]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/ubc_subr.c
xnu-3789.70.16.tar.gz
[apple/xnu.git] / bsd / kern / ubc_subr.c
1 /*
2 * Copyright (c) 1999-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * File: ubc_subr.c
30 * Author: Umesh Vaishampayan [umeshv@apple.com]
31 * 05-Aug-1999 umeshv Created.
32 *
33 * Functions related to Unified Buffer cache.
34 *
35 * Caller of UBC functions MUST have a valid reference on the vnode.
36 *
37 */
38
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/lock.h>
43 #include <sys/mman.h>
44 #include <sys/mount_internal.h>
45 #include <sys/vnode_internal.h>
46 #include <sys/ubc_internal.h>
47 #include <sys/ucred.h>
48 #include <sys/proc_internal.h>
49 #include <sys/kauth.h>
50 #include <sys/buf.h>
51 #include <sys/user.h>
52 #include <sys/codesign.h>
53 #include <sys/codedir_internal.h>
54 #include <sys/fsevents.h>
55 #include <sys/fcntl.h>
56
57 #include <mach/mach_types.h>
58 #include <mach/memory_object_types.h>
59 #include <mach/memory_object_control.h>
60 #include <mach/vm_map.h>
61 #include <mach/mach_vm.h>
62 #include <mach/upl.h>
63
64 #include <kern/kern_types.h>
65 #include <kern/kalloc.h>
66 #include <kern/zalloc.h>
67 #include <kern/thread.h>
68 #include <vm/vm_kern.h>
69 #include <vm/vm_protos.h> /* last */
70
71 #include <libkern/crypto/sha1.h>
72 #include <libkern/crypto/sha2.h>
73 #include <libkern/libkern.h>
74
75 #include <security/mac_framework.h>
76 #include <stdbool.h>
77
78 /* XXX These should be in a BSD accessible Mach header, but aren't. */
79 extern kern_return_t memory_object_pages_resident(memory_object_control_t,
80 boolean_t *);
81 extern kern_return_t memory_object_signed(memory_object_control_t control,
82 boolean_t is_signed);
83 extern boolean_t memory_object_is_slid(memory_object_control_t control);
84 extern boolean_t memory_object_is_signed(memory_object_control_t);
85
86 extern void Debugger(const char *message);
87
88
89 /* XXX no one uses this interface! */
90 kern_return_t ubc_page_op_with_control(
91 memory_object_control_t control,
92 off_t f_offset,
93 int ops,
94 ppnum_t *phys_entryp,
95 int *flagsp);
96
97
98 #if DIAGNOSTIC
99 #if defined(assert)
100 #undef assert
101 #endif
102 #define assert(cond) \
103 ((void) ((cond) ? 0 : panic("Assert failed: %s", # cond)))
104 #else
105 #include <kern/assert.h>
106 #endif /* DIAGNOSTIC */
107
108 static int ubc_info_init_internal(struct vnode *vp, int withfsize, off_t filesize);
109 static int ubc_umcallback(vnode_t, void *);
110 static int ubc_msync_internal(vnode_t, off_t, off_t, off_t *, int, int *);
111 static void ubc_cs_free(struct ubc_info *uip);
112
113 static boolean_t ubc_cs_supports_multilevel_hash(struct cs_blob *blob);
114 static void ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob);
115
116 struct zone *ubc_info_zone;
117 static uint32_t cs_blob_generation_count = 1;
118
119 /*
120 * CODESIGNING
121 * Routines to navigate code signing data structures in the kernel...
122 */
123
124 extern int cs_debug;
125
126 #define PAGE_SHIFT_4K (12)
127
128 static boolean_t
129 cs_valid_range(
130 const void *start,
131 const void *end,
132 const void *lower_bound,
133 const void *upper_bound)
134 {
135 if (upper_bound < lower_bound ||
136 end < start) {
137 return FALSE;
138 }
139
140 if (start < lower_bound ||
141 end > upper_bound) {
142 return FALSE;
143 }
144
145 return TRUE;
146 }
147
148 typedef void (*cs_md_init)(void *ctx);
149 typedef void (*cs_md_update)(void *ctx, const void *data, size_t size);
150 typedef void (*cs_md_final)(void *hash, void *ctx);
151
152 struct cs_hash {
153 uint8_t cs_type; /* type code as per code signing */
154 size_t cs_size; /* size of effective hash (may be truncated) */
155 size_t cs_digest_size; /* size of native hash */
156 cs_md_init cs_init;
157 cs_md_update cs_update;
158 cs_md_final cs_final;
159 };
160
161 static const struct cs_hash cs_hash_sha1 = {
162 .cs_type = CS_HASHTYPE_SHA1,
163 .cs_size = CS_SHA1_LEN,
164 .cs_digest_size = SHA_DIGEST_LENGTH,
165 .cs_init = (cs_md_init)SHA1Init,
166 .cs_update = (cs_md_update)SHA1Update,
167 .cs_final = (cs_md_final)SHA1Final,
168 };
169 #if CRYPTO_SHA2
170 static const struct cs_hash cs_hash_sha256 = {
171 .cs_type = CS_HASHTYPE_SHA256,
172 .cs_size = SHA256_DIGEST_LENGTH,
173 .cs_digest_size = SHA256_DIGEST_LENGTH,
174 .cs_init = (cs_md_init)SHA256_Init,
175 .cs_update = (cs_md_update)SHA256_Update,
176 .cs_final = (cs_md_final)SHA256_Final,
177 };
178 static const struct cs_hash cs_hash_sha256_truncate = {
179 .cs_type = CS_HASHTYPE_SHA256_TRUNCATED,
180 .cs_size = CS_SHA256_TRUNCATED_LEN,
181 .cs_digest_size = SHA256_DIGEST_LENGTH,
182 .cs_init = (cs_md_init)SHA256_Init,
183 .cs_update = (cs_md_update)SHA256_Update,
184 .cs_final = (cs_md_final)SHA256_Final,
185 };
186 static const struct cs_hash cs_hash_sha384 = {
187 .cs_type = CS_HASHTYPE_SHA384,
188 .cs_size = SHA384_DIGEST_LENGTH,
189 .cs_digest_size = SHA384_DIGEST_LENGTH,
190 .cs_init = (cs_md_init)SHA384_Init,
191 .cs_update = (cs_md_update)SHA384_Update,
192 .cs_final = (cs_md_final)SHA384_Final,
193 };
194 #endif
195
196 static struct cs_hash const *
197 cs_find_md(uint8_t type)
198 {
199 if (type == CS_HASHTYPE_SHA1) {
200 return &cs_hash_sha1;
201 #if CRYPTO_SHA2
202 } else if (type == CS_HASHTYPE_SHA256) {
203 return &cs_hash_sha256;
204 } else if (type == CS_HASHTYPE_SHA256_TRUNCATED) {
205 return &cs_hash_sha256_truncate;
206 } else if (type == CS_HASHTYPE_SHA384) {
207 return &cs_hash_sha384;
208 #endif
209 }
210 return NULL;
211 }
212
213 union cs_hash_union {
214 SHA1_CTX sha1ctxt;
215 SHA256_CTX sha256ctx;
216 SHA384_CTX sha384ctx;
217 };
218
219
220 /*
221 * Choose among different hash algorithms.
222 * Higher is better, 0 => don't use at all.
223 */
224 static const uint32_t hashPriorities[] = {
225 CS_HASHTYPE_SHA1,
226 CS_HASHTYPE_SHA256_TRUNCATED,
227 CS_HASHTYPE_SHA256,
228 CS_HASHTYPE_SHA384,
229 };
230
231 static unsigned int
232 hash_rank(const CS_CodeDirectory *cd)
233 {
234 uint32_t type = cd->hashType;
235 unsigned int n;
236
237 for (n = 0; n < sizeof(hashPriorities) / sizeof(hashPriorities[0]); ++n)
238 if (hashPriorities[n] == type)
239 return n + 1;
240 return 0; /* not supported */
241 }
242
243
244 /*
245 * Locating a page hash
246 */
247 static const unsigned char *
248 hashes(
249 const CS_CodeDirectory *cd,
250 uint32_t page,
251 size_t hash_len,
252 const char *lower_bound,
253 const char *upper_bound)
254 {
255 const unsigned char *base, *top, *hash;
256 uint32_t nCodeSlots = ntohl(cd->nCodeSlots);
257
258 assert(cs_valid_range(cd, cd + 1, lower_bound, upper_bound));
259
260 if((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
261 /* Get first scatter struct */
262 const SC_Scatter *scatter = (const SC_Scatter*)
263 ((const char*)cd + ntohl(cd->scatterOffset));
264 uint32_t hashindex=0, scount, sbase=0;
265 /* iterate all scatter structs */
266 do {
267 if((const char*)scatter > (const char*)cd + ntohl(cd->length)) {
268 if(cs_debug) {
269 printf("CODE SIGNING: Scatter extends past Code Directory\n");
270 }
271 return NULL;
272 }
273
274 scount = ntohl(scatter->count);
275 uint32_t new_base = ntohl(scatter->base);
276
277 /* last scatter? */
278 if (scount == 0) {
279 return NULL;
280 }
281
282 if((hashindex > 0) && (new_base <= sbase)) {
283 if(cs_debug) {
284 printf("CODE SIGNING: unordered Scatter, prev base %d, cur base %d\n",
285 sbase, new_base);
286 }
287 return NULL; /* unordered scatter array */
288 }
289 sbase = new_base;
290
291 /* this scatter beyond page we're looking for? */
292 if (sbase > page) {
293 return NULL;
294 }
295
296 if (sbase+scount >= page) {
297 /* Found the scatter struct that is
298 * referencing our page */
299
300 /* base = address of first hash covered by scatter */
301 base = (const unsigned char *)cd + ntohl(cd->hashOffset) +
302 hashindex * hash_len;
303 /* top = address of first hash after this scatter */
304 top = base + scount * hash_len;
305 if (!cs_valid_range(base, top, lower_bound,
306 upper_bound) ||
307 hashindex > nCodeSlots) {
308 return NULL;
309 }
310
311 break;
312 }
313
314 /* this scatter struct is before the page we're looking
315 * for. Iterate. */
316 hashindex+=scount;
317 scatter++;
318 } while(1);
319
320 hash = base + (page - sbase) * hash_len;
321 } else {
322 base = (const unsigned char *)cd + ntohl(cd->hashOffset);
323 top = base + nCodeSlots * hash_len;
324 if (!cs_valid_range(base, top, lower_bound, upper_bound) ||
325 page > nCodeSlots) {
326 return NULL;
327 }
328 assert(page < nCodeSlots);
329
330 hash = base + page * hash_len;
331 }
332
333 if (!cs_valid_range(hash, hash + hash_len,
334 lower_bound, upper_bound)) {
335 hash = NULL;
336 }
337
338 return hash;
339 }
340
341 /*
342 * cs_validate_codedirectory
343 *
344 * Validate that pointers inside the code directory to make sure that
345 * all offsets and lengths are constrained within the buffer.
346 *
347 * Parameters: cd Pointer to code directory buffer
348 * length Length of buffer
349 *
350 * Returns: 0 Success
351 * EBADEXEC Invalid code signature
352 */
353
354 static int
355 cs_validate_codedirectory(const CS_CodeDirectory *cd, size_t length)
356 {
357 struct cs_hash const *hashtype;
358
359 if (length < sizeof(*cd))
360 return EBADEXEC;
361 if (ntohl(cd->magic) != CSMAGIC_CODEDIRECTORY)
362 return EBADEXEC;
363 if (cd->pageSize < PAGE_SHIFT_4K || cd->pageSize > PAGE_SHIFT)
364 return EBADEXEC;
365 hashtype = cs_find_md(cd->hashType);
366 if (hashtype == NULL)
367 return EBADEXEC;
368
369 if (cd->hashSize != hashtype->cs_size)
370 return EBADEXEC;
371
372 if (length < ntohl(cd->hashOffset))
373 return EBADEXEC;
374
375 /* check that nSpecialSlots fits in the buffer in front of hashOffset */
376 if (ntohl(cd->hashOffset) / hashtype->cs_size < ntohl(cd->nSpecialSlots))
377 return EBADEXEC;
378
379 /* check that codeslots fits in the buffer */
380 if ((length - ntohl(cd->hashOffset)) / hashtype->cs_size < ntohl(cd->nCodeSlots))
381 return EBADEXEC;
382
383 if (ntohl(cd->version) >= CS_SUPPORTSSCATTER && cd->scatterOffset) {
384
385 if (length < ntohl(cd->scatterOffset))
386 return EBADEXEC;
387
388 const SC_Scatter *scatter = (const SC_Scatter *)
389 (((const uint8_t *)cd) + ntohl(cd->scatterOffset));
390 uint32_t nPages = 0;
391
392 /*
393 * Check each scatter buffer, since we don't know the
394 * length of the scatter buffer array, we have to
395 * check each entry.
396 */
397 while(1) {
398 /* check that the end of each scatter buffer in within the length */
399 if (((const uint8_t *)scatter) + sizeof(scatter[0]) > (const uint8_t *)cd + length)
400 return EBADEXEC;
401 uint32_t scount = ntohl(scatter->count);
402 if (scount == 0)
403 break;
404 if (nPages + scount < nPages)
405 return EBADEXEC;
406 nPages += scount;
407 scatter++;
408
409 /* XXX check that basees doesn't overlap */
410 /* XXX check that targetOffset doesn't overlap */
411 }
412 #if 0 /* rdar://12579439 */
413 if (nPages != ntohl(cd->nCodeSlots))
414 return EBADEXEC;
415 #endif
416 }
417
418 if (length < ntohl(cd->identOffset))
419 return EBADEXEC;
420
421 /* identifier is NUL terminated string */
422 if (cd->identOffset) {
423 const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->identOffset);
424 if (memchr(ptr, 0, length - ntohl(cd->identOffset)) == NULL)
425 return EBADEXEC;
426 }
427
428 /* team identifier is NULL terminated string */
429 if (ntohl(cd->version) >= CS_SUPPORTSTEAMID && ntohl(cd->teamOffset)) {
430 if (length < ntohl(cd->teamOffset))
431 return EBADEXEC;
432
433 const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->teamOffset);
434 if (memchr(ptr, 0, length - ntohl(cd->teamOffset)) == NULL)
435 return EBADEXEC;
436 }
437
438 return 0;
439 }
440
441 /*
442 *
443 */
444
445 static int
446 cs_validate_blob(const CS_GenericBlob *blob, size_t length)
447 {
448 if (length < sizeof(CS_GenericBlob) || length < ntohl(blob->length))
449 return EBADEXEC;
450 return 0;
451 }
452
453 /*
454 * cs_validate_csblob
455 *
456 * Validate that superblob/embedded code directory to make sure that
457 * all internal pointers are valid.
