]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/i386_vm_init.c
xnu-3789.70.16.tar.gz
[apple/xnu.git] / osfmk / i386 / i386_vm_init.c
1 /*
2 * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57
58 #include <mach/i386/vm_param.h>
59
60 #include <string.h>
61 #include <mach/vm_param.h>
62 #include <mach/vm_prot.h>
63 #include <mach/machine.h>
64 #include <mach/time_value.h>
65 #include <kern/spl.h>
66 #include <kern/assert.h>
67 #include <kern/debug.h>
68 #include <kern/misc_protos.h>
69 #include <kern/cpu_data.h>
70 #include <kern/processor.h>
71 #include <vm/vm_page.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_kern.h>
74 #include <i386/pmap.h>
75 #include <i386/misc_protos.h>
76 #include <i386/cpuid.h>
77 #include <mach/thread_status.h>
78 #include <pexpert/i386/efi.h>
79 #include <i386/i386_lowmem.h>
80 #include <x86_64/lowglobals.h>
81 #include <i386/pal_routines.h>
82
83 #include <mach-o/loader.h>
84 #include <libkern/kernel_mach_header.h>
85
86
87 vm_size_t mem_size = 0;
88 pmap_paddr_t first_avail = 0;/* first after page tables */
89
90 uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */
91 uint64_t mem_actual;
92 uint64_t sane_size = 0; /* Memory size for defaults calculations */
93
94 /*
95 * KASLR parameters
96 */
97 ppnum_t vm_kernel_base_page;
98 vm_offset_t vm_kernel_base;
99 vm_offset_t vm_kernel_top;
100 vm_offset_t vm_kernel_stext;
101 vm_offset_t vm_kernel_etext;
102 vm_offset_t vm_kernel_slide;
103 vm_offset_t vm_kernel_slid_base;
104 vm_offset_t vm_kernel_slid_top;
105 vm_offset_t vm_hib_base;
106 vm_offset_t vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
107 vm_offset_t vm_kext_top = VM_MIN_KERNEL_ADDRESS;
108
109 vm_offset_t vm_prelink_stext;
110 vm_offset_t vm_prelink_etext;
111 vm_offset_t vm_prelink_sinfo;
112 vm_offset_t vm_prelink_einfo;
113 vm_offset_t vm_slinkedit;
114 vm_offset_t vm_elinkedit;
115
116 #define MAXLORESERVE (32 * 1024 * 1024)
117
118 ppnum_t max_ppnum = 0;
119 ppnum_t lowest_lo = 0;
120 ppnum_t lowest_hi = 0;
121 ppnum_t highest_hi = 0;
122
123 enum {PMAP_MAX_RESERVED_RANGES = 32};
124 uint32_t pmap_reserved_pages_allocated = 0;
125 uint32_t pmap_reserved_range_indices[PMAP_MAX_RESERVED_RANGES];
126 uint32_t pmap_last_reserved_range_index = 0;
127 uint32_t pmap_reserved_ranges = 0;
128
129 extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *);
130
131 pmap_paddr_t avail_start, avail_end;
132 vm_offset_t virtual_avail, virtual_end;
133 static pmap_paddr_t avail_remaining;
134 vm_offset_t static_memory_end = 0;
135
136 vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end, sconst, econst;
137
138 /*
139 * _mh_execute_header is the mach_header for the currently executing kernel
140 */
141 vm_offset_t segTEXTB; unsigned long segSizeTEXT;
142 vm_offset_t segDATAB; unsigned long segSizeDATA;
143 vm_offset_t segLINKB; unsigned long segSizeLINK;
144 vm_offset_t segPRELINKTEXTB; unsigned long segSizePRELINKTEXT;
145 vm_offset_t segPRELINKINFOB; unsigned long segSizePRELINKINFO;
146 vm_offset_t segHIBB; unsigned long segSizeHIB;
147 unsigned long segSizeConst;
148
149 static kernel_segment_command_t *segTEXT, *segDATA;
150 static kernel_section_t *cursectTEXT, *lastsectTEXT;
151 static kernel_segment_command_t *segCONST;
152
153 extern uint64_t firmware_Conventional_bytes;
154 extern uint64_t firmware_RuntimeServices_bytes;
155 extern uint64_t firmware_ACPIReclaim_bytes;
156 extern uint64_t firmware_ACPINVS_bytes;
157 extern uint64_t firmware_PalCode_bytes;
158 extern uint64_t firmware_Reserved_bytes;
159 extern uint64_t firmware_Unusable_bytes;
160 extern uint64_t firmware_other_bytes;
161 uint64_t firmware_MMIO_bytes;
162
163 /*
164 * Linker magic to establish the highest address in the kernel.
