2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1988, 1990, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
93 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
94 * support for mandatory and extensible security protections. This notice
95 * is included in support of clause 2.2 (b) of the Apple Public License,
99 #include <sys/param.h>
100 #include <sys/malloc.h>
101 #include <sys/mbuf.h>
102 #include <sys/errno.h>
103 #include <sys/protosw.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/systm.h>
107 #include <sys/kernel.h>
108 #include <sys/proc.h>
109 #include <sys/kauth.h>
110 #include <sys/mcache.h>
111 #include <sys/sysctl.h>
112 #include <kern/zalloc.h>
113 #include <libkern/OSByteOrder.h>
115 #include <pexpert/pexpert.h>
116 #include <mach/sdt.h>
119 #include <net/route.h>
120 #include <net/dlil.h>
121 #include <net/net_osdep.h>
122 #include <net/net_perf.h>
124 #include <netinet/in.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip_var.h>
127 #include <netinet6/in6_var.h>
128 #include <netinet/ip6.h>
129 #include <netinet/kpi_ipfilter_var.h>
130 #include <netinet/in_tclass.h>
132 #include <netinet6/ip6protosw.h>
133 #include <netinet/icmp6.h>
134 #include <netinet6/ip6_var.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet6/nd6.h>
137 #include <netinet6/scope6_var.h>
139 #include <netinet6/ipsec.h>
140 #include <netinet6/ipsec6.h>
141 #include <netkey/key.h>
142 extern int ipsec_bypass
;
146 #include <net/necp.h>
150 #include <security/mac.h>
151 #endif /* CONFIG_MACF_NET */
154 #include <netinet/ip_fw.h>
155 #include <netinet/ip_dummynet.h>
156 #endif /* DUMMYNET */
159 #include <net/pfvar.h>
162 static int sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
;
163 static int sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
;
164 static int sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
;
165 static int ip6_copyexthdr(struct mbuf
**, caddr_t
, int);
166 static void ip6_out_cksum_stats(int, u_int32_t
);
167 static int ip6_insert_jumboopt(struct ip6_exthdrs
*, u_int32_t
);
168 static int ip6_insertfraghdr(struct mbuf
*, struct mbuf
*, int,
170 static int ip6_getpmtu(struct route_in6
*, struct route_in6
*,
171 struct ifnet
*, struct in6_addr
*, u_int32_t
*, boolean_t
*);
172 static int ip6_pcbopts(struct ip6_pktopts
**, struct mbuf
*, struct socket
*,
173 struct sockopt
*sopt
);
174 static int ip6_pcbopt(int, u_char
*, int, struct ip6_pktopts
**, int);
175 static int ip6_getpcbopt(struct ip6_pktopts
*, int, struct sockopt
*);
176 static int copypktopts(struct ip6_pktopts
*, struct ip6_pktopts
*, int);
177 static void im6o_trace(struct ip6_moptions
*, int);
178 static int ip6_setpktopt(int, u_char
*, int, struct ip6_pktopts
*, int,
180 static int ip6_splithdr(struct mbuf
*, struct ip6_exthdrs
*);
181 static void ip6_output_checksum(struct ifnet
*, uint32_t, struct mbuf
*,
182 int, uint32_t, uint32_t);
183 extern int udp_ctloutput(struct socket
*, struct sockopt
*);
184 static int ip6_do_fragmentation(struct mbuf
**morig
,
185 uint32_t optlen
, struct ifnet
*ifp
, uint32_t unfragpartlen
,
186 struct ip6_hdr
*ip6
, struct ip6_exthdrs
*exthdrsp
, uint32_t mtu
,
188 static int ip6_fragment_packet(struct mbuf
**m
,
189 struct ip6_pktopts
*opt
, struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
,
190 uint32_t mtu
, boolean_t alwaysfrag
, uint32_t unfragpartlen
,
191 struct route_in6
*ro_pmtu
, int nxt0
, uint32_t optlen
);
193 SYSCTL_DECL(_net_inet6_ip6
);
195 static int ip6_output_measure
= 0;
196 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf
,
197 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
198 &ip6_output_measure
, 0, sysctl_reset_ip6_output_stats
, "I", "Do time measurement");
200 static uint64_t ip6_output_measure_bins
= 0;
201 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_bins
,
202 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_output_measure_bins
, 0,
203 sysctl_ip6_output_measure_bins
, "I",
204 "bins for chaining performance data histogram");
206 static net_perf_t net_perf
;
207 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_data
,
208 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
209 0, 0, sysctl_ip6_output_getperf
, "S,net_perf",
210 "IP6 output performance data (struct net_perf, net/net_perf.h)");
212 #define IM6O_TRACE_HIST_SIZE 32 /* size of trace history */
215 __private_extern__
unsigned int im6o_trace_hist_size
= IM6O_TRACE_HIST_SIZE
;
217 struct ip6_moptions_dbg
{
218 struct ip6_moptions im6o
; /* ip6_moptions */
219 u_int16_t im6o_refhold_cnt
; /* # of IM6O_ADDREF */
220 u_int16_t im6o_refrele_cnt
; /* # of IM6O_REMREF */
222 * Alloc and free callers.
227 * Circular lists of IM6O_ADDREF and IM6O_REMREF callers.
229 ctrace_t im6o_refhold
[IM6O_TRACE_HIST_SIZE
];
230 ctrace_t im6o_refrele
[IM6O_TRACE_HIST_SIZE
];
234 static unsigned int im6o_debug
= 1; /* debugging (enabled) */
236 static unsigned int im6o_debug
; /* debugging (disabled) */
239 static unsigned int im6o_size
; /* size of zone element */
240 static struct zone
*im6o_zone
; /* zone for ip6_moptions */
242 #define IM6O_ZONE_MAX 64 /* maximum elements in zone */
243 #define IM6O_ZONE_NAME "ip6_moptions" /* zone name */
246 * ip6_output() calls ip6_output_list() to do the work
249 ip6_output(struct mbuf
*m0
, struct ip6_pktopts
*opt
,
250 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
251 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
253 return ip6_output_list(m0
, 0, opt
, ro
, flags
, im6o
, ifpp
, ip6oa
);
257 * IP6 output. Each packet in mbuf chain m contains a skeletal IP6
258 * header (with pri, len, nxt, hlim, src, dst).
259 * This function may modify ver and hlim only.
260 * The mbuf chain containing the packet will be freed.
261 * The mbuf opt, if present, will not be freed.
263 * If ro is non-NULL and has valid ro->ro_rt, route lookup would be
264 * skipped and ro->ro_rt would be used. Otherwise the result of route
265 * lookup is stored in ro->ro_rt.
267 * type of "mtu": rt_rmx.rmx_mtu is u_int32_t, ifnet.ifr_mtu is int, and
268 * nd_ifinfo.linkmtu is u_int32_t. so we use u_int32_t to hold largest one,
269 * which is rt_rmx.rmx_mtu.
272 ip6_output_list(struct mbuf
*m0
, int packetchain
, struct ip6_pktopts
*opt
,
273 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
274 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
278 struct ifnet
*ifp
= NULL
, *origifp
= NULL
; /* refcnt'd */
279 struct ifnet
**ifpp_save
= ifpp
;
280 struct mbuf
*m
, *mprev
;
281 struct mbuf
*sendchain
= NULL
, *sendchain_last
= NULL
;
282 struct mbuf
*inputchain
= NULL
;
284 struct route_in6
*ro_pmtu
= NULL
;
285 struct rtentry
*rt
= NULL
;
286 struct sockaddr_in6
*dst
, src_sa
, dst_sa
;
288 struct in6_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
290 boolean_t alwaysfrag
= FALSE
;
291 u_int32_t optlen
= 0, plen
= 0, unfragpartlen
= 0;
292 struct ip6_rthdr
*rh
;
293 struct in6_addr finaldst
;
294 ipfilter_t inject_filter_ref
;
295 struct ipf_pktopts
*ippo
= NULL
;
296 struct flowadv
*adv
= NULL
;
298 uint32_t packets_processed
= 0;
299 struct timeval start_tv
;
302 struct ip6_out_args saved_ip6oa
;
303 struct sockaddr_in6 dst_buf
;
304 #endif /* DUMMYNET */
306 struct socket
*so
= NULL
;
307 struct secpolicy
*sp
= NULL
;
308 struct route_in6
*ipsec_saved_route
= NULL
;
309 boolean_t needipsectun
= FALSE
;
312 necp_kernel_policy_result necp_result
= 0;
313 necp_kernel_policy_result_parameter necp_result_parameter
;
314 necp_kernel_policy_id necp_matched_policy_id
= 0;
317 struct ipf_pktopts ipf_pktopts
;
318 struct ip6_exthdrs exthdrs
;
319 struct route_in6 ip6route
;
321 struct ipsec_output_state ipsec_state
;
324 struct route_in6 necp_route
;
327 struct route_in6 saved_route
;
328 struct route_in6 saved_ro_pmtu
;
329 struct ip_fw_args args
;
330 #endif /* DUMMYNET */
332 #define ipf_pktopts ip6obz.ipf_pktopts
333 #define exthdrs ip6obz.exthdrs
334 #define ip6route ip6obz.ip6route
335 #define ipsec_state ip6obz.ipsec_state
336 #define necp_route ip6obz.necp_route
337 #define saved_route ip6obz.saved_route
338 #define saved_ro_pmtu ip6obz.saved_ro_pmtu
339 #define args ip6obz.args
342 boolean_t select_srcif
: 1;
343 boolean_t hdrsplit
: 1;
344 boolean_t route_selected
: 1;
345 boolean_t dontfrag
: 1;
347 boolean_t needipsec
: 1;
348 boolean_t noipsec
: 1;
352 } ip6obf
= { .raw
= 0 };
354 if (ip6_output_measure
)
355 net_perf_start_time(&net_perf
, &start_tv
);
357 VERIFY(m0
->m_flags
& M_PKTHDR
);
359 /* zero out {saved_route, saved_ro_pmtu, ip6route, exthdrs, args} */
360 bzero(&ip6obz
, sizeof (ip6obz
));
363 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
))
366 /* Grab info from mtags prepended to the chain */
367 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
368 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
369 struct dn_pkt_tag
*dn_tag
;
372 * ip6_output_list() cannot handle chains of packets reinjected
373 * by dummynet. The same restriction applies to
376 VERIFY(0 == packetchain
);
378 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
379 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
381 bcopy(&dn_tag
->dn_dst6
, &dst_buf
, sizeof (dst_buf
));
383 ifp
= dn_tag
->dn_ifp
;
385 ifnet_reference(ifp
);
386 flags
= dn_tag
->dn_flags
;
387 if (dn_tag
->dn_flags
& IPV6_OUTARGS
) {
388 saved_ip6oa
= dn_tag
->dn_ip6oa
;
389 ip6oa
= &saved_ip6oa
;
392 saved_route
= dn_tag
->dn_ro6
;
394 saved_ro_pmtu
= dn_tag
->dn_ro6_pmtu
;
395 ro_pmtu
= &saved_ro_pmtu
;
396 origifp
= dn_tag
->dn_origifp
;
398 ifnet_reference(origifp
);
399 mtu
= dn_tag
->dn_mtu
;
400 alwaysfrag
= (dn_tag
->dn_alwaysfrag
!= 0);
401 unfragpartlen
= dn_tag
->dn_unfragpartlen
;
403 bcopy(&dn_tag
->dn_exthdrs
, &exthdrs
, sizeof (exthdrs
));
405 m_tag_delete(m0
, tag
);
409 #endif /* DUMMYNET */
414 if (ipsec_bypass
== 0) {
415 so
= ipsec_getsocket(m
);
417 (void) ipsec_setsocket(m
, NULL
);
419 /* If packet is bound to an interface, check bound policies */
420 if ((flags
& IPV6_OUTARGS
) &&
421 (ip6oa
->ip6oa_flags
& IP6OAF_BOUND_IF
) &&
422 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
423 /* ip6obf.noipsec is a bitfield, use temp integer */
426 if (ipsec6_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
427 flags
, ip6oa
, &noipsec
, &sp
) != 0)
430 ip6obf
.noipsec
= (noipsec
!= 0);
437 if (flags
& IPV6_OUTARGS
) {
439 * In the forwarding case, only the ifscope value is used,
440 * as source interface selection doesn't take place.
442 if ((ip6obf
.select_srcif
= (!(flags
& (IPV6_FORWARDING
|
443 IPV6_UNSPECSRC
| IPV6_FLAG_NOSRCIFSEL
)) &&
444 (ip6oa
->ip6oa_flags
& IP6OAF_SELECT_SRCIF
))))
445 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
447 if ((ip6oa
->ip6oa_flags
& IP6OAF_BOUND_IF
) &&
448 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
449 ipf_pktopts
.ippo_flags
|= (IPPOF_BOUND_IF
|
450 (ip6oa
->ip6oa_boundif
<< IPPOF_SHIFT_IFSCOPE
));
453 if (ip6oa
->ip6oa_flags
& IP6OAF_BOUND_SRCADDR
)
454 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
456 ip6obf
.select_srcif
= FALSE
;
457 if (flags
& IPV6_OUTARGS
) {
458 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
459 ip6oa
->ip6oa_flags
&= ~(IP6OAF_SELECT_SRCIF
|
460 IP6OAF_BOUND_IF
| IP6OAF_BOUND_SRCADDR
);
464 if (flags
& IPV6_OUTARGS
) {
465 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_CELLULAR
)
466 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
467 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_EXPENSIVE
)
468 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
469 adv
= &ip6oa
->ip6oa_flowadv
;
470 adv
->code
= FADV_SUCCESS
;
471 ip6oa
->ip6oa_retflags
= 0;
475 * Clear out ifpp to be filled in after determining route. ifpp_save is
476 * used to keep old value to release reference properly and dtrace
477 * ipsec tunnel traffic properly.
479 if (ifpp
!= NULL
&& *ifpp
!= NULL
)
483 if (args
.fwa_pf_rule
) {
484 ip6
= mtod(m
, struct ip6_hdr
*);
485 VERIFY(ro
!= NULL
); /* ro == saved_route */
488 #endif /* DUMMYNET */
492 * Since all packets are assumed to come from same socket, necp lookup
493 * only needs to happen once per function entry.
495 necp_matched_policy_id
= necp_ip6_output_find_policy_match(m
, flags
,
496 (flags
& IPV6_OUTARGS
) ? ip6oa
: NULL
, &necp_result
,
497 &necp_result_parameter
);
501 * If a chain was passed in, prepare for ther first iteration. For all
502 * other iterations, this work will be done at evaluateloop: label.
506 * Remove m from the chain during processing to avoid
507 * accidental frees on entire list.
