2 * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
58 #include <mach/i386/vm_param.h>
61 #include <mach/vm_param.h>
62 #include <mach/vm_prot.h>
63 #include <mach/machine.h>
64 #include <mach/time_value.h>
66 #include <kern/assert.h>
67 #include <kern/debug.h>
68 #include <kern/misc_protos.h>
69 #include <kern/cpu_data.h>
70 #include <kern/processor.h>
71 #include <vm/vm_page.h>
73 #include <vm/vm_kern.h>
74 #include <i386/pmap.h>
75 #include <i386/misc_protos.h>
76 #include <i386/cpuid.h>
77 #include <mach/thread_status.h>
78 #include <pexpert/i386/efi.h>
79 #include <i386/i386_lowmem.h>
80 #include <x86_64/lowglobals.h>
81 #include <i386/pal_routines.h>
83 #include <mach-o/loader.h>
84 #include <libkern/kernel_mach_header.h>
87 vm_size_t mem_size
= 0;
88 pmap_paddr_t first_avail
= 0;/* first after page tables */
90 uint64_t max_mem
; /* Size of physical memory (bytes), adjusted by maxmem */
92 uint64_t sane_size
= 0; /* Memory size for defaults calculations */
97 ppnum_t vm_kernel_base_page
;
98 vm_offset_t vm_kernel_base
;
99 vm_offset_t vm_kernel_top
;
100 vm_offset_t vm_kernel_stext
;
101 vm_offset_t vm_kernel_etext
;
102 vm_offset_t vm_kernel_slide
;
103 vm_offset_t vm_kernel_slid_base
;
104 vm_offset_t vm_kernel_slid_top
;
105 vm_offset_t vm_hib_base
;
106 vm_offset_t vm_kext_base
= VM_MIN_KERNEL_AND_KEXT_ADDRESS
;
107 vm_offset_t vm_kext_top
= VM_MIN_KERNEL_ADDRESS
;
109 vm_offset_t vm_prelink_stext
;
110 vm_offset_t vm_prelink_etext
;
111 vm_offset_t vm_prelink_sinfo
;
112 vm_offset_t vm_prelink_einfo
;
113 vm_offset_t vm_slinkedit
;
114 vm_offset_t vm_elinkedit
;
116 #define MAXLORESERVE (32 * 1024 * 1024)
118 ppnum_t max_ppnum
= 0;
119 ppnum_t lowest_lo
= 0;
120 ppnum_t lowest_hi
= 0;
121 ppnum_t highest_hi
= 0;
123 enum {PMAP_MAX_RESERVED_RANGES
= 32};
124 uint32_t pmap_reserved_pages_allocated
= 0;
125 uint32_t pmap_reserved_range_indices
[PMAP_MAX_RESERVED_RANGES
];
126 uint32_t pmap_last_reserved_range_index
= 0;
127 uint32_t pmap_reserved_ranges
= 0;
129 extern unsigned int bsd_mbuf_cluster_reserve(boolean_t
*);
131 pmap_paddr_t avail_start
, avail_end
;
132 vm_offset_t virtual_avail
, virtual_end
;
133 static pmap_paddr_t avail_remaining
;
134 vm_offset_t static_memory_end
= 0;
136 vm_offset_t sHIB
, eHIB
, stext
, etext
, sdata
, edata
, end
, sconst
, econst
;
139 * _mh_execute_header is the mach_header for the currently executing kernel
141 vm_offset_t segTEXTB
; unsigned long segSizeTEXT
;
142 vm_offset_t segDATAB
; unsigned long segSizeDATA
;
143 vm_offset_t segLINKB
; unsigned long segSizeLINK
;
144 vm_offset_t segPRELINKTEXTB
; unsigned long segSizePRELINKTEXT
;
145 vm_offset_t segPRELINKINFOB
; unsigned long segSizePRELINKINFO
;
146 vm_offset_t segHIBB
; unsigned long segSizeHIB
;
147 unsigned long segSizeConst
;
149 static kernel_segment_command_t
*segTEXT
, *segDATA
;
150 static kernel_section_t
*cursectTEXT
, *lastsectTEXT
;
151 static kernel_segment_command_t
*segCONST
;
153 extern uint64_t firmware_Conventional_bytes
;
154 extern uint64_t firmware_RuntimeServices_bytes
;
155 extern uint64_t firmware_ACPIReclaim_bytes
;
156 extern uint64_t firmware_ACPINVS_bytes
;
157 extern uint64_t firmware_PalCode_bytes
;
158 extern uint64_t firmware_Reserved_bytes
;
159 extern uint64_t firmware_Unusable_bytes
;
160 extern uint64_t firmware_other_bytes
;
161 uint64_t firmware_MMIO_bytes
;
164 * Linker magic to establish the highest address in the kernel.
