #_timeout, _timeout); \
697 if ((_timeout <<vti) >> vti == _timeout) \
700 _timeout = ~0; /* cap rather than overflow */ \
701 kprintf("-> 0x%08x\n", _timeout); \
703 VIRTUAL_TIMEOUT_INFLATE32(LockTimeOutUsec
);
704 VIRTUAL_TIMEOUT_INFLATE64(LockTimeOut
);
705 VIRTUAL_TIMEOUT_INFLATE64(LockTimeOutTSC
);
706 VIRTUAL_TIMEOUT_INFLATE64(TLBTimeOut
);
707 VIRTUAL_TIMEOUT_INFLATE64(MutexSpin
);
708 VIRTUAL_TIMEOUT_INFLATE64(reportphyreaddelayabs
);
711 interrupt_latency_tracker_setup();
712 simple_lock_init(&ml_timer_evaluation_slock
, 0);
716 * Threshold above which we should attempt to block
717 * instead of spinning for clock_delay_until().
721 ml_init_delay_spin_threshold(int threshold_us
)
723 nanoseconds_to_absolutetime(threshold_us
* NSEC_PER_USEC
, &delay_spin_threshold
);
727 ml_delay_should_spin(uint64_t interval
)
729 return (interval
< delay_spin_threshold
) ? TRUE
: FALSE
;
733 * This is called from the machine-independent layer
734 * to perform machine-dependent info updates. Defer to cpu_thread_init().
743 * This is called from the machine-independent layer
744 * to perform machine-dependent info updates.
749 i386_deactivate_cpu();
755 * The following are required for parts of the kernel
756 * that cannot resolve these functions as inlines:
758 extern thread_t
current_act(void);
762 return(current_thread_fast());
765 #undef current_thread
766 extern thread_t
current_thread(void);
770 return(current_thread_fast());
774 boolean_t
ml_is64bit(void) {
776 return (cpu_mode_is64bit());
780 boolean_t
ml_thread_is64bit(thread_t thread
) {
782 return (thread_is_64bit(thread
));
786 boolean_t
ml_state_is64bit(void *saved_state
) {
788 return is_saved_state64(saved_state
);
791 void ml_cpu_set_ldt(int selector
)
794 * Avoid loading the LDT
795 * if we're setting the KERNEL LDT and it's already set.
797 if (selector
== KERNEL_LDT
&&
798 current_cpu_datap()->cpu_ldt
== KERNEL_LDT
)
802 current_cpu_datap()->cpu_ldt
= selector
;
805 void ml_fp_setvalid(boolean_t value
)
810 uint64_t ml_cpu_int_event_time(void)
812 return current_cpu_datap()->cpu_int_event_time
;
815 vm_offset_t
ml_stack_remaining(void)
817 uintptr_t local
= (uintptr_t) &local
;
819 if (ml_at_interrupt_context() != 0) {
820 return (local
- (current_cpu_datap()->cpu_int_stack_top
- INTSTACK_SIZE
));
822 return (local
- current_thread()->kernel_stack
);
827 kernel_preempt_check(void)
832 assert(get_preemption_level() == 0);
834 __asm__
volatile("pushf; pop %0" : "=r" (flags
));
836 intr
= ((flags
& EFL_IF
) != 0);
838 if ((*ast_pending() & AST_URGENT
) && intr
== TRUE
) {
840 * can handle interrupts and preemptions
845 * now cause the PRE-EMPTION trap
847 __asm__
volatile ("int %0" :: "N" (T_PREEMPT
));
851 boolean_t
machine_timeout_suspended(void) {
852 return (pmap_tlb_flush_timeout
|| spinlock_timed_out
|| panic_active() || mp_recent_debugger_activity() || ml_recent_wake());
855 /* Eagerly evaluate all pending timer and thread callouts
857 void ml_timer_evaluate(void) {
858 KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN
|DBG_FUNC_START
, 0, 0, 0, 0, 0);
860 uint64_t te_end
, te_start
= mach_absolute_time();
861 simple_lock(&ml_timer_evaluation_slock
);
862 ml_timer_evaluation_in_progress
= TRUE
;
863 thread_call_delayed_timer_rescan_all();
864 mp_cpus_call(CPUMASK_ALL
, ASYNC
, timer_queue_expire_rescan
, NULL
);
865 ml_timer_evaluation_in_progress
= FALSE
;
866 ml_timer_eager_evaluations
++;
867 te_end
= mach_absolute_time();
868 ml_timer_eager_evaluation_max
= MAX(ml_timer_eager_evaluation_max
, (te_end
- te_start
));
869 simple_unlock(&ml_timer_evaluation_slock
);
871 KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN
|DBG_FUNC_END
, 0, 0, 0, 0, 0);
875 ml_timer_forced_evaluation(void) {
876 return ml_timer_evaluation_in_progress
;
879 /* 32-bit right-rotate n bits */
880 static inline uint32_t ror32(uint32_t val
, const unsigned int n
)
882 __asm__
volatile("rorl %%cl,%0" : "=r" (val
) : "0" (val
), "c" (n
));
887 ml_entropy_collect(void)
889 uint32_t tsc_lo
, tsc_hi
;
892 assert(cpu_number() == master_cpu
);
894 /* update buffer pointer cyclically */
895 if (EntropyData
.index_ptr
- EntropyData
.buffer
== ENTROPY_BUFFER_SIZE
)
896 ep
= EntropyData
.index_ptr
= EntropyData
.buffer
;
898 ep
= EntropyData
.index_ptr
++;
900 rdtsc_nofence(tsc_lo
, tsc_hi
);
901 *ep
= ror32(*ep
, 9) ^ tsc_lo
;
905 ml_energy_stat(__unused thread_t t
) {
910 ml_gpu_stat_update(uint64_t gpu_ns_delta
) {
911 current_thread()->machine
.thread_gpu_ns
+= gpu_ns_delta
;
915 ml_gpu_stat(thread_t t
) {
916 return t
->machine
.thread_gpu_ns
;
919 int plctrace_enabled
= 0;
921 void _disable_preemption(void) {
922 disable_preemption_internal();
925 void _enable_preemption(void) {
926 enable_preemption_internal();
929 void plctrace_disable(void) {
930 plctrace_enabled
= 0;