509 inputchain
= m
->m_nextpkt
;
515 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
|PKTF_IFAINFO
);
516 ip6
= mtod(m
, struct ip6_hdr
*);
518 finaldst
= ip6
->ip6_dst
;
519 ip6obf
.hdrsplit
= FALSE
;
522 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
))
523 inject_filter_ref
= ipf_get_inject_filter(m
);
525 inject_filter_ref
= NULL
;
527 #define MAKE_EXTHDR(hp, mp) do { \
529 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
530 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
531 ((eh)->ip6e_len + 1) << 3); \
538 /* Hop-by-Hop options header */
539 MAKE_EXTHDR(opt
->ip6po_hbh
, &exthdrs
.ip6e_hbh
);
540 /* Destination options header(1st part) */
541 if (opt
->ip6po_rthdr
) {
543 * Destination options header(1st part)
544 * This only makes sense with a routing header.
545 * See Section 9.2 of RFC 3542.
546 * Disabling this part just for MIP6 convenience is
547 * a bad idea. We need to think carefully about a
548 * way to make the advanced API coexist with MIP6
549 * options, which might automatically be inserted in
552 MAKE_EXTHDR(opt
->ip6po_dest1
, &exthdrs
.ip6e_dest1
);
555 MAKE_EXTHDR(opt
->ip6po_rthdr
, &exthdrs
.ip6e_rthdr
);
556 /* Destination options header(2nd part) */
557 MAKE_EXTHDR(opt
->ip6po_dest2
, &exthdrs
.ip6e_dest2
);
563 if (necp_matched_policy_id
) {
564 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
566 switch (necp_result
) {
567 case NECP_KERNEL_POLICY_RESULT_PASS
:
569 case NECP_KERNEL_POLICY_RESULT_DROP
:
570 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
572 * Flow divert packets should be blocked at the IP
575 error
= EHOSTUNREACH
;
577 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
579 * Verify that the packet is being routed to the tunnel
581 struct ifnet
*policy_ifp
=
582 necp_get_ifnet_from_result_parameter(
583 &necp_result_parameter
);
585 if (policy_ifp
== ifp
) {
588 if (necp_packet_can_rebind_to_ifnet(m
,
589 policy_ifp
, (struct route
*)&necp_route
,
592 * Set scoped index to the tunnel
593 * interface, since it is compatible
594 * with the packet. This will only work
595 * for callers who pass IPV6_OUTARGS,
596 * but that covers all of the clients
597 * we care about today.
599 if (flags
& IPV6_OUTARGS
) {
600 ip6oa
->ip6oa_boundif
=
601 policy_ifp
->if_index
;
602 ip6oa
->ip6oa_flags
|=
606 && opt
->ip6po_pktinfo
!= NULL
) {
609 policy_ifp
->if_index
;
626 if (ipsec_bypass
!= 0 || ip6obf
.noipsec
)
630 /* get a security policy for this packet */
632 sp
= ipsec6_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
635 sp
= ipsec6_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
639 IPSEC_STAT_INCREMENT(ipsec6stat
.out_inval
);
647 switch (sp
->policy
) {
648 case IPSEC_POLICY_DISCARD
:
649 case IPSEC_POLICY_GENERATE
:
651 * This packet is just discarded.
653 IPSEC_STAT_INCREMENT(ipsec6stat
.out_polvio
);
656 case IPSEC_POLICY_BYPASS
:
657 case IPSEC_POLICY_NONE
:
658 /* no need to do IPsec. */
659 ip6obf
.needipsec
= FALSE
;
662 case IPSEC_POLICY_IPSEC
:
663 if (sp
->req
== NULL
) {
664 /* acquire a policy */
665 error
= key_spdacquire(sp
);
671 ip6obf
.needipsec
= TRUE
;
675 case IPSEC_POLICY_ENTRUST
:
677 printf("%s: Invalid policy found: %d\n", __func__
, sp
->policy
);
684 * Calculate the total length of the extension header chain.
685 * Keep the length of the unfragmentable part for fragmentation.
688 if (exthdrs
.ip6e_hbh
!= NULL
)
689 optlen
+= exthdrs
.ip6e_hbh
->m_len
;
690 if (exthdrs
.ip6e_dest1
!= NULL
)
691 optlen
+= exthdrs
.ip6e_dest1
->m_len
;
692 if (exthdrs
.ip6e_rthdr
!= NULL
)
693 optlen
+= exthdrs
.ip6e_rthdr
->m_len
;
694 unfragpartlen
= optlen
+ sizeof (struct ip6_hdr
);
696 /* NOTE: we don't add AH/ESP length here. do that later. */
697 if (exthdrs
.ip6e_dest2
!= NULL
)
698 optlen
+= exthdrs
.ip6e_dest2
->m_len
;
701 * If we need IPsec, or there is at least one extension header,
702 * separate IP6 header from the payload.
708 optlen
) && !ip6obf
.hdrsplit
) {
709 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
713 m
= exthdrs
.ip6e_ip6
;
714 ip6obf
.hdrsplit
= TRUE
;
718 ip6
= mtod(m
, struct ip6_hdr
*);
720 /* adjust mbuf packet header length */
721 m
->m_pkthdr
.len
+= optlen
;
722 plen
= m
->m_pkthdr
.len
- sizeof (*ip6
);
724 /* If this is a jumbo payload, insert a jumbo payload option. */
725 if (plen
> IPV6_MAXPACKET
) {
726 if (!ip6obf
.hdrsplit
) {
727 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
731 m
= exthdrs
.ip6e_ip6
;
732 ip6obf
.hdrsplit
= TRUE
;
735 ip6
= mtod(m
, struct ip6_hdr
*);
736 if ((error
= ip6_insert_jumboopt(&exthdrs
, plen
)) != 0)
740 ip6
->ip6_plen
= htons(plen
);
743 * Concatenate headers and fill in next header fields.
744 * Here we have, on "m"
746 * and we insert headers accordingly. Finally, we should be getting:
747 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
749 * during the header composing process, "m" points to IPv6 header.
750 * "mprev" points to an extension header prior to esp.
752 nexthdrp
= &ip6
->ip6_nxt
;
756 * we treat dest2 specially. this makes IPsec processing
757 * much easier. the goal here is to make mprev point the
758 * mbuf prior to dest2.
760 * result: IPv6 dest2 payload
761 * m and mprev will point to IPv6 header.
763 if (exthdrs
.ip6e_dest2
!= NULL
) {
764 if (!ip6obf
.hdrsplit
) {
765 panic("assumption failed: hdr not split");
768 exthdrs
.ip6e_dest2
->m_next
= m
->m_next
;
769 m
->m_next
= exthdrs
.ip6e_dest2
;
770 *mtod(exthdrs
.ip6e_dest2
, u_char
*) = ip6
->ip6_nxt
;
771 ip6
->ip6_nxt
= IPPROTO_DSTOPTS
;
774 #define MAKE_CHAIN(m, mp, p, i) do { \
776 if (!ip6obf.hdrsplit) { \
777 panic("assumption failed: hdr not split"); \
780 *mtod((m), u_char *) = *(p); \
782 p = mtod((m), u_char *); \
783 (m)->m_next = (mp)->m_next; \
784 (mp)->m_next = (m); \
789 * result: IPv6 hbh dest1 rthdr dest2 payload
790 * m will point to IPv6 header. mprev will point to the
791 * extension header prior to dest2 (rthdr in the above case).
793 MAKE_CHAIN(exthdrs
.ip6e_hbh
, mprev
, nexthdrp
, IPPROTO_HOPOPTS
);
794 MAKE_CHAIN(exthdrs
.ip6e_dest1
, mprev
, nexthdrp
, IPPROTO_DSTOPTS
);
795 MAKE_CHAIN(exthdrs
.ip6e_rthdr
, mprev
, nexthdrp
, IPPROTO_ROUTING
);
797 /* It is no longer safe to free the pointers in exthdrs. */
798 exthdrs
.merged
= TRUE
;
803 if (ip6obf
.needipsec
&& (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
))
804 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
807 if (!TAILQ_EMPTY(&ipv6_filters
) &&
808 !((flags
& IPV6_OUTARGS
) &&
809 (ip6oa
->ip6oa_flags
& IP6OAF_INTCOPROC_ALLOWED
))) {
810 struct ipfilter
*filter
;
811 int seen
= (inject_filter_ref
== NULL
);
814 if (im6o
!= NULL
&& IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
815 ippo
->ippo_flags
|= IPPOF_MCAST_OPTS
;
817 ippo
->ippo_mcast_ifnet
= im6o
->im6o_multicast_ifp
;
818 ippo
->ippo_mcast_ttl
= im6o
->im6o_multicast_hlim
;
819 ippo
->ippo_mcast_loop
= im6o
->im6o_multicast_loop
;
823 /* Hack: embed the scope_id in the destination */
824 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_dst
) &&
825 (ip6
->ip6_dst
.s6_addr16
[1] == 0) && (ro
!= NULL
)) {
827 ip6
->ip6_dst
.s6_addr16
[1] =
828 htons(ro
->ro_dst
.sin6_scope_id
);
832 TAILQ_FOREACH(filter
, &ipv6_filters
, ipf_link
) {
834 * Don't process packet twice if we've already seen it.
837 if ((struct ipfilter
*)inject_filter_ref
==
840 } else if (filter
->ipf_filter
.ipf_output
!= NULL
) {
843 result
= filter
->ipf_filter
.ipf_output(
844 filter
->ipf_filter
.cookie
,
846 if (result
== EJUSTRETURN
) {
859 ip6
= mtod(m
, struct ip6_hdr
*);
860 /* Hack: cleanup embedded scope_id if we put it there */
862 ip6
->ip6_dst
.s6_addr16
[1] = 0;
866 if (ip6obf
.needipsec
) {
870 * pointers after IPsec headers are not valid any more.
871 * other pointers need a great care too.
872 * (IPsec routines should not mangle mbufs prior to AH/ESP)
874 exthdrs
.ip6e_dest2
= NULL
;
876 if (exthdrs
.ip6e_rthdr
!= NULL
) {
877 rh
= mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*);
878 segleft_org
= rh
->ip6r_segleft
;
879 rh
->ip6r_segleft
= 0;
886 error
= ipsec6_output_trans(&ipsec_state
, nexthdrp
, mprev
,
887 sp
, flags
, &needipsectun
);
890 /* mbuf is already reclaimed in ipsec6_output_trans. */
900 printf("ip6_output (ipsec): error code %d\n",
904 /* don't show these error codes to the user */
910 if (exthdrs
.ip6e_rthdr
!= NULL
) {
911 /* ah6_output doesn't modify mbuf chain */
912 rh
->ip6r_segleft
= segleft_org
;
918 * If there is a routing header, replace the destination address field
919 * with the first hop of the routing header.
921 if (exthdrs
.ip6e_rthdr
!= NULL
) {
922 struct ip6_rthdr0
*rh0
;
923 struct in6_addr
*addr
;
924 struct sockaddr_in6 sa
;
926 rh
= (struct ip6_rthdr
*)
927 (mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*));
928 switch (rh
->ip6r_type
) {
929 case IPV6_RTHDR_TYPE_0
:
930 rh0
= (struct ip6_rthdr0
*)rh
;
931 addr
= (struct in6_addr
*)(void *)(rh0
+ 1);
934 * construct a sockaddr_in6 form of
937 * XXX: we may not have enough
938 * information about its scope zone;
939 * there is no standard API to pass
940 * the information from the
943 bzero(&sa
, sizeof (sa
));
944 sa
.sin6_family
= AF_INET6
;
945 sa
.sin6_len
= sizeof (sa
);
946 sa
.sin6_addr
= addr
[0];
947 if ((error
= sa6_embedscope(&sa
,
948 ip6_use_defzone
)) != 0) {
951 ip6
->ip6_dst
= sa
.sin6_addr
;
952 bcopy(&addr
[1], &addr
[0], sizeof (struct in6_addr
) *
953 (rh0
->ip6r0_segleft
- 1));
954 addr
[rh0
->ip6r0_segleft
- 1] = finaldst
;
956 in6_clearscope(addr
+ rh0
->ip6r0_segleft
- 1);
958 default: /* is it possible? */
964 /* Source address validation */
965 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
) &&
966 !(flags
& IPV6_UNSPECSRC
)) {
968 ip6stat
.ip6s_badscope
++;
971 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
973 ip6stat
.ip6s_badscope
++;
977 ip6stat
.ip6s_localout
++;
984 bzero((caddr_t
)ro
, sizeof (*ro
));
987 if (opt
!= NULL
&& opt
->ip6po_rthdr
)
988 ro
= &opt
->ip6po_route
;
989 dst
= SIN6(&ro
->ro_dst
);
991 if (ro
->ro_rt
!= NULL
)
992 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
994 * if specified, try to fill in the traffic class field.
995 * do not override if a non-zero value is already set.
996 * we check the diffserv field and the ecn field separately.
998 if (opt
!= NULL
&& opt
->ip6po_tclass
>= 0) {
1001 if ((ip6
->ip6_flow
& htonl(0xfc << 20)) == 0)
1003 if ((ip6
->ip6_flow
& htonl(0x03 << 20)) == 0)
1007 htonl((opt
->ip6po_tclass
& mask
) << 20);
1011 /* fill in or override the hop limit field, if necessary. */
1012 if (opt
&& opt
->ip6po_hlim
!= -1) {
1013 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
1014 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1017 ip6
->ip6_hlim
= im6o
->im6o_multicast_hlim
;
1020 ip6
->ip6_hlim
= ip6_defmcasthlim
;
1025 * If there is a cached route, check that it is to the same
1026 * destination and is still up. If not, free it and try again.
1027 * Test rt_flags without holding rt_lock for performance reasons;
1028 * if the route is down it will hopefully be caught by the layer
1029 * below (since it uses this route as a hint) or during the
1032 if (ROUTE_UNUSABLE(ro
) || dst
->sin6_family
!= AF_INET6
||
1033 !IN6_ARE_ADDR_EQUAL(&dst
->sin6_addr
, &ip6
->ip6_dst
))
1036 if (ro
->ro_rt
== NULL
) {
1037 bzero(dst
, sizeof (*dst
));
1038 dst
->sin6_family
= AF_INET6
;
1039 dst
->sin6_len
= sizeof (struct sockaddr_in6
);
1040 dst
->sin6_addr
= ip6
->ip6_dst
;
1043 if (ip6obf
.needipsec
&& needipsectun
) {
1045 struct ifnet
*trace_ifp
= (ifpp_save
!= NULL
) ? (*ifpp_save
) : NULL
;
1046 #endif /* CONFIG_DTRACE */
1048 * All the extension headers will become inaccessible
1049 * (since they can be encrypted).
1050 * Don't panic, we need no more updates to extension headers
1051 * on inner IPv6 packet (since they are now encapsulated).