166 extern void *last_kernel_symbol
;
169 #define PRINT_PMAP_MEMORY_TABLE
170 #define DBG(x...) kprintf(x)
175 * Basic VM initialization.
178 i386_vm_init(uint64_t maxmem
,
182 pmap_memory_region_t
*pmptr
;
183 pmap_memory_region_t
*prev_pmptr
;
184 EfiMemoryRange
*mptr
;
191 uint32_t maxloreserve
;
193 uint32_t mbuf_reserve
= 0;
194 boolean_t mbuf_override
= FALSE
;
195 boolean_t coalescing_permitted
;
196 vm_kernel_base_page
= i386_btop(args
->kaddr
);
197 vm_offset_t base_address
;
198 vm_offset_t static_base_address
;
201 * Establish the KASLR parameters.
203 static_base_address
= ml_static_ptovirt(KERNEL_BASE_OFFSET
);
204 base_address
= ml_static_ptovirt(args
->kaddr
);
205 vm_kernel_slide
= base_address
- static_base_address
;
207 kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide
);
208 if (vm_kernel_slide
!= ((vm_offset_t
)args
->kslide
))
209 panic("Kernel base inconsistent with slide - rebased?");
211 /* No slide relative to on-disk symbols */
212 kprintf("KASLR slide: 0x%016lx static and ignored\n",
218 * Zero out local relocations to avoid confusing kxld.
219 * TODO: might be better to move this code to OSKext::initialize
221 if (_mh_execute_header
.flags
& MH_PIE
) {
222 struct load_command
*loadcmd
;
225 loadcmd
= (struct load_command
*)((uintptr_t)&_mh_execute_header
+
226 sizeof (_mh_execute_header
));
228 for (cmd
= 0; cmd
< _mh_execute_header
.ncmds
; cmd
++) {
229 if (loadcmd
->cmd
== LC_DYSYMTAB
) {
230 struct dysymtab_command
*dysymtab
;
232 dysymtab
= (struct dysymtab_command
*)loadcmd
;
233 dysymtab
->nlocrel
= 0;
234 dysymtab
->locreloff
= 0;
235 kprintf("Hiding local relocations\n");
238 loadcmd
= (struct load_command
*)((uintptr_t)loadcmd
+ loadcmd
->cmdsize
);
243 * Now retrieve addresses for end, edata, and etext
244 * from MACH-O headers.
