2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * $FreeBSD: src/sys/netinet/ip_dummynet.h,v 1.32 2004/08/17 22:05:54 andre Exp $
57 #ifndef _IP_DUMMYNET_H
58 #define _IP_DUMMYNET_H
60 #include <sys/appleapiopts.h>
64 #include <netinet/ip_flowid.h>
66 /* Apply ipv6 mask on ipv6 addr */
67 #define APPLY_MASK(addr,mask) \
68 (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
69 (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
70 (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
71 (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3];
74 * Definition of dummynet data structures. In the structures, I decided
75 * not to use the macros in <sys/queue.h> in the hope of making the code
76 * easier to port to other architectures. The type of lists and queue we
77 * use here is pretty simple anyways.
81 * We start with a heap, which is used in the scheduler to decide when
82 * to transmit packets etc.
84 * The key for the heap is used for two different values:
86 * 1. timer ticks- max 10K/second, so 32 bits are enough;
88 * 2. virtual times. These increase in steps of len/x, where len is the
89 * packet length, and x is either the weight of the flow, or the
91 * If we limit to max 1000 flows and a max weight of 100, then
92 * x needs 17 bits. The packet size is 16 bits, so we can easily
93 * overflow if we do not allow errors.
94 * So we use a key "dn_key" which is 64 bits. Some macros are used to
95 * compare key values and handle wraparounds.
96 * MAX64 returns the largest of two key values.
97 * MY_M is used as a shift count when doing fixed point arithmetic
98 * (a better name would be useful...).
100 typedef u_int64_t dn_key
; /* sorting key */
101 #define DN_KEY_LT(a,b) ((int64_t)((a)-(b)) < 0)
102 #define DN_KEY_LEQ(a,b) ((int64_t)((a)-(b)) <= 0)
103 #define DN_KEY_GT(a,b) ((int64_t)((a)-(b)) > 0)
104 #define DN_KEY_GEQ(a,b) ((int64_t)((a)-(b)) >= 0)
105 #define MAX64(x,y) (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
106 #define MY_M 16 /* number of left shift to obtain a larger precision */
109 * XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the
110 * virtual time wraps every 15 days.
114 * The OFFSET_OF macro is used to return the offset of a field within
115 * a structure. It is used by the heap management routines.
117 #define OFFSET_OF(type, field) ((int)&( ((type *)0)->field) )
120 * The maximum hash table size for queues. This value must be a power
123 #define DN_MAX_HASH_SIZE 65536
126 * A heap entry is made of a key and a pointer to the actual
127 * object stored in the heap.
128 * The heap is an array of dn_heap_entry entries, dynamically allocated.
129 * Current size is "size", with "elements" actually in use.
130 * The heap normally supports only ordered insert and extract from the top.
131 * If we want to extract an object from the middle of the heap, we
132 * have to know where the object itself is located in the heap (or we
133 * need to scan the whole array). To this purpose, an object has a
134 * field (int) which contains the index of the object itself into the
135 * heap. When the object is moved, the field must also be updated.
136 * The offset of the index in the object is stored in the 'offset'
137 * field in the heap descriptor. The assumption is that this offset
138 * is non-zero if we want to support extract from the middle.
140 struct dn_heap_entry
{
141 dn_key key
; /* sorting key. Topmost element is smallest one */
142 void *object
; /* object pointer */
148 int offset
; /* XXX if > 0 this is the offset of direct ptr to obj */
149 struct dn_heap_entry
*p
; /* really an array of "size" entries */
153 * Packets processed by dummynet have an mbuf tag associated with
154 * them that carries their dummynet state. This is used within
155 * the dummynet code as well as outside when checking for special
156 * processing requirements.