1053 * IPv6 [ESP|AH] IPv6 [extension headers] payload
1055 bzero(&exthdrs
, sizeof (exthdrs
));
1056 exthdrs
.ip6e_ip6
= m
;
1059 route_copyout(&ipsec_state
.ro
, (struct route
*)ro
,
1060 sizeof (ipsec_state
.ro
));
1061 ipsec_state
.dst
= SA(dst
);
1063 /* So that we can see packets inside the tunnel */
1064 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1065 struct ip6_hdr
*, ip6
, struct ifnet
*, trace_ifp
,
1066 struct ip
*, NULL
, struct ip6_hdr
*, ip6
);
1068 error
= ipsec6_output_tunnel(&ipsec_state
, sp
, flags
);
1069 /* tunneled in IPv4? packet is gone */
1070 if (ipsec_state
.tunneled
== 4) {
1075 ipsec_saved_route
= ro
;
1076 ro
= (struct route_in6
*)&ipsec_state
.ro
;
1077 dst
= SIN6(ipsec_state
.dst
);
1079 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
1089 printf("ip6_output (ipsec): error code %d\n",
1093 /* don't show these error codes to the user */
1100 * The packet has been encapsulated so the ifscope
1101 * is no longer valid since it does not apply to the
1102 * outer address: ignore the ifscope.
1104 if (flags
& IPV6_OUTARGS
) {
1105 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
1106 ip6oa
->ip6oa_flags
&= ~IP6OAF_BOUND_IF
;
1108 if (opt
!= NULL
&& opt
->ip6po_pktinfo
!= NULL
) {
1109 if (opt
->ip6po_pktinfo
->ipi6_ifindex
!= IFSCOPE_NONE
)
1110 opt
->ip6po_pktinfo
->ipi6_ifindex
= IFSCOPE_NONE
;
1112 exthdrs
.ip6e_ip6
= m
;
1117 * ifp should only be filled in for dummy net packets which will jump
1118 * to check_with_pf label.
1121 VERIFY(ip6obf
.route_selected
);
1124 /* adjust pointer */
1125 ip6
= mtod(m
, struct ip6_hdr
*);
1127 if (ip6obf
.select_srcif
) {
1128 bzero(&src_sa
, sizeof (src_sa
));
1129 src_sa
.sin6_family
= AF_INET6
;
1130 src_sa
.sin6_len
= sizeof (src_sa
);
1131 src_sa
.sin6_addr
= ip6
->ip6_src
;
1133 bzero(&dst_sa
, sizeof (dst_sa
));
1134 dst_sa
.sin6_family
= AF_INET6
;
1135 dst_sa
.sin6_len
= sizeof (dst_sa
);
1136 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1139 * Only call in6_selectroute() on first iteration to avoid taking
1140 * multiple references on ifp and rt.
1142 * in6_selectroute() might return an ifp with its reference held
1143 * even in the error case, so make sure to release its reference.
1144 * ip6oa may be NULL if IPV6_OUTARGS isn't set.
1146 if (!ip6obf
.route_selected
) {
1147 error
= in6_selectroute( ip6obf
.select_srcif
? &src_sa
: NULL
,
1148 &dst_sa
, opt
, im6o
, &src_ia
, ro
, &ifp
, &rt
, 0, ip6oa
);
1153 ip6stat
.ip6s_noroute
++;
1157 break; /* XXX statistics? */
1160 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1161 /* ifp (if non-NULL) will be released at the end */
1164 ip6obf
.route_selected
= TRUE
;
1168 * If in6_selectroute() does not return a route entry,
1169 * dst may not have been updated.
1171 *dst
= dst_sa
; /* XXX */
1175 /* Catch-all to check if the interface is allowed */
1176 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1177 error
= EHOSTUNREACH
;
1183 * then rt (for unicast) and ifp must be non-NULL valid values.
1185 if (!(flags
& IPV6_FORWARDING
)) {
1186 in6_ifstat_inc_na(ifp
, ifs6_out_request
);
1191 ia
= (struct in6_ifaddr
*)(rt
->rt_ifa
);
1193 IFA_ADDREF(&ia
->ia_ifa
);
1200 * The outgoing interface must be in the zone of source and
1201 * destination addresses (except local/loopback). We should
1202 * use ia_ifp to support the case of sending packets to an
1203 * address of our own.
1205 if (ia
!= NULL
&& ia
->ia_ifp
) {
1206 ifnet_reference(ia
->ia_ifp
); /* for origifp */
1207 if (origifp
!= NULL
)
1208 ifnet_release(origifp
);
1209 origifp
= ia
->ia_ifp
;
1212 ifnet_reference(ifp
); /* for origifp */
1213 if (origifp
!= NULL
)
1214 ifnet_release(origifp
);
1218 /* skip scope enforcements for local/loopback route */
1219 if (rt
== NULL
|| !(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
1220 struct in6_addr src0
, dst0
;
1223 src0
= ip6
->ip6_src
;
1224 if (in6_setscope(&src0
, origifp
, &zone
))
1226 bzero(&src_sa
, sizeof (src_sa
));
1227 src_sa
.sin6_family
= AF_INET6
;
1228 src_sa
.sin6_len
= sizeof (src_sa
);
1229 src_sa
.sin6_addr
= ip6
->ip6_src
;
1230 if ((sa6_recoverscope(&src_sa
, TRUE
) ||
1231 zone
!= src_sa
.sin6_scope_id
))
1234 dst0
= ip6
->ip6_dst
;
1235 if ((in6_setscope(&dst0
, origifp
, &zone
)))
1237 /* re-initialize to be sure */
1238 bzero(&dst_sa
, sizeof (dst_sa
));
1239 dst_sa
.sin6_family
= AF_INET6
;
1240 dst_sa
.sin6_len
= sizeof (dst_sa
);
1241 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1242 if ((sa6_recoverscope(&dst_sa
, TRUE
) ||
1243 zone
!= dst_sa
.sin6_scope_id
))
1246 /* scope check is done. */
1250 ip6stat
.ip6s_badscope
++;
1251 in6_ifstat_inc(origifp
, ifs6_out_discard
);
1253 error
= EHOSTUNREACH
; /* XXX */
1258 if (rt
!= NULL
&& !IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1259 if (opt
!= NULL
&& opt
->ip6po_nextroute
.ro_rt
) {
1261 * The nexthop is explicitly specified by the
1262 * application. We assume the next hop is an IPv6
1265 dst
= SIN6(opt
->ip6po_nexthop
);
1266 } else if ((rt
->rt_flags
& RTF_GATEWAY
)) {
1267 dst
= SIN6(rt
->rt_gateway
);
1270 * For packets destined to local/loopback, record the
1271 * source the source interface (which owns the source
1272 * address), as well as the output interface. This is
1273 * needed to reconstruct the embedded zone for the
1274 * link-local address case in ip6_input().
1276 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
)) {
1280 srcidx
= src_ia
->ia_ifp
->if_index
;
1281 else if (ro
->ro_srcia
!= NULL
)
1282 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
1286 ip6_setsrcifaddr_info(m
, srcidx
, NULL
);
1287 ip6_setdstifaddr_info(m
, 0, ia
);
1291 if (!IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1292 m
->m_flags
&= ~(M_BCAST
| M_MCAST
); /* just in case */
1294 struct in6_multi
*in6m
;
1296 m
->m_flags
= (m
->m_flags
& ~M_BCAST
) | M_MCAST
;
1297 in6_ifstat_inc_na(ifp
, ifs6_out_mcast
);
1300 * Confirm that the outgoing interface supports multicast.
1302 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
1303 ip6stat
.ip6s_noroute
++;
1304 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1305 error
= ENETUNREACH
;
1308 in6_multihead_lock_shared();
1309 IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, ifp
, in6m
);
1310 in6_multihead_lock_done();
1314 (im6o
== NULL
|| im6o
->im6o_multicast_loop
)) {
1318 * If we belong to the destination multicast group
1319 * on the outgoing interface, and the caller did not
1320 * forbid loopback, loop back a copy.
1322 ip6_mloopback(NULL
, ifp
, m
, dst
, optlen
, nxt0
);
1323 } else if (im6o
!= NULL
)
1328 * Multicasts with a hoplimit of zero may be looped back,
1329 * above, but must not be transmitted on a network.
1330 * Also, multicasts addressed to the loopback interface
1331 * are not sent -- the above call to ip6_mloopback() will
1332 * loop back a copy if this host actually belongs to the
1333 * destination group on the loopback interface.
1335 if (ip6
->ip6_hlim
== 0 || (ifp
->if_flags
& IFF_LOOPBACK
) ||
1336 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
)) {
1337 /* remove m from the packetchain and continue looping */
1346 * Fill the outgoing inteface to tell the upper layer
1347 * to increment per-interface statistics.
1349 if (ifpp
!= NULL
&& *ifpp
== NULL
) {
1350 ifnet_reference(ifp
); /* for caller */
1354 /* Determine path MTU. */
1355 if ((error
= ip6_getpmtu(ro_pmtu
, ro
, ifp
, &finaldst
, &mtu
,
1360 * The caller of this function may specify to use the minimum MTU
1362 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
1363 * setting. The logic is a bit complicated; by default, unicast
1364 * packets will follow path MTU while multicast packets will be sent at
1365 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
1366 * including unicast ones will be sent at the minimum MTU. Multicast
1367 * packets will always be sent at the minimum MTU unless
1368 * IP6PO_MINMTU_DISABLE is explicitly specified.
1369 * See RFC 3542 for more details.
1371 if (mtu
> IPV6_MMTU
) {
1372 if ((flags
& IPV6_MINMTU
)) {
1374 } else if (opt
&& opt
->ip6po_minmtu
== IP6PO_MINMTU_ALL
) {
1376 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) &&
1378 opt
->ip6po_minmtu
!= IP6PO_MINMTU_DISABLE
)) {
1384 * clear embedded scope identifiers if necessary.
1385 * in6_clearscope will touch the addresses only when necessary.
1387 in6_clearscope(&ip6
->ip6_src
);
1388 in6_clearscope(&ip6
->ip6_dst
);
1390 * If the outgoing packet contains a hop-by-hop options header,
1391 * it must be examined and processed even by the source node.
1392 * (RFC 2460, section 4.)
1394 if (exthdrs
.ip6e_hbh
!= NULL
) {
1395 struct ip6_hbh
*hbh
= mtod(exthdrs
.ip6e_hbh
, struct ip6_hbh
*);
1396 u_int32_t dummy
; /* XXX unused */
1397 uint32_t oplen
= 0; /* for ip6_process_hopopts() */
1399 if ((hbh
->ip6h_len
+ 1) << 3 > exthdrs
.ip6e_hbh
->m_len
)
1400 panic("ip6e_hbh is not continuous");
1403 * XXX: If we have to send an ICMPv6 error to the sender,
1404 * we need the M_LOOP flag since icmp6_error() expects
1405 * the IPv6 and the hop-by-hop options header are
1406 * continuous unless the flag is set.
1408 m
->m_flags
|= M_LOOP
;
1409 m
->m_pkthdr
.rcvif
= ifp
;
1410 if (ip6_process_hopopts(m
, (u_int8_t
*)(hbh
+ 1),
1411 ((hbh
->ip6h_len
+ 1) << 3) - sizeof (struct ip6_hbh
),
1412 &dummy
, &oplen
) < 0) {
1414 * m was already freed at this point. Set to NULL so it
1415 * is not re-freed at end of ip6_output_list.
1418 error
= EINVAL
; /* better error? */
1421 m
->m_flags
&= ~M_LOOP
; /* XXX */
1422 m
->m_pkthdr
.rcvif
= NULL
;
1427 #endif /* DUMMYNET */
1429 if (PF_IS_ENABLED
) {
1433 * TODO: Need to save opt->ip6po_flags for reinjection
1438 args
.fwa_oflags
= flags
;
1439 if (flags
& IPV6_OUTARGS
)
1440 args
.fwa_ip6oa
= ip6oa
;
1442 args
.fwa_dst6
= dst
;
1443 args
.fwa_ro6_pmtu
= ro_pmtu
;
1444 args
.fwa_origifp
= origifp
;
1446 args
.fwa_alwaysfrag
= alwaysfrag
;
1447 args
.fwa_unfragpartlen
= unfragpartlen
;
1448 args
.fwa_exthdrs
= &exthdrs
;
1449 /* Invoke outbound packet filter */
1450 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, &args
);
1451 #else /* !DUMMYNET */
1452 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, NULL
);
1453 #endif /* !DUMMYNET */
1455 if (error
!= 0 || m
== NULL
) {
1457 panic("%s: unexpected packet %p\n",
1461 /* m was already freed by callee and is now NULL. */
1464 ip6
= mtod(m
, struct ip6_hdr
*);
1469 /* clean ipsec history before fragmentation */
1473 if (ip6oa
!= NULL
) {
1476 dscp
= (ntohl(ip6
->ip6_flow
) & IP6FLOW_DSCP_MASK
) >> IP6FLOW_DSCP_SHIFT
;
1478 error
= set_packet_qos(m
, ifp
,
1479 ip6oa
->ip6oa_flags
& IP6OAF_QOSMARKING_ALLOWED
? TRUE
: FALSE
,
1480 ip6oa
->ip6oa_sotc
, ip6oa
->ip6oa_netsvctype
, &dscp
);
1482 ip6
->ip6_flow
&= ~htonl(IP6FLOW_DSCP_MASK
);
1483 ip6
->ip6_flow
|= htonl((u_int32_t
)dscp
<< IP6FLOW_DSCP_SHIFT
);
1485 printf("%s if_dscp_for_mbuf() error %d\n", __func__
, error
);
1490 * Determine whether fragmentation is necessary. If so, m is passed
1491 * back as a chain of packets and original mbuf is freed. Otherwise, m
1494 error
= ip6_fragment_packet(&m
, opt
,
1495 &exthdrs
, ifp
, mtu
, alwaysfrag
, unfragpartlen
, ro_pmtu
, nxt0
,
1502 * The evaluateloop label is where we decide whether to continue looping over
1503 * packets or call into nd code to send.
1508 * m may be NULL when we jump to the evaluateloop label from PF or
1509 * other code that can drop packets.
1513 * If we already have a chain to send, tack m onto the end.
1514 * Otherwise make m the start and end of the to-be-sent chain.
1516 if (sendchain
!= NULL
) {
1517 sendchain_last
->m_nextpkt
= m
;
1522 /* Fragmentation may mean m is a chain. Find the last packet. */
1523 while (m
->m_nextpkt
)
1529 /* Fill in next m from inputchain as appropriate. */
1532 /* Isolate m from rest of input chain. */
1533 inputchain
= m
->m_nextpkt
;
1534 m
->m_nextpkt
= NULL
;
1537 * Clear exthdrs and ipsec_state so stale contents are not
1538 * reused. Note this also clears the exthdrs.merged flag.
1540 bzero(&exthdrs
, sizeof(exthdrs
));
1541 bzero(&ipsec_state
, sizeof(ipsec_state
));
1543 /* Continue looping. */
1548 * If we get here, there's no more mbufs in inputchain, so send the
1549 * sendchain if there is one.