246 segTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
247 "__TEXT", &segSizeTEXT
);
248 segDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
249 "__DATA", &segSizeDATA
);
250 segLINKB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
251 "__LINKEDIT", &segSizeLINK
);
252 segHIBB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
253 "__HIB", &segSizeHIB
);
254 segPRELINKTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
255 "__PRELINK_TEXT", &segSizePRELINKTEXT
);
256 segPRELINKINFOB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
257 "__PRELINK_INFO", &segSizePRELINKINFO
);
258 segTEXT
= getsegbynamefromheader(&_mh_execute_header
,
260 segDATA
= getsegbynamefromheader(&_mh_execute_header
,
262 segCONST
= getsegbynamefromheader(&_mh_execute_header
,
264 cursectTEXT
= lastsectTEXT
= firstsect(segTEXT
);
265 /* Discover the last TEXT section within the TEXT segment */
266 while ((cursectTEXT
= nextsect(segTEXT
, cursectTEXT
)) != NULL
) {
267 lastsectTEXT
= cursectTEXT
;
271 eHIB
= segHIBB
+ segSizeHIB
;
273 /* Zero-padded from ehib to stext if text is 2M-aligned */
275 lowGlo
.lgStext
= stext
;
276 etext
= (vm_offset_t
) round_page_64(lastsectTEXT
->addr
+ lastsectTEXT
->size
);
277 /* Zero-padded from etext to sdata if text is 2M-aligned */
279 edata
= segDATAB
+ segSizeDATA
;
281 sconst
= segCONST
->vmaddr
;
282 segSizeConst
= segCONST
->vmsize
;
283 econst
= sconst
+ segSizeConst
;
285 assert(((sconst
|econst
) & PAGE_MASK
) == 0);
287 DBG("segTEXTB = %p\n", (void *) segTEXTB
);
288 DBG("segDATAB = %p\n", (void *) segDATAB
);
289 DBG("segLINKB = %p\n", (void *) segLINKB
);
290 DBG("segHIBB = %p\n", (void *) segHIBB
);
291 DBG("segPRELINKTEXTB = %p\n", (void *) segPRELINKTEXTB
);
292 DBG("segPRELINKINFOB = %p\n", (void *) segPRELINKINFOB
);
293 DBG("sHIB = %p\n", (void *) sHIB
);
294 DBG("eHIB = %p\n", (void *) eHIB
);
295 DBG("stext = %p\n", (void *) stext
);
296 DBG("etext = %p\n", (void *) etext
);
297 DBG("sdata = %p\n", (void *) sdata
);
298 DBG("edata = %p\n", (void *) edata
);
299 DBG("sconst = %p\n", (void *) sconst
);
300 DBG("econst = %p\n", (void *) econst
);
301 DBG("kernel_top = %p\n", (void *) &last_kernel_symbol
);
303 vm_kernel_base
= sHIB
;
304 vm_kernel_top
= (vm_offset_t
) &last_kernel_symbol
;
305 vm_kernel_stext
= stext
;
306 vm_kernel_etext
= etext
;
307 vm_prelink_stext
= segPRELINKTEXTB
;
308 vm_prelink_etext
= segPRELINKTEXTB
+ segSizePRELINKTEXT
;
309 vm_prelink_sinfo
= segPRELINKINFOB
;
310 vm_prelink_einfo
= segPRELINKINFOB
+ segSizePRELINKINFO
;
311 vm_slinkedit
= segLINKB
;
312 vm_elinkedit
= segLINKB
+ segSizePRELINKTEXT
;
313 vm_kernel_slid_base
= vm_kext_base
;
314 vm_kernel_slid_top
= vm_elinkedit
;
319 * Compute the memory size.
324 pmptr
= pmap_memory_regions
;
326 pmap_memory_region_count
= pmap_memory_region_current
= 0;
327 fap
= (ppnum_t
) i386_btop(first_avail
);
329 mptr
= (EfiMemoryRange
*)ml_static_ptovirt((vm_offset_t
)args
->MemoryMap
);
330 if (args
->MemoryMapDescriptorSize
== 0)
331 panic("Invalid memory map descriptor size");
332 msize
= args
->MemoryMapDescriptorSize
;
333 mcount
= args
->MemoryMapSize
/ msize
;
335 #define FOURGIG 0x0000000100000000ULL
336 #define ONEGIG 0x0000000040000000ULL
338 for (i
= 0; i
< mcount
; i
++, mptr
= (EfiMemoryRange
*)(((vm_offset_t
)mptr
) + msize
)) {
340 uint64_t region_bytes
= 0;
342 if (pmap_memory_region_count
>= PMAP_MEMORY_REGIONS_SIZE
) {
343 kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count
);
346 base
= (ppnum_t
) (mptr
->PhysicalStart
>> I386_PGSHIFT
);
347 top
= (ppnum_t
) (((mptr
->PhysicalStart
) >> I386_PGSHIFT
) + mptr
->NumberOfPages
- 1);
351 * Avoid having to deal with the edge case of the
352 * very first possible physical page and the roll-over
353 * to -1; just ignore that page.