458 *
459 * Will validate both a superblob csblob and a "raw" code directory.
460 *
461 *
462 * Parameters: buffer Pointer to code signature
463 * length Length of buffer
464 * rcd returns pointer to code directory
465 *
466 * Returns: 0 Success
467 * EBADEXEC Invalid code signature
468 */
469
470 static int
471 cs_validate_csblob(
472 const uint8_t *addr,
473 size_t *blob_size_p,
474 const CS_CodeDirectory **rcd,
475 const CS_GenericBlob **rentitlements)
476 {
477 const CS_GenericBlob *blob;
478 int error;
479 size_t length, blob_size;
480
481 *rcd = NULL;
482 *rentitlements = NULL;
483
484 blob = (const CS_GenericBlob *)(const void *)addr;
485 blob_size = *blob_size_p;
486
487 length = blob_size;
488 error = cs_validate_blob(blob, length);
489 if (error)
490 return error;
491 length = ntohl(blob->length);
492
493 if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) {
494 const CS_SuperBlob *sb;
495 uint32_t n, count;
496 const CS_CodeDirectory *best_cd = NULL;
497 unsigned int best_rank = 0;
498
499 if (length < sizeof(CS_SuperBlob))
500 return EBADEXEC;
501
502 sb = (const CS_SuperBlob *)blob;
503 count = ntohl(sb->count);
504
505 /* check that the array of BlobIndex fits in the rest of the data */
506 if ((length - sizeof(CS_SuperBlob)) / sizeof(CS_BlobIndex) < count)
507 return EBADEXEC;
508
509 /* now check each BlobIndex */
510 for (n = 0; n < count; n++) {
511 const CS_BlobIndex *blobIndex = &sb->index[n];
512 uint32_t type = ntohl(blobIndex->type);
513 uint32_t offset = ntohl(blobIndex->offset);
514 if (length < offset)
515 return EBADEXEC;
516
517 const CS_GenericBlob *subBlob =
518 (const CS_GenericBlob *)(const void *)(addr + offset);
519
520 size_t subLength = length - offset;
521
522 if ((error = cs_validate_blob(subBlob, subLength)) != 0)
523 return error;
524 subLength = ntohl(subBlob->length);
525
526 /* extra validation for CDs, that is also returned */
527 if (type == CSSLOT_CODEDIRECTORY || (type >= CSSLOT_ALTERNATE_CODEDIRECTORIES && type < CSSLOT_ALTERNATE_CODEDIRECTORY_LIMIT)) {
528 const CS_CodeDirectory *candidate = (const CS_CodeDirectory *)subBlob;
529 if ((error = cs_validate_codedirectory(candidate, subLength)) != 0)
530 return error;
531 unsigned int rank = hash_rank(candidate);
532 if (cs_debug > 3)
533 printf("CodeDirectory type %d rank %d at slot 0x%x index %d\n", candidate->hashType, (int)rank, (int)type, (int)n);
534 if (best_cd == NULL || rank > best_rank) {
535 best_cd = candidate;
536 best_rank = rank;
537
538 if (cs_debug > 2)
539 printf("using CodeDirectory type %d (rank %d)\n", (int)best_cd->hashType, best_rank);
540 *rcd = best_cd;
541 } else if (best_cd != NULL && rank == best_rank) {
542 /* repeat of a hash type (1:1 mapped to ranks), illegal and suspicious */
543 printf("multiple hash=%d CodeDirectories in signature; rejecting\n", best_cd->hashType);
544 return EBADEXEC;
545 }
546 } else if (type == CSSLOT_ENTITLEMENTS) {
547 if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_ENTITLEMENTS) {
548 return EBADEXEC;
549 }
550 if (*rentitlements != NULL) {
551 printf("multiple entitlements blobs\n");
552 return EBADEXEC;
553 }
554 *rentitlements = subBlob;
555 }
556 }
557
558 } else if (ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY) {
559
560 if ((error = cs_validate_codedirectory((const CS_CodeDirectory *)(const void *)addr, length)) != 0)
561 return error;
562 *rcd = (const CS_CodeDirectory *)blob;
563 } else {
564 return EBADEXEC;
565 }
566
567 if (*rcd == NULL)
568 return EBADEXEC;
569
570 *blob_size_p = blob_size;
571
572 return 0;
573 }
574
575 /*
576 * cs_find_blob_bytes
577 *
578 * Find an blob from the superblob/code directory. The blob must have
579 * been been validated by cs_validate_csblob() before calling
580 * this. Use csblob_find_blob() instead.
581 *
582 * Will also find a "raw" code directory if its stored as well as
583 * searching the superblob.
584 *
585 * Parameters: buffer Pointer to code signature
586 * length Length of buffer
587 * type type of blob to find
588 * magic the magic number for that blob
589 *
590 * Returns: pointer Success
591 * NULL Buffer not found
592 */
593
594 const CS_GenericBlob *
595 csblob_find_blob_bytes(const uint8_t *addr, size_t length, uint32_t type, uint32_t magic)
596 {
597 const CS_GenericBlob *blob = (const CS_GenericBlob *)(const void *)addr;
598
599 if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) {
600 const CS_SuperBlob *sb = (const CS_SuperBlob *)blob;
601 size_t n, count = ntohl(sb->count);
602
603 for (n = 0; n < count; n++) {
604 if (ntohl(sb->index[n].type) != type)
605 continue;
606 uint32_t offset = ntohl(sb->index[n].offset);
607 if (length - sizeof(const CS_GenericBlob) < offset)
608 return NULL;
609 blob = (const CS_GenericBlob *)(const void *)(addr + offset);
610 if (ntohl(blob->magic) != magic)
611 continue;
612 return blob;
613 }
614 } else if (type == CSSLOT_CODEDIRECTORY
615 && ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY
616 && magic == CSMAGIC_CODEDIRECTORY)
617 return blob;
618 return NULL;
619 }
620
621
622 const CS_GenericBlob *
623 csblob_find_blob(struct cs_blob *csblob, uint32_t type, uint32_t magic)
624 {
625 if ((csblob->csb_flags & CS_VALID) == 0)
626 return NULL;
627 return csblob_find_blob_bytes((const uint8_t *)csblob->csb_mem_kaddr, csblob->csb_mem_size, type, magic);
628 }
629
630 static const uint8_t *
631 find_special_slot(const CS_CodeDirectory *cd, size_t slotsize, uint32_t slot)
632 {
633 /* there is no zero special slot since that is the first code slot */
634 if (ntohl(cd->nSpecialSlots) < slot || slot == 0)
635 return NULL;
636
637 return ((const uint8_t *)cd + ntohl(cd->hashOffset) - (slotsize * slot));
638 }
639
640 static uint8_t cshash_zero[CS_HASH_MAX_SIZE] = { 0 };
641
642 int
643 csblob_get_entitlements(struct cs_blob *csblob, void **out_start, size_t *out_length)
644 {
645 uint8_t computed_hash[CS_HASH_MAX_SIZE];
646 const CS_GenericBlob *entitlements;
647 const CS_CodeDirectory *code_dir;
648 const uint8_t *embedded_hash;
649 union cs_hash_union context;
650
651 *out_start = NULL;
652 *out_length = 0;
653
654 if (csblob->csb_hashtype == NULL || csblob->csb_hashtype->cs_digest_size > sizeof(computed_hash))
655 return EBADEXEC;
656
657 code_dir = csblob->csb_cd;
658
659 if ((csblob->csb_flags & CS_VALID) == 0) {
660 entitlements = NULL;
661 } else {
662 entitlements = csblob->csb_entitlements_blob;
663 }
664 embedded_hash = find_special_slot(code_dir, csblob->csb_hashtype->cs_size, CSSLOT_ENTITLEMENTS);
665
666 if (embedded_hash == NULL) {
667 if (entitlements)
668 return EBADEXEC;
669 return 0;
670 } else if (entitlements == NULL) {
671 if (memcmp(embedded_hash, cshash_zero, csblob->csb_hashtype->cs_size) != 0) {
672 return EBADEXEC;
673 } else {
674 return 0;
675 }
676 }
677
678 csblob->csb_hashtype->cs_init(&context);
679 csblob->csb_hashtype->cs_update(&context, entitlements, ntohl(entitlements->length));
680 csblob->csb_hashtype->cs_final(computed_hash, &context);
681
682 if (memcmp(computed_hash, embedded_hash, csblob->csb_hashtype->cs_size) != 0)
683 return EBADEXEC;
684
685 *out_start = __DECONST(void *, entitlements);
686 *out_length = ntohl(entitlements->length);
687
688 return 0;
689 }
690
691 /*
692 * CODESIGNING
693 * End of routines to navigate code signing data structures in the kernel.
694 */
695
696
697
698 /*
699 * ubc_init
700 *
701 * Initialization of the zone for Unified Buffer Cache.
702 *
703 * Parameters: (void)
704 *
705 * Returns: (void)
706 *
707 * Implicit returns:
708 * ubc_info_zone(global) initialized for subsequent allocations
709 */
710 __private_extern__ void
711 ubc_init(void)
712 {
713 int i;
714
715 i = (vm_size_t) sizeof (struct ubc_info);
716
717 ubc_info_zone = zinit (i, 10000*i, 8192, "ubc_info zone");
718
719 zone_change(ubc_info_zone, Z_NOENCRYPT, TRUE);
720 }
721
722
723 /*
724 * ubc_info_init
725 *
726 * Allocate and attach an empty ubc_info structure to a vnode
727 *
728 * Parameters: vp Pointer to the vnode
729 *
730 * Returns: 0 Success
731 * vnode_size:ENOMEM Not enough space
732 * vnode_size:??? Other error from vnode_getattr
733 *
734 */
735 int
736 ubc_info_init(struct vnode *vp)
737 {
738 return(ubc_info_init_internal(vp, 0, 0));
739 }
740
741
742 /*
743 * ubc_info_init_withsize
744 *
745 * Allocate and attach a sized ubc_info structure to a vnode
746 *
747 * Parameters: vp Pointer to the vnode
748 * filesize The size of the file
749 *
750 * Returns: 0 Success
751 * vnode_size:ENOMEM Not enough space
752 * vnode_size:??? Other error from vnode_getattr
753 */
754 int
755 ubc_info_init_withsize(struct vnode *vp, off_t filesize)
756 {
757 return(ubc_info_init_internal(vp, 1, filesize));
758 }
759
760
761 /*
762 * ubc_info_init_internal
763 *
764 * Allocate and attach a ubc_info structure to a vnode
765 *
766 * Parameters: vp Pointer to the vnode
767 * withfsize{0,1} Zero if the size should be obtained
768 * from the vnode; otherwise, use filesize
769 * filesize The size of the file, if withfsize == 1
770 *
771 * Returns: 0 Success
772 * vnode_size:ENOMEM Not enough space
773 * vnode_size:??? Other error from vnode_getattr
774 *
775 * Notes: We call a blocking zalloc(), and the zone was created as an
776 * expandable and collectable zone, so if no memory is available,
777 * it is possible for zalloc() to block indefinitely. zalloc()
778 * may also panic if the zone of zones is exhausted, since it's
779 * NOT expandable.
780 *
781 * We unconditionally call vnode_pager_setup(), even if this is
782 * a reuse of a ubc_info; in that case, we should probably assert
783 * that it does not already have a pager association, but do not.
784 *
785 * Since memory_object_create_named() can only fail from receiving
786 * an invalid pager argument, the explicit check and panic is
787 * merely precautionary.
788 */
789 static int
790 ubc_info_init_internal(vnode_t vp, int withfsize, off_t filesize)
791 {
792 struct ubc_info *uip;
793 void * pager;
794 int error = 0;
795 kern_return_t kret;
796 memory_object_control_t control;
797
798 uip = vp->v_ubcinfo;
799
800 /*
801 * If there is not already a ubc_info attached to the vnode, we
802 * attach one; otherwise, we will reuse the one that's there.
803 */
804 if (uip == UBC_INFO_NULL) {
805
806 uip = (struct ubc_info *) zalloc(ubc_info_zone);
807 bzero((char *)uip, sizeof(struct ubc_info));
808
809 uip->ui_vnode = vp;
810 uip->ui_flags = UI_INITED;
811 uip->ui_ucred = NOCRED;
812 }
813 assert(uip->ui_flags != UI_NONE);
814 assert(uip->ui_vnode == vp);
815
816 /* now set this ubc_info in the vnode */
817 vp->v_ubcinfo = uip;
818
819 /*
820 * Allocate a pager object for this vnode
821 *
822 * XXX The value of the pager parameter is currently ignored.
823 * XXX Presumably, this API changed to avoid the race between
824 * XXX setting the pager and the UI_HASPAGER flag.
825 */
826 pager = (void *)vnode_pager_setup(vp, uip->ui_pager);
827 assert(pager);
828
829 /*
830 * Explicitly set the pager into the ubc_info, after setting the
831 * UI_HASPAGER flag.
832 */
833 SET(uip->ui_flags, UI_HASPAGER);
834 uip->ui_pager = pager;
835
836 /*
837 * Note: We can not use VNOP_GETATTR() to get accurate
838 * value of ui_size because this may be an NFS vnode, and
839 * nfs_getattr() can call vinvalbuf(); if this happens,
840 * ubc_info is not set up to deal with that event.
841 * So use bogus size.
842 */
843
844 /*
845 * create a vnode - vm_object association
846 * memory_object_create_named() creates a "named" reference on the
847 * memory object we hold this reference as long as the vnode is
848 * "alive." Since memory_object_create_named() took its own reference
849 * on the vnode pager we passed it, we can drop the reference
850 * vnode_pager_setup() returned here.
851 */
852 kret = memory_object_create_named(pager,
853 (memory_object_size_t)uip->ui_size, &control);
854 vnode_pager_deallocate(pager);
855 if (kret != KERN_SUCCESS)
856 panic("ubc_info_init: memory_object_create_named returned %d", kret);
857
858 assert(control);
859 uip->ui_control = control; /* cache the value of the mo control */
860 SET(uip->ui_flags, UI_HASOBJREF); /* with a named reference */
861
862 if (withfsize == 0) {
863 /* initialize the size */
864 error = vnode_size(vp, &uip->ui_size, vfs_context_current());
865 if (error)
866 uip->ui_size = 0;
867 } else {
868 uip->ui_size = filesize;
869 }
870 vp->v_lflag |= VNAMED_UBC; /* vnode has a named ubc reference */
871
872 return (error);
873 }
874
875
876 /*
877 * ubc_info_free
878 *
879 * Free a ubc_info structure
880 *
881 * Parameters: uip A pointer to the ubc_info to free
882 *
883 * Returns: (void)
884 *
885 * Notes: If there is a credential that has subsequently been associated
886 * with the ubc_info via a call to ubc_setcred(), the reference
887 * to the credential is dropped.