165 */
166 extern void *last_kernel_symbol;
167
168 #if DEBUG
169 #define PRINT_PMAP_MEMORY_TABLE
170 #define DBG(x...) kprintf(x)
171 #else
172 #define DBG(x...)
173 #endif /* DEBUG */
174 /*
175 * Basic VM initialization.
176 */
177 void
178 i386_vm_init(uint64_t maxmem,
179 boolean_t IA32e,
180 boot_args *args)
181 {
182 pmap_memory_region_t *pmptr;
183 pmap_memory_region_t *prev_pmptr;
184 EfiMemoryRange *mptr;
185 unsigned int mcount;
186 unsigned int msize;
187 ppnum_t fap;
188 unsigned int i;
189 ppnum_t maxpg = 0;
190 uint32_t pmap_type;
191 uint32_t maxloreserve;
192 uint32_t maxdmaaddr;
193 uint32_t mbuf_reserve = 0;
194 boolean_t mbuf_override = FALSE;
195 boolean_t coalescing_permitted;
196 vm_kernel_base_page = i386_btop(args->kaddr);
197 vm_offset_t base_address;
198 vm_offset_t static_base_address;
199
200 /*
201 * Establish the KASLR parameters.
202 */
203 static_base_address = ml_static_ptovirt(KERNEL_BASE_OFFSET);
204 base_address = ml_static_ptovirt(args->kaddr);
205 vm_kernel_slide = base_address - static_base_address;
206 if (args->kslide) {
207 kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide);
208 if (vm_kernel_slide != ((vm_offset_t)args->kslide))
209 panic("Kernel base inconsistent with slide - rebased?");
210 } else {
211 /* No slide relative to on-disk symbols */
212 kprintf("KASLR slide: 0x%016lx static and ignored\n",
213 vm_kernel_slide);
214 vm_kernel_slide = 0;
215 }
216
217 /*
218 * Zero out local relocations to avoid confusing kxld.
219 * TODO: might be better to move this code to OSKext::initialize
220 */
221 if (_mh_execute_header.flags & MH_PIE) {
222 struct load_command *loadcmd;
223 uint32_t cmd;
224
225 loadcmd = (struct load_command *)((uintptr_t)&_mh_execute_header +
226 sizeof (_mh_execute_header));
227
228 for (cmd = 0; cmd < _mh_execute_header.ncmds; cmd++) {
229 if (loadcmd->cmd == LC_DYSYMTAB) {
230 struct dysymtab_command *dysymtab;
231
232 dysymtab = (struct dysymtab_command *)loadcmd;
233 dysymtab->nlocrel = 0;
234 dysymtab->locreloff = 0;
235 kprintf("Hiding local relocations\n");
236 break;
237 }
238 loadcmd = (struct load_command *)((uintptr_t)loadcmd + loadcmd->cmdsize);
239 }
240 }
241
242 /*
243 * Now retrieve addresses for end, edata, and etext
244 * from MACH-O headers.