1552 error
= nd6_output_list(ifp
, origifp
, sendchain
, dst
,
1555 * Fall through to done label even in error case because
1556 * nd6_output_list frees packetchain in both success and
1562 if (ifpp_save
!= NULL
&& *ifpp_save
!= NULL
) {
1563 ifnet_release(*ifpp_save
);
1566 ROUTE_RELEASE(&ip6route
);
1568 ROUTE_RELEASE(&ipsec_state
.ro
);
1570 key_freesp(sp
, KEY_SADB_UNLOCKED
);
1573 ROUTE_RELEASE(&necp_route
);
1576 ROUTE_RELEASE(&saved_route
);
1577 ROUTE_RELEASE(&saved_ro_pmtu
);
1578 #endif /* DUMMYNET */
1581 IFA_REMREF(&ia
->ia_ifa
);
1583 IFA_REMREF(&src_ia
->ia_ifa
);
1586 if (origifp
!= NULL
)
1587 ifnet_release(origifp
);
1588 if (ip6_output_measure
) {
1589 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
1590 net_perf_histogram(&net_perf
, packets_processed
);
1595 if (exthdrs
.ip6e_hbh
!= NULL
) {
1597 panic("Double free of ip6e_hbh");
1598 m_freem(exthdrs
.ip6e_hbh
);
1600 if (exthdrs
.ip6e_dest1
!= NULL
) {
1602 panic("Double free of ip6e_dest1");
1603 m_freem(exthdrs
.ip6e_dest1
);
1605 if (exthdrs
.ip6e_rthdr
!= NULL
) {
1607 panic("Double free of ip6e_rthdr");
1608 m_freem(exthdrs
.ip6e_rthdr
);
1610 if (exthdrs
.ip6e_dest2
!= NULL
) {
1612 panic("Double free of ip6e_dest2");
1613 m_freem(exthdrs
.ip6e_dest2
);
1617 if (inputchain
!= NULL
)
1618 m_freem_list(inputchain
);
1619 if (sendchain
!= NULL
)
1620 m_freem_list(sendchain
);
1631 #undef saved_ro_pmtu
1635 /* ip6_fragment_packet
1637 * The fragmentation logic is rather complex:
1638 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
1639 * 1-a: send as is if tlen <= path mtu
1640 * 1-b: fragment if tlen > path mtu
1642 * 2: if user asks us not to fragment (dontfrag == 1)
1643 * 2-a: send as is if tlen <= interface mtu
1644 * 2-b: error if tlen > interface mtu
1646 * 3: if we always need to attach fragment header (alwaysfrag == 1)
1649 * 4: if dontfrag == 1 && alwaysfrag == 1
1650 * error, as we cannot handle this conflicting request
1654 ip6_fragment_packet(struct mbuf
**mptr
, struct ip6_pktopts
*opt
,
1655 struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
, uint32_t mtu
,
1656 boolean_t alwaysfrag
, uint32_t unfragpartlen
, struct route_in6
*ro_pmtu
,
1657 int nxt0
, uint32_t optlen
)
1659 VERIFY(NULL
!= mptr
);
1660 struct mbuf
*m
= *mptr
;
1662 size_t tlen
= m
->m_pkthdr
.len
;
1663 boolean_t dontfrag
= (opt
!= NULL
&& (opt
->ip6po_flags
& IP6PO_DONTFRAG
));
1665 if (m
->m_pkthdr
.pkt_flags
& PKTF_FORWARDED
)
1668 if (dontfrag
&& alwaysfrag
) { /* case 4 */
1669 /* conflicting request - can't transmit */
1673 /* Access without acquiring nd_ifinfo lock for performance */
1674 if (dontfrag
&& tlen
> IN6_LINKMTU(ifp
)) { /* case 2-b */
1676 * Even if the DONTFRAG option is specified, we cannot send the
1677 * packet when the data length is larger than the MTU of the
1678 * outgoing interface.
1679 * Notify the error by sending IPV6_PATHMTU ancillary data as
1680 * well as returning an error code (the latter is not described
1684 struct ip6ctlparam ip6cp
;
1686 mtu32
= (u_int32_t
)mtu
;
1687 bzero(&ip6cp
, sizeof (ip6cp
));
1688 ip6cp
.ip6c_cmdarg
= (void *)&mtu32
;
1689 pfctlinput2(PRC_MSGSIZE
, SA(&ro_pmtu
->ro_dst
), (void *)&ip6cp
);
1694 * transmit packet without fragmentation
1696 if (dontfrag
|| (!alwaysfrag
&& /* case 1-a and 2-a */
1697 (tlen
<= mtu
|| TSO_IPV6_OK(ifp
, m
) ||
1698 (ifp
->if_hwassist
& CSUM_FRAGMENT_IPV6
)))) {
1700 * mppn not updated in this case because no new chain is formed
1703 ip6_output_checksum(ifp
, mtu
, m
, nxt0
, tlen
, optlen
);
1706 * time to fragment - cases 1-b and 3 are handled inside
1707 * ip6_do_fragmentation().
1708 * mppn is passed down to be updated to point at fragment chain.
1710 error
= ip6_do_fragmentation(mptr
, optlen
, ifp
,
1711 unfragpartlen
, mtod(m
, struct ip6_hdr
*), exthdrsp
, mtu
, nxt0
);
1718 * ip6_do_fragmentation() is called by ip6_fragment_packet() after determining
1719 * the packet needs to be fragmented. on success, morig is freed and a chain
1720 * of fragments is linked into the packet chain where morig existed. Otherwise,
1721 * an errno is returned.
1724 ip6_do_fragmentation(struct mbuf
**mptr
, uint32_t optlen
, struct ifnet
*ifp
,
1725 uint32_t unfragpartlen
, struct ip6_hdr
*ip6
, struct ip6_exthdrs
*exthdrsp
,
1726 uint32_t mtu
, int nxt0
)
1728 VERIFY(NULL
!= mptr
);
1731 struct mbuf
*morig
= *mptr
;
1732 struct mbuf
*first_mbufp
= NULL
;
1733 struct mbuf
*last_mbufp
= NULL
;
1735 size_t tlen
= morig
->m_pkthdr
.len
;
1738 * try to fragment the packet. case 1-b and 3
1740 if ((morig
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV6
)) {
1741 /* TSO and fragment aren't compatible */
1742 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1744 } else if (mtu
< IPV6_MMTU
) {
1745 /* path MTU cannot be less than IPV6_MMTU */
1746 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1748 } else if (ip6
->ip6_plen
== 0) {
1749 /* jumbo payload cannot be fragmented */
1750 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1753 size_t hlen
, len
, off
;
1754 struct mbuf
**mnext
= NULL
;
1755 struct ip6_frag
*ip6f
;
1756 u_int32_t id
= htonl(ip6_randomid());
1760 * Too large for the destination or interface;
1761 * fragment if possible.
1762 * Must be able to put at least 8 bytes per fragment.
1764 hlen
= unfragpartlen
;
1765 if (mtu
> IPV6_MAXPACKET
)
1766 mtu
= IPV6_MAXPACKET
;
1768 len
= (mtu
- hlen
- sizeof (struct ip6_frag
)) & ~7;
1770 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1775 * Change the next header field of the last header in the
1776 * unfragmentable part.
1778 if (exthdrsp
->ip6e_rthdr
!= NULL
) {
1779 nextproto
= *mtod(exthdrsp
->ip6e_rthdr
, u_char
*);
1780 *mtod(exthdrsp
->ip6e_rthdr
, u_char
*) = IPPROTO_FRAGMENT
;
1781 } else if (exthdrsp
->ip6e_dest1
!= NULL
) {
1782 nextproto
= *mtod(exthdrsp
->ip6e_dest1
, u_char
*);
1783 *mtod(exthdrsp
->ip6e_dest1
, u_char
*) = IPPROTO_FRAGMENT
;
1784 } else if (exthdrsp
->ip6e_hbh
!= NULL
) {
1785 nextproto
= *mtod(exthdrsp
->ip6e_hbh
, u_char
*);
1786 *mtod(exthdrsp
->ip6e_hbh
, u_char
*) = IPPROTO_FRAGMENT
;
1788 nextproto
= ip6
->ip6_nxt
;
1789 ip6
->ip6_nxt
= IPPROTO_FRAGMENT
;
1792 if (morig
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
)
1793 in6_delayed_cksum_offset(morig
, 0, optlen
, nxt0
);
1796 * Loop through length of segment after first fragment,
1797 * make new header and copy data of each part and link onto
1800 for (off
= hlen
; off
< tlen
; off
+= len
) {
1801 struct ip6_hdr
*new_mhip6
;
1803 struct mbuf
*m_frgpart
;
1805 MGETHDR(new_m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1806 if (new_m
== NULL
) {
1808 ip6stat
.ip6s_odropped
++;
1811 new_m
->m_pkthdr
.rcvif
= NULL
;
1812 new_m
->m_flags
= morig
->m_flags
& M_COPYFLAGS
;
1814 if (first_mbufp
!= NULL
) {
1815 /* Every pass through loop but first */
1819 /* This is the first element of the fragment chain */
1820 first_mbufp
= new_m
;
1823 mnext
= &new_m
->m_nextpkt
;
1825 new_m
->m_data
+= max_linkhdr
;
1826 new_mhip6
= mtod(new_m
, struct ip6_hdr
*);
1828 new_m
->m_len
= sizeof (*new_mhip6
);
1830 error
= ip6_insertfraghdr(morig
, new_m
, hlen
, &ip6f
);
1832 ip6stat
.ip6s_odropped
++;
1836 ip6f
->ip6f_offlg
= htons((u_short
)((off
- hlen
) & ~7));
1837 if (off
+ len
>= tlen
)
1840 ip6f
->ip6f_offlg
|= IP6F_MORE_FRAG
;
1841 new_mhip6
->ip6_plen
= htons((u_short
)(len
+ hlen
+
1842 sizeof (*ip6f
) - sizeof (struct ip6_hdr
)));
1844 if ((m_frgpart
= m_copy(morig
, off
, len
)) == NULL
) {
1846 ip6stat
.ip6s_odropped
++;
1849 m_cat(new_m
, m_frgpart
);
1850 new_m
->m_pkthdr
.len
= len
+ hlen
+ sizeof (*ip6f
);
1851 new_m
->m_pkthdr
.rcvif
= NULL
;
1853 M_COPY_CLASSIFIER(new_m
, morig
);
1854 M_COPY_PFTAG(new_m
, morig
);
1858 mac_create_fragment(morig
, new_m
);
1859 #endif /* CONFIG_MACF_NET */
1862 ip6f
->ip6f_reserved
= 0;
1863 ip6f
->ip6f_ident
= id
;
1864 ip6f
->ip6f_nxt
= nextproto
;
1865 ip6stat
.ip6s_ofragments
++;
1866 in6_ifstat_inc(ifp
, ifs6_out_fragcreat
);
1870 /* free all the fragments created */
1871 if (first_mbufp
!= NULL
) {
1872 m_freem_list(first_mbufp
);
1877 /* successful fragmenting */
1879 *mptr
= first_mbufp
;
1880 last_mbufp
->m_nextpkt
= NULL
;
1881 ip6stat
.ip6s_fragmented
++;
1882 in6_ifstat_inc(ifp
, ifs6_out_fragok
);
1889 ip6_copyexthdr(struct mbuf
**mp
, caddr_t hdr
, int hlen
)
1893 if (hlen
> MCLBYTES
)
1894 return (ENOBUFS
); /* XXX */
1896 MGET(m
, M_DONTWAIT
, MT_DATA
);
1901 MCLGET(m
, M_DONTWAIT
);
1902 if (!(m
->m_flags
& M_EXT
)) {
1909 bcopy(hdr
, mtod(m
, caddr_t
), hlen
);
1916 ip6_out_cksum_stats(int proto
, u_int32_t len
)
1920 tcp_out6_cksum_stats(len
);
1923 udp_out6_cksum_stats(len
);
1926 /* keep only TCP or UDP stats for now */
1932 * Process a delayed payload checksum calculation (outbound path.)
1934 * hoff is the number of bytes beyond the mbuf data pointer which
1935 * points to the IPv6 header. optlen is the number of bytes, if any,
1936 * between the end of IPv6 header and the beginning of the ULP payload
1937 * header, which represents the extension headers. If optlen is less
1938 * than zero, this routine will bail when it detects extension headers.
1940 * Returns a bitmask representing all the work done in software.
1943 in6_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, int32_t optlen
,
1944 int32_t nxt0
, uint32_t csum_flags
)
1946 unsigned char buf
[sizeof (struct ip6_hdr
)] __attribute__((aligned(8)));
1947 struct ip6_hdr
*ip6
;
1948 uint32_t offset
, mlen
, hlen
, olen
, sw_csum
;
1949 uint16_t csum
, ulpoff
, plen
;
1952 _CASSERT(sizeof (csum
) == sizeof (uint16_t));
1953 VERIFY(m
->m_flags
& M_PKTHDR
);
1955 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
1957 if ((sw_csum
&= CSUM_DELAY_IPV6_DATA
) == 0)
1960 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
1961 hlen
= sizeof (*ip6
); /* IPv6 header len */
1963 /* sanity check (need at least IPv6 header) */
1964 if (mlen
< (hoff
+ hlen
)) {
1965 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr "
1966 "(%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
);
1971 * In case the IPv6 header is not contiguous, or not 32-bit
1972 * aligned, copy it to a local buffer.
1974 if ((hoff
+ hlen
) > m
->m_len
||
1975 !IP6_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
1976 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
1977 ip6
= (struct ip6_hdr
*)(void *)buf
;
1979 ip6
= (struct ip6_hdr
*)(void *)(m
->m_data
+ hoff
);
1983 plen
= ntohs(ip6
->ip6_plen
);
1984 if (plen
!= (mlen
- (hoff
+ hlen
))) {
1985 plen
= OSSwapInt16(plen
);
1986 if (plen
!= (mlen
- (hoff
+ hlen
))) {
1987 /* Don't complain for jumbograms */
1988 if (plen
!= 0 || nxt
!= IPPROTO_HOPOPTS
) {
1989 printf("%s: mbuf 0x%llx proto %d IPv6 "
1990 "plen %d (%x) [swapped %d (%x)] doesn't "
1991 "match actual packet length; %d is used "
1992 "instead\n", __func__
,
1993 (uint64_t)VM_KERNEL_ADDRPERM(m
), nxt
,
1994 ip6
->ip6_plen
, ip6
->ip6_plen
, plen
, plen
,
1995 (mlen
- (hoff
+ hlen
)));
1997 plen
= mlen
- (hoff
+ hlen
);
2002 /* next header isn't TCP/UDP and we don't know optlen, bail */
2003 if (nxt
!= IPPROTO_TCP
&& nxt
!= IPPROTO_UDP
) {
2009 /* caller supplied the original transport number; use it */
2015 offset
= hoff
+ hlen
+ olen
; /* ULP header */
2018 if (mlen
< offset
) {
2019 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr+ext_hdr "
2020 "(%u+%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
, olen
);
2025 * offset is added to the lower 16-bit value of csum_data,
2026 * which is expected to contain the ULP offset; therefore
2027 * CSUM_PARTIAL offset adjustment must be undone.