888 *
889 * It's actually impossible for a ubc_info.ui_control to take the
890 * value MEMORY_OBJECT_CONTROL_NULL.
891 */
892 static void
893 ubc_info_free(struct ubc_info *uip)
894 {
895 if (IS_VALID_CRED(uip->ui_ucred)) {
896 kauth_cred_unref(&uip->ui_ucred);
897 }
898
899 if (uip->ui_control != MEMORY_OBJECT_CONTROL_NULL)
900 memory_object_control_deallocate(uip->ui_control);
901
902 cluster_release(uip);
903 ubc_cs_free(uip);
904
905 zfree(ubc_info_zone, uip);
906 return;
907 }
908
909
910 void
911 ubc_info_deallocate(struct ubc_info *uip)
912 {
913 ubc_info_free(uip);
914 }
915
916 errno_t mach_to_bsd_errno(kern_return_t mach_err)
917 {
918 switch (mach_err) {
919 case KERN_SUCCESS:
920 return 0;
921
922 case KERN_INVALID_ADDRESS:
923 case KERN_INVALID_ARGUMENT:
924 case KERN_NOT_IN_SET:
925 case KERN_INVALID_NAME:
926 case KERN_INVALID_TASK:
927 case KERN_INVALID_RIGHT:
928 case KERN_INVALID_VALUE:
929 case KERN_INVALID_CAPABILITY:
930 case KERN_INVALID_HOST:
931 case KERN_MEMORY_PRESENT:
932 case KERN_INVALID_PROCESSOR_SET:
933 case KERN_INVALID_POLICY:
934 case KERN_ALREADY_WAITING:
935 case KERN_DEFAULT_SET:
936 case KERN_EXCEPTION_PROTECTED:
937 case KERN_INVALID_LEDGER:
938 case KERN_INVALID_MEMORY_CONTROL:
939 case KERN_INVALID_SECURITY:
940 case KERN_NOT_DEPRESSED:
941 case KERN_LOCK_OWNED:
942 case KERN_LOCK_OWNED_SELF:
943 return EINVAL;
944
945 case KERN_PROTECTION_FAILURE:
946 case KERN_NOT_RECEIVER:
947 case KERN_NO_ACCESS:
948 case KERN_POLICY_STATIC:
949 return EACCES;
950
951 case KERN_NO_SPACE:
952 case KERN_RESOURCE_SHORTAGE:
953 case KERN_UREFS_OVERFLOW:
954 case KERN_INVALID_OBJECT:
955 return ENOMEM;
956
957 case KERN_FAILURE:
958 return EIO;
959
960 case KERN_MEMORY_FAILURE:
961 case KERN_POLICY_LIMIT:
962 case KERN_CODESIGN_ERROR:
963 return EPERM;
964
965 case KERN_MEMORY_ERROR:
966 return EBUSY;
967
968 case KERN_ALREADY_IN_SET:
969 case KERN_NAME_EXISTS:
970 case KERN_RIGHT_EXISTS:
971 return EEXIST;
972
973 case KERN_ABORTED:
974 return EINTR;
975
976 case KERN_TERMINATED:
977 case KERN_LOCK_SET_DESTROYED:
978 case KERN_LOCK_UNSTABLE:
979 case KERN_SEMAPHORE_DESTROYED:
980 return ENOENT;
981
982 case KERN_RPC_SERVER_TERMINATED:
983 return ECONNRESET;
984
985 case KERN_NOT_SUPPORTED:
986 return ENOTSUP;
987
988 case KERN_NODE_DOWN:
989 return ENETDOWN;
990
991 case KERN_NOT_WAITING:
992 return ENOENT;
993
994 case KERN_OPERATION_TIMED_OUT:
995 return ETIMEDOUT;
996
997 default:
998 return EIO;
999 }
1000 }
1001
1002 /*
1003 * ubc_setsize_ex
1004 *
1005 * Tell the VM that the the size of the file represented by the vnode has
1006 * changed
1007 *
1008 * Parameters: vp The vp whose backing file size is
1009 * being changed
1010 * nsize The new size of the backing file
1011 * opts Options
1012 *
1013 * Returns: EINVAL for new size < 0
1014 * ENOENT if no UBC info exists
1015 * EAGAIN if UBC_SETSIZE_NO_FS_REENTRY option is set and new_size < old size
1016 * Other errors (mapped to errno_t) returned by VM functions
1017 *
1018 * Notes: This function will indicate success if the new size is the
1019 * same or larger than the old size (in this case, the
1020 * remainder of the file will require modification or use of
1021 * an existing upl to access successfully).
1022 *
1023 * This function will fail if the new file size is smaller,
1024 * and the memory region being invalidated was unable to
1025 * actually be invalidated and/or the last page could not be
1026 * flushed, if the new size is not aligned to a page
1027 * boundary. This is usually indicative of an I/O error.
1028 */
1029 errno_t ubc_setsize_ex(struct vnode *vp, off_t nsize, ubc_setsize_opts_t opts)
1030 {
1031 off_t osize; /* ui_size before change */
1032 off_t lastpg, olastpgend, lastoff;
1033 struct ubc_info *uip;
1034 memory_object_control_t control;
1035 kern_return_t kret = KERN_SUCCESS;
1036
1037 if (nsize < (off_t)0)
1038 return EINVAL;
1039
1040 if (!UBCINFOEXISTS(vp))
1041 return ENOENT;
1042
1043 uip = vp->v_ubcinfo;
1044 osize = uip->ui_size;
1045
1046 if (ISSET(opts, UBC_SETSIZE_NO_FS_REENTRY) && nsize < osize)
1047 return EAGAIN;
1048
1049 /*
1050 * Update the size before flushing the VM
1051 */
1052 uip->ui_size = nsize;
1053
1054 if (nsize >= osize) { /* Nothing more to do */
1055 if (nsize > osize) {
1056 lock_vnode_and_post(vp, NOTE_EXTEND);
1057 }
1058
1059 return 0;
1060 }
1061
1062 /*
1063 * When the file shrinks, invalidate the pages beyond the
1064 * new size. Also get rid of garbage beyond nsize on the
1065 * last page. The ui_size already has the nsize, so any
1066 * subsequent page-in will zero-fill the tail properly
1067 */
1068 lastpg = trunc_page_64(nsize);
1069 olastpgend = round_page_64(osize);
1070 control = uip->ui_control;
1071 assert(control);
1072 lastoff = (nsize & PAGE_MASK_64);
1073
1074 if (lastoff) {
1075 upl_t upl;
1076 upl_page_info_t *pl;
1077
1078 /*
1079 * new EOF ends up in the middle of a page
1080 * zero the tail of this page if it's currently
1081 * present in the cache
1082 */
1083 kret = ubc_create_upl(vp, lastpg, PAGE_SIZE, &upl, &pl, UPL_SET_LITE);
1084
1085 if (kret != KERN_SUCCESS)
1086 panic("ubc_setsize: ubc_create_upl (error = %d)\n", kret);
1087
1088 if (upl_valid_page(pl, 0))
1089 cluster_zero(upl, (uint32_t)lastoff, PAGE_SIZE - (uint32_t)lastoff, NULL);
1090
1091 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
1092
1093 lastpg += PAGE_SIZE_64;
1094 }
1095 if (olastpgend > lastpg) {
1096 int flags;
1097
1098 if (lastpg == 0)
1099 flags = MEMORY_OBJECT_DATA_FLUSH_ALL;
1100 else
1101 flags = MEMORY_OBJECT_DATA_FLUSH;
1102 /*
1103 * invalidate the pages beyond the new EOF page
1104 *
1105 */
1106 kret = memory_object_lock_request(control,
1107 (memory_object_offset_t)lastpg,
1108 (memory_object_size_t)(olastpgend - lastpg), NULL, NULL,
1109 MEMORY_OBJECT_RETURN_NONE, flags, VM_PROT_NO_CHANGE);
1110 if (kret != KERN_SUCCESS)
1111 printf("ubc_setsize: invalidate failed (error = %d)\n", kret);
1112 }
1113 return mach_to_bsd_errno(kret);
1114 }
1115
1116 // Returns true for success
1117 int ubc_setsize(vnode_t vp, off_t nsize)
1118 {
1119 return ubc_setsize_ex(vp, nsize, 0) == 0;
1120 }
1121
1122 /*
1123 * ubc_getsize
1124 *
1125 * Get the size of the file assocated with the specified vnode
1126 *
1127 * Parameters: vp The vnode whose size is of interest
1128 *
1129 * Returns: 0 There is no ubc_info associated with
1130 * this vnode, or the size is zero
1131 * !0 The size of the file
1132 *
1133 * Notes: Using this routine, it is not possible for a caller to
1134 * successfully distinguish between a vnode associate with a zero
1135 * length file, and a vnode with no associated ubc_info. The
1136 * caller therefore needs to not care, or needs to ensure that
1137 * they have previously successfully called ubc_info_init() or
1138 * ubc_info_init_withsize().
1139 */
1140 off_t
1141 ubc_getsize(struct vnode *vp)
1142 {
1143 /* people depend on the side effect of this working this way
1144 * as they call this for directory
1145 */
1146 if (!UBCINFOEXISTS(vp))
1147 return ((off_t)0);
1148 return (vp->v_ubcinfo->ui_size);
1149 }
1150
1151
1152 /*
1153 * ubc_umount
1154 *
1155 * Call ubc_msync(vp, 0, EOF, NULL, UBC_PUSHALL) on all the vnodes for this
1156 * mount point
1157 *
1158 * Parameters: mp The mount point
1159 *
1160 * Returns: 0 Success
1161 *
1162 * Notes: There is no failure indication for this function.
1163 *
1164 * This function is used in the unmount path; since it may block
1165 * I/O indefinitely, it should not be used in the forced unmount
1166 * path, since a device unavailability could also block that
1167 * indefinitely.
1168 *
1169 * Because there is no device ejection interlock on USB, FireWire,
1170 * or similar devices, it's possible that an ejection that begins
1171 * subsequent to the vnode_iterate() completing, either on one of
1172 * those devices, or a network mount for which the server quits
1173 * responding, etc., may cause the caller to block indefinitely.
1174 */
1175 __private_extern__ int
1176 ubc_umount(struct mount *mp)
1177 {
1178 vnode_iterate(mp, 0, ubc_umcallback, 0);
1179 return(0);
1180 }
1181
1182
1183 /*
1184 * ubc_umcallback
1185 *
1186 * Used by ubc_umount() as an internal implementation detail; see ubc_umount()
1187 * and vnode_iterate() for details of implementation.
1188 */
1189 static int
1190 ubc_umcallback(vnode_t vp, __unused void * args)
1191 {
1192
1193 if (UBCINFOEXISTS(vp)) {
1194
1195 (void) ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL);
1196 }
1197 return (VNODE_RETURNED);
1198 }
1199
1200
1201 /*
1202 * ubc_getcred
1203 *
1204 * Get the credentials currently active for the ubc_info associated with the
1205 * vnode.
1206 *
1207 * Parameters: vp The vnode whose ubc_info credentials
1208 * are to be retrieved
1209 *
1210 * Returns: !NOCRED The credentials
1211 * NOCRED If there is no ubc_info for the vnode,
1212 * or if there is one, but it has not had
1213 * any credentials associated with it via
1214 * a call to ubc_setcred()
1215 */
1216 kauth_cred_t
1217 ubc_getcred(struct vnode *vp)
1218 {
1219 if (UBCINFOEXISTS(vp))
1220 return (vp->v_ubcinfo->ui_ucred);
1221
1222 return (NOCRED);
1223 }
1224
1225
1226 /*
1227 * ubc_setthreadcred
1228 *
1229 * If they are not already set, set the credentials of the ubc_info structure
1230 * associated with the vnode to those of the supplied thread; otherwise leave
1231 * them alone.
1232 *
1233 * Parameters: vp The vnode whose ubc_info creds are to
1234 * be set
1235 * p The process whose credentials are to
1236 * be used, if not running on an assumed
1237 * credential
1238 * thread The thread whose credentials are to
1239 * be used
1240 *
1241 * Returns: 1 This vnode has no associated ubc_info
1242 * 0 Success
1243 *
1244 * Notes: This function takes a proc parameter to account for bootstrap
1245 * issues where a task or thread may call this routine, either
1246 * before credentials have been initialized by bsd_init(), or if
1247 * there is no BSD info asscoiate with a mach thread yet. This
1248 * is known to happen in both the initial swap and memory mapping
1249 * calls.
1250 *
1251 * This function is generally used only in the following cases:
1252 *
1253 * o a memory mapped file via the mmap() system call
1254 * o a swap store backing file
1255 * o subsequent to a successful write via vn_write()
1256 *
1257 * The information is then used by the NFS client in order to
1258 * cons up a wire message in either the page-in or page-out path.
1259 *
1260 * There are two potential problems with the use of this API:
1261 *
1262 * o Because the write path only set it on a successful
1263 * write, there is a race window between setting the
1264 * credential and its use to evict the pages to the
1265 * remote file server
1266 *
1267 * o Because a page-in may occur prior to a write, the
1268 * credential may not be set at this time, if the page-in
1269 * is not the result of a mapping established via mmap().
1270 *
1271 * In both these cases, this will be triggered from the paging
1272 * path, which will instead use the credential of the current
1273 * process, which in this case is either the dynamic_pager or
1274 * the kernel task, both of which utilize "root" credentials.
1275 *
1276 * This may potentially permit operations to occur which should
1277 * be denied, or it may cause to be denied operations which
1278 * should be permitted, depending on the configuration of the NFS
1279 * server.
1280 */
1281 int
1282 ubc_setthreadcred(struct vnode *vp, proc_t p, thread_t thread)
1283 {
1284 struct ubc_info *uip;
1285 kauth_cred_t credp;
1286 struct uthread *uthread = get_bsdthread_info(thread);
1287
1288 if (!UBCINFOEXISTS(vp))
1289 return (1);
1290
1291 vnode_lock(vp);
1292
1293 uip = vp->v_ubcinfo;
1294 credp = uip->ui_ucred;
1295
1296 if (!IS_VALID_CRED(credp)) {
1297 /* use per-thread cred, if assumed identity, else proc cred */
1298 if (uthread == NULL || (uthread->uu_flag & UT_SETUID) == 0) {
1299 uip->ui_ucred = kauth_cred_proc_ref(p);
1300 } else {
1301 uip->ui_ucred = uthread->uu_ucred;
1302 kauth_cred_ref(uip->ui_ucred);
1303 }
1304 }
1305 vnode_unlock(vp);
1306
1307 return (0);
1308 }
1309
1310
1311 /*
1312 * ubc_setcred
1313 *
1314 * If they are not already set, set the credentials of the ubc_info structure
1315 * associated with the vnode to those of the process; otherwise leave them
1316 * alone.