245 */
246 segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
247 "__TEXT", &segSizeTEXT);
248 segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
249 "__DATA", &segSizeDATA);
250 segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
251 "__LINKEDIT", &segSizeLINK);
252 segHIBB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
253 "__HIB", &segSizeHIB);
254 segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
255 "__PRELINK_TEXT", &segSizePRELINKTEXT);
256 segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
257 "__PRELINK_INFO", &segSizePRELINKINFO);
258 segTEXT = getsegbynamefromheader(&_mh_execute_header,
259 "__TEXT");
260 segDATA = getsegbynamefromheader(&_mh_execute_header,
261 "__DATA");
262 segCONST = getsegbynamefromheader(&_mh_execute_header,
263 "__CONST");
264 cursectTEXT = lastsectTEXT = firstsect(segTEXT);
265 /* Discover the last TEXT section within the TEXT segment */
266 while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) {
267 lastsectTEXT = cursectTEXT;
268 }
269
270 sHIB = segHIBB;
271 eHIB = segHIBB + segSizeHIB;
272 vm_hib_base = sHIB;
273 /* Zero-padded from ehib to stext if text is 2M-aligned */
274 stext = segTEXTB;
275 lowGlo.lgStext = stext;
276 etext = (vm_offset_t) round_page_64(lastsectTEXT->addr + lastsectTEXT->size);
277 /* Zero-padded from etext to sdata if text is 2M-aligned */
278 sdata = segDATAB;
279 edata = segDATAB + segSizeDATA;
280
281 sconst = segCONST->vmaddr;
282 segSizeConst = segCONST->vmsize;
283 econst = sconst + segSizeConst;
284
285 assert(((sconst|econst) & PAGE_MASK) == 0);
286
287 DBG("segTEXTB = %p\n", (void *) segTEXTB);
288 DBG("segDATAB = %p\n", (void *) segDATAB);
289 DBG("segLINKB = %p\n", (void *) segLINKB);
290 DBG("segHIBB = %p\n", (void *) segHIBB);
291 DBG("segPRELINKTEXTB = %p\n", (void *) segPRELINKTEXTB);
292 DBG("segPRELINKINFOB = %p\n", (void *) segPRELINKINFOB);
293 DBG("sHIB = %p\n", (void *) sHIB);
294 DBG("eHIB = %p\n", (void *) eHIB);
295 DBG("stext = %p\n", (void *) stext);
296 DBG("etext = %p\n", (void *) etext);
297 DBG("sdata = %p\n", (void *) sdata);
298 DBG("edata = %p\n", (void *) edata);
299 DBG("sconst = %p\n", (void *) sconst);
300 DBG("econst = %p\n", (void *) econst);
301 DBG("kernel_top = %p\n", (void *) &last_kernel_symbol);
302
303 vm_kernel_base = sHIB;
304 vm_kernel_top = (vm_offset_t) &last_kernel_symbol;
305 vm_kernel_stext = stext;
306 vm_kernel_etext = etext;
307 vm_prelink_stext = segPRELINKTEXTB;
308 vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT;
309 vm_prelink_sinfo = segPRELINKINFOB;
310 vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO;
311 vm_slinkedit = segLINKB;
312 vm_elinkedit = segLINKB + segSizePRELINKTEXT;
313 vm_kernel_slid_base = vm_kext_base;
314 vm_kernel_slid_top = vm_elinkedit;
315
316 vm_set_page_size();
317
318 /*
319 * Compute the memory size.
320 */
321
322 avail_remaining = 0;
323 avail_end = 0;
324 pmptr = pmap_memory_regions;
325 prev_pmptr = 0;
326 pmap_memory_region_count = pmap_memory_region_current = 0;
327 fap = (ppnum_t) i386_btop(first_avail);
328
329 mptr = (EfiMemoryRange *)ml_static_ptovirt((vm_offset_t)args->MemoryMap);
330 if (args->MemoryMapDescriptorSize == 0)
331 panic("Invalid memory map descriptor size");
332 msize = args->MemoryMapDescriptorSize;
333 mcount = args->MemoryMapSize / msize;
334
335 #define FOURGIG 0x0000000100000000ULL
336 #define ONEGIG 0x0000000040000000ULL
337
338 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
339 ppnum_t base, top;
340 uint64_t region_bytes = 0;
341
342 if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
343 kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
344 break;
345 }
346 base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
347 top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1);
348
349 if (base == 0) {
350 /*
351 * Avoid having to deal with the edge case of the
352 * very first possible physical page and the roll-over
353 * to -1; just ignore that page.