355 kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base
, (uint64_t) top
);
360 * Avoid having to deal with the edge case of the
361 * very last possible physical page and the roll-over
362 * to 0; just ignore that page.
364 kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base
, (uint64_t) top
);
369 * That was the only page in that region, so
370 * ignore the whole region.
376 static uint32_t nmr
= 0;
377 if ((base
> 0x20000) && (nmr
++ < 4))
378 mptr
->Attribute
|= EFI_MEMORY_KERN_RESERVED
;
380 region_bytes
= (uint64_t)(mptr
->NumberOfPages
<< I386_PGSHIFT
);
381 pmap_type
= mptr
->Type
;
383 switch (mptr
->Type
) {
386 case kEfiBootServicesCode
:
387 case kEfiBootServicesData
:
388 case kEfiConventionalMemory
:
390 * Consolidate usable memory types into one.
392 pmap_type
= kEfiConventionalMemory
;
393 sane_size
+= region_bytes
;
394 firmware_Conventional_bytes
+= region_bytes
;
397 * sane_size should reflect the total amount of physical
398 * RAM in the system, not just the amount that is
399 * available for the OS to use.
400 * We now get this value from SMBIOS tables
401 * rather than reverse engineering the memory map.
402 * But the legacy computation of "sane_size" is kept
403 * for diagnostic information.
406 case kEfiRuntimeServicesCode
:
407 case kEfiRuntimeServicesData
:
408 firmware_RuntimeServices_bytes
+= region_bytes
;
409 sane_size
+= region_bytes
;
411 case kEfiACPIReclaimMemory
:
412 firmware_ACPIReclaim_bytes
+= region_bytes
;
413 sane_size
+= region_bytes
;
415 case kEfiACPIMemoryNVS
:
416 firmware_ACPINVS_bytes
+= region_bytes
;
417 sane_size
+= region_bytes
;
420 firmware_PalCode_bytes
+= region_bytes
;
421 sane_size
+= region_bytes
;
424 case kEfiReservedMemoryType
:
425 firmware_Reserved_bytes
+= region_bytes
;
427 case kEfiUnusableMemory
:
428 firmware_Unusable_bytes
+= region_bytes
;
430 case kEfiMemoryMappedIO
:
431 case kEfiMemoryMappedIOPortSpace
:
432 firmware_MMIO_bytes
+= region_bytes
;
435 firmware_other_bytes
+= region_bytes
;
439 DBG("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n",
440 i
, mptr
->Type
, pmap_type
, base
, top
,
441 (mptr
->Attribute
&EFI_MEMORY_KERN_RESERVED
)? "RESERVED" :
442 (mptr
->Attribute
&EFI_MEMORY_RUNTIME
)? "RUNTIME" : "");
447 top
= (top
> maxpg
) ? maxpg
: top
;
453 if ((mptr
->Attribute
& EFI_MEMORY_RUNTIME
) == EFI_MEMORY_RUNTIME
||
454 pmap_type
!= kEfiConventionalMemory
) {
459 * Usable memory region
461 if (top
< I386_LOWMEM_RESERVED
||
462 !pal_is_usable_memory(base
, top
)) {
467 * A range may be marked with with the
468 * EFI_MEMORY_KERN_RESERVED attribute
469 * on some systems, to indicate that the range
470 * must not be made available to devices.