1317 *
1318 * Parameters: vp The vnode whose ubc_info creds are to
1319 * be set
1320 * p The process whose credentials are to
1321 * be used
1322 *
1323 * Returns: 0 This vnode has no associated ubc_info
1324 * 1 Success
1325 *
1326 * Notes: The return values for this function are inverted from nearly
1327 * all other uses in the kernel.
1328 *
1329 * See also ubc_setthreadcred(), above.
1330 *
1331 * This function is considered deprecated, and generally should
1332 * not be used, as it is incompatible with per-thread credentials;
1333 * it exists for legacy KPI reasons.
1334 *
1335 * DEPRECATION: ubc_setcred() is being deprecated. Please use
1336 * ubc_setthreadcred() instead.
1337 */
1338 int
1339 ubc_setcred(struct vnode *vp, proc_t p)
1340 {
1341 struct ubc_info *uip;
1342 kauth_cred_t credp;
1343
1344 /* If there is no ubc_info, deny the operation */
1345 if ( !UBCINFOEXISTS(vp))
1346 return (0);
1347
1348 /*
1349 * Check to see if there is already a credential reference in the
1350 * ubc_info; if there is not, take one on the supplied credential.
1351 */
1352 vnode_lock(vp);
1353 uip = vp->v_ubcinfo;
1354 credp = uip->ui_ucred;
1355 if (!IS_VALID_CRED(credp)) {
1356 uip->ui_ucred = kauth_cred_proc_ref(p);
1357 }
1358 vnode_unlock(vp);
1359
1360 return (1);
1361 }
1362
1363 /*
1364 * ubc_getpager
1365 *
1366 * Get the pager associated with the ubc_info associated with the vnode.
1367 *
1368 * Parameters: vp The vnode to obtain the pager from
1369 *
1370 * Returns: !VNODE_PAGER_NULL The memory_object_t for the pager
1371 * VNODE_PAGER_NULL There is no ubc_info for this vnode
1372 *
1373 * Notes: For each vnode that has a ubc_info associated with it, that
1374 * ubc_info SHALL have a pager associated with it, so in the
1375 * normal case, it's impossible to return VNODE_PAGER_NULL for
1376 * a vnode with an associated ubc_info.
1377 */
1378 __private_extern__ memory_object_t
1379 ubc_getpager(struct vnode *vp)
1380 {
1381 if (UBCINFOEXISTS(vp))
1382 return (vp->v_ubcinfo->ui_pager);
1383
1384 return (0);
1385 }
1386
1387
1388 /*
1389 * ubc_getobject
1390 *
1391 * Get the memory object control associated with the ubc_info associated with
1392 * the vnode
1393 *
1394 * Parameters: vp The vnode to obtain the memory object
1395 * from
1396 * flags DEPRECATED
1397 *
1398 * Returns: !MEMORY_OBJECT_CONTROL_NULL
1399 * MEMORY_OBJECT_CONTROL_NULL
1400 *
1401 * Notes: Historically, if the flags were not "do not reactivate", this
1402 * function would look up the memory object using the pager if
1403 * it did not exist (this could be the case if the vnode had
1404 * been previously reactivated). The flags would also permit a
1405 * hold to be requested, which would have created an object
1406 * reference, if one had not already existed. This usage is
1407 * deprecated, as it would permit a race between finding and
1408 * taking the reference vs. a single reference being dropped in
1409 * another thread.
1410 */
1411 memory_object_control_t
1412 ubc_getobject(struct vnode *vp, __unused int flags)
1413 {
1414 if (UBCINFOEXISTS(vp))
1415 return((vp->v_ubcinfo->ui_control));
1416
1417 return (MEMORY_OBJECT_CONTROL_NULL);
1418 }
1419
1420 boolean_t
1421 ubc_strict_uncached_IO(struct vnode *vp)
1422 {
1423 boolean_t result = FALSE;
1424
1425 if (UBCINFOEXISTS(vp)) {
1426 result = memory_object_is_slid(vp->v_ubcinfo->ui_control);
1427 }
1428 return result;
1429 }
1430
1431 /*
1432 * ubc_blktooff
1433 *
1434 * Convert a given block number to a memory backing object (file) offset for a
1435 * given vnode
1436 *
1437 * Parameters: vp The vnode in which the block is located
1438 * blkno The block number to convert
1439 *
1440 * Returns: !-1 The offset into the backing object
1441 * -1 There is no ubc_info associated with
1442 * the vnode
1443 * -1 An error occurred in the underlying VFS
1444 * while translating the block to an
1445 * offset; the most likely cause is that
1446 * the caller specified a block past the
1447 * end of the file, but this could also be
1448 * any other error from VNOP_BLKTOOFF().
1449 *
1450 * Note: Representing the error in band loses some information, but does
1451 * not occlude a valid offset, since an off_t of -1 is normally
1452 * used to represent EOF. If we had a more reliable constant in
1453 * our header files for it (i.e. explicitly cast to an off_t), we
1454 * would use it here instead.
1455 */
1456 off_t
1457 ubc_blktooff(vnode_t vp, daddr64_t blkno)
1458 {
1459 off_t file_offset = -1;
1460 int error;
1461
1462 if (UBCINFOEXISTS(vp)) {
1463 error = VNOP_BLKTOOFF(vp, blkno, &file_offset);
1464 if (error)
1465 file_offset = -1;
1466 }
1467
1468 return (file_offset);
1469 }
1470
1471
1472 /*
1473 * ubc_offtoblk
1474 *
1475 * Convert a given offset in a memory backing object into a block number for a
1476 * given vnode
1477 *
1478 * Parameters: vp The vnode in which the offset is
1479 * located
1480 * offset The offset into the backing object
1481 *
1482 * Returns: !-1 The returned block number
1483 * -1 There is no ubc_info associated with
1484 * the vnode
1485 * -1 An error occurred in the underlying VFS
1486 * while translating the block to an
1487 * offset; the most likely cause is that
1488 * the caller specified a block past the
1489 * end of the file, but this could also be
1490 * any other error from VNOP_OFFTOBLK().
1491 *
1492 * Note: Representing the error in band loses some information, but does
1493 * not occlude a valid block number, since block numbers exceed
1494 * the valid range for offsets, due to their relative sizes. If
1495 * we had a more reliable constant than -1 in our header files
1496 * for it (i.e. explicitly cast to an daddr64_t), we would use it
1497 * here instead.
1498 */
1499 daddr64_t
1500 ubc_offtoblk(vnode_t vp, off_t offset)
1501 {
1502 daddr64_t blkno = -1;
1503 int error = 0;
1504
1505 if (UBCINFOEXISTS(vp)) {
1506 error = VNOP_OFFTOBLK(vp, offset, &blkno);
1507 if (error)
1508 blkno = -1;
1509 }
1510
1511 return (blkno);
1512 }
1513
1514
1515 /*
1516 * ubc_pages_resident
1517 *
1518 * Determine whether or not a given vnode has pages resident via the memory
1519 * object control associated with the ubc_info associated with the vnode
1520 *
1521 * Parameters: vp The vnode we want to know about
1522 *
1523 * Returns: 1 Yes
1524 * 0 No
1525 */
1526 int
1527 ubc_pages_resident(vnode_t vp)
1528 {
1529 kern_return_t kret;
1530 boolean_t has_pages_resident;
1531
1532 if (!UBCINFOEXISTS(vp))
1533 return (0);
1534
1535 /*
1536 * The following call may fail if an invalid ui_control is specified,
1537 * or if there is no VM object associated with the control object. In
1538 * either case, reacting to it as if there were no pages resident will
1539 * result in correct behavior.
1540 */
1541 kret = memory_object_pages_resident(vp->v_ubcinfo->ui_control, &has_pages_resident);
1542
1543 if (kret != KERN_SUCCESS)
1544 return (0);
1545
1546 if (has_pages_resident == TRUE)
1547 return (1);
1548
1549 return (0);
1550 }
1551
1552 /*
1553 * ubc_msync
1554 *
1555 * Clean and/or invalidate a range in the memory object that backs this vnode
1556 *
1557 * Parameters: vp The vnode whose associated ubc_info's
1558 * associated memory object is to have a
1559 * range invalidated within it
1560 * beg_off The start of the range, as an offset
1561 * end_off The end of the range, as an offset
1562 * resid_off The address of an off_t supplied by the
1563 * caller; may be set to NULL to ignore
1564 * flags See ubc_msync_internal()
1565 *
1566 * Returns: 0 Success
1567 * !0 Failure; an errno is returned
1568 *
1569 * Implicit Returns:
1570 * *resid_off, modified If non-NULL, the contents are ALWAYS
1571 * modified; they are initialized to the
1572 * beg_off, and in case of an I/O error,
1573 * the difference between beg_off and the
1574 * current value will reflect what was
1575 * able to be written before the error
1576 * occurred. If no error is returned, the
1577 * value of the resid_off is undefined; do
1578 * NOT use it in place of end_off if you
1579 * intend to increment from the end of the
1580 * last call and call iteratively.
1581 *
1582 * Notes: see ubc_msync_internal() for more detailed information.
1583 *
1584 */
1585 errno_t
1586 ubc_msync(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags)
1587 {
1588 int retval;
1589 int io_errno = 0;
1590
1591 if (resid_off)
1592 *resid_off = beg_off;
1593
1594 retval = ubc_msync_internal(vp, beg_off, end_off, resid_off, flags, &io_errno);
1595
1596 if (retval == 0 && io_errno == 0)
1597 return (EINVAL);
1598 return (io_errno);
1599 }
1600
1601
1602 /*
1603 * ubc_msync_internal
1604 *
1605 * Clean and/or invalidate a range in the memory object that backs this vnode
1606 *
1607 * Parameters: vp The vnode whose associated ubc_info's
1608 * associated memory object is to have a
1609 * range invalidated within it
1610 * beg_off The start of the range, as an offset
1611 * end_off The end of the range, as an offset
1612 * resid_off The address of an off_t supplied by the
1613 * caller; may be set to NULL to ignore
1614 * flags MUST contain at least one of the flags
1615 * UBC_INVALIDATE, UBC_PUSHDIRTY, or
1616 * UBC_PUSHALL; if UBC_PUSHDIRTY is used,
1617 * UBC_SYNC may also be specified to cause
1618 * this function to block until the
1619 * operation is complete. The behavior
1620 * of UBC_SYNC is otherwise undefined.
1621 * io_errno The address of an int to contain the
1622 * errno from a failed I/O operation, if
1623 * one occurs; may be set to NULL to
1624 * ignore
1625 *
1626 * Returns: 1 Success
1627 * 0 Failure
1628 *
1629 * Implicit Returns:
1630 * *resid_off, modified The contents of this offset MAY be
1631 * modified; in case of an I/O error, the
1632 * difference between beg_off and the
1633 * current value will reflect what was
1634 * able to be written before the error
1635 * occurred.
1636 * *io_errno, modified The contents of this offset are set to
1637 * an errno, if an error occurs; if the
1638 * caller supplies an io_errno parameter,
1639 * they should be careful to initialize it
1640 * to 0 before calling this function to
1641 * enable them to distinguish an error
1642 * with a valid *resid_off from an invalid
1643 * one, and to avoid potentially falsely
1644 * reporting an error, depending on use.
1645 *
1646 * Notes: If there is no ubc_info associated with the vnode supplied,
1647 * this function immediately returns success.
1648 *
1649 * If the value of end_off is less than or equal to beg_off, this
1650 * function immediately returns success; that is, end_off is NOT
1651 * inclusive.
1652 *
1653 * IMPORTANT: one of the flags UBC_INVALIDATE, UBC_PUSHDIRTY, or
1654 * UBC_PUSHALL MUST be specified; that is, it is NOT possible to
1655 * attempt to block on in-progress I/O by calling this function
1656 * with UBC_PUSHDIRTY, and then later call it with just UBC_SYNC
1657 * in order to block pending on the I/O already in progress.
1658 *
1659 * The start offset is truncated to the page boundary and the
1660 * size is adjusted to include the last page in the range; that
1661 * is, end_off on exactly a page boundary will not change if it
1662 * is rounded, and the range of bytes written will be from the
1663 * truncate beg_off to the rounded (end_off - 1).
1664 */
1665 static int
1666 ubc_msync_internal(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags, int *io_errno)
1667 {
1668 memory_object_size_t tsize;
1669 kern_return_t kret;
1670 int request_flags = 0;
1671 int flush_flags = MEMORY_OBJECT_RETURN_NONE;
1672
1673 if ( !UBCINFOEXISTS(vp))
1674 return (0);
1675 if ((flags & (UBC_INVALIDATE | UBC_PUSHDIRTY | UBC_PUSHALL)) == 0)
1676 return (0);
1677 if (end_off <= beg_off)
1678 return (1);
1679
1680 if (flags & UBC_INVALIDATE)
1681 /*
1682 * discard the resident pages
1683 */
1684 request_flags = (MEMORY_OBJECT_DATA_FLUSH | MEMORY_OBJECT_DATA_NO_CHANGE);
1685
1686 if (flags & UBC_SYNC)
1687 /*
1688 * wait for all the I/O to complete before returning
1689 */
1690 request_flags |= MEMORY_OBJECT_IO_SYNC;
1691
1692 if (flags & UBC_PUSHDIRTY)
1693 /*
1694 * we only return the dirty pages in the range
1695 */
1696 flush_flags = MEMORY_OBJECT_RETURN_DIRTY;
1697
1698 if (flags & UBC_PUSHALL)
1699 /*
1700 * then return all the interesting pages in the range (both
1701 * dirty and precious) to the pager
1702 */
1703 flush_flags = MEMORY_OBJECT_RETURN_ALL;
1704
1705 beg_off = trunc_page_64(beg_off);
1706 end_off = round_page_64(end_off);
1707 tsize = (memory_object_size_t)end_off - beg_off;
1708
1709 /* flush and/or invalidate pages in the range requested */
1710 kret = memory_object_lock_request(vp->v_ubcinfo->ui_control,
1711 beg_off, tsize,
1712 (memory_object_offset_t *)resid_off,
1713 io_errno, flush_flags, request_flags,
1714 VM_PROT_NO_CHANGE);
1715
1716 return ((kret == KERN_SUCCESS) ? 1 : 0);
1717 }
1718
1719
1720 /*
1721 * ubc_map
1722 *
1723 * Explicitly map a vnode that has an associate ubc_info, and add a reference
1724 * to it for the ubc system, if there isn't one already, so it will not be
1725 * recycled while it's in use, and set flags on the ubc_info to indicate that
1726 * we have done this
1727 *
1728 * Parameters: vp The vnode to map
1729 * flags The mapping flags for the vnode; this
1730 * will be a combination of one or more of
1731 * PROT_READ, PROT_WRITE, and PROT_EXEC
1732 *
1733 * Returns: 0 Success
1734 * EPERM Permission was denied
1735 *
1736 * Notes: An I/O reference on the vnode must already be held on entry
1737 *
1738 * If there is no ubc_info associated with the vnode, this function
1739 * will return success.