2029 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
|CSUM_DATA_VALID
)) ==
2030 (CSUM_PARTIAL
|CSUM_DATA_VALID
)) {
2032 * Get back the original ULP offset (this will
2033 * undo the CSUM_PARTIAL logic in ip6_output.)
2035 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2036 m
->m_pkthdr
.csum_tx_start
);
2039 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2041 if (mlen
< (ulpoff
+ sizeof (csum
))) {
2042 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2043 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2044 m
, mlen
, nxt
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2048 csum
= inet6_cksum(m
, 0, offset
, plen
- olen
);
2051 ip6_out_cksum_stats(nxt
, plen
- olen
);
2053 /* RFC1122 4.1.3.4 */
2054 if (csum
== 0 && (m
->m_pkthdr
.csum_flags
& CSUM_UDPIPV6
))
2057 /* Insert the checksum in the ULP csum field */
2059 if ((offset
+ sizeof (csum
)) > m
->m_len
) {
2060 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2061 } else if (IP6_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2062 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2064 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2066 m
->m_pkthdr
.csum_flags
&=
2067 ~(CSUM_DELAY_IPV6_DATA
| CSUM_DATA_VALID
| CSUM_PARTIAL
);
2074 * Insert jumbo payload option.
2077 ip6_insert_jumboopt(struct ip6_exthdrs
*exthdrs
, u_int32_t plen
)
2083 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
2086 * If there is no hop-by-hop options header, allocate new one.
2087 * If there is one but it doesn't have enough space to store the
2088 * jumbo payload option, allocate a cluster to store the whole options.
2089 * Otherwise, use it to store the options.
2091 if (exthdrs
->ip6e_hbh
== NULL
) {
2092 MGET(mopt
, M_DONTWAIT
, MT_DATA
);
2095 mopt
->m_len
= JUMBOOPTLEN
;
2096 optbuf
= mtod(mopt
, u_char
*);
2097 optbuf
[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
2098 exthdrs
->ip6e_hbh
= mopt
;
2100 struct ip6_hbh
*hbh
;
2102 mopt
= exthdrs
->ip6e_hbh
;
2103 if (M_TRAILINGSPACE(mopt
) < JUMBOOPTLEN
) {
2106 * - exthdrs->ip6e_hbh is not referenced from places
2107 * other than exthdrs.
2108 * - exthdrs->ip6e_hbh is not an mbuf chain.
2110 u_int32_t oldoptlen
= mopt
->m_len
;
2114 * XXX: give up if the whole (new) hbh header does
2115 * not fit even in an mbuf cluster.
2117 if (oldoptlen
+ JUMBOOPTLEN
> MCLBYTES
)
2121 * As a consequence, we must always prepare a cluster
2124 MGET(n
, M_DONTWAIT
, MT_DATA
);
2126 MCLGET(n
, M_DONTWAIT
);
2127 if (!(n
->m_flags
& M_EXT
)) {
2134 n
->m_len
= oldoptlen
+ JUMBOOPTLEN
;
2135 bcopy(mtod(mopt
, caddr_t
), mtod(n
, caddr_t
),
2137 optbuf
= mtod(n
, u_char
*) + oldoptlen
;
2139 mopt
= exthdrs
->ip6e_hbh
= n
;
2141 optbuf
= mtod(mopt
, u_char
*) + mopt
->m_len
;
2142 mopt
->m_len
+= JUMBOOPTLEN
;
2144 optbuf
[0] = IP6OPT_PADN
;
2148 * Adjust the header length according to the pad and
2149 * the jumbo payload option.
2151 hbh
= mtod(mopt
, struct ip6_hbh
*);
2152 hbh
->ip6h_len
+= (JUMBOOPTLEN
>> 3);
2155 /* fill in the option. */
2156 optbuf
[2] = IP6OPT_JUMBO
;
2158 v
= (u_int32_t
)htonl(plen
+ JUMBOOPTLEN
);
2159 bcopy(&v
, &optbuf
[4], sizeof (u_int32_t
));
2161 /* finally, adjust the packet header length */
2162 exthdrs
->ip6e_ip6
->m_pkthdr
.len
+= JUMBOOPTLEN
;
2169 * Insert fragment header and copy unfragmentable header portions.
2172 ip6_insertfraghdr(struct mbuf
*m0
, struct mbuf
*m
, int hlen
,
2173 struct ip6_frag
**frghdrp
)
2175 struct mbuf
*n
, *mlast
;
2177 if (hlen
> sizeof (struct ip6_hdr
)) {
2178 n
= m_copym(m0
, sizeof (struct ip6_hdr
),
2179 hlen
- sizeof (struct ip6_hdr
), M_DONTWAIT
);
2186 /* Search for the last mbuf of unfragmentable part. */
2187 for (mlast
= n
; mlast
->m_next
; mlast
= mlast
->m_next
)
2190 if (!(mlast
->m_flags
& M_EXT
) &&
2191 M_TRAILINGSPACE(mlast
) >= sizeof (struct ip6_frag
)) {
2192 /* use the trailing space of the last mbuf for the frag hdr */
2193 *frghdrp
= (struct ip6_frag
*)(mtod(mlast
, caddr_t
) +
2195 mlast
->m_len
+= sizeof (struct ip6_frag
);
2196 m
->m_pkthdr
.len
+= sizeof (struct ip6_frag
);
2198 /* allocate a new mbuf for the fragment header */
2201 MGET(mfrg
, M_DONTWAIT
, MT_DATA
);
2204 mfrg
->m_len
= sizeof (struct ip6_frag
);
2205 *frghdrp
= mtod(mfrg
, struct ip6_frag
*);
2206 mlast
->m_next
= mfrg
;
2213 ip6_getpmtu(struct route_in6
*ro_pmtu
, struct route_in6
*ro
,
2214 struct ifnet
*ifp
, struct in6_addr
*dst
, u_int32_t
*mtup
,
2215 boolean_t
*alwaysfragp
)
2218 boolean_t alwaysfrag
= FALSE
;
2221 if (ro_pmtu
!= ro
) {
2222 /* The first hop and the final destination may differ. */
2223 struct sockaddr_in6
*sa6_dst
= SIN6(&ro_pmtu
->ro_dst
);
2224 if (ROUTE_UNUSABLE(ro_pmtu
) ||
2225 !IN6_ARE_ADDR_EQUAL(&sa6_dst
->sin6_addr
, dst
))
2226 ROUTE_RELEASE(ro_pmtu
);
2228 if (ro_pmtu
->ro_rt
== NULL
) {
2229 bzero(sa6_dst
, sizeof (*sa6_dst
));
2230 sa6_dst
->sin6_family
= AF_INET6
;
2231 sa6_dst
->sin6_len
= sizeof (struct sockaddr_in6
);
2232 sa6_dst
->sin6_addr
= *dst
;
2234 rtalloc_scoped((struct route
*)ro_pmtu
,
2235 ifp
!= NULL
? ifp
->if_index
: IFSCOPE_NONE
);
2239 if (ro_pmtu
->ro_rt
!= NULL
) {
2243 ifp
= ro_pmtu
->ro_rt
->rt_ifp
;
2244 /* Access without acquiring nd_ifinfo lock for performance */
2245 ifmtu
= IN6_LINKMTU(ifp
);
2248 * Access rmx_mtu without holding the route entry lock,
2249 * for performance; this isn't something that changes
2250 * often, so optimize.
2252 mtu
= ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
;
2253 if (mtu
> ifmtu
|| mtu
== 0) {
2255 * The MTU on the route is larger than the MTU on
2256 * the interface! This shouldn't happen, unless the
2257 * MTU of the interface has been changed after the
2258 * interface was brought up. Change the MTU in the
2259 * route to match the interface MTU (as long as the
2260 * field isn't locked).
2262 * if MTU on the route is 0, we need to fix the MTU.
2263 * this case happens with path MTU discovery timeouts.
2266 if (!(ro_pmtu
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
))
2267 ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
= mtu
; /* XXX */
2268 } else if (mtu
< IPV6_MMTU
) {
2270 * RFC2460 section 5, last paragraph:
2271 * if we record ICMPv6 too big message with
2272 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
2273 * or smaller, with framgent header attached.
2274 * (fragment header is needed regardless from the
2275 * packet size, for translators to identify packets)
2282 /* Don't hold nd_ifinfo lock for performance */
2283 mtu
= IN6_LINKMTU(ifp
);
2285 error
= EHOSTUNREACH
; /* XXX */
2290 if (alwaysfragp
!= NULL
)
2291 *alwaysfragp
= alwaysfrag
;
2296 * IP6 socket option processing.
2299 ip6_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2301 int optdatalen
, uproto
;
2304 struct inpcb
*in6p
= sotoinpcb(so
);
2305 int error
= 0, optval
= 0;
2306 int level
, op
= -1, optname
= 0;
2310 VERIFY(sopt
!= NULL
);
2312 level
= sopt
->sopt_level
;
2313 op
= sopt
->sopt_dir
;
2314 optname
= sopt
->sopt_name
;
2315 optlen
= sopt
->sopt_valsize
;
2317 uproto
= (int)SOCK_PROTO(so
);
2319 privileged
= (proc_suser(p
) == 0);
2321 if (level
== IPPROTO_IPV6
) {
2325 case IPV6_2292PKTOPTIONS
: {
2328 error
= soopt_getm(sopt
, &m
);
2331 error
= soopt_mcopyin(sopt
, m
);
2334 error
= ip6_pcbopts(&in6p
->in6p_outputopts
,
2341 * Use of some Hop-by-Hop options or some
2342 * Destination options, might require special
2343 * privilege. That is, normal applications
2344 * (without special privilege) might be forbidden
2345 * from setting certain options in outgoing packets,
2346 * and might never see certain options in received
2347 * packets. [RFC 2292 Section 6]
2348 * KAME specific note:
2349 * KAME prevents non-privileged users from sending or
2350 * receiving ANY hbh/dst options in order to avoid
2351 * overhead of parsing options in the kernel.
2353 case IPV6_RECVHOPOPTS
:
2354 case IPV6_RECVDSTOPTS
:
2355 case IPV6_RECVRTHDRDSTOPTS
:
2359 case IPV6_UNICAST_HOPS
:
2361 case IPV6_RECVPKTINFO
:
2362 case IPV6_RECVHOPLIMIT
:
2363 case IPV6_RECVRTHDR
:
2364 case IPV6_RECVPATHMTU
:
2365 case IPV6_RECVTCLASS
:
2367 case IPV6_AUTOFLOWLABEL
:
2368 if (optlen
!= sizeof (int)) {
2372 error
= sooptcopyin(sopt
, &optval
,
2373 sizeof (optval
), sizeof (optval
));
2378 case IPV6_UNICAST_HOPS
:
2379 if (optval
< -1 || optval
>= 256) {
2382 /* -1 = kernel default */
2383 in6p
->in6p_hops
= optval
;
2384 if (in6p
->inp_vflag
&
2391 #define OPTSET(bit) do { \
2393 in6p->inp_flags |= (bit); \
2395 in6p->inp_flags &= ~(bit); \
2398 #define OPTSET2292(bit) do { \
2399 in6p->inp_flags |= IN6P_RFC2292; \
2401 in6p->inp_flags |= (bit); \
2403 in6p->inp_flags &= ~(bit); \
2406 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
2408 case IPV6_RECVPKTINFO
:
2409 /* cannot mix with RFC2292 */
2410 if (OPTBIT(IN6P_RFC2292
)) {
2414 OPTSET(IN6P_PKTINFO
);
2417 case IPV6_HOPLIMIT
: {
2418 struct ip6_pktopts
**optp
;
2420 /* cannot mix with RFC2292 */
2421 if (OPTBIT(IN6P_RFC2292
)) {
2425 optp
= &in6p
->in6p_outputopts
;
2426 error
= ip6_pcbopt(IPV6_HOPLIMIT
,
2427 (u_char
*)&optval
, sizeof (optval
),
2432 case IPV6_RECVHOPLIMIT
:
2433 /* cannot mix with RFC2292 */
2434 if (OPTBIT(IN6P_RFC2292
)) {
2438 OPTSET(IN6P_HOPLIMIT
);
2441 case IPV6_RECVHOPOPTS
:
2442 /* cannot mix with RFC2292 */
2443 if (OPTBIT(IN6P_RFC2292
)) {
2447 OPTSET(IN6P_HOPOPTS
);
2450 case IPV6_RECVDSTOPTS
:
2451 /* cannot mix with RFC2292 */
2452 if (OPTBIT(IN6P_RFC2292
)) {
2456 OPTSET(IN6P_DSTOPTS
);
2459 case IPV6_RECVRTHDRDSTOPTS
:
2460 /* cannot mix with RFC2292 */
2461 if (OPTBIT(IN6P_RFC2292
)) {
2465 OPTSET(IN6P_RTHDRDSTOPTS
);
2468 case IPV6_RECVRTHDR
:
2469 /* cannot mix with RFC2292 */
2470 if (OPTBIT(IN6P_RFC2292
)) {
2477 case IPV6_RECVPATHMTU
:
2479 * We ignore this option for TCP
2481 * (RFC3542 leaves this case
2484 if (uproto
!= IPPROTO_TCP
)
2490 * make setsockopt(IPV6_V6ONLY)
2491 * available only prior to bind(2).
2492 * see ipng mailing list, Jun 22 2001.
2494 if (in6p
->inp_lport
||
2495 !IN6_IS_ADDR_UNSPECIFIED(
2496 &in6p
->in6p_laddr
)) {
2500 OPTSET(IN6P_IPV6_V6ONLY
);
2502 in6p
->inp_vflag
&= ~INP_IPV4
;
2504 in6p
->inp_vflag
|= INP_IPV4
;
2507 case IPV6_RECVTCLASS
:
2508 /* we can mix with RFC2292 */
2509 OPTSET(IN6P_TCLASS
);
2512 case IPV6_AUTOFLOWLABEL
:
2513 OPTSET(IN6P_AUTOFLOWLABEL
);
2521 case IPV6_USE_MIN_MTU
:
2522 case IPV6_PREFER_TEMPADDR
: {
2523 struct ip6_pktopts
**optp
;
2525 if (optlen
!= sizeof (optval
)) {
2529 error
= sooptcopyin(sopt
, &optval
,
2530 sizeof (optval
), sizeof (optval
));
2534 optp
= &in6p
->in6p_outputopts
;
2535 error
= ip6_pcbopt(optname
, (u_char
*)&optval
,
2536 sizeof (optval
), optp
, uproto
);
2540 case IPV6_2292PKTINFO
:
2541 case IPV6_2292HOPLIMIT
:
2542 case IPV6_2292HOPOPTS
:
2543 case IPV6_2292DSTOPTS
:
2544 case IPV6_2292RTHDR
:
2546 if (optlen
!= sizeof (int)) {
2550 error
= sooptcopyin(sopt
, &optval
,
2551 sizeof (optval
), sizeof (optval
));
2555 case IPV6_2292PKTINFO
:
2556 OPTSET2292(IN6P_PKTINFO
);
2558 case IPV6_2292HOPLIMIT
:
2559 OPTSET2292(IN6P_HOPLIMIT
);
2561 case IPV6_2292HOPOPTS
:
2563 * Check super-user privilege.