354 */
355 kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top);
356 base++;
357 }
358 if (top + 1 == 0) {
359 /*
360 * Avoid having to deal with the edge case of the
361 * very last possible physical page and the roll-over
362 * to 0; just ignore that page.
363 */
364 kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top);
365 top--;
366 }
367 if (top < base) {
368 /*
369 * That was the only page in that region, so
370 * ignore the whole region.
371 */
372 continue;
373 }
374
375 #if MR_RSV_TEST
376 static uint32_t nmr = 0;
377 if ((base > 0x20000) && (nmr++ < 4))
378 mptr->Attribute |= EFI_MEMORY_KERN_RESERVED;
379 #endif
380 region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
381 pmap_type = mptr->Type;
382
383 switch (mptr->Type) {
384 case kEfiLoaderCode:
385 case kEfiLoaderData:
386 case kEfiBootServicesCode:
387 case kEfiBootServicesData:
388 case kEfiConventionalMemory:
389 /*
390 * Consolidate usable memory types into one.
391 */
392 pmap_type = kEfiConventionalMemory;
393 sane_size += region_bytes;
394 firmware_Conventional_bytes += region_bytes;
395 break;
396 /*
397 * sane_size should reflect the total amount of physical
398 * RAM in the system, not just the amount that is
399 * available for the OS to use.
400 * We now get this value from SMBIOS tables
401 * rather than reverse engineering the memory map.
402 * But the legacy computation of "sane_size" is kept
403 * for diagnostic information.
404 */
405
406 case kEfiRuntimeServicesCode:
407 case kEfiRuntimeServicesData:
408 firmware_RuntimeServices_bytes += region_bytes;
409 sane_size += region_bytes;
410 break;
411 case kEfiACPIReclaimMemory:
412 firmware_ACPIReclaim_bytes += region_bytes;
413 sane_size += region_bytes;
414 break;
415 case kEfiACPIMemoryNVS:
416 firmware_ACPINVS_bytes += region_bytes;
417 sane_size += region_bytes;
418 break;
419 case kEfiPalCode:
420 firmware_PalCode_bytes += region_bytes;
421 sane_size += region_bytes;
422 break;
423
424 case kEfiReservedMemoryType:
425 firmware_Reserved_bytes += region_bytes;
426 break;
427 case kEfiUnusableMemory:
428 firmware_Unusable_bytes += region_bytes;
429 break;
430 case kEfiMemoryMappedIO:
431 case kEfiMemoryMappedIOPortSpace:
432 firmware_MMIO_bytes += region_bytes;
433 break;
434 default:
435 firmware_other_bytes += region_bytes;
436 break;
437 }
438
439 DBG("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n",
440 i, mptr->Type, pmap_type, base, top,
441 (mptr->Attribute&EFI_MEMORY_KERN_RESERVED)? "RESERVED" :
442 (mptr->Attribute&EFI_MEMORY_RUNTIME)? "RUNTIME" : "");
443
444 if (maxpg) {
445 if (base >= maxpg)
446 break;
447 top = (top > maxpg) ? maxpg : top;
448 }
449
450 /*
451 * handle each region
452 */
453 if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
454 pmap_type != kEfiConventionalMemory) {
455 prev_pmptr = 0;
456 continue;
457 } else {
458 /*
459 * Usable memory region
460 */
461 if (top < I386_LOWMEM_RESERVED ||
462 !pal_is_usable_memory(base, top)) {
463 prev_pmptr = 0;
464 continue;
465 }
466 /*
467 * A range may be marked with with the
468 * EFI_MEMORY_KERN_RESERVED attribute
469 * on some systems, to indicate that the range
470 * must not be made available to devices.