1740 *
1741 * If a permission error occurs, this function will return
1742 * failure; all other failures will cause this function to return
1743 * success.
1744 *
1745 * IMPORTANT: This is an internal use function, and its symbols
1746 * are not exported, hence its error checking is not very robust.
1747 * It is primarily used by:
1748 *
1749 * o mmap(), when mapping a file
1750 * o When mapping a shared file (a shared library in the
1751 * shared segment region)
1752 * o When loading a program image during the exec process
1753 *
1754 * ...all of these uses ignore the return code, and any fault that
1755 * results later because of a failure is handled in the fix-up path
1756 * of the fault handler. The interface exists primarily as a
1757 * performance hint.
1758 *
1759 * Given that third party implementation of the type of interfaces
1760 * that would use this function, such as alternative executable
1761 * formats, etc., are unsupported, this function is not exported
1762 * for general use.
1763 *
1764 * The extra reference is held until the VM system unmaps the
1765 * vnode from its own context to maintain a vnode reference in
1766 * cases like open()/mmap()/close(), which leave the backing
1767 * object referenced by a mapped memory region in a process
1768 * address space.
1769 */
1770 __private_extern__ int
1771 ubc_map(vnode_t vp, int flags)
1772 {
1773 struct ubc_info *uip;
1774 int error = 0;
1775 int need_ref = 0;
1776 int need_wakeup = 0;
1777
1778 if (UBCINFOEXISTS(vp)) {
1779
1780 vnode_lock(vp);
1781 uip = vp->v_ubcinfo;
1782
1783 while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
1784 SET(uip->ui_flags, UI_MAPWAITING);
1785 (void) msleep(&uip->ui_flags, &vp->v_lock,
1786 PRIBIO, "ubc_map", NULL);
1787 }
1788 SET(uip->ui_flags, UI_MAPBUSY);
1789 vnode_unlock(vp);
1790
1791 error = VNOP_MMAP(vp, flags, vfs_context_current());
1792
1793 /*
1794 * rdar://problem/22587101 required that we stop propagating
1795 * EPERM up the stack. Otherwise, we would have to funnel up
1796 * the error at all the call sites for memory_object_map().
1797 * The risk is in having to undo the map/object/entry state at
1798 * all these call sites. It would also affect more than just mmap()
1799 * e.g. vm_remap().
1800 *
1801 * if (error != EPERM)
1802 * error = 0;
1803 */
1804
1805 error = 0;
1806
1807 vnode_lock_spin(vp);
1808
1809 if (error == 0) {
1810 if ( !ISSET(uip->ui_flags, UI_ISMAPPED))
1811 need_ref = 1;
1812 SET(uip->ui_flags, (UI_WASMAPPED | UI_ISMAPPED));
1813 if (flags & PROT_WRITE) {
1814 SET(uip->ui_flags, UI_MAPPEDWRITE);
1815 }
1816 }
1817 CLR(uip->ui_flags, UI_MAPBUSY);
1818
1819 if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
1820 CLR(uip->ui_flags, UI_MAPWAITING);
1821 need_wakeup = 1;
1822 }
1823 vnode_unlock(vp);
1824
1825 if (need_wakeup)
1826 wakeup(&uip->ui_flags);
1827
1828 if (need_ref) {
1829 /*
1830 * Make sure we get a ref as we can't unwind from here
1831 */
1832 if (vnode_ref_ext(vp, 0, VNODE_REF_FORCE))
1833 panic("%s : VNODE_REF_FORCE failed\n", __FUNCTION__);
1834 }
1835 }
1836 return (error);
1837 }
1838
1839
1840 /*
1841 * ubc_destroy_named
1842 *
1843 * Destroy the named memory object associated with the ubc_info control object
1844 * associated with the designated vnode, if there is a ubc_info associated
1845 * with the vnode, and a control object is associated with it
1846 *
1847 * Parameters: vp The designated vnode
1848 *
1849 * Returns: (void)
1850 *
1851 * Notes: This function is called on vnode termination for all vnodes,
1852 * and must therefore not assume that there is a ubc_info that is
1853 * associated with the vnode, nor that there is a control object
1854 * associated with the ubc_info.
1855 *
1856 * If all the conditions necessary are present, this function
1857 * calls memory_object_destory(), which will in turn end up
1858 * calling ubc_unmap() to release any vnode references that were
1859 * established via ubc_map().
1860 *
1861 * IMPORTANT: This is an internal use function that is used
1862 * exclusively by the internal use function vclean().
1863 */
1864 __private_extern__ void
1865 ubc_destroy_named(vnode_t vp)
1866 {
1867 memory_object_control_t control;
1868 struct ubc_info *uip;
1869 kern_return_t kret;
1870
1871 if (UBCINFOEXISTS(vp)) {
1872 uip = vp->v_ubcinfo;
1873
1874 /* Terminate the memory object */
1875 control = ubc_getobject(vp, UBC_HOLDOBJECT);
1876 if (control != MEMORY_OBJECT_CONTROL_NULL) {
1877 kret = memory_object_destroy(control, 0);
1878 if (kret != KERN_SUCCESS)
1879 panic("ubc_destroy_named: memory_object_destroy failed");
1880 }
1881 }
1882 }
1883
1884
1885 /*
1886 * ubc_isinuse
1887 *
1888 * Determine whether or not a vnode is currently in use by ubc at a level in
1889 * excess of the requested busycount
1890 *
1891 * Parameters: vp The vnode to check
1892 * busycount The threshold busy count, used to bias
1893 * the count usually already held by the
1894 * caller to avoid races
1895 *
1896 * Returns: 1 The vnode is in use over the threshold
1897 * 0 The vnode is not in use over the
1898 * threshold
1899 *
1900 * Notes: Because the vnode is only held locked while actually asking
1901 * the use count, this function only represents a snapshot of the
1902 * current state of the vnode. If more accurate information is
1903 * required, an additional busycount should be held by the caller
1904 * and a non-zero busycount used.
1905 *
1906 * If there is no ubc_info associated with the vnode, this
1907 * function will report that the vnode is not in use by ubc.
1908 */
1909 int
1910 ubc_isinuse(struct vnode *vp, int busycount)
1911 {
1912 if ( !UBCINFOEXISTS(vp))
1913 return (0);
1914 return(ubc_isinuse_locked(vp, busycount, 0));
1915 }
1916
1917
1918 /*
1919 * ubc_isinuse_locked
1920 *
1921 * Determine whether or not a vnode is currently in use by ubc at a level in
1922 * excess of the requested busycount
1923 *
1924 * Parameters: vp The vnode to check
1925 * busycount The threshold busy count, used to bias
1926 * the count usually already held by the
1927 * caller to avoid races
1928 * locked True if the vnode is already locked by
1929 * the caller
1930 *
1931 * Returns: 1 The vnode is in use over the threshold
1932 * 0 The vnode is not in use over the
1933 * threshold
1934 *
1935 * Notes: If the vnode is not locked on entry, it is locked while
1936 * actually asking the use count. If this is the case, this
1937 * function only represents a snapshot of the current state of
1938 * the vnode. If more accurate information is required, the
1939 * vnode lock should be held by the caller, otherwise an
1940 * additional busycount should be held by the caller and a
1941 * non-zero busycount used.
1942 *
1943 * If there is no ubc_info associated with the vnode, this
1944 * function will report that the vnode is not in use by ubc.
1945 */
1946 int
1947 ubc_isinuse_locked(struct vnode *vp, int busycount, int locked)
1948 {
1949 int retval = 0;
1950
1951
1952 if (!locked)
1953 vnode_lock_spin(vp);
1954
1955 if ((vp->v_usecount - vp->v_kusecount) > busycount)
1956 retval = 1;
1957
1958 if (!locked)
1959 vnode_unlock(vp);
1960 return (retval);
1961 }
1962
1963
1964 /*
1965 * ubc_unmap
1966 *
1967 * Reverse the effects of a ubc_map() call for a given vnode
1968 *
1969 * Parameters: vp vnode to unmap from ubc
1970 *
1971 * Returns: (void)
1972 *
1973 * Notes: This is an internal use function used by vnode_pager_unmap().
1974 * It will attempt to obtain a reference on the supplied vnode,
1975 * and if it can do so, and there is an associated ubc_info, and
1976 * the flags indicate that it was mapped via ubc_map(), then the
1977 * flag is cleared, the mapping removed, and the reference taken
1978 * by ubc_map() is released.
1979 *
1980 * IMPORTANT: This MUST only be called by the VM
1981 * to prevent race conditions.
1982 */
1983 __private_extern__ void
1984 ubc_unmap(struct vnode *vp)
1985 {
1986 struct ubc_info *uip;
1987 int need_rele = 0;
1988 int need_wakeup = 0;
1989
1990 if (vnode_getwithref(vp))
1991 return;
1992
1993 if (UBCINFOEXISTS(vp)) {
1994 bool want_fsevent = false;
1995
1996 vnode_lock(vp);
1997 uip = vp->v_ubcinfo;
1998
1999 while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
2000 SET(uip->ui_flags, UI_MAPWAITING);
2001 (void) msleep(&uip->ui_flags, &vp->v_lock,
2002 PRIBIO, "ubc_unmap", NULL);
2003 }
2004 SET(uip->ui_flags, UI_MAPBUSY);
2005
2006 if (ISSET(uip->ui_flags, UI_ISMAPPED)) {
2007 if (ISSET(uip->ui_flags, UI_MAPPEDWRITE))
2008 want_fsevent = true;
2009
2010 need_rele = 1;
2011
2012 /*
2013 * We want to clear the mapped flags after we've called
2014 * VNOP_MNOMAP to avoid certain races and allow
2015 * VNOP_MNOMAP to call ubc_is_mapped_writable.
2016 */
2017 }
2018 vnode_unlock(vp);
2019
2020 if (need_rele) {
2021 vfs_context_t ctx = vfs_context_current();
2022
2023 (void)VNOP_MNOMAP(vp, ctx);
2024
2025 #if CONFIG_FSE
2026 /*
2027 * Why do we want an fsevent here? Normally the
2028 * content modified fsevent is posted when a file is
2029 * closed and only if it's written to via conventional
2030 * means. It's perfectly legal to close a file and
2031 * keep your mappings and we don't currently track
2032 * whether it was written to via a mapping.
2033 * Therefore, we need to post an fsevent here if the
2034 * file was mapped writable. This may result in false
2035 * events, i.e. we post a notification when nothing
2036 * has really changed.
2037 */
2038 if (want_fsevent && need_fsevent(FSE_CONTENT_MODIFIED, vp)) {
2039 add_fsevent(FSE_CONTENT_MODIFIED, ctx,
2040 FSE_ARG_VNODE, vp,
2041 FSE_ARG_DONE);
2042 }
2043 #endif
2044
2045 vnode_rele(vp);
2046 }
2047
2048 vnode_lock_spin(vp);
2049
2050 if (need_rele)
2051 CLR(uip->ui_flags, UI_ISMAPPED | UI_MAPPEDWRITE);
2052
2053 CLR(uip->ui_flags, UI_MAPBUSY);
2054
2055 if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
2056 CLR(uip->ui_flags, UI_MAPWAITING);
2057 need_wakeup = 1;
2058 }
2059 vnode_unlock(vp);
2060
2061 if (need_wakeup)
2062 wakeup(&uip->ui_flags);
2063
2064 }
2065 /*
2066 * the drop of the vnode ref will cleanup
2067 */
2068 vnode_put(vp);
2069 }
2070
2071
2072 /*
2073 * ubc_page_op
2074 *
2075 * Manipulate individual page state for a vnode with an associated ubc_info
2076 * with an associated memory object control.
2077 *
2078 * Parameters: vp The vnode backing the page
2079 * f_offset A file offset interior to the page
2080 * ops The operations to perform, as a bitmap
2081 * (see below for more information)
2082 * phys_entryp The address of a ppnum_t; may be NULL
2083 * to ignore
2084 * flagsp A pointer to an int to contain flags;
2085 * may be NULL to ignore
2086 *
2087 * Returns: KERN_SUCCESS Success
2088 * KERN_INVALID_ARGUMENT If the memory object control has no VM
2089 * object associated
2090 * KERN_INVALID_OBJECT If UPL_POP_PHYSICAL and the object is
2091 * not physically contiguous
2092 * KERN_INVALID_OBJECT If !UPL_POP_PHYSICAL and the object is
2093 * physically contiguous
2094 * KERN_FAILURE If the page cannot be looked up
2095 *
2096 * Implicit Returns:
2097 * *phys_entryp (modified) If phys_entryp is non-NULL and
2098 * UPL_POP_PHYSICAL
2099 * *flagsp (modified) If flagsp is non-NULL and there was
2100 * !UPL_POP_PHYSICAL and a KERN_SUCCESS
2101 *
2102 * Notes: For object boundaries, it is considerably more efficient to
2103 * ensure that f_offset is in fact on a page boundary, as this
2104 * will avoid internal use of the hash table to identify the
2105 * page, and would therefore skip a number of early optimizations.
2106 * Since this is a page operation anyway, the caller should try
2107 * to pass only a page aligned offset because of this.
2108 *
2109 * *flagsp may be modified even if this function fails. If it is
2110 * modified, it will contain the condition of the page before the
2111 * requested operation was attempted; these will only include the
2112 * bitmap flags, and not the PL_POP_PHYSICAL, UPL_POP_DUMP,
2113 * UPL_POP_SET, or UPL_POP_CLR bits.
2114 *
2115 * The flags field may contain a specific operation, such as
2116 * UPL_POP_PHYSICAL or UPL_POP_DUMP:
2117 *
2118 * o UPL_POP_PHYSICAL Fail if not contiguous; if
2119 * *phys_entryp and successful, set
2120 * *phys_entryp
2121 * o UPL_POP_DUMP Dump the specified page
2122 *
2123 * Otherwise, it is treated as a bitmap of one or more page
2124 * operations to perform on the final memory object; allowable
2125 * bit values are:
2126 *
2127 * o UPL_POP_DIRTY The page is dirty
2128 * o UPL_POP_PAGEOUT The page is paged out
2129 * o UPL_POP_PRECIOUS The page is precious
2130 * o UPL_POP_ABSENT The page is absent
2131 * o UPL_POP_BUSY The page is busy
2132 *
2133 * If the page status is only being queried and not modified, then
2134 * not other bits should be specified. However, if it is being
2135 * modified, exactly ONE of the following bits should be set:
2136 *
2137 * o UPL_POP_SET Set the current bitmap bits
2138 * o UPL_POP_CLR Clear the current bitmap bits
2139 *
2140 * Thus to effect a combination of setting an clearing, it may be
2141 * necessary to call this function twice. If this is done, the
2142 * set should be used before the clear, since clearing may trigger
2143 * a wakeup on the destination page, and if the page is backed by
2144 * an encrypted swap file, setting will trigger the decryption
2145 * needed before the wakeup occurs.