2564 * See comments for IPV6_RECVHOPOPTS.
2568 OPTSET2292(IN6P_HOPOPTS
);
2570 case IPV6_2292DSTOPTS
:
2573 OPTSET2292(IN6P_DSTOPTS
|
2574 IN6P_RTHDRDSTOPTS
); /* XXX */
2576 case IPV6_2292RTHDR
:
2577 OPTSET2292(IN6P_RTHDR
);
2582 case IPV6_3542PKTINFO
:
2583 case IPV6_3542HOPOPTS
:
2584 case IPV6_3542RTHDR
:
2585 case IPV6_3542DSTOPTS
:
2586 case IPV6_RTHDRDSTOPTS
:
2587 case IPV6_3542NEXTHOP
: {
2588 struct ip6_pktopts
**optp
;
2589 /* new advanced API (RFC3542) */
2592 /* cannot mix with RFC2292 */
2593 if (OPTBIT(IN6P_RFC2292
)) {
2597 error
= soopt_getm(sopt
, &m
);
2600 error
= soopt_mcopyin(sopt
, m
);
2604 optp
= &in6p
->in6p_outputopts
;
2605 error
= ip6_pcbopt(optname
, mtod(m
, u_char
*),
2606 m
->m_len
, optp
, uproto
);
2611 case IPV6_MULTICAST_IF
:
2612 case IPV6_MULTICAST_HOPS
:
2613 case IPV6_MULTICAST_LOOP
:
2614 case IPV6_JOIN_GROUP
:
2615 case IPV6_LEAVE_GROUP
:
2617 case MCAST_BLOCK_SOURCE
:
2618 case MCAST_UNBLOCK_SOURCE
:
2619 case MCAST_JOIN_GROUP
:
2620 case MCAST_LEAVE_GROUP
:
2621 case MCAST_JOIN_SOURCE_GROUP
:
2622 case MCAST_LEAVE_SOURCE_GROUP
:
2623 error
= ip6_setmoptions(in6p
, sopt
);
2626 case IPV6_PORTRANGE
:
2627 error
= sooptcopyin(sopt
, &optval
,
2628 sizeof (optval
), sizeof (optval
));
2633 case IPV6_PORTRANGE_DEFAULT
:
2634 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2635 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2638 case IPV6_PORTRANGE_HIGH
:
2639 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2640 in6p
->inp_flags
|= INP_HIGHPORT
;
2643 case IPV6_PORTRANGE_LOW
:
2644 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2645 in6p
->inp_flags
|= INP_LOWPORT
;
2654 case IPV6_IPSEC_POLICY
: {
2659 if ((error
= soopt_getm(sopt
, &m
)) != 0)
2661 if ((error
= soopt_mcopyin(sopt
, m
)) != 0)
2664 req
= mtod(m
, caddr_t
);
2666 error
= ipsec6_set_policy(in6p
, optname
, req
,
2673 * IPv6 variant of IP_BOUND_IF; for details see
2674 * comments on IP_BOUND_IF in ip_ctloutput().
2677 /* This option is settable only on IPv6 */
2678 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2683 error
= sooptcopyin(sopt
, &optval
,
2684 sizeof (optval
), sizeof (optval
));
2689 error
= inp_bindif(in6p
, optval
, NULL
);
2692 case IPV6_NO_IFT_CELLULAR
:
2693 /* This option is settable only for IPv6 */
2694 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2699 error
= sooptcopyin(sopt
, &optval
,
2700 sizeof (optval
), sizeof (optval
));
2705 /* once set, it cannot be unset */
2706 if (!optval
&& INP_NO_CELLULAR(in6p
)) {
2711 error
= so_set_restrictions(so
,
2712 SO_RESTRICT_DENY_CELLULAR
);
2716 /* This option is not settable */
2721 error
= ENOPROTOOPT
;
2729 case IPV6_2292PKTOPTIONS
:
2731 * RFC3542 (effectively) deprecated the
2732 * semantics of the 2292-style pktoptions.
2733 * Since it was not reliable in nature (i.e.,
2734 * applications had to expect the lack of some
2735 * information after all), it would make sense
2736 * to simplify this part by always returning
2739 sopt
->sopt_valsize
= 0;
2742 case IPV6_RECVHOPOPTS
:
2743 case IPV6_RECVDSTOPTS
:
2744 case IPV6_RECVRTHDRDSTOPTS
:
2745 case IPV6_UNICAST_HOPS
:
2746 case IPV6_RECVPKTINFO
:
2747 case IPV6_RECVHOPLIMIT
:
2748 case IPV6_RECVRTHDR
:
2749 case IPV6_RECVPATHMTU
:
2751 case IPV6_PORTRANGE
:
2752 case IPV6_RECVTCLASS
:
2753 case IPV6_AUTOFLOWLABEL
:
2756 case IPV6_RECVHOPOPTS
:
2757 optval
= OPTBIT(IN6P_HOPOPTS
);
2760 case IPV6_RECVDSTOPTS
:
2761 optval
= OPTBIT(IN6P_DSTOPTS
);
2764 case IPV6_RECVRTHDRDSTOPTS
:
2765 optval
= OPTBIT(IN6P_RTHDRDSTOPTS
);
2768 case IPV6_UNICAST_HOPS
:
2769 optval
= in6p
->in6p_hops
;
2772 case IPV6_RECVPKTINFO
:
2773 optval
= OPTBIT(IN6P_PKTINFO
);
2776 case IPV6_RECVHOPLIMIT
:
2777 optval
= OPTBIT(IN6P_HOPLIMIT
);
2780 case IPV6_RECVRTHDR
:
2781 optval
= OPTBIT(IN6P_RTHDR
);
2784 case IPV6_RECVPATHMTU
:
2785 optval
= OPTBIT(IN6P_MTU
);
2789 optval
= OPTBIT(IN6P_IPV6_V6ONLY
);
2792 case IPV6_PORTRANGE
: {
2794 flags
= in6p
->inp_flags
;
2795 if (flags
& INP_HIGHPORT
)
2796 optval
= IPV6_PORTRANGE_HIGH
;
2797 else if (flags
& INP_LOWPORT
)
2798 optval
= IPV6_PORTRANGE_LOW
;
2803 case IPV6_RECVTCLASS
:
2804 optval
= OPTBIT(IN6P_TCLASS
);
2807 case IPV6_AUTOFLOWLABEL
:
2808 optval
= OPTBIT(IN6P_AUTOFLOWLABEL
);
2813 error
= sooptcopyout(sopt
, &optval
,
2817 case IPV6_PATHMTU
: {
2819 struct ip6_mtuinfo mtuinfo
;
2820 struct route_in6 sro
;
2822 bzero(&sro
, sizeof (sro
));
2824 if (!(so
->so_state
& SS_ISCONNECTED
))
2827 * XXX: we dot not consider the case of source
2828 * routing, or optional information to specify
2829 * the outgoing interface.
2831 error
= ip6_getpmtu(&sro
, NULL
, NULL
,
2832 &in6p
->in6p_faddr
, &pmtu
, NULL
);
2833 ROUTE_RELEASE(&sro
);
2836 if (pmtu
> IPV6_MAXPACKET
)
2837 pmtu
= IPV6_MAXPACKET
;
2839 bzero(&mtuinfo
, sizeof (mtuinfo
));
2840 mtuinfo
.ip6m_mtu
= (u_int32_t
)pmtu
;
2841 optdata
= (void *)&mtuinfo
;
2842 optdatalen
= sizeof (mtuinfo
);
2843 error
= sooptcopyout(sopt
, optdata
,
2848 case IPV6_2292PKTINFO
:
2849 case IPV6_2292HOPLIMIT
:
2850 case IPV6_2292HOPOPTS
:
2851 case IPV6_2292RTHDR
:
2852 case IPV6_2292DSTOPTS
:
2854 case IPV6_2292PKTINFO
:
2855 optval
= OPTBIT(IN6P_PKTINFO
);
2857 case IPV6_2292HOPLIMIT
:
2858 optval
= OPTBIT(IN6P_HOPLIMIT
);
2860 case IPV6_2292HOPOPTS
:
2861 optval
= OPTBIT(IN6P_HOPOPTS
);
2863 case IPV6_2292RTHDR
:
2864 optval
= OPTBIT(IN6P_RTHDR
);
2866 case IPV6_2292DSTOPTS
:
2867 optval
= OPTBIT(IN6P_DSTOPTS
|
2871 error
= sooptcopyout(sopt
, &optval
,
2879 case IPV6_RTHDRDSTOPTS
:
2883 case IPV6_USE_MIN_MTU
:
2884 case IPV6_PREFER_TEMPADDR
:
2885 error
= ip6_getpcbopt(in6p
->in6p_outputopts
,
2889 case IPV6_MULTICAST_IF
:
2890 case IPV6_MULTICAST_HOPS
:
2891 case IPV6_MULTICAST_LOOP
:
2893 error
= ip6_getmoptions(in6p
, sopt
);
2896 case IPV6_IPSEC_POLICY
: {
2897 error
= 0; /* This option is no longer supported */
2902 if (in6p
->inp_flags
& INP_BOUND_IF
)
2903 optval
= in6p
->inp_boundifp
->if_index
;
2904 error
= sooptcopyout(sopt
, &optval
,
2908 case IPV6_NO_IFT_CELLULAR
:
2909 optval
= INP_NO_CELLULAR(in6p
) ? 1 : 0;
2910 error
= sooptcopyout(sopt
, &optval
,
2915 optval
= (in6p
->in6p_last_outifp
!= NULL
) ?
2916 in6p
->in6p_last_outifp
->if_index
: 0;
2917 error
= sooptcopyout(sopt
, &optval
,
2922 error
= ENOPROTOOPT
;
2927 } else if (level
== IPPROTO_UDP
) {
2928 error
= udp_ctloutput(so
, sopt
);
2936 ip6_raw_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2938 int error
= 0, optval
, optlen
;
2939 const int icmp6off
= offsetof(struct icmp6_hdr
, icmp6_cksum
);
2940 struct inpcb
*in6p
= sotoinpcb(so
);
2941 int level
, op
, optname
;
2943 level
= sopt
->sopt_level
;
2944 op
= sopt
->sopt_dir
;
2945 optname
= sopt
->sopt_name
;
2946 optlen
= sopt
->sopt_valsize
;
2948 if (level
!= IPPROTO_IPV6
)
2954 * For ICMPv6 sockets, no modification allowed for checksum
2955 * offset, permit "no change" values to help existing apps.
2957 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2958 * for an ICMPv6 socket will fail."
2959 * The current behavior does not meet RFC3542.
2963 if (optlen
!= sizeof (int)) {
2967 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2971 if ((optval
% 2) != 0) {
2972 /* the API assumes even offset values */
2974 } else if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
) {
2975 if (optval
!= icmp6off
)
2978 in6p
->in6p_cksum
= optval
;
2983 if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
)
2986 optval
= in6p
->in6p_cksum
;
2988 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2998 error
= ENOPROTOOPT
;
3006 * Set up IP6 options in pcb for insertion in output packets or
3007 * specifying behavior of outgoing packets.
3010 ip6_pcbopts(struct ip6_pktopts
**pktopt
, struct mbuf
*m
, struct socket
*so
,
3011 struct sockopt
*sopt
)
3013 #pragma unused(sopt)
3014 struct ip6_pktopts
*opt
= *pktopt
;
3017 /* turn off any old options. */
3020 if (opt
->ip6po_pktinfo
|| opt
->ip6po_nexthop
||
3021 opt
->ip6po_hbh
|| opt
->ip6po_dest1
|| opt
->ip6po_dest2
||
3022 opt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
3023 printf("%s: all specified options are cleared.\n",
3026 ip6_clearpktopts(opt
, -1);
3028 opt
= _MALLOC(sizeof (*opt
), M_IP6OPT
, M_WAITOK
);
3034 if (m
== NULL
|| m
->m_len
== 0) {
3036 * Only turning off any previous options, regardless of
3037 * whether the opt is just created or given.