159 #include <netinet/ip_var.h> /* for ip_out_args */
160 #include <netinet/ip6.h> /* for ip6_out_args */
161 #include <netinet6/ip6_var.h> /* for ip6_out_args */
164 struct ip_fw
*dn_ipfw_rule
; /* matching IPFW rule */
165 void *dn_pf_rule
; /* matching PF rule */
166 int dn_dir
; /* action when packet comes out. */
167 #define DN_TO_IP_OUT 1
168 #define DN_TO_IP_IN 2
169 #define DN_TO_BDG_FWD 3
170 #define DN_TO_IP6_IN 4
171 #define DN_TO_IP6_OUT 5
172 dn_key dn_output_time
; /* when the pkt is due for delivery */
173 struct ifnet
*dn_ifp
; /* interface, for ip[6]_output */
175 struct sockaddr_in _dn_dst
;
176 struct sockaddr_in6 _dn_dst6
;
178 #define dn_dst dn_dst_._dn_dst
179 #define dn_dst6 dn_dst_._dn_dst6
181 struct route _dn_ro
; /* route, for ip_output. MUST COPY */
182 struct route_in6 _dn_ro6
; /* route, for ip6_output. MUST COPY */
184 #define dn_ro dn_ro_._dn_ro
185 #define dn_ro6 dn_ro_._dn_ro6
186 struct route_in6 dn_ro6_pmtu
; /* for ip6_output */
187 struct ifnet
*dn_origifp
; /* for ip6_output */
188 u_int32_t dn_mtu
; /* for ip6_output */
189 int dn_alwaysfrag
; /* for ip6_output */
190 u_int32_t dn_unfragpartlen
; /* for ip6_output */
191 struct ip6_exthdrs dn_exthdrs
; /* for ip6_output */
192 int dn_flags
; /* flags, for ip[6]_output */
194 #define DN_CLIENT_IPFW 1
195 #define DN_CLIENT_PF 2
197 struct ip_out_args _dn_ipoa
; /* output args, for ip_output. MUST COPY */
198 struct ip6_out_args _dn_ip6oa
; /* output args, for ip_output. MUST COPY */
200 #define dn_ipoa dn_ipoa_._dn_ipoa
201 #define dn_ip6oa dn_ipoa_._dn_ip6oa
208 * Overall structure of dummynet (with WF2Q+):
210 In dummynet, packets are selected with the firewall rules, and passed
211 to two different objects: PIPE or QUEUE.
213 A QUEUE is just a queue with configurable size and queue management
214 policy. It is also associated with a mask (to discriminate among
215 different flows), a weight (used to give different shares of the
216 bandwidth to different flows) and a "pipe", which essentially
217 supplies the transmit clock for all queues associated with that
220 A PIPE emulates a fixed-bandwidth link, whose bandwidth is
221 configurable. The "clock" for a pipe can come from either an
222 internal timer, or from the transmit interrupt of an interface.
223 A pipe is also associated with one (or more, if masks are used)
224 queue, where all packets for that pipe are stored.
226 The bandwidth available on the pipe is shared by the queues
227 associated with that pipe (only one in case the packet is sent
228 to a PIPE) according to the WF2Q+ scheduling algorithm and the
231 In general, incoming packets are stored in the appropriate queue,
232 which is then placed into one of a few heaps managed by a scheduler
233 to decide when the packet should be extracted.
234 The scheduler (a function called dummynet()) is run at every timer
235 tick, and grabs queues from the head of the heaps when they are
236 ready for processing.
238 There are three data structures definining a pipe and associated queues:
240 + dn_pipe, which contains the main configuration parameters related
241 to delay and bandwidth;
242 + dn_flow_set, which contains WF2Q+ configuration, flow
243 masks, plr and RED configuration;
244 + dn_flow_queue, which is the per-flow queue (containing the packets)
246 Multiple dn_flow_set can be linked to the same pipe, and multiple
247 dn_flow_queue can be linked to the same dn_flow_set.
248 All data structures are linked in a linear list which is used for
249 housekeeping purposes.
251 During configuration, we create and initialize the dn_flow_set
252 and dn_pipe structures (a dn_pipe also contains a dn_flow_set).
254 At runtime: packets are sent to the appropriate dn_flow_set (either
255 WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows),
256 which in turn dispatches them to the appropriate dn_flow_queue
257 (created dynamically according to the masks).