2146 */
2147 kern_return_t
2148 ubc_page_op(
2149 struct vnode *vp,
2150 off_t f_offset,
2151 int ops,
2152 ppnum_t *phys_entryp,
2153 int *flagsp)
2154 {
2155 memory_object_control_t control;
2156
2157 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2158 if (control == MEMORY_OBJECT_CONTROL_NULL)
2159 return KERN_INVALID_ARGUMENT;
2160
2161 return (memory_object_page_op(control,
2162 (memory_object_offset_t)f_offset,
2163 ops,
2164 phys_entryp,
2165 flagsp));
2166 }
2167
2168
2169 /*
2170 * ubc_range_op
2171 *
2172 * Manipulate page state for a range of memory for a vnode with an associated
2173 * ubc_info with an associated memory object control, when page level state is
2174 * not required to be returned from the call (i.e. there are no phys_entryp or
2175 * flagsp parameters to this call, and it takes a range which may contain
2176 * multiple pages, rather than an offset interior to a single page).
2177 *
2178 * Parameters: vp The vnode backing the page
2179 * f_offset_beg A file offset interior to the start page
2180 * f_offset_end A file offset interior to the end page
2181 * ops The operations to perform, as a bitmap
2182 * (see below for more information)
2183 * range The address of an int; may be NULL to
2184 * ignore
2185 *
2186 * Returns: KERN_SUCCESS Success
2187 * KERN_INVALID_ARGUMENT If the memory object control has no VM
2188 * object associated
2189 * KERN_INVALID_OBJECT If the object is physically contiguous
2190 *
2191 * Implicit Returns:
2192 * *range (modified) If range is non-NULL, its contents will
2193 * be modified to contain the number of
2194 * bytes successfully operated upon.
2195 *
2196 * Notes: IMPORTANT: This function cannot be used on a range that
2197 * consists of physically contiguous pages.
2198 *
2199 * For object boundaries, it is considerably more efficient to
2200 * ensure that f_offset_beg and f_offset_end are in fact on page
2201 * boundaries, as this will avoid internal use of the hash table
2202 * to identify the page, and would therefore skip a number of
2203 * early optimizations. Since this is an operation on a set of
2204 * pages anyway, the caller should try to pass only a page aligned
2205 * offsets because of this.
2206 *
2207 * *range will be modified only if this function succeeds.
2208 *
2209 * The flags field MUST contain a specific operation; allowable
2210 * values are:
2211 *
2212 * o UPL_ROP_ABSENT Returns the extent of the range
2213 * presented which is absent, starting
2214 * with the start address presented
2215 *
2216 * o UPL_ROP_PRESENT Returns the extent of the range
2217 * presented which is present (resident),
2218 * starting with the start address
2219 * presented
2220 * o UPL_ROP_DUMP Dump the pages which are found in the
2221 * target object for the target range.
2222 *
2223 * IMPORTANT: For UPL_ROP_ABSENT and UPL_ROP_PRESENT; if there are
2224 * multiple regions in the range, only the first matching region
2225 * is returned.
2226 */
2227 kern_return_t
2228 ubc_range_op(
2229 struct vnode *vp,
2230 off_t f_offset_beg,
2231 off_t f_offset_end,
2232 int ops,
2233 int *range)
2234 {
2235 memory_object_control_t control;
2236
2237 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2238 if (control == MEMORY_OBJECT_CONTROL_NULL)
2239 return KERN_INVALID_ARGUMENT;
2240
2241 return (memory_object_range_op(control,
2242 (memory_object_offset_t)f_offset_beg,
2243 (memory_object_offset_t)f_offset_end,
2244 ops,
2245 range));
2246 }
2247
2248
2249 /*
2250 * ubc_create_upl
2251 *
2252 * Given a vnode, cause the population of a portion of the vm_object; based on
2253 * the nature of the request, the pages returned may contain valid data, or
2254 * they may be uninitialized.
2255 *
2256 * Parameters: vp The vnode from which to create the upl
2257 * f_offset The start offset into the backing store
2258 * represented by the vnode
2259 * bufsize The size of the upl to create
2260 * uplp Pointer to the upl_t to receive the
2261 * created upl; MUST NOT be NULL
2262 * plp Pointer to receive the internal page
2263 * list for the created upl; MAY be NULL
2264 * to ignore
2265 *
2266 * Returns: KERN_SUCCESS The requested upl has been created
2267 * KERN_INVALID_ARGUMENT The bufsize argument is not an even
2268 * multiple of the page size
2269 * KERN_INVALID_ARGUMENT There is no ubc_info associated with
2270 * the vnode, or there is no memory object
2271 * control associated with the ubc_info
2272 * memory_object_upl_request:KERN_INVALID_VALUE
2273 * The supplied upl_flags argument is
2274 * invalid
2275 * Implicit Returns:
2276 * *uplp (modified)
2277 * *plp (modified) If non-NULL, the value of *plp will be
2278 * modified to point to the internal page
2279 * list; this modification may occur even
2280 * if this function is unsuccessful, in
2281 * which case the contents may be invalid
2282 *
2283 * Note: If successful, the returned *uplp MUST subsequently be freed
2284 * via a call to ubc_upl_commit(), ubc_upl_commit_range(),
2285 * ubc_upl_abort(), or ubc_upl_abort_range().
2286 */
2287 kern_return_t
2288 ubc_create_upl(
2289 struct vnode *vp,
2290 off_t f_offset,
2291 int bufsize,
2292 upl_t *uplp,
2293 upl_page_info_t **plp,
2294 int uplflags)
2295 {
2296 memory_object_control_t control;
2297 kern_return_t kr;
2298
2299 if (plp != NULL)
2300 *plp = NULL;
2301 *uplp = NULL;
2302
2303 if (bufsize & 0xfff)
2304 return KERN_INVALID_ARGUMENT;
2305
2306 if (bufsize > MAX_UPL_SIZE_BYTES)
2307 return KERN_INVALID_ARGUMENT;
2308
2309 if (uplflags & (UPL_UBC_MSYNC | UPL_UBC_PAGEOUT | UPL_UBC_PAGEIN)) {
2310
2311 if (uplflags & UPL_UBC_MSYNC) {
2312 uplflags &= UPL_RET_ONLY_DIRTY;
2313
2314 uplflags |= UPL_COPYOUT_FROM | UPL_CLEAN_IN_PLACE |
2315 UPL_SET_INTERNAL | UPL_SET_LITE;
2316
2317 } else if (uplflags & UPL_UBC_PAGEOUT) {
2318 uplflags &= UPL_RET_ONLY_DIRTY;
2319
2320 if (uplflags & UPL_RET_ONLY_DIRTY)
2321 uplflags |= UPL_NOBLOCK;
2322
2323 uplflags |= UPL_FOR_PAGEOUT | UPL_CLEAN_IN_PLACE |
2324 UPL_COPYOUT_FROM | UPL_SET_INTERNAL | UPL_SET_LITE;
2325 } else {
2326 uplflags |= UPL_RET_ONLY_ABSENT |
2327 UPL_NO_SYNC | UPL_CLEAN_IN_PLACE |
2328 UPL_SET_INTERNAL | UPL_SET_LITE;
2329
2330 /*
2331 * if the requested size == PAGE_SIZE, we don't want to set
2332 * the UPL_NOBLOCK since we may be trying to recover from a
2333 * previous partial pagein I/O that occurred because we were low
2334 * on memory and bailed early in order to honor the UPL_NOBLOCK...
2335 * since we're only asking for a single page, we can block w/o fear
2336 * of tying up pages while waiting for more to become available
2337 */
2338 if (bufsize > PAGE_SIZE)
2339 uplflags |= UPL_NOBLOCK;
2340 }
2341 } else {
2342 uplflags &= ~UPL_FOR_PAGEOUT;
2343
2344 if (uplflags & UPL_WILL_BE_DUMPED) {
2345 uplflags &= ~UPL_WILL_BE_DUMPED;
2346 uplflags |= (UPL_NO_SYNC|UPL_SET_INTERNAL);
2347 } else
2348 uplflags |= (UPL_NO_SYNC|UPL_CLEAN_IN_PLACE|UPL_SET_INTERNAL);
2349 }
2350 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2351 if (control == MEMORY_OBJECT_CONTROL_NULL)
2352 return KERN_INVALID_ARGUMENT;
2353
2354 kr = memory_object_upl_request(control, f_offset, bufsize, uplp, NULL, NULL, uplflags);
2355 if (kr == KERN_SUCCESS && plp != NULL)
2356 *plp = UPL_GET_INTERNAL_PAGE_LIST(*uplp);
2357 return kr;
2358 }
2359
2360
2361 /*
2362 * ubc_upl_maxbufsize
2363 *
2364 * Return the maximum bufsize ubc_create_upl( ) will take.
2365 *
2366 * Parameters: none
2367 *
2368 * Returns: maximum size buffer (in bytes) ubc_create_upl( ) will take.
2369 */
2370 upl_size_t
2371 ubc_upl_maxbufsize(
2372 void)
2373 {
2374 return(MAX_UPL_SIZE_BYTES);
2375 }
2376
2377 /*
2378 * ubc_upl_map
2379 *
2380 * Map the page list assocated with the supplied upl into the kernel virtual
2381 * address space at the virtual address indicated by the dst_addr argument;
2382 * the entire upl is mapped
2383 *
2384 * Parameters: upl The upl to map
2385 * dst_addr The address at which to map the upl
2386 *
2387 * Returns: KERN_SUCCESS The upl has been mapped
2388 * KERN_INVALID_ARGUMENT The upl is UPL_NULL
2389 * KERN_FAILURE The upl is already mapped
2390 * vm_map_enter:KERN_INVALID_ARGUMENT
2391 * A failure code from vm_map_enter() due
2392 * to an invalid argument
2393 */
2394 kern_return_t
2395 ubc_upl_map(
2396 upl_t upl,
2397 vm_offset_t *dst_addr)
2398 {
2399 return (vm_upl_map(kernel_map, upl, dst_addr));
2400 }
2401
2402
2403 /*
2404 * ubc_upl_unmap
2405 *
2406 * Unmap the page list assocated with the supplied upl from the kernel virtual
2407 * address space; the entire upl is unmapped.
2408 *
2409 * Parameters: upl The upl to unmap
2410 *
2411 * Returns: KERN_SUCCESS The upl has been unmapped
2412 * KERN_FAILURE The upl is not currently mapped
2413 * KERN_INVALID_ARGUMENT If the upl is UPL_NULL
2414 */
2415 kern_return_t
2416 ubc_upl_unmap(
2417 upl_t upl)
2418 {
2419 return(vm_upl_unmap(kernel_map, upl));
2420 }
2421
2422
2423 /*
2424 * ubc_upl_commit
2425 *
2426 * Commit the contents of the upl to the backing store
2427 *
2428 * Parameters: upl The upl to commit
2429 *
2430 * Returns: KERN_SUCCESS The upl has been committed
2431 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2432 * KERN_FAILURE The supplied upl does not represent
2433 * device memory, and the offset plus the
2434 * size would exceed the actual size of
2435 * the upl
2436 *
2437 * Notes: In practice, the only return value for this function should be
2438 * KERN_SUCCESS, unless there has been data structure corruption;
2439 * since the upl is deallocated regardless of success or failure,
2440 * there's really nothing to do about this other than panic.
2441 *
2442 * IMPORTANT: Use of this function should not be mixed with use of
2443 * ubc_upl_commit_range(), due to the unconditional deallocation
2444 * by this function.
2445 */
2446 kern_return_t
2447 ubc_upl_commit(
2448 upl_t upl)
2449 {
2450 upl_page_info_t *pl;
2451 kern_return_t kr;
2452
2453 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2454 kr = upl_commit(upl, pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT);
2455 upl_deallocate(upl);
2456 return kr;
2457 }
2458
2459
2460 /*
2461 * ubc_upl_commit
2462 *
2463 * Commit the contents of the specified range of the upl to the backing store
2464 *
2465 * Parameters: upl The upl to commit
2466 * offset The offset into the upl
2467 * size The size of the region to be committed,
2468 * starting at the specified offset
2469 * flags commit type (see below)
2470 *
2471 * Returns: KERN_SUCCESS The range has been committed
2472 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2473 * KERN_FAILURE The supplied upl does not represent
2474 * device memory, and the offset plus the
2475 * size would exceed the actual size of
2476 * the upl
2477 *
2478 * Notes: IMPORTANT: If the commit is successful, and the object is now
2479 * empty, the upl will be deallocated. Since the caller cannot
2480 * check that this is the case, the UPL_COMMIT_FREE_ON_EMPTY flag
2481 * should generally only be used when the offset is 0 and the size
2482 * is equal to the upl size.
2483 *
2484 * The flags argument is a bitmap of flags on the rage of pages in
2485 * the upl to be committed; allowable flags are:
2486 *
2487 * o UPL_COMMIT_FREE_ON_EMPTY Free the upl when it is
2488 * both empty and has been
2489 * successfully committed
2490 * o UPL_COMMIT_CLEAR_DIRTY Clear each pages dirty
2491 * bit; will prevent a
2492 * later pageout
2493 * o UPL_COMMIT_SET_DIRTY Set each pages dirty
2494 * bit; will cause a later
2495 * pageout
2496 * o UPL_COMMIT_INACTIVATE Clear each pages
2497 * reference bit; the page
2498 * will not be accessed
2499 * o UPL_COMMIT_ALLOW_ACCESS Unbusy each page; pages
2500 * become busy when an
2501 * IOMemoryDescriptor is
2502 * mapped or redirected,
2503 * and we have to wait for
2504 * an IOKit driver
2505 *
2506 * The flag UPL_COMMIT_NOTIFY_EMPTY is used internally, and should
2507 * not be specified by the caller.
2508 *
2509 * The UPL_COMMIT_CLEAR_DIRTY and UPL_COMMIT_SET_DIRTY flags are
2510 * mutually exclusive, and should not be combined.