3040 FREE(opt
, M_IP6OPT
);
3044 /* set options specified by user. */
3045 if ((error
= ip6_setpktopts(m
, opt
, NULL
, SOCK_PROTO(so
))) != 0) {
3046 ip6_clearpktopts(opt
, -1); /* XXX: discard all options */
3047 FREE(opt
, M_IP6OPT
);
3055 * initialize ip6_pktopts. beware that there are non-zero default values in
3059 ip6_initpktopts(struct ip6_pktopts
*opt
)
3062 bzero(opt
, sizeof (*opt
));
3063 opt
->ip6po_hlim
= -1; /* -1 means default hop limit */
3064 opt
->ip6po_tclass
= -1; /* -1 means default traffic class */
3065 opt
->ip6po_minmtu
= IP6PO_MINMTU_MCASTONLY
;
3066 opt
->ip6po_prefer_tempaddr
= IP6PO_TEMPADDR_SYSTEM
;
3070 ip6_pcbopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
**pktopt
,
3073 struct ip6_pktopts
*opt
;
3077 opt
= _MALLOC(sizeof (*opt
), M_IP6OPT
, M_WAITOK
);
3080 ip6_initpktopts(opt
);
3084 return (ip6_setpktopt(optname
, buf
, len
, opt
, 1, 0, uproto
));
3088 ip6_getpcbopt(struct ip6_pktopts
*pktopt
, int optname
, struct sockopt
*sopt
)
3090 void *optdata
= NULL
;
3092 struct ip6_ext
*ip6e
;
3093 struct in6_pktinfo null_pktinfo
;
3094 int deftclass
= 0, on
;
3095 int defminmtu
= IP6PO_MINMTU_MCASTONLY
;
3096 int defpreftemp
= IP6PO_TEMPADDR_SYSTEM
;
3101 if (pktopt
&& pktopt
->ip6po_pktinfo
)
3102 optdata
= (void *)pktopt
->ip6po_pktinfo
;
3104 /* XXX: we don't have to do this every time... */
3105 bzero(&null_pktinfo
, sizeof (null_pktinfo
));
3106 optdata
= (void *)&null_pktinfo
;
3108 optdatalen
= sizeof (struct in6_pktinfo
);
3112 if (pktopt
&& pktopt
->ip6po_tclass
>= 0)
3113 optdata
= (void *)&pktopt
->ip6po_tclass
;
3115 optdata
= (void *)&deftclass
;
3116 optdatalen
= sizeof (int);
3120 if (pktopt
&& pktopt
->ip6po_hbh
) {
3121 optdata
= (void *)pktopt
->ip6po_hbh
;
3122 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_hbh
;
3123 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3128 if (pktopt
&& pktopt
->ip6po_rthdr
) {
3129 optdata
= (void *)pktopt
->ip6po_rthdr
;
3130 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_rthdr
;
3131 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3135 case IPV6_RTHDRDSTOPTS
:
3136 if (pktopt
&& pktopt
->ip6po_dest1
) {
3137 optdata
= (void *)pktopt
->ip6po_dest1
;
3138 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest1
;
3139 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3144 if (pktopt
&& pktopt
->ip6po_dest2
) {
3145 optdata
= (void *)pktopt
->ip6po_dest2
;
3146 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest2
;
3147 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3152 if (pktopt
&& pktopt
->ip6po_nexthop
) {
3153 optdata
= (void *)pktopt
->ip6po_nexthop
;
3154 optdatalen
= pktopt
->ip6po_nexthop
->sa_len
;
3158 case IPV6_USE_MIN_MTU
:
3160 optdata
= (void *)&pktopt
->ip6po_minmtu
;
3162 optdata
= (void *)&defminmtu
;
3163 optdatalen
= sizeof (int);
3167 if (pktopt
&& ((pktopt
->ip6po_flags
) & IP6PO_DONTFRAG
))
3171 optdata
= (void *)&on
;
3172 optdatalen
= sizeof (on
);
3175 case IPV6_PREFER_TEMPADDR
:
3177 optdata
= (void *)&pktopt
->ip6po_prefer_tempaddr
;
3179 optdata
= (void *)&defpreftemp
;
3180 optdatalen
= sizeof (int);
3183 default: /* should not happen */
3185 panic("ip6_getpcbopt: unexpected option\n");
3187 return (ENOPROTOOPT
);
3190 return (sooptcopyout(sopt
, optdata
, optdatalen
));
3194 ip6_clearpktopts(struct ip6_pktopts
*pktopt
, int optname
)
3199 if (optname
== -1 || optname
== IPV6_PKTINFO
) {
3200 if (pktopt
->ip6po_pktinfo
)
3201 FREE(pktopt
->ip6po_pktinfo
, M_IP6OPT
);
3202 pktopt
->ip6po_pktinfo
= NULL
;
3204 if (optname
== -1 || optname
== IPV6_HOPLIMIT
)
3205 pktopt
->ip6po_hlim
= -1;
3206 if (optname
== -1 || optname
== IPV6_TCLASS
)
3207 pktopt
->ip6po_tclass
= -1;
3208 if (optname
== -1 || optname
== IPV6_NEXTHOP
) {
3209 ROUTE_RELEASE(&pktopt
->ip6po_nextroute
);
3210 if (pktopt
->ip6po_nexthop
)
3211 FREE(pktopt
->ip6po_nexthop
, M_IP6OPT
);
3212 pktopt
->ip6po_nexthop
= NULL
;
3214 if (optname
== -1 || optname
== IPV6_HOPOPTS
) {
3215 if (pktopt
->ip6po_hbh
)
3216 FREE(pktopt
->ip6po_hbh
, M_IP6OPT
);
3217 pktopt
->ip6po_hbh
= NULL
;
3219 if (optname
== -1 || optname
== IPV6_RTHDRDSTOPTS
) {
3220 if (pktopt
->ip6po_dest1
)
3221 FREE(pktopt
->ip6po_dest1
, M_IP6OPT
);
3222 pktopt
->ip6po_dest1
= NULL
;
3224 if (optname
== -1 || optname
== IPV6_RTHDR
) {
3225 if (pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
3226 FREE(pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
, M_IP6OPT
);
3227 pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
= NULL
;
3228 ROUTE_RELEASE(&pktopt
->ip6po_route
);
3230 if (optname
== -1 || optname
== IPV6_DSTOPTS
) {
3231 if (pktopt
->ip6po_dest2
)
3232 FREE(pktopt
->ip6po_dest2
, M_IP6OPT
);
3233 pktopt
->ip6po_dest2
= NULL
;
3237 #define PKTOPT_EXTHDRCPY(type) do { \
3240 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3; \
3241 dst->type = _MALLOC(hlen, M_IP6OPT, canwait); \
3242 if (dst->type == NULL && canwait == M_NOWAIT) \
3244 bcopy(src->type, dst->type, hlen); \
3249 copypktopts(struct ip6_pktopts
*dst
, struct ip6_pktopts
*src
, int canwait
)
3251 if (dst
== NULL
|| src
== NULL
) {
3252 printf("copypktopts: invalid argument\n");
3256 dst
->ip6po_hlim
= src
->ip6po_hlim
;
3257 dst
->ip6po_tclass
= src
->ip6po_tclass
;
3258 dst
->ip6po_flags
= src
->ip6po_flags
;
3259 if (src
->ip6po_pktinfo
) {
3260 dst
->ip6po_pktinfo
= _MALLOC(sizeof (*dst
->ip6po_pktinfo
),
3262 if (dst
->ip6po_pktinfo
== NULL
&& canwait
== M_NOWAIT
)
3264 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
3266 if (src
->ip6po_nexthop
) {
3267 dst
->ip6po_nexthop
= _MALLOC(src
->ip6po_nexthop
->sa_len
,
3269 if (dst
->ip6po_nexthop
== NULL
&& canwait
== M_NOWAIT
)
3271 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
3272 src
->ip6po_nexthop
->sa_len
);
3274 PKTOPT_EXTHDRCPY(ip6po_hbh
);
3275 PKTOPT_EXTHDRCPY(ip6po_dest1
);
3276 PKTOPT_EXTHDRCPY(ip6po_dest2
);
3277 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
3281 ip6_clearpktopts(dst
, -1);
3284 #undef PKTOPT_EXTHDRCPY
3286 struct ip6_pktopts
*
3287 ip6_copypktopts(struct ip6_pktopts
*src
, int canwait
)
3290 struct ip6_pktopts
*dst
;
3292 dst
= _MALLOC(sizeof (*dst
), M_IP6OPT
, canwait
);
3295 ip6_initpktopts(dst
);
3297 if ((error
= copypktopts(dst
, src
, canwait
)) != 0) {
3298 FREE(dst
, M_IP6OPT
);
3306 ip6_freepcbopts(struct ip6_pktopts
*pktopt
)
3311 ip6_clearpktopts(pktopt
, -1);
3313 FREE(pktopt
, M_IP6OPT
);
3317 ip6_moptions_init(void)
3319 PE_parse_boot_argn("ifa_debug", &im6o_debug
, sizeof (im6o_debug
));
3321 im6o_size
= (im6o_debug
== 0) ? sizeof (struct ip6_moptions
) :
3322 sizeof (struct ip6_moptions_dbg
);
3324 im6o_zone
= zinit(im6o_size
, IM6O_ZONE_MAX
* im6o_size
, 0,
3326 if (im6o_zone
== NULL
) {
3327 panic("%s: failed allocating %s", __func__
, IM6O_ZONE_NAME
);
3330 zone_change(im6o_zone
, Z_EXPAND
, TRUE
);
3334 im6o_addref(struct ip6_moptions
*im6o
, int locked
)
3339 IM6O_LOCK_ASSERT_HELD(im6o
);
3341 if (++im6o
->im6o_refcnt
== 0) {
3342 panic("%s: im6o %p wraparound refcnt\n", __func__
, im6o
);
3344 } else if (im6o
->im6o_trace
!= NULL
) {
3345 (*im6o
->im6o_trace
)(im6o
, TRUE
);
3353 im6o_remref(struct ip6_moptions
*im6o
)
3358 if (im6o
->im6o_refcnt
== 0) {
3359 panic("%s: im6o %p negative refcnt", __func__
, im6o
);
3361 } else if (im6o
->im6o_trace
!= NULL
) {
3362 (*im6o
->im6o_trace
)(im6o
, FALSE
);
3365 --im6o
->im6o_refcnt
;
3366 if (im6o
->im6o_refcnt
> 0) {
3371 for (i
= 0; i
< im6o
->im6o_num_memberships
; ++i
) {
3372 struct in6_mfilter
*imf
;
3374 imf
= im6o
->im6o_mfilters
? &im6o
->im6o_mfilters
[i
] : NULL
;
3378 (void) in6_mc_leave(im6o
->im6o_membership
[i
], imf
);
3383 IN6M_REMREF(im6o
->im6o_membership
[i
]);
3384 im6o
->im6o_membership
[i
] = NULL
;
3386 im6o
->im6o_num_memberships
= 0;
3387 if (im6o
->im6o_mfilters
!= NULL
) {
3388 FREE(im6o
->im6o_mfilters
, M_IN6MFILTER
);
3389 im6o
->im6o_mfilters
= NULL
;
3391 if (im6o
->im6o_membership
!= NULL
) {
3392 FREE(im6o
->im6o_membership
, M_IP6MOPTS
);
3393 im6o
->im6o_membership
= NULL
;
3397 lck_mtx_destroy(&im6o
->im6o_lock
, ifa_mtx_grp
);
3399 if (!(im6o
->im6o_debug
& IFD_ALLOC
)) {
3400 panic("%s: im6o %p cannot be freed", __func__
, im6o
);
3403 zfree(im6o_zone
, im6o
);
3407 im6o_trace(struct ip6_moptions
*im6o
, int refhold
)
3409 struct ip6_moptions_dbg
*im6o_dbg
= (struct ip6_moptions_dbg
*)im6o
;
3414 if (!(im6o
->im6o_debug
& IFD_DEBUG
)) {
3415 panic("%s: im6o %p has no debug structure", __func__
, im6o
);
3419 cnt
= &im6o_dbg
->im6o_refhold_cnt
;
3420 tr
= im6o_dbg
->im6o_refhold
;
3422 cnt
= &im6o_dbg
->im6o_refrele_cnt
;
3423 tr
= im6o_dbg
->im6o_refrele
;
3426 idx
= atomic_add_16_ov(cnt
, 1) % IM6O_TRACE_HIST_SIZE
;
3427 ctrace_record(&tr
[idx
]);
3430 struct ip6_moptions
*
3431 ip6_allocmoptions(int how
)
3433 struct ip6_moptions
*im6o
;
3435 im6o
= (how
== M_WAITOK
) ?
3436 zalloc(im6o_zone
) : zalloc_noblock(im6o_zone
);
3438 bzero(im6o
, im6o_size
);
3439 lck_mtx_init(&im6o
->im6o_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3440 im6o
->im6o_debug
|= IFD_ALLOC
;
3441 if (im6o_debug
!= 0) {
3442 im6o
->im6o_debug
|= IFD_DEBUG
;
3443 im6o
->im6o_trace
= im6o_trace
;
3452 * Set IPv6 outgoing packet options based on advanced API.
3455 ip6_setpktopts(struct mbuf
*control
, struct ip6_pktopts
*opt
,
3456 struct ip6_pktopts
*stickyopt
, int uproto
)
3458 struct cmsghdr
*cm
= NULL
;
3460 if (control
== NULL
|| opt
== NULL
)
3463 ip6_initpktopts(opt
);
3468 * If stickyopt is provided, make a local copy of the options
3469 * for this particular packet, then override them by ancillary
3471 * XXX: copypktopts() does not copy the cached route to a next
3472 * hop (if any). This is not very good in terms of efficiency,
3473 * but we can allow this since this option should be rarely
3476 if ((error
= copypktopts(opt
, stickyopt
, M_NOWAIT
)) != 0)
3481 * XXX: Currently, we assume all the optional information is stored
3484 if (control
->m_next
)
3487 if (control
->m_len
< CMSG_LEN(0))
3490 for (cm
= M_FIRST_CMSGHDR(control
); cm
!= NULL
;
3491 cm
= M_NXT_CMSGHDR(control
, cm
)) {
3494 if (cm
->cmsg_len
< sizeof (struct cmsghdr
) ||
3495 cm
->cmsg_len
> control
->m_len
)
3497 if (cm
->cmsg_level
!= IPPROTO_IPV6
)
3500 error
= ip6_setpktopt(cm
->cmsg_type
, CMSG_DATA(cm
),
3501 cm
->cmsg_len
- CMSG_LEN(0), opt
, 0, 1, uproto
);
3509 * Set a particular packet option, as a sticky option or an ancillary data
3510 * item. "len" can be 0 only when it's a sticky option.
3511 * We have 4 cases of combination of "sticky" and "cmsg":
3512 * "sticky=0, cmsg=0": impossible
3513 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
3514 * "sticky=1, cmsg=0": RFC3542 socket option
3515 * "sticky=1, cmsg=1": RFC2292 socket option
3518 ip6_setpktopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
*opt
,
3519 int sticky
, int cmsg
, int uproto
)
3521 int minmtupolicy
, preftemp
;
3524 if (!sticky
&& !cmsg
) {
3526 printf("ip6_setpktopt: impossible case\n");
3532 * Caller must have ensured that the buffer is at least
3533 * aligned on 32-bit boundary.
3535 VERIFY(IS_P2ALIGNED(buf
, sizeof (u_int32_t
)));
3538 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
3539 * not be specified in the context of RFC3542. Conversely,
3540 * RFC3542 types should not be specified in the context of RFC2292.
3544 case IPV6_2292PKTINFO
:
3545 case IPV6_2292HOPLIMIT
:
3546 case IPV6_2292NEXTHOP
:
3547 case IPV6_2292HOPOPTS
:
3548 case IPV6_2292DSTOPTS
:
3549 case IPV6_2292RTHDR
:
3550 case IPV6_2292PKTOPTIONS
:
3551 return (ENOPROTOOPT
);
3554 if (sticky
&& cmsg
) {
3561 case IPV6_RTHDRDSTOPTS
:
3563 case IPV6_USE_MIN_MTU
:
3566 case IPV6_PREFER_TEMPADDR
: /* XXX: not an RFC3542 option */
3567 return (ENOPROTOOPT
);
3572 case IPV6_2292PKTINFO
:
3573 case IPV6_PKTINFO
: {
3574 struct ifnet
*ifp
= NULL
;
3575 struct in6_pktinfo
*pktinfo
;
3577 if (len
!= sizeof (struct in6_pktinfo
))
3580 pktinfo
= (struct in6_pktinfo
*)(void *)buf
;
3583 * An application can clear any sticky IPV6_PKTINFO option by
3584 * doing a "regular" setsockopt with ipi6_addr being
3585 * in6addr_any and ipi6_ifindex being zero.
3586 * [RFC 3542, Section 6]
3588 if (optname
== IPV6_PKTINFO
&& opt
->ip6po_pktinfo
&&
3589 pktinfo
->ipi6_ifindex
== 0 &&
3590 IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3591 ip6_clearpktopts(opt
, optname
);
3595 if (uproto
== IPPROTO_TCP
&& optname
== IPV6_PKTINFO
&&
3596 sticky
&& !IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3600 /* validate the interface index if specified. */
3601 ifnet_head_lock_shared();
3603 if (pktinfo
->ipi6_ifindex
> if_index
) {
3608 if (pktinfo
->ipi6_ifindex
) {
3609 ifp
= ifindex2ifnet
[pktinfo
->ipi6_ifindex
];
3619 * We store the address anyway, and let in6_selectsrc()
3620 * validate the specified address. This is because ipi6_addr
3621 * may not have enough information about its scope zone, and
3622 * we may need additional information (such as outgoing
3623 * interface or the scope zone of a destination address) to
3624 * disambiguate the scope.