473 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) {
474 if (++pmap_reserved_ranges
> PMAP_MAX_RESERVED_RANGES
) {
475 panic("Too many reserved ranges %u\n", pmap_reserved_ranges
);
481 * entire range below first_avail
482 * salvage some low memory pages
483 * we use some very low memory at startup
484 * mark as already allocated here
486 if (base
>= I386_LOWMEM_RESERVED
)
489 pmptr
->base
= I386_LOWMEM_RESERVED
;
494 if ((mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) &&
495 (top
< vm_kernel_base_page
)) {
496 pmptr
->alloc_up
= pmptr
->base
;
497 pmptr
->alloc_down
= pmptr
->end
;
498 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
502 * mark as already mapped
504 pmptr
->alloc_up
= top
+ 1;
505 pmptr
->alloc_down
= top
;
507 pmptr
->type
= pmap_type
;
508 pmptr
->attribute
= mptr
->Attribute
;
510 else if ( (base
< fap
) && (top
> fap
) ) {
513 * put mem below first avail in table but
514 * mark already allocated
517 pmptr
->end
= (fap
- 1);
518 pmptr
->alloc_up
= pmptr
->end
+ 1;
519 pmptr
->alloc_down
= pmptr
->end
;
520 pmptr
->type
= pmap_type
;
521 pmptr
->attribute
= mptr
->Attribute
;
523 * we bump these here inline so the accounting
524 * below works correctly
527 pmap_memory_region_count
++;
529 pmptr
->alloc_up
= pmptr
->base
= fap
;
530 pmptr
->type
= pmap_type
;
531 pmptr
->attribute
= mptr
->Attribute
;
532 pmptr
->alloc_down
= pmptr
->end
= top
;
534 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
)
535 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
538 * entire range useable
540 pmptr
->alloc_up
= pmptr
->base
= base
;
541 pmptr
->type
= pmap_type
;
542 pmptr
->attribute
= mptr
->Attribute
;
543 pmptr
->alloc_down
= pmptr
->end
= top
;
544 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
)
545 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
548 if (i386_ptob(pmptr
->end
) > avail_end
)
549 avail_end
= i386_ptob(pmptr
->end
);
551 avail_remaining
+= (pmptr
->end
- pmptr
->base
);
552 coalescing_permitted
= (prev_pmptr
&& (pmptr
->attribute
== prev_pmptr
->attribute
) && ((pmptr
->attribute
& EFI_MEMORY_KERN_RESERVED
) == 0));
554 * Consolidate contiguous memory regions, if possible
557 (pmptr
->type
== prev_pmptr
->type
) &&
558 (coalescing_permitted
) &&
559 (pmptr
->base
== pmptr
->alloc_up
) &&
560 (prev_pmptr
->end
== prev_pmptr
->alloc_down
) &&
561 (pmptr
->base
== (prev_pmptr
->end
+ 1)))
563 prev_pmptr
->end
= pmptr
->end
;
564 prev_pmptr
->alloc_down
= pmptr
->alloc_down
;
566 pmap_memory_region_count
++;
573 #ifdef PRINT_PMAP_MEMORY_TABLE
576 pmap_memory_region_t
*p
= pmap_memory_regions
;
577 addr64_t region_start
, region_end
;
578 addr64_t efi_start
, efi_end
;
579 for (j
=0;j
<pmap_memory_region_count
;j
++, p
++) {
580 kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n",
582 (addr64_t
) p
->base
<< I386_PGSHIFT
,
583 (addr64_t
) p
->alloc_up
<< I386_PGSHIFT
,
584 (addr64_t
) p
->alloc_down
<< I386_PGSHIFT
,
585 (addr64_t
) p
->end
<< I386_PGSHIFT
);
586 region_start
= (addr64_t
) p
->base