259 The transmit clock for fixed rate flows (ready_event()) selects the
260 dn_flow_queue to be used to transmit the next packet. For WF2Q,
261 wfq_ready_event() extract a pipe which in turn selects the right
262 flow using a number of heaps defined into the pipe itself.
268 * per flow queue. This contains the flow identifier, the queue
269 * of packets, counters, and parameters used to support both RED and
272 * A dn_flow_queue is created and initialized whenever a packet for
273 * a new flow arrives.
275 struct dn_flow_queue
{
276 struct dn_flow_queue
*next
;
277 struct ip_flow_id id
;
279 struct mbuf
*head
, *tail
; /* queue of packets */
282 u_int32_t numbytes
; /* credit for transmission (dynamic queues) */
284 u_int64_t tot_pkts
; /* statistics counters */
285 u_int64_t tot_bytes
;
288 int hash_slot
; /* debugging/diagnostic */
291 int avg
; /* average queue length est. (scaled) */
292 int count
; /* arrivals since last RED drop */
293 int random
; /* random value (scaled) */
294 u_int32_t q_time
; /* start of queue idle time */
297 struct dn_flow_set
*fs
; /* parent flow set */
298 int heap_pos
; /* position (index) of struct in heap */
299 dn_key sched_time
; /* current time when queue enters ready_heap */
301 dn_key S
,F
; /* start time, finish time */
303 * Setting F < S means the timestamp is invalid. We only need
304 * to test this when the queue is empty.
309 * flow_set descriptor. Contains the "template" parameters for the
310 * queue configuration, and pointers to the hash table of dn_flow_queue's.
312 * The hash table is an array of lists -- we identify the slot by
313 * hashing the flow-id, then scan the list looking for a match.
314 * The size of the hash table (buckets) is configurable on a per-queue
317 * A dn_flow_set is created whenever a new queue or pipe is created (in the
318 * latter case, the structure is located inside the struct dn_pipe).
321 SLIST_ENTRY(dn_flow_set
) next
; /* linked list in a hash slot */
323 u_short fs_nr
; /* flow_set number */
325 #define DN_HAVE_FLOW_MASK 0x0001
326 #define DN_IS_RED 0x0002
327 #define DN_IS_GENTLE_RED 0x0004
328 #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
329 #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
330 #define DN_IS_PIPE 0x4000
331 #define DN_IS_QUEUE 0x8000
333 struct dn_pipe
*pipe
; /* pointer to parent pipe */
334 u_short parent_nr
; /* parent pipe#, 0 if local to a pipe */
336 int weight
; /* WFQ queue weight */
337 int qsize
; /* queue size in slots or bytes */
338 int plr
; /* pkt loss rate (2^31-1 means 100%) */
340 struct ip_flow_id flow_mask
;
342 /* hash table of queues onto this flow_set */
343 int rq_size
; /* number of slots */
344 int rq_elements
; /* active elements */
345 struct dn_flow_queue
**rq
; /* array of rq_size entries */
347 u_int32_t last_expired
; /* do not expire too frequently */
348 int backlogged
; /* #active queues for this flowset */
352 #define SCALE(x) ( (x) << SCALE_RED )
353 #define SCALE_VAL(x) ( (x) >> SCALE_RED )
354 #define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
355 int w_q
; /* queue weight (scaled) */
356 int max_th
; /* maximum threshold for queue (scaled) */
357 int min_th
; /* minimum threshold for queue (scaled) */
358 int max_p
; /* maximum value for p_b (scaled) */
359 u_int c_1
; /* max_p/(max_th-min_th) (scaled) */
360 u_int c_2
; /* max_p*min_th/(max_th-min_th) (scaled) */
361 u_int c_3
; /* for GRED, (1-max_p)/max_th (scaled) */
362 u_int c_4
; /* for GRED, 1 - 2*max_p (scaled) */
363 u_int
* w_q_lookup
; /* lookup table for computing (1-w_q)^t */
364 u_int lookup_depth
; /* depth of lookup table */
365 int lookup_step
; /* granularity inside the lookup table */
366 int lookup_weight
; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
367 int avg_pkt_size
; /* medium packet size */
368 int max_pkt_size
; /* max packet size */
371 SLIST_HEAD(dn_flow_set_head
, dn_flow_set
);
374 * Pipe descriptor. Contains global parameters, delay-line queue,
375 * and the flow_set used for fixed-rate queues.