471 */
472
473 if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) {
474 if (++pmap_reserved_ranges > PMAP_MAX_RESERVED_RANGES) {
475 panic("Too many reserved ranges %u\n", pmap_reserved_ranges);
476 }
477 }
478
479 if (top < fap) {
480 /*
481 * entire range below first_avail
482 * salvage some low memory pages
483 * we use some very low memory at startup
484 * mark as already allocated here
485 */
486 if (base >= I386_LOWMEM_RESERVED)
487 pmptr->base = base;
488 else
489 pmptr->base = I386_LOWMEM_RESERVED;
490
491 pmptr->end = top;
492
493
494 if ((mptr->Attribute & EFI_MEMORY_KERN_RESERVED) &&
495 (top < vm_kernel_base_page)) {
496 pmptr->alloc_up = pmptr->base;
497 pmptr->alloc_down = pmptr->end;
498 pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
499 }
500 else {
501 /*
502 * mark as already mapped
503 */
504 pmptr->alloc_up = top + 1;
505 pmptr->alloc_down = top;
506 }
507 pmptr->type = pmap_type;
508 pmptr->attribute = mptr->Attribute;
509 }
510 else if ( (base < fap) && (top > fap) ) {
511 /*
512 * spans first_avail
513 * put mem below first avail in table but
514 * mark already allocated
515 */
516 pmptr->base = base;
517 pmptr->end = (fap - 1);
518 pmptr->alloc_up = pmptr->end + 1;
519 pmptr->alloc_down = pmptr->end;
520 pmptr->type = pmap_type;
521 pmptr->attribute = mptr->Attribute;
522 /*
523 * we bump these here inline so the accounting
524 * below works correctly
525 */
526 pmptr++;
527 pmap_memory_region_count++;
528
529 pmptr->alloc_up = pmptr->base = fap;
530 pmptr->type = pmap_type;
531 pmptr->attribute = mptr->Attribute;
532 pmptr->alloc_down = pmptr->end = top;
533
534 if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
535 pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
536 } else {
537 /*
538 * entire range useable
539 */
540 pmptr->alloc_up = pmptr->base = base;
541 pmptr->type = pmap_type;
542 pmptr->attribute = mptr->Attribute;
543 pmptr->alloc_down = pmptr->end = top;
544 if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
545 pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
546 }
547
548 if (i386_ptob(pmptr->end) > avail_end )
549 avail_end = i386_ptob(pmptr->end);
550
551 avail_remaining += (pmptr->end - pmptr->base);
552 coalescing_permitted = (prev_pmptr && (pmptr->attribute == prev_pmptr->attribute) && ((pmptr->attribute & EFI_MEMORY_KERN_RESERVED) == 0));
553 /*
554 * Consolidate contiguous memory regions, if possible
555 */
556 if (prev_pmptr &&
557 (pmptr->type == prev_pmptr->type) &&
558 (coalescing_permitted) &&
559 (pmptr->base == pmptr->alloc_up) &&
560 (prev_pmptr->end == prev_pmptr->alloc_down) &&
561 (pmptr->base == (prev_pmptr->end + 1)))
562 {
563 prev_pmptr->end = pmptr->end;
564 prev_pmptr->alloc_down = pmptr->alloc_down;
565 } else {
566 pmap_memory_region_count++;
567 prev_pmptr = pmptr;
568 pmptr++;
569 }
570 }
571 }
572
573 #ifdef PRINT_PMAP_MEMORY_TABLE
574 {
575 unsigned int j;
576 pmap_memory_region_t *p = pmap_memory_regions;
577 addr64_t region_start, region_end;
578 addr64_t efi_start, efi_end;
579 for (j=0;j<pmap_memory_region_count;j++, p++) {
580 kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n",
581 j, p->type,
582 (addr64_t) p->base << I386_PGSHIFT,
583 (addr64_t) p->alloc_up << I386_PGSHIFT,
584 (addr64_t) p->alloc_down << I386_PGSHIFT,
585 (addr64_t) p->end << I386_PGSHIFT);
586 region_start = (addr64_t) p->base << I386_PGSHIFT;
587 region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
588 mptr = (EfiMemoryRange *) ml_static_ptovirt((vm_offset_t)args->MemoryMap);
589 for (i=0; i<mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
590 if (mptr->Type != kEfiLoaderCode &&
591 mptr->Type != kEfiLoaderData &&
592 mptr->Type != kEfiBootServicesCode &&
593 mptr->Type != kEfiBootServicesData &&
594 mptr->Type != kEfiConventionalMemory) {
595 efi_start = (addr64_t)mptr->PhysicalStart;
596 efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
597 if ((efi_start >= region_start && efi_start <= region_end) ||
598 (efi_end >= region_start && efi_end <= region_end)) {
599 kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
600 }
601 }
602 }
603 }
604 }
605 #endif
606
607 avail_start = first_avail;
608 mem_actual = args->PhysicalMemorySize;
609
610 /*
611 * For user visible memory size, round up to 128 Mb
612 * - accounting for the various stolen memory not reported by EFI.