2511 */
2512 kern_return_t
2513 ubc_upl_commit_range(
2514 upl_t upl,
2515 upl_offset_t offset,
2516 upl_size_t size,
2517 int flags)
2518 {
2519 upl_page_info_t *pl;
2520 boolean_t empty;
2521 kern_return_t kr;
2522
2523 if (flags & UPL_COMMIT_FREE_ON_EMPTY)
2524 flags |= UPL_COMMIT_NOTIFY_EMPTY;
2525
2526 if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) {
2527 return KERN_INVALID_ARGUMENT;
2528 }
2529
2530 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2531
2532 kr = upl_commit_range(upl, offset, size, flags,
2533 pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT, &empty);
2534
2535 if((flags & UPL_COMMIT_FREE_ON_EMPTY) && empty)
2536 upl_deallocate(upl);
2537
2538 return kr;
2539 }
2540
2541
2542 /*
2543 * ubc_upl_abort_range
2544 *
2545 * Abort the contents of the specified range of the specified upl
2546 *
2547 * Parameters: upl The upl to abort
2548 * offset The offset into the upl
2549 * size The size of the region to be aborted,
2550 * starting at the specified offset
2551 * abort_flags abort type (see below)
2552 *
2553 * Returns: KERN_SUCCESS The range has been aborted
2554 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2555 * KERN_FAILURE The supplied upl does not represent
2556 * device memory, and the offset plus the
2557 * size would exceed the actual size of
2558 * the upl
2559 *
2560 * Notes: IMPORTANT: If the abort is successful, and the object is now
2561 * empty, the upl will be deallocated. Since the caller cannot
2562 * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
2563 * should generally only be used when the offset is 0 and the size
2564 * is equal to the upl size.
2565 *
2566 * The abort_flags argument is a bitmap of flags on the range of
2567 * pages in the upl to be aborted; allowable flags are:
2568 *
2569 * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
2570 * empty and has been successfully
2571 * aborted
2572 * o UPL_ABORT_RESTART The operation must be restarted
2573 * o UPL_ABORT_UNAVAILABLE The pages are unavailable
2574 * o UPL_ABORT_ERROR An I/O error occurred
2575 * o UPL_ABORT_DUMP_PAGES Just free the pages
2576 * o UPL_ABORT_NOTIFY_EMPTY RESERVED
2577 * o UPL_ABORT_ALLOW_ACCESS RESERVED
2578 *
2579 * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
2580 * not be specified by the caller. It is intended to fulfill the
2581 * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
2582 * ubc_upl_commit_range(), but is never referenced internally.
2583 *
2584 * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
2585 * referenced; do not use it.
2586 */
2587 kern_return_t
2588 ubc_upl_abort_range(
2589 upl_t upl,
2590 upl_offset_t offset,
2591 upl_size_t size,
2592 int abort_flags)
2593 {
2594 kern_return_t kr;
2595 boolean_t empty = FALSE;
2596
2597 if (abort_flags & UPL_ABORT_FREE_ON_EMPTY)
2598 abort_flags |= UPL_ABORT_NOTIFY_EMPTY;
2599
2600 kr = upl_abort_range(upl, offset, size, abort_flags, &empty);
2601
2602 if((abort_flags & UPL_ABORT_FREE_ON_EMPTY) && empty)
2603 upl_deallocate(upl);
2604
2605 return kr;
2606 }
2607
2608
2609 /*
2610 * ubc_upl_abort
2611 *
2612 * Abort the contents of the specified upl
2613 *
2614 * Parameters: upl The upl to abort
2615 * abort_type abort type (see below)
2616 *
2617 * Returns: KERN_SUCCESS The range has been aborted
2618 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2619 * KERN_FAILURE The supplied upl does not represent
2620 * device memory, and the offset plus the
2621 * size would exceed the actual size of
2622 * the upl
2623 *
2624 * Notes: IMPORTANT: If the abort is successful, and the object is now
2625 * empty, the upl will be deallocated. Since the caller cannot
2626 * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
2627 * should generally only be used when the offset is 0 and the size
2628 * is equal to the upl size.
2629 *
2630 * The abort_type is a bitmap of flags on the range of
2631 * pages in the upl to be aborted; allowable flags are:
2632 *
2633 * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
2634 * empty and has been successfully
2635 * aborted
2636 * o UPL_ABORT_RESTART The operation must be restarted
2637 * o UPL_ABORT_UNAVAILABLE The pages are unavailable
2638 * o UPL_ABORT_ERROR An I/O error occurred
2639 * o UPL_ABORT_DUMP_PAGES Just free the pages
2640 * o UPL_ABORT_NOTIFY_EMPTY RESERVED
2641 * o UPL_ABORT_ALLOW_ACCESS RESERVED
2642 *
2643 * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
2644 * not be specified by the caller. It is intended to fulfill the
2645 * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
2646 * ubc_upl_commit_range(), but is never referenced internally.
2647 *
2648 * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
2649 * referenced; do not use it.
2650 */
2651 kern_return_t
2652 ubc_upl_abort(
2653 upl_t upl,
2654 int abort_type)
2655 {
2656 kern_return_t kr;
2657
2658 kr = upl_abort(upl, abort_type);
2659 upl_deallocate(upl);
2660 return kr;
2661 }
2662
2663
2664 /*
2665 * ubc_upl_pageinfo
2666 *
2667 * Retrieve the internal page list for the specified upl
2668 *
2669 * Parameters: upl The upl to obtain the page list from
2670 *
2671 * Returns: !NULL The (upl_page_info_t *) for the page
2672 * list internal to the upl
2673 * NULL Error/no page list associated
2674 *
2675 * Notes: IMPORTANT: The function is only valid on internal objects
2676 * where the list request was made with the UPL_INTERNAL flag.
2677 *
2678 * This function is a utility helper function, since some callers
2679 * may not have direct access to the header defining the macro,
2680 * due to abstraction layering constraints.
2681 */
2682 upl_page_info_t *
2683 ubc_upl_pageinfo(
2684 upl_t upl)
2685 {
2686 return (UPL_GET_INTERNAL_PAGE_LIST(upl));
2687 }
2688
2689
2690 int
2691 UBCINFOEXISTS(const struct vnode * vp)
2692 {
2693 return((vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo != UBC_INFO_NULL));
2694 }
2695
2696
2697 void
2698 ubc_upl_range_needed(
2699 upl_t upl,
2700 int index,
2701 int count)
2702 {
2703 upl_range_needed(upl, index, count);
2704 }
2705
2706 boolean_t ubc_is_mapped(const struct vnode *vp, boolean_t *writable)
2707 {
2708 if (!UBCINFOEXISTS(vp) || !ISSET(vp->v_ubcinfo->ui_flags, UI_ISMAPPED))
2709 return FALSE;
2710 if (writable)
2711 *writable = ISSET(vp->v_ubcinfo->ui_flags, UI_MAPPEDWRITE);
2712 return TRUE;
2713 }
2714
2715 boolean_t ubc_is_mapped_writable(const struct vnode *vp)
2716 {
2717 boolean_t writable;
2718 return ubc_is_mapped(vp, &writable) && writable;
2719 }
2720
2721
2722 /*
2723 * CODE SIGNING
2724 */
2725 static volatile SInt32 cs_blob_size = 0;
2726 static volatile SInt32 cs_blob_count = 0;
2727 static SInt32 cs_blob_size_peak = 0;
2728 static UInt32 cs_blob_size_max = 0;
2729 static SInt32 cs_blob_count_peak = 0;
2730
2731 SYSCTL_INT(_vm, OID_AUTO, cs_blob_count, CTLFLAG_RD | CTLFLAG_LOCKED, (int *)(uintptr_t)&cs_blob_count, 0, "Current number of code signature blobs");
2732 SYSCTL_INT(_vm, OID_AUTO, cs_blob_size, CTLFLAG_RD | CTLFLAG_LOCKED, (int *)(uintptr_t)&cs_blob_size, 0, "Current size of all code signature blobs");
2733 SYSCTL_INT(_vm, OID_AUTO, cs_blob_count_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_count_peak, 0, "Peak number of code signature blobs");
2734 SYSCTL_INT(_vm, OID_AUTO, cs_blob_size_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_peak, 0, "Peak size of code signature blobs");
2735 SYSCTL_INT(_vm, OID_AUTO, cs_blob_size_max, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_max, 0, "Size of biggest code signature blob");
2736
2737 /*
2738 * Function: csblob_parse_teamid
2739 *
2740 * Description: This function returns a pointer to the team id
2741 stored within the codedirectory of the csblob.
2742 If the codedirectory predates team-ids, it returns
2743 NULL.
2744 This does not copy the name but returns a pointer to
2745 it within the CD. Subsequently, the CD must be
2746 available when this is used.
2747 */
2748
2749 static const char *
2750 csblob_parse_teamid(struct cs_blob *csblob)
2751 {
2752 const CS_CodeDirectory *cd;
2753
2754 cd = csblob->csb_cd;
2755
2756 if (ntohl(cd->version) < CS_SUPPORTSTEAMID)
2757 return NULL;
2758
2759 if (cd->teamOffset == 0)
2760 return NULL;
2761
2762 const char *name = ((const char *)cd) + ntohl(cd->teamOffset);
2763 if (cs_debug > 1)
2764 printf("found team-id %s in cdblob\n", name);
2765
2766 return name;
2767 }
2768
2769
2770 kern_return_t
2771 ubc_cs_blob_allocate(
2772 vm_offset_t *blob_addr_p,
2773 vm_size_t *blob_size_p)
2774 {
2775 kern_return_t kr;
2776
2777 *blob_addr_p = (vm_offset_t) kalloc_tag(*blob_size_p, VM_KERN_MEMORY_SECURITY);
2778 if (*blob_addr_p == 0) {
2779 kr = KERN_NO_SPACE;
2780 } else {
2781 kr = KERN_SUCCESS;
2782 }
2783 return kr;
2784 }
2785
2786 void
2787 ubc_cs_blob_deallocate(
2788 vm_offset_t blob_addr,
2789 vm_size_t blob_size)
2790 {
2791 kfree((void *) blob_addr, blob_size);
2792 }
2793
2794 /*
2795 * Some codesigned files use a lowest common denominator page size of
2796 * 4KiB, but can be used on systems that have a runtime page size of
2797 * 16KiB. Since faults will only occur on 16KiB ranges in
2798 * cs_validate_range(), we can convert the original Code Directory to
2799 * a multi-level scheme where groups of 4 hashes are combined to form
2800 * a new hash, which represents 16KiB in the on-disk file. This can
2801 * reduce the wired memory requirement for the Code Directory by
2802 * 75%. Care must be taken for binaries that use the "fourk" VM pager
2803 * for unaligned access, which may still attempt to validate on
2804 * non-16KiB multiples for compatibility with 3rd party binaries.
2805 */
2806 static boolean_t
2807 ubc_cs_supports_multilevel_hash(struct cs_blob *blob)
2808 {
2809 const CS_CodeDirectory *cd;
2810
2811 /*
2812 * Only applies to binaries that ship as part of the OS,
2813 * primarily the shared cache.
2814 */
2815 if (!blob->csb_platform_binary || blob->csb_teamid != NULL) {
2816 return FALSE;
2817 }
2818
2819 /*
2820 * If the runtime page size matches the code signing page
2821 * size, there is no work to do.
2822 */
2823 if (PAGE_SHIFT <= blob->csb_hash_pageshift) {
2824 return FALSE;
2825 }
2826
2827 cd = blob->csb_cd;
2828
2829 /*
2830 * There must be a valid integral multiple of hashes
2831 */
2832 if (ntohl(cd->nCodeSlots) & (PAGE_MASK >> blob->csb_hash_pageshift)) {
2833 return FALSE;
2834 }
2835
2836 /*
2837 * Scatter lists must also have ranges that have an integral number of hashes
2838 */
2839 if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
2840
2841 const SC_Scatter *scatter = (const SC_Scatter*)
2842 ((const char*)cd + ntohl(cd->scatterOffset));
2843 /* iterate all scatter structs to make sure they are all aligned */
2844 do {
2845 uint32_t sbase = ntohl(scatter->base);
2846 uint32_t scount = ntohl(scatter->count);
2847
2848 /* last scatter? */
2849 if (scount == 0) {
2850 break;
2851 }
2852
2853 if (sbase & (PAGE_MASK >> blob->csb_hash_pageshift)) {
2854 return FALSE;
2855 }
2856
2857 if (scount & (PAGE_MASK >> blob->csb_hash_pageshift)) {
2858 return FALSE;
2859 }
2860
2861 scatter++;
2862 } while(1);
2863 }
2864
2865 /* Covered range must be a multiple of the new page size */
2866 if (ntohl(cd->codeLimit) & PAGE_MASK) {
2867 return FALSE;
2868 }
2869
2870 /* All checks pass */
2871 return TRUE;
2872 }
2873
2874 /*
2875 * All state and preconditions were checked before, so this
2876 * function cannot fail.