377 * For WF2Q+ support it also has 3 heaps holding dn_flow_queue:
378 * not_eligible_heap, for queues whose start time is higher
379 * than the virtual time. Sorted by start time.
380 * scheduler_heap, for queues eligible for scheduling. Sorted by
382 * idle_heap, all flows that are idle and can be removed. We
383 * do that on each tick so we do not slow down too much
384 * operations during forwarding.
387 struct dn_pipe
{ /* a pipe */
388 SLIST_ENTRY(dn_pipe
) next
; /* linked list in a hash slot */
390 int pipe_nr
; /* number */
391 int bandwidth
; /* really, bytes/tick. */
392 int delay
; /* really, ticks */
394 struct mbuf
*head
, *tail
; /* packets in delay line */
397 struct dn_heap scheduler_heap
; /* top extract - key Finish time*/
398 struct dn_heap not_eligible_heap
; /* top extract- key Start time */
399 struct dn_heap idle_heap
; /* random extract - key Start=Finish time */
401 dn_key V
; /* virtual time */
402 int sum
; /* sum of weights of all active sessions */
403 int numbytes
; /* bits I can transmit (more or less). */
405 dn_key sched_time
; /* time pipe was scheduled in ready_heap */
408 * When the tx clock come from an interface (if_name[0] != '\0'), its name
409 * is stored below, whereas the ifp is filled when the rule is configured.
411 char if_name
[IFNAMSIZ
];
413 int ready
; /* set if ifp != NULL and we got a signal from it */
415 struct dn_flow_set fs
; /* used with fixed-rate flows */
418 SLIST_HEAD(dn_pipe_head
, dn_pipe
);
420 #ifdef BSD_KERNEL_PRIVATE
422 void ip_dn_init(void); /* called from raw_ip.c:load_ipfw() */
424 typedef int ip_dn_ctl_t(struct sockopt
*); /* raw_ip.c */
425 typedef int ip_dn_io_t(struct mbuf
*m
, int pipe_nr
, int dir
,
426 struct ip_fw_args
*fwa
, int );
427 extern ip_dn_ctl_t
*ip_dn_ctl_ptr
;
428 extern ip_dn_io_t
*ip_dn_io_ptr
;
429 void dn_ipfw_rule_delete(void *);
430 #define DUMMYNET_LOADED (ip_dn_io_ptr != NULL)
437 int offset
; /* XXX if > 0 this is the offset of direct ptr to obj */
438 user32_addr_t p
; /* really an array of "size" entries */
441 struct dn_flow_queue_32
{
443 struct ip_flow_id id
;
445 user32_addr_t head
, tail
; /* queue of packets */
448 u_int32_t numbytes
; /* credit for transmission (dynamic queues) */
450 u_int64_t tot_pkts
; /* statistics counters */
451 u_int64_t tot_bytes
;
454 int hash_slot
; /* debugging/diagnostic */
457 int avg
; /* average queue length est. (scaled) */
458 int count
; /* arrivals since last RED drop */
459 int random
; /* random value (scaled) */
460 u_int32_t q_time
; /* start of queue idle time */
463 user32_addr_t fs
; /* parent flow set */
464 int heap_pos
; /* position (index) of struct in heap */
465 dn_key sched_time
; /* current time when queue enters ready_heap */
467 dn_key S
,F
; /* start time, finish time */
469 * Setting F < S means the timestamp is invalid. We only need
470 * to test this when the queue is empty.