<< I386_PGSHIFT
;
587 region_end
= ((addr64_t
) p
->end
<< I386_PGSHIFT
) - 1;
588 mptr
= (EfiMemoryRange
*) ml_static_ptovirt((vm_offset_t
)args
->MemoryMap
);
589 for (i
=0; i
<mcount
; i
++, mptr
= (EfiMemoryRange
*)(((vm_offset_t
)mptr
) + msize
)) {
590 if (mptr
->Type
!= kEfiLoaderCode
&&
591 mptr
->Type
!= kEfiLoaderData
&&
592 mptr
->Type
!= kEfiBootServicesCode
&&
593 mptr
->Type
!= kEfiBootServicesData
&&
594 mptr
->Type
!= kEfiConventionalMemory
) {
595 efi_start
= (addr64_t
)mptr
->PhysicalStart
;
596 efi_end
= efi_start
+ ((vm_offset_t
)mptr
->NumberOfPages
<< I386_PGSHIFT
) - 1;
597 if ((efi_start
>= region_start
&& efi_start
<= region_end
) ||
598 (efi_end
>= region_start
&& efi_end
<= region_end
)) {
599 kprintf(" *** Overlapping region with EFI runtime region %d\n", i
);
607 avail_start
= first_avail
;
608 mem_actual
= args
->PhysicalMemorySize
;
611 * For user visible memory size, round up to 128 Mb
612 * - accounting for the various stolen memory not reported by EFI.
613 * This is maintained for historical, comparison purposes but
614 * we now use the memory size reported by EFI/Booter.
616 sane_size
= (sane_size
+ 128 * MB
- 1) & ~((uint64_t)(128 * MB
- 1));
617 if (sane_size
!= mem_actual
)
618 printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n",
619 mem_actual
, sane_size
);
620 sane_size
= mem_actual
;
623 * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
624 * Unless overriden by the maxmem= boot-arg
625 * -- which is a non-zero maxmem argument to this function.
627 if (maxmem
== 0 && sane_size
> KERNEL_MAXMEM
) {
628 maxmem
= KERNEL_MAXMEM
;
629 printf("Physical memory %lld bytes capped at %dGB\n",
630 sane_size
, (uint32_t) (KERNEL_MAXMEM
/GB
));
634 * if user set maxmem, reduce memory sizes
636 if ( (maxmem
> (uint64_t)first_avail
) && (maxmem
< sane_size
)) {
637 ppnum_t discarded_pages
= (ppnum_t
)((sane_size
- maxmem
) >> I386_PGSHIFT
);
638 ppnum_t highest_pn
= 0;
640 uint64_t pages_to_use
;
641 unsigned cur_region
= 0;
645 if (avail_remaining
> discarded_pages
)
646 avail_remaining
-= discarded_pages
;
650 pages_to_use
= avail_remaining
;
652 while (cur_region
< pmap_memory_region_count
&& pages_to_use
) {
653 for (cur_end
= pmap_memory_regions
[cur_region
].base
;
654 cur_end
< pmap_memory_regions
[cur_region
].end
&& pages_to_use
;
656 if (cur_end
> highest_pn
)
657 highest_pn
= cur_end
;
660 if (pages_to_use
== 0) {
661 pmap_memory_regions
[cur_region
].end
= cur_end
;
662 pmap_memory_regions
[cur_region
].alloc_down
= cur_end
;
667 pmap_memory_region_count
= cur_region
;
669 avail_end
= i386_ptob(highest_pn
+ 1);
673 * mem_size is only a 32 bit container... follow the PPC route
674 * and pin it to a 2 Gbyte maximum
676 if (sane_size
> (FOURGIG
>> 1))
677 mem_size
= (vm_size_t
)(FOURGIG
>> 1);
679 mem_size
= (vm_size_t
)sane_size
;
682 kprintf("Physical memory %llu MB\n", sane_size
/MB
);
684 max_valid_low_ppnum
= (2 * GB
) / PAGE_SIZE
;
686 if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr
, sizeof (maxdmaaddr
))) {