613 * This is maintained for historical, comparison purposes but
614 * we now use the memory size reported by EFI/Booter.
615 */
616 sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1));
617 if (sane_size != mem_actual)
618 printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n",
619 mem_actual, sane_size);
620 sane_size = mem_actual;
621
622 /*
623 * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
624 * Unless overriden by the maxmem= boot-arg
625 * -- which is a non-zero maxmem argument to this function.
626 */
627 if (maxmem == 0 && sane_size > KERNEL_MAXMEM) {
628 maxmem = KERNEL_MAXMEM;
629 printf("Physical memory %lld bytes capped at %dGB\n",
630 sane_size, (uint32_t) (KERNEL_MAXMEM/GB));
631 }
632
633 /*
634 * if user set maxmem, reduce memory sizes
635 */
636 if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
637 ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT);
638 ppnum_t highest_pn = 0;
639 ppnum_t cur_end = 0;
640 uint64_t pages_to_use;
641 unsigned cur_region = 0;
642
643 sane_size = maxmem;
644
645 if (avail_remaining > discarded_pages)
646 avail_remaining -= discarded_pages;
647 else
648 avail_remaining = 0;
649
650 pages_to_use = avail_remaining;
651
652 while (cur_region < pmap_memory_region_count && pages_to_use) {
653 for (cur_end = pmap_memory_regions[cur_region].base;
654 cur_end < pmap_memory_regions[cur_region].end && pages_to_use;
655 cur_end++) {
656 if (cur_end > highest_pn)
657 highest_pn = cur_end;
658 pages_to_use--;
659 }
660 if (pages_to_use == 0) {
661 pmap_memory_regions[cur_region].end = cur_end;
662 pmap_memory_regions[cur_region].alloc_down = cur_end;
663 }
664
665 cur_region++;
666 }
667 pmap_memory_region_count = cur_region;
668
669 avail_end = i386_ptob(highest_pn + 1);
670 }
671
672 /*
673 * mem_size is only a 32 bit container... follow the PPC route
674 * and pin it to a 2 Gbyte maximum
675 */
676 if (sane_size > (FOURGIG >> 1))
677 mem_size = (vm_size_t)(FOURGIG >> 1);
678 else
679 mem_size = (vm_size_t)sane_size;
680 max_mem = sane_size;
681
682 kprintf("Physical memory %llu MB\n", sane_size/MB);
683
684 max_valid_low_ppnum = (2 * GB) / PAGE_SIZE;
685
686 if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr))) {
687 max_valid_dma_address = (uint64_t)4 * (uint64_t)GB;
688 } else {
689 max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
690
691 if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum)
692 max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE);
693 }
694 if (avail_end >= max_valid_dma_address) {
695
696 if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve))) {
697
698 if (sane_size >= (ONEGIG * 15))
699 maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4;
700 else if (sane_size >= (ONEGIG * 7))
701 maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2;
702 else
703 maxloreserve = MAXLORESERVE / PAGE_SIZE;
704
705 #if SOCKETS
706 mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE;
707 #endif
708 } else
709 maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE;
710
711 if (maxloreserve) {
712 vm_lopage_free_limit = maxloreserve;
713
714 if (mbuf_override == TRUE) {
715 vm_lopage_free_limit += mbuf_reserve;
716 vm_lopage_lowater = 0;
717 } else
718 vm_lopage_lowater = vm_lopage_free_limit / 16;
719
720 vm_lopage_refill = TRUE;
721 vm_lopage_needed = TRUE;
722 }
723 }
724
725 /*
726 * Initialize kernel physical map.