474 struct dn_flow_set_32
{
475 user32_addr_t next
; /* next flow set in all_flow_sets list */
477 u_short fs_nr
; /* flow_set number */
479 #define DN_HAVE_FLOW_MASK 0x0001
480 #define DN_IS_RED 0x0002
481 #define DN_IS_GENTLE_RED 0x0004
482 #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
483 #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
484 #define DN_IS_PIPE 0x4000
485 #define DN_IS_QUEUE 0x8000
487 user32_addr_t pipe
; /* pointer to parent pipe */
488 u_short parent_nr
; /* parent pipe#, 0 if local to a pipe */
490 int weight
; /* WFQ queue weight */
491 int qsize
; /* queue size in slots or bytes */
492 int plr
; /* pkt loss rate (2^31-1 means 100%) */
494 struct ip_flow_id flow_mask
;
496 /* hash table of queues onto this flow_set */
497 int rq_size
; /* number of slots */
498 int rq_elements
; /* active elements */
499 user32_addr_t rq
; /* array of rq_size entries */
501 u_int32_t last_expired
; /* do not expire too frequently */
502 int backlogged
; /* #active queues for this flowset */
506 #define SCALE(x) ( (x) << SCALE_RED )
507 #define SCALE_VAL(x) ( (x) >> SCALE_RED )
508 #define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
509 int w_q
; /* queue weight (scaled) */
510 int max_th
; /* maximum threshold for queue (scaled) */
511 int min_th
; /* minimum threshold for queue (scaled) */
512 int max_p
; /* maximum value for p_b (scaled) */
513 u_int c_1
; /* max_p/(max_th-min_th) (scaled) */
514 u_int c_2
; /* max_p*min_th/(max_th-min_th) (scaled) */
515 u_int c_3
; /* for GRED, (1-max_p)/max_th (scaled) */
516 u_int c_4
; /* for GRED, 1 - 2*max_p (scaled) */
517 user32_addr_t w_q_lookup
; /* lookup table for computing (1-w_q)^t */
518 u_int lookup_depth
; /* depth of lookup table */
519 int lookup_step
; /* granularity inside the lookup table */
520 int lookup_weight
; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
521 int avg_pkt_size
; /* medium packet size */
522 int max_pkt_size
; /* max packet size */
525 struct dn_pipe_32
{ /* a pipe */
528 int pipe_nr
; /* number */
529 int bandwidth
; /* really, bytes/tick. */
530 int delay
; /* really, ticks */
532 user32_addr_t head
, tail
; /* packets in delay line */
535 struct dn_heap_32 scheduler_heap
; /* top extract - key Finish time*/
536 struct dn_heap_32 not_eligible_heap
; /* top extract- key Start time */
537 struct dn_heap_32 idle_heap
; /* random extract - key Start=Finish time */
539 dn_key V
; /* virtual time */
540 int sum
; /* sum of weights of all active sessions */
541 int numbytes
; /* bits I can transmit (more or less). */
543 dn_key sched_time
; /* time pipe was scheduled in ready_heap */
546 * When the tx clock come from an interface (if_name[0] != '\0'), its name
547 * is stored below, whereas the ifp is filled when the rule is configured.
549 char if_name
[IFNAMSIZ
];
551 int ready
; /* set if ifp != NULL and we got a signal from it */
553 struct dn_flow_set_32 fs
; /* used with fixed-rate flows */
561 int offset
; /* XXX if > 0 this is the offset of direct ptr to obj */
562 user64_addr_t p
; /* really an array of "size" entries */
566 struct dn_flow_queue_64
{
568 struct ip_flow_id id
;
570 user64_addr_t head
, tail
; /* queue of packets */
573 u_int32_t numbytes
; /* credit for transmission (dynamic queues) */
575 u_int64_t tot_pkts
; /* statistics counters */
576 u_int64_t tot_bytes
;
579 int hash_slot
; /* debugging/diagnostic */
582 int avg
; /* average queue length est. (scaled) */
583 int count
; /* arrivals since last RED drop */
584 int random
; /* random value (scaled) */
585 u_int32_t q_time
; /* start of queue idle time */
588 user64_addr_t fs
; /* parent flow set */
589 int heap_pos
; /* position (index) of struct in heap */
590 dn_key sched_time
; /* current time when queue enters ready_heap */
592 dn_key S
,F
; /* start time, finish time */
594 * Setting F < S means the timestamp is invalid. We only need
595 * to test this when the queue is empty.