687 max_valid_dma_address
= (uint64_t)4 * (uint64_t)GB
;
689 max_valid_dma_address
= ((uint64_t) maxdmaaddr
) * MB
;
691 if ((max_valid_dma_address
/ PAGE_SIZE
) < max_valid_low_ppnum
)
692 max_valid_low_ppnum
= (ppnum_t
)(max_valid_dma_address
/ PAGE_SIZE
);
694 if (avail_end
>= max_valid_dma_address
) {
696 if (!PE_parse_boot_argn("maxloreserve", &maxloreserve
, sizeof (maxloreserve
))) {
698 if (sane_size
>= (ONEGIG
* 15))
699 maxloreserve
= (MAXLORESERVE
/ PAGE_SIZE
) * 4;
700 else if (sane_size
>= (ONEGIG
* 7))
701 maxloreserve
= (MAXLORESERVE
/ PAGE_SIZE
) * 2;
703 maxloreserve
= MAXLORESERVE
/ PAGE_SIZE
;
706 mbuf_reserve
= bsd_mbuf_cluster_reserve(&mbuf_override
) / PAGE_SIZE
;
709 maxloreserve
= (maxloreserve
* (1024 * 1024)) / PAGE_SIZE
;
712 vm_lopage_free_limit
= maxloreserve
;
714 if (mbuf_override
== TRUE
) {
715 vm_lopage_free_limit
+= mbuf_reserve
;
716 vm_lopage_lowater
= 0;
718 vm_lopage_lowater
= vm_lopage_free_limit
/ 16;
720 vm_lopage_refill
= TRUE
;
721 vm_lopage_needed
= TRUE
;
726 * Initialize kernel physical map.
727 * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
729 kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining
);
730 pmap_bootstrap(0, IA32e
);
735 pmap_free_pages(void)
737 return (unsigned int)avail_remaining
;
741 boolean_t
pmap_next_page_reserved(ppnum_t
*);
744 * Pick a page from a "kernel private" reserved range; works around
745 * errata on some hardware.
748 pmap_next_page_reserved(ppnum_t
*pn
) {
749 if (pmap_reserved_ranges
) {
751 pmap_memory_region_t
*region
;
752 for (n
= 0; n
< pmap_last_reserved_range_index
; n
++) {
753 uint32_t reserved_index
= pmap_reserved_range_indices
[n
];
754 region
= &pmap_memory_regions
[reserved_index
];
755 if (region
->alloc_up
<= region
->alloc_down
) {
756 *pn
= region
->alloc_up
++;
762 if (lowest_lo
== 0 || *pn
< lowest_lo
)
765 pmap_reserved_pages_allocated
++;
767 if (region
->alloc_up
> region
->alloc_down
) {
768 kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index
, region
->base
, region
->end
, region
->type
, region
->attribute
);
783 pmap_memory_region_t
*region
;
786 if (pmap_next_page_reserved(pn
))
789 if (avail_remaining
) {
790 for (n
= pmap_memory_region_count
- 1; n
>= 0; n
--) {
791 region
= &pmap_memory_regions
[n
];
793 if (region
->alloc_down
>= region
->alloc_up
) {
794 *pn
= region
->alloc_down
--;
800 if (lowest_lo
== 0 || *pn
< lowest_lo
)
803 if (lowest_hi
== 0 || *pn
< lowest_hi
)
806 if (*pn
> highest_hi
)
821 if (avail_remaining
) while (pmap_memory_region_current
< pmap_memory_region_count
) {
822 if (pmap_memory_regions
[pmap_memory_region_current
].alloc_up
>
823 pmap_memory_regions
[pmap_memory_region_current
].alloc_down
) {
824 pmap_memory_region_current
++;
827 *pn
= pmap_memory_regions
[pmap_memory_region_current
].alloc_up
++;
833 if (lowest_lo
== 0 || *pn
< lowest_lo
)
847 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
849 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
850 if ( (pn
>= pmptr
->base
) && (pn
<= pmptr
->end
) )