3625 * XXX: the delay of the validation may confuse the
3626 * application when it is used as a sticky option.
3628 if (opt
->ip6po_pktinfo
== NULL
) {
3629 opt
->ip6po_pktinfo
= _MALLOC(sizeof (*pktinfo
),
3630 M_IP6OPT
, M_NOWAIT
);
3631 if (opt
->ip6po_pktinfo
== NULL
)
3634 bcopy(pktinfo
, opt
->ip6po_pktinfo
, sizeof (*pktinfo
));
3638 case IPV6_2292HOPLIMIT
:
3639 case IPV6_HOPLIMIT
: {
3643 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3644 * to simplify the ordering among hoplimit options.
3646 if (optname
== IPV6_HOPLIMIT
&& sticky
)
3647 return (ENOPROTOOPT
);
3649 if (len
!= sizeof (int))
3651 hlimp
= (int *)(void *)buf
;
3652 if (*hlimp
< -1 || *hlimp
> 255)
3655 opt
->ip6po_hlim
= *hlimp
;
3662 if (len
!= sizeof (int))
3664 tclass
= *(int *)(void *)buf
;
3665 if (tclass
< -1 || tclass
> 255)
3668 opt
->ip6po_tclass
= tclass
;
3672 case IPV6_2292NEXTHOP
:
3674 error
= suser(kauth_cred_get(), 0);
3678 if (len
== 0) { /* just remove the option */
3679 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3683 /* check if cmsg_len is large enough for sa_len */
3684 if (len
< sizeof (struct sockaddr
) || len
< *buf
)
3687 switch (SA(buf
)->sa_family
) {
3689 struct sockaddr_in6
*sa6
= SIN6(buf
);
3691 if (sa6
->sin6_len
!= sizeof (struct sockaddr_in6
))
3694 if (IN6_IS_ADDR_UNSPECIFIED(&sa6
->sin6_addr
) ||
3695 IN6_IS_ADDR_MULTICAST(&sa6
->sin6_addr
)) {
3698 if ((error
= sa6_embedscope(sa6
, ip6_use_defzone
))
3704 case AF_LINK
: /* should eventually be supported */
3706 return (EAFNOSUPPORT
);
3709 /* turn off the previous option, then set the new option. */
3710 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3711 opt
->ip6po_nexthop
= _MALLOC(*buf
, M_IP6OPT
, M_NOWAIT
);
3712 if (opt
->ip6po_nexthop
== NULL
)
3714 bcopy(buf
, opt
->ip6po_nexthop
, *buf
);
3717 case IPV6_2292HOPOPTS
:
3718 case IPV6_HOPOPTS
: {
3719 struct ip6_hbh
*hbh
;
3723 * XXX: We don't allow a non-privileged user to set ANY HbH
3724 * options, since per-option restriction has too much
3727 error
= suser(kauth_cred_get(), 0);
3732 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3733 break; /* just remove the option */
3736 /* message length validation */
3737 if (len
< sizeof (struct ip6_hbh
))
3739 hbh
= (struct ip6_hbh
*)(void *)buf
;
3740 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
3744 /* turn off the previous option, then set the new option. */
3745 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3746 opt
->ip6po_hbh
= _MALLOC(hbhlen
, M_IP6OPT
, M_NOWAIT
);
3747 if (opt
->ip6po_hbh
== NULL
)
3749 bcopy(hbh
, opt
->ip6po_hbh
, hbhlen
);
3754 case IPV6_2292DSTOPTS
:
3756 case IPV6_RTHDRDSTOPTS
: {
3757 struct ip6_dest
*dest
, **newdest
= NULL
;
3760 error
= suser(kauth_cred_get(), 0);
3765 ip6_clearpktopts(opt
, optname
);
3766 break; /* just remove the option */
3769 /* message length validation */
3770 if (len
< sizeof (struct ip6_dest
))
3772 dest
= (struct ip6_dest
*)(void *)buf
;
3773 destlen
= (dest
->ip6d_len
+ 1) << 3;
3778 * Determine the position that the destination options header
3779 * should be inserted; before or after the routing header.
3782 case IPV6_2292DSTOPTS
:
3784 * The old advacned API is ambiguous on this point.
3785 * Our approach is to determine the position based
3786 * according to the existence of a routing header.
3787 * Note, however, that this depends on the order of the
3788 * extension headers in the ancillary data; the 1st
3789 * part of the destination options header must appear
3790 * before the routing header in the ancillary data,
3792 * RFC3542 solved the ambiguity by introducing
3793 * separate ancillary data or option types.
3795 if (opt
->ip6po_rthdr
== NULL
)
3796 newdest
= &opt
->ip6po_dest1
;
3798 newdest
= &opt
->ip6po_dest2
;
3800 case IPV6_RTHDRDSTOPTS
:
3801 newdest
= &opt
->ip6po_dest1
;
3804 newdest
= &opt
->ip6po_dest2
;
3808 /* turn off the previous option, then set the new option. */
3809 ip6_clearpktopts(opt
, optname
);
3810 *newdest
= _MALLOC(destlen
, M_IP6OPT
, M_NOWAIT
);
3811 if (*newdest
== NULL
)
3813 bcopy(dest
, *newdest
, destlen
);
3817 case IPV6_2292RTHDR
:
3819 struct ip6_rthdr
*rth
;
3823 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3824 break; /* just remove the option */
3827 /* message length validation */
3828 if (len
< sizeof (struct ip6_rthdr
))
3830 rth
= (struct ip6_rthdr
*)(void *)buf
;
3831 rthlen
= (rth
->ip6r_len
+ 1) << 3;
3835 switch (rth
->ip6r_type
) {
3836 case IPV6_RTHDR_TYPE_0
:
3837 if (rth
->ip6r_len
== 0) /* must contain one addr */
3839 if (rth
->ip6r_len
% 2) /* length must be even */
3841 if (rth
->ip6r_len
/ 2 != rth
->ip6r_segleft
)
3845 return (EINVAL
); /* not supported */
3848 /* turn off the previous option */
3849 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3850 opt
->ip6po_rthdr
= _MALLOC(rthlen
, M_IP6OPT
, M_NOWAIT
);
3851 if (opt
->ip6po_rthdr
== NULL
)
3853 bcopy(rth
, opt
->ip6po_rthdr
, rthlen
);
3857 case IPV6_USE_MIN_MTU
:
3858 if (len
!= sizeof (int))
3860 minmtupolicy
= *(int *)(void *)buf
;
3861 if (minmtupolicy
!= IP6PO_MINMTU_MCASTONLY
&&
3862 minmtupolicy
!= IP6PO_MINMTU_DISABLE
&&
3863 minmtupolicy
!= IP6PO_MINMTU_ALL
) {
3866 opt
->ip6po_minmtu
= minmtupolicy
;
3870 if (len
!= sizeof (int))
3873 if (uproto
== IPPROTO_TCP
|| *(int *)(void *)buf
== 0) {
3875 * we ignore this option for TCP sockets.
3876 * (RFC3542 leaves this case unspecified.)
3878 opt
->ip6po_flags
&= ~IP6PO_DONTFRAG
;
3880 opt
->ip6po_flags
|= IP6PO_DONTFRAG
;
3884 case IPV6_PREFER_TEMPADDR
:
3885 if (len
!= sizeof (int))
3887 preftemp
= *(int *)(void *)buf
;
3888 if (preftemp
!= IP6PO_TEMPADDR_SYSTEM
&&
3889 preftemp
!= IP6PO_TEMPADDR_NOTPREFER
&&
3890 preftemp
!= IP6PO_TEMPADDR_PREFER
) {
3893 opt
->ip6po_prefer_tempaddr
= preftemp
;
3897 return (ENOPROTOOPT
);
3898 } /* end of switch */
3904 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3905 * packet to the input queue of a specified interface. Note that this
3906 * calls the output routine of the loopback "driver", but with an interface
3907 * pointer that might NOT be &loif -- easier than replicating that code here.
3910 ip6_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3911 struct sockaddr_in6
*dst
, uint32_t optlen
, int32_t nxt0
)
3914 struct ip6_hdr
*ip6
;
3915 struct in6_addr src
;
3921 * Copy the packet header as it's needed for the checksum.
3922 * Make sure to deep-copy IPv6 header portion in case the data
3923 * is in an mbuf cluster, so that we can safely override the IPv6
3924 * header portion later.
3926 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3927 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) ||
3928 copym
->m_len
< sizeof (struct ip6_hdr
)))
3929 copym
= m_pullup(copym
, sizeof (struct ip6_hdr
));
3934 ip6
= mtod(copym
, struct ip6_hdr
*);
3937 * clear embedded scope identifiers if necessary.
3938 * in6_clearscope will touch the addresses only when necessary.
3940 in6_clearscope(&ip6
->ip6_src
);
3941 in6_clearscope(&ip6
->ip6_dst
);
3943 if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
)
3944 in6_delayed_cksum_offset(copym
, 0, optlen
, nxt0
);
3947 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3948 * in ip6_input(); we need the loopback ifp/dl_tag passed as args
3949 * to make the loopback driver compliant with the data link
3952 copym
->m_pkthdr
.rcvif
= origifp
;
3955 * Also record the source interface (which owns the source address).
3956 * This is basically a stripped down version of ifa_foraddr6().
3958 if (srcifp
== NULL
) {
3959 struct in6_ifaddr
*ia
;
3961 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
3962 for (ia
= in6_ifaddrs
; ia
!= NULL
; ia
= ia
->ia_next
) {
3963 IFA_LOCK_SPIN(&ia
->ia_ifa
);
3964 /* compare against src addr with embedded scope */
3965 if (IN6_ARE_ADDR_EQUAL(&ia
->ia_addr
.sin6_addr
, &src
)) {
3966 srcifp
= ia
->ia_ifp
;
3967 IFA_UNLOCK(&ia
->ia_ifa
);
3970 IFA_UNLOCK(&ia
->ia_ifa
);
3972 lck_rw_done(&in6_ifaddr_rwlock
);
3975 ip6_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
3976 ip6_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
3978 dlil_output(lo_ifp
, PF_INET6
, copym
, NULL
, SA(dst
), 0, NULL
);
3982 * Chop IPv6 header off from the payload.
3985 ip6_splithdr(struct mbuf
*m
, struct ip6_exthdrs
*exthdrs
)
3988 struct ip6_hdr
*ip6
;
3990 ip6
= mtod(m
, struct ip6_hdr
*);
3991 if (m
->m_len
> sizeof (*ip6
)) {
3992 MGETHDR(mh
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
3997 M_COPY_PKTHDR(mh
, m
);
3998 MH_ALIGN(mh
, sizeof (*ip6
));
3999 m
->m_flags
&= ~M_PKTHDR
;
4000 m
->m_len
-= sizeof (*ip6
);
4001 m
->m_data
+= sizeof (*ip6
);
4004 m
->m_len
= sizeof (*ip6
);
4005 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
), sizeof (*ip6
));
4007 exthdrs
->ip6e_ip6
= m
;
4012 ip6_output_checksum(struct ifnet
*ifp
, uint32_t mtu
, struct mbuf
*m
,
4013 int nxt0
, uint32_t tlen
, uint32_t optlen
)
4015 uint32_t sw_csum
, hwcap
= ifp
->if_hwassist
;
4016 int tso
= TSO_IPV6_OK(ifp
, m
);
4019 /* do all in software; checksum offload is disabled */
4020 sw_csum
= CSUM_DELAY_IPV6_DATA
& m
->m_pkthdr
.csum_flags
;
4022 /* do in software what the hardware cannot */
4023 sw_csum
= m
->m_pkthdr
.csum_flags
&
4024 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
4028 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4029 m
->m_pkthdr
.csum_flags
);
4030 } else if (!(sw_csum
& CSUM_DELAY_IPV6_DATA
) &&
4031 (hwcap
& CSUM_PARTIAL
)) {
4033 * Partial checksum offload, ere), if no extension
4034 * headers, and TCP only (no UDP support, as the
4035 * hardware may not be able to convert +0 to
4036 * -0 (0xffff) per RFC1122 4.1.3.4.)
4038 if (hwcksum_tx
&& !tso
&&
4039 (m
->m_pkthdr
.csum_flags
& CSUM_TCPIPV6
) &&
4041 uint16_t start
= sizeof (struct ip6_hdr
);
4043 m
->m_pkthdr
.csum_data
& 0xffff;
4044 m
->m_pkthdr
.csum_flags
|=
4045 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
4046 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
4047 m
->m_pkthdr
.csum_tx_start
= start
;
4050 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4051 m
->m_pkthdr
.csum_flags
);
4055 if (sw_csum
& CSUM_DELAY_IPV6_DATA
) {
4056 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
4057 sw_csum
&= ~CSUM_DELAY_IPV6_DATA
;
4062 * Drop off bits that aren't supported by hardware;
4063 * also make sure to preserve non-checksum related bits.
4065 m
->m_pkthdr
.csum_flags
=
4066 ((m
->m_pkthdr
.csum_flags
&
4067 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
4068 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
4070 /* drop all bits; checksum offload is disabled */
4071 m
->m_pkthdr
.csum_flags
= 0;
4076 * Compute IPv6 extension header length.
4079 ip6_optlen(struct in6pcb
*in6p
)
4083 if (!in6p
->in6p_outputopts
)
4088 (((struct ip6_ext *)(x)) ? \
4089 (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
4091 len
+= elen(in6p
->in6p_outputopts
->ip6po_hbh
);
4092 if (in6p
->in6p_outputopts
->ip6po_rthdr
) {
4093 /* dest1 is valid with rthdr only */
4094 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest1
);
4096 len
+= elen(in6p
->in6p_outputopts
->ip6po_rthdr
);
4097 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest2
);
4103 sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
4105 #pragma unused(arg1, arg2)
4108 i
= ip6_output_measure
;
4109 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
4110 if (error
|| req
->newptr
== USER_ADDR_NULL
)
4113 if (i
< 0 || i
> 1) {
4117 if (ip6_output_measure
!= i
&& i
== 1) {
4118 net_perf_initialize(&net_perf
, ip6_output_measure_bins
);
4120 ip6_output_measure
= i
;
4126 sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
4128 #pragma unused(arg1, arg2)
4132 i
= ip6_output_measure_bins
;
4133 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
4134 if (error
|| req
->newptr
== USER_ADDR_NULL
)
4137 if (!net_perf_validate_bins(i
)) {
4141 ip6_output_measure_bins
= i
;
4147 sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
4149 #pragma unused(oidp, arg1, arg2)
4150 if (req
->oldptr
== USER_ADDR_NULL
)
4151 req
->oldlen
= (size_t)sizeof (struct ipstat
);
4153 return (SYSCTL_OUT(req
, &net_perf
, MIN(sizeof (net_perf
), req
->oldlen
)));