727 * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
728 */
729 kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining);
730 pmap_bootstrap(0, IA32e);
731 }
732
733
734 unsigned int
735 pmap_free_pages(void)
736 {
737 return (unsigned int)avail_remaining;
738 }
739
740
741 boolean_t pmap_next_page_reserved(ppnum_t *);
742
743 /*
744 * Pick a page from a "kernel private" reserved range; works around
745 * errata on some hardware.
746 */
747 boolean_t
748 pmap_next_page_reserved(ppnum_t *pn) {
749 if (pmap_reserved_ranges) {
750 uint32_t n;
751 pmap_memory_region_t *region;
752 for (n = 0; n < pmap_last_reserved_range_index; n++) {
753 uint32_t reserved_index = pmap_reserved_range_indices[n];
754 region = &pmap_memory_regions[reserved_index];
755 if (region->alloc_up <= region->alloc_down) {
756 *pn = region->alloc_up++;
757 avail_remaining--;
758
759 if (*pn > max_ppnum)
760 max_ppnum = *pn;
761
762 if (lowest_lo == 0 || *pn < lowest_lo)
763 lowest_lo = *pn;
764
765 pmap_reserved_pages_allocated++;
766 #if DEBUG
767 if (region->alloc_up > region->alloc_down) {
768 kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index, region->base, region->end, region->type, region->attribute);
769 }
770 #endif
771 return TRUE;
772 }
773 }
774 }
775 return FALSE;
776 }
777
778
779 boolean_t
780 pmap_next_page_hi(
781 ppnum_t *pn)
782 {
783 pmap_memory_region_t *region;
784 int n;
785
786 if (pmap_next_page_reserved(pn))
787 return TRUE;
788
789 if (avail_remaining) {
790 for (n = pmap_memory_region_count - 1; n >= 0; n--) {
791 region = &pmap_memory_regions[n];
792
793 if (region->alloc_down >= region->alloc_up) {
794 *pn = region->alloc_down--;
795 avail_remaining--;
796
797 if (*pn > max_ppnum)
798 max_ppnum = *pn;
799
800 if (lowest_lo == 0 || *pn < lowest_lo)
801 lowest_lo = *pn;
802
803 if (lowest_hi == 0 || *pn < lowest_hi)
804 lowest_hi = *pn;
805
806 if (*pn > highest_hi)
807 highest_hi = *pn;
808
809 return TRUE;
810 }
811 }
812 }
813 return FALSE;
814 }
815
816
817 boolean_t
818 pmap_next_page(
819 ppnum_t *pn)
820 {
821 if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
822 if (pmap_memory_regions[pmap_memory_region_current].alloc_up >
823 pmap_memory_regions[pmap_memory_region_current].alloc_down) {
824 pmap_memory_region_current++;
825 continue;
826 }
827 *pn = pmap_memory_regions[pmap_memory_region_current].alloc_up++;
828 avail_remaining--;
829
830 if (*pn > max_ppnum)
831 max_ppnum = *pn;
832
833 if (lowest_lo == 0 || *pn < lowest_lo)
834 lowest_lo = *pn;
835
836 return TRUE;
837 }
838 return FALSE;
839 }
840
841
842 boolean_t
843 pmap_valid_page(
844 ppnum_t pn)
845 {
846 unsigned int i;
847 pmap_memory_region_t *pmptr = pmap_memory_regions;
848
849 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
850 if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
851 return TRUE;
852 }
853 return FALSE;
854 }
855