599 struct dn_flow_set_64
{
600 user64_addr_t next
; /* next flow set in all_flow_sets list */
602 u_short fs_nr
; /* flow_set number */
604 #define DN_HAVE_FLOW_MASK 0x0001
605 #define DN_IS_RED 0x0002
606 #define DN_IS_GENTLE_RED 0x0004
607 #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
608 #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
609 #define DN_IS_PIPE 0x4000
610 #define DN_IS_QUEUE 0x8000
612 user64_addr_t pipe
; /* pointer to parent pipe */
613 u_short parent_nr
; /* parent pipe#, 0 if local to a pipe */
615 int weight
; /* WFQ queue weight */
616 int qsize
; /* queue size in slots or bytes */
617 int plr
; /* pkt loss rate (2^31-1 means 100%) */
619 struct ip_flow_id flow_mask
;
621 /* hash table of queues onto this flow_set */
622 int rq_size
; /* number of slots */
623 int rq_elements
; /* active elements */
624 user64_addr_t rq
; /* array of rq_size entries */
626 u_int32_t last_expired
; /* do not expire too frequently */
627 int backlogged
; /* #active queues for this flowset */
631 #define SCALE(x) ( (x) << SCALE_RED )
632 #define SCALE_VAL(x) ( (x) >> SCALE_RED )
633 #define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
634 int w_q
; /* queue weight (scaled) */
635 int max_th
; /* maximum threshold for queue (scaled) */
636 int min_th
; /* minimum threshold for queue (scaled) */
637 int max_p
; /* maximum value for p_b (scaled) */
638 u_int c_1
; /* max_p/(max_th-min_th) (scaled) */
639 u_int c_2
; /* max_p*min_th/(max_th-min_th) (scaled) */
640 u_int c_3
; /* for GRED, (1-max_p)/max_th (scaled) */
641 u_int c_4
; /* for GRED, 1 - 2*max_p (scaled) */
642 user64_addr_t w_q_lookup
; /* lookup table for computing (1-w_q)^t */
643 u_int lookup_depth
; /* depth of lookup table */
644 int lookup_step
; /* granularity inside the lookup table */
645 int lookup_weight
; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
646 int avg_pkt_size
; /* medium packet size */
647 int max_pkt_size
; /* max packet size */
650 struct dn_pipe_64
{ /* a pipe */
653 int pipe_nr
; /* number */
654 int bandwidth
; /* really, bytes/tick. */
655 int delay
; /* really, ticks */
657 user64_addr_t head
, tail
; /* packets in delay line */
660 struct dn_heap_64 scheduler_heap
; /* top extract - key Finish time*/
661 struct dn_heap_64 not_eligible_heap
; /* top extract- key Start time */
662 struct dn_heap_64 idle_heap
; /* random extract - key Start=Finish time */
664 dn_key V
; /* virtual time */
665 int sum
; /* sum of weights of all active sessions */
666 int numbytes
; /* bits I can transmit (more or less). */
668 dn_key sched_time
; /* time pipe was scheduled in ready_heap */
671 * When the tx clock come from an interface (if_name[0] != '\0'), its name
672 * is stored below, whereas the ifp is filled when the rule is configured.
674 char if_name
[IFNAMSIZ
];
676 int ready
; /* set if ifp != NULL and we got a signal from it */
678 struct dn_flow_set_64 fs
; /* used with fixed-rate flows */
684 * Return the IPFW rule associated with the dummynet tag; if any.
685 * Make sure that the dummynet tag is not reused by lower layers.
687 static __inline
struct ip_fw
*
688 ip_dn_claim_rule(struct mbuf
*m
)
690 struct m_tag
*mtag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
691 KERNEL_TAG_TYPE_DUMMYNET
, NULL
);
693 mtag
->m_tag_type
= KERNEL_TAG_TYPE_NONE
;
694 return (((struct dn_pkt_tag
*)(mtag
+1))->dn_ipfw_rule
);
698 #endif /* BSD_KERNEL_PRIVATE */
700 #endif /* _IP_DUMMYNET_H */