2877 */
2878 static void
2879 ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob)
2880 {
2881 const CS_CodeDirectory *old_cd, *cd;
2882 CS_CodeDirectory *new_cd;
2883 const CS_GenericBlob *entitlements;
2884 vm_offset_t new_blob_addr;
2885 vm_size_t new_blob_size;
2886 vm_size_t new_cdsize;
2887 kern_return_t kr;
2888 int error;
2889 size_t length;
2890
2891 uint32_t hashes_per_new_hash_shift = (uint32_t)(PAGE_SHIFT - blob->csb_hash_pageshift);
2892
2893 if (cs_debug > 1) {
2894 printf("CODE SIGNING: Attempting to convert Code Directory for %lu -> %lu page shift\n",
2895 (unsigned long)blob->csb_hash_pageshift, (unsigned long)PAGE_SHIFT);
2896 }
2897
2898 old_cd = blob->csb_cd;
2899
2900 /* Up to the hashes, we can copy all data */
2901 new_cdsize = ntohl(old_cd->hashOffset);
2902 new_cdsize += (ntohl(old_cd->nCodeSlots) >> hashes_per_new_hash_shift) * old_cd->hashSize;
2903
2904 new_blob_size = sizeof(CS_SuperBlob);
2905 new_blob_size += sizeof(CS_BlobIndex);
2906 new_blob_size += new_cdsize;
2907
2908 if (blob->csb_entitlements_blob) {
2909 /* We need to add a slot for the entitlements */
2910 new_blob_size += sizeof(CS_BlobIndex);
2911 new_blob_size += ntohl(blob->csb_entitlements_blob->length);
2912 }
2913
2914 kr = ubc_cs_blob_allocate(&new_blob_addr, &new_blob_size);
2915 if (kr != KERN_SUCCESS) {
2916 if (cs_debug > 1) {
2917 printf("CODE SIGNING: Failed to allocate memory for new Code Signing Blob: %d\n",
2918 kr);
2919 }
2920 return;
2921 }
2922
2923 CS_SuperBlob *new_superblob;
2924
2925 new_superblob = (CS_SuperBlob *)new_blob_addr;
2926 new_superblob->magic = htonl(CSMAGIC_EMBEDDED_SIGNATURE);
2927 new_superblob->length = htonl((uint32_t)new_blob_size);
2928 if (blob->csb_entitlements_blob) {
2929 vm_size_t ent_offset, cd_offset;
2930
2931 cd_offset = sizeof(CS_SuperBlob) + 2 * sizeof(CS_BlobIndex);
2932 ent_offset = cd_offset + new_cdsize;
2933
2934 new_superblob->count = htonl(2);
2935 new_superblob->index[0].type = htonl(CSSLOT_CODEDIRECTORY);
2936 new_superblob->index[0].offset = htonl((uint32_t)cd_offset);
2937 new_superblob->index[1].type = htonl(CSSLOT_ENTITLEMENTS);
2938 new_superblob->index[1].offset = htonl((uint32_t)ent_offset);
2939
2940 memcpy((void *)(new_blob_addr + ent_offset), blob->csb_entitlements_blob, ntohl(blob->csb_entitlements_blob->length));
2941
2942 new_cd = (CS_CodeDirectory *)(new_blob_addr + cd_offset);
2943 } else {
2944 vm_size_t cd_offset;
2945
2946 cd_offset = sizeof(CS_SuperBlob) + 1 * sizeof(CS_BlobIndex);
2947
2948 new_superblob->count = htonl(1);
2949 new_superblob->index[0].type = htonl(CSSLOT_CODEDIRECTORY);
2950 new_superblob->index[0].offset = htonl((uint32_t)cd_offset);
2951
2952 new_cd = (CS_CodeDirectory *)new_blob_addr;
2953 }
2954
2955 memcpy(new_cd, old_cd, ntohl(old_cd->hashOffset));
2956
2957 /* Update fields in the Code Directory structure */
2958 new_cd->length = htonl((uint32_t)new_cdsize);
2959
2960 uint32_t nCodeSlots = ntohl(new_cd->nCodeSlots);
2961 nCodeSlots >>= hashes_per_new_hash_shift;
2962 new_cd->nCodeSlots = htonl(nCodeSlots);
2963
2964 new_cd->pageSize = PAGE_SHIFT; /* Not byte-swapped */
2965
2966 if ((ntohl(new_cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(new_cd->scatterOffset))) {
2967 SC_Scatter *scatter = (SC_Scatter*)
2968 ((char *)new_cd + ntohl(new_cd->scatterOffset));
2969 /* iterate all scatter structs to scale their counts */
2970 do {
2971 uint32_t scount = ntohl(scatter->count);
2972 uint32_t sbase = ntohl(scatter->base);
2973
2974 /* last scatter? */
2975 if (scount == 0) {
2976 break;
2977 }
2978
2979 scount >>= hashes_per_new_hash_shift;
2980 scatter->count = htonl(scount);
2981
2982 sbase >>= hashes_per_new_hash_shift;
2983 scatter->base = htonl(sbase);
2984
2985 scatter++;
2986 } while(1);
2987 }
2988
2989 /* For each group of hashes, hash them together */
2990 const unsigned char *src_base = (const unsigned char *)old_cd + ntohl(old_cd->hashOffset);
2991 unsigned char *dst_base = (unsigned char *)new_cd + ntohl(new_cd->hashOffset);
2992
2993 uint32_t hash_index;
2994 for (hash_index = 0; hash_index < nCodeSlots; hash_index++) {
2995 union cs_hash_union mdctx;
2996
2997 uint32_t source_hash_len = old_cd->hashSize << hashes_per_new_hash_shift;
2998 const unsigned char *src = src_base + hash_index * source_hash_len;
2999 unsigned char *dst = dst_base + hash_index * new_cd->hashSize;
3000
3001 blob->csb_hashtype->cs_init(&mdctx);
3002 blob->csb_hashtype->cs_update(&mdctx, src, source_hash_len);
3003 blob->csb_hashtype->cs_final(dst, &mdctx);
3004 }
3005
3006 length = new_blob_size;
3007 error = cs_validate_csblob((const uint8_t *)new_blob_addr, &length, &cd, &entitlements);
3008 assert(length == new_blob_size);
3009 if (error) {
3010
3011 if (cs_debug > 1) {
3012 printf("CODE SIGNING: Failed to validate new Code Signing Blob: %d\n",
3013 error);
3014 }
3015
3016 ubc_cs_blob_deallocate(new_blob_addr, new_blob_size);
3017 return;
3018 }
3019
3020 /* New Code Directory is ready for use, swap it out in the blob structure */
3021 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3022
3023 blob->csb_mem_size = new_blob_size;
3024 blob->csb_mem_kaddr = new_blob_addr;
3025 blob->csb_cd = cd;
3026 blob->csb_entitlements_blob = entitlements;
3027
3028 /* The blob has some cached attributes of the Code Directory, so update those */
3029
3030 blob->csb_hash_firstlevel_pagesize = blob->csb_hash_pagesize; /* Save the original page size */
3031
3032 blob->csb_hash_pagesize = PAGE_SIZE;
3033 blob->csb_hash_pagemask = PAGE_MASK;
3034 blob->csb_hash_pageshift = PAGE_SHIFT;
3035 blob->csb_end_offset = ntohl(cd->codeLimit);
3036 if((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
3037 const SC_Scatter *scatter = (const SC_Scatter*)
3038 ((const char*)cd + ntohl(cd->scatterOffset));
3039 blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * PAGE_SIZE;
3040 } else {
3041 blob->csb_start_offset = 0;
3042 }
3043 }
3044
3045 int
3046 ubc_cs_blob_add(
3047 struct vnode *vp,
3048 cpu_type_t cputype,
3049 off_t base_offset,
3050 vm_address_t *addr,
3051 vm_size_t size,
3052 struct image_params *imgp,
3053 __unused int flags,
3054 struct cs_blob **ret_blob)
3055 {
3056 kern_return_t kr;
3057 struct ubc_info *uip;
3058 struct cs_blob *blob, *oblob;
3059 int error;
3060 const CS_CodeDirectory *cd;
3061 const CS_GenericBlob *entitlements;
3062 off_t blob_start_offset, blob_end_offset;
3063 union cs_hash_union mdctx;
3064 boolean_t record_mtime;
3065 size_t length;
3066
3067 record_mtime = FALSE;
3068 if (ret_blob)
3069 *ret_blob = NULL;
3070
3071 blob = (struct cs_blob *) kalloc(sizeof (struct cs_blob));
3072 if (blob == NULL) {
3073 return ENOMEM;
3074 }
3075
3076 /* fill in the new blob */
3077 blob->csb_cpu_type = cputype;
3078 blob->csb_base_offset = base_offset;
3079 blob->csb_mem_size = size;
3080 blob->csb_mem_offset = 0;
3081 blob->csb_mem_kaddr = *addr;
3082 blob->csb_flags = 0;
3083 blob->csb_platform_binary = 0;
3084 blob->csb_platform_path = 0;
3085 blob->csb_teamid = NULL;
3086 blob->csb_entitlements_blob = NULL;
3087 blob->csb_entitlements = NULL;
3088
3089 /* Transfer ownership. Even on error, this function will deallocate */
3090 *addr = 0;
3091
3092 /*
3093 * Validate the blob's contents
3094 */
3095 length = (size_t) size;
3096 error = cs_validate_csblob((const uint8_t *)blob->csb_mem_kaddr,
3097 &length, &cd, &entitlements);
3098 if (error) {
3099
3100 if (cs_debug)
3101 printf("CODESIGNING: csblob invalid: %d\n", error);
3102 /*
3103 * The vnode checker can't make the rest of this function
3104 * succeed if csblob validation failed, so bail */
3105 goto out;
3106
3107 } else {
3108 const unsigned char *md_base;
3109 uint8_t hash[CS_HASH_MAX_SIZE];
3110 int md_size;
3111
3112 size = (vm_size_t) length;
3113 assert(size <= blob->csb_mem_size);
3114 if (size < blob->csb_mem_size) {
3115 vm_address_t new_blob_addr;
3116 const CS_CodeDirectory *new_cd;
3117 const CS_GenericBlob *new_entitlements;
3118
3119 kr = ubc_cs_blob_allocate(&new_blob_addr, &size);
3120 if (kr != KERN_SUCCESS) {
3121 if (cs_debug > 1) {
3122 printf("CODE SIGNING: failed to "
3123 "re-allocate blob (size "
3124 "0x%llx->0x%llx) error 0x%x\n",
3125 (uint64_t)blob->csb_mem_size,
3126 (uint64_t)size,
3127 kr);
3128 }
3129 } else {
3130 memcpy(new_blob_addr, blob->csb_mem_kaddr, size);
3131 if (cd == NULL) {
3132 new_cd = NULL;
3133 } else {
3134 new_cd = ((uintptr_t)cd
3135 - (uintptr_t)blob->csb_mem_kaddr
3136 + (uintptr_t)new_blob_addr);
3137 }
3138 if (entitlements == NULL) {
3139 new_entitlements = NULL;
3140 } else {
3141 new_entitlements = ((uintptr_t)entitlements
3142 - (uintptr_t)blob->csb_mem_kaddr
3143 + (uintptr_t)new_blob_addr);
3144 }
3145 // printf("CODE SIGNING: %s:%d kaddr 0x%llx cd %p ents %p -> blob 0x%llx cd %p ents %p\n", __FUNCTION__, __LINE__, (uint64_t)blob->csb_mem_kaddr, cd, entitlements, (uint64_t)new_blob_addr, new_cd, new_entitlements);
3146 ubc_cs_blob_deallocate(blob->csb_mem_kaddr,
3147 blob->csb_mem_size);
3148 blob->csb_mem_kaddr = new_blob_addr;
3149 blob->csb_mem_size = size;
3150 cd = new_cd;
3151 entitlements = new_entitlements;
3152 }
3153 }
3154
3155 blob->csb_cd = cd;
3156 blob->csb_entitlements_blob = entitlements; /* may be NULL, not yet validated */
3157 blob->csb_hashtype = cs_find_md(cd->hashType);
3158 if (blob->csb_hashtype == NULL || blob->csb_hashtype->cs_digest_size > sizeof(hash))
3159 panic("validated CodeDirectory but unsupported type");
3160
3161 blob->csb_hash_pageshift = cd->pageSize;
3162 blob->csb_hash_pagesize = (1U << cd->pageSize);
3163 blob->csb_hash_pagemask = blob->csb_hash_pagesize - 1;
3164 blob->csb_hash_firstlevel_pagesize = 0;
3165 blob->csb_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID;
3166 blob->csb_end_offset = (((vm_offset_t)ntohl(cd->codeLimit) + blob->csb_hash_pagemask) & ~((vm_offset_t)blob->csb_hash_pagemask));
3167 if((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
3168 const SC_Scatter *scatter = (const SC_Scatter*)
3169 ((const char*)cd + ntohl(cd->scatterOffset));
3170 blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * blob->csb_hash_pagesize;
3171 } else {
3172 blob->csb_start_offset = 0;
3173 }
3174 /* compute the blob's cdhash */
3175 md_base = (const unsigned char *) cd;
3176 md_size = ntohl(cd->length);
3177
3178 blob->csb_hashtype->cs_init(&mdctx);
3179 blob->csb_hashtype->cs_update(&mdctx, md_base, md_size);
3180 blob->csb_hashtype->cs_final(hash, &mdctx);
3181
3182 memcpy(blob->csb_cdhash, hash, CS_CDHASH_LEN);
3183 }
3184
3185 /*
3186 * Let policy module check whether the blob's signature is accepted.
3187 */
3188 #if CONFIG_MACF
3189 unsigned int cs_flags = blob->csb_flags;
3190 error = mac_vnode_check_signature(vp, blob, imgp, &cs_flags, flags);
3191 blob->csb_flags = cs_flags;
3192
3193 if (error) {
3194 if (cs_debug)
3195 printf("check_signature[pid: %d], error = %d\n", current_proc()->p_pid, error);
3196 goto out;
3197 }
3198 if ((flags & MAC_VNODE_CHECK_DYLD_SIM) && !(blob->csb_flags & CS_PLATFORM_BINARY)) {
3199 if (cs_debug)
3200 printf("check_signature[pid: %d], is not apple signed\n", current_proc()->p_pid);
3201 error = EPERM;
3202 goto out;
3203 }
3204 #endif
3205
3206 if (blob->csb_flags & CS_PLATFORM_BINARY) {
3207 if (cs_debug > 1)
3208 printf("check_signature[pid: %d]: platform binary\n", current_proc()->p_pid);
3209 blob->csb_platform_binary = 1;
3210 blob->csb_platform_path = !!(blob->csb_flags & CS_PLATFORM_PATH);
3211 } else {
3212 blob->csb_platform_binary = 0;
3213 blob->csb_platform_path = 0;
3214 blob->csb_teamid = csblob_parse_teamid(blob);
3215 if (cs_debug > 1) {
3216 if (blob->csb_teamid)
3217 printf("check_signature[pid: %d]: team-id is %s\n", current_proc()->p_pid, blob->csb_teamid);
3218 else
3219 printf("check_signature[pid: %d]: no team-id\n", current_proc()->p_pid);
3220 }
3221 }
3222
3223 /*
3224 * Validate the blob's coverage
3225 */
3226 blob_start_offset = blob->csb_base_offset + blob->csb_start_offset;
3227 blob_end_offset = blob->csb_base_offset + blob->csb_end_offset;
3228
3229 if (blob_start_offset >= blob_end_offset ||
3230 blob_start_offset < 0 ||
3231 blob_end_offset <= 0) {
3232 /* reject empty or backwards blob */
3233 error = EINVAL;
3234 goto out;
3235 }
3236
3237 if (ubc_cs_supports_multilevel_hash(blob)) {
3238 ubc_cs_convert_to_multilevel_hash(blob);
3239 }
3240
3241 vnode_lock(vp);
3242 if (! UBCINFOEXISTS(vp)) {
3243 vnode_unlock(vp);
3244 error = ENOENT;
3245 goto out;
3246 }
3247 uip = vp->v_ubcinfo;
3248
3249 /* check if this new blob overlaps with an existing blob */
3250 for (oblob = uip->cs_blobs;
3251 oblob != NULL;
3252 oblob = oblob->csb_next) {
3253 off_t oblob_start_offset, oblob_end_offset;
3254
3255 /* check for conflicting teamid */
3256 if (blob->csb_platform_binary) { //platform binary needs to be the same for app slices
3257 if (!oblob->csb_platform_binary) {
3258 vnode_unlock(vp);
3259 error = EALREADY;
3260 goto out;
3261 }
3262 } else if (blob->csb_teamid) { //teamid binary needs to be the same for app slices
3263 if (oblob->csb_platform_binary ||
3264 oblob->csb_teamid == NULL ||
3265 strcmp(oblob->csb_teamid, blob->csb_teamid) != 0) {
3266 vnode_unlock(vp);
3267 error = EALREADY;
3268 goto out;
3269 }
3270 } else { // non teamid binary needs to be the same for app slices
3271 if (oblob->csb_platform_binary ||
3272 oblob->csb_teamid != NULL) {
3273 vnode_unlock(vp);
3274 error = EALREADY;
3275 goto out;
3276 }
3277 }
3278
3279 oblob_start_offset = (oblob->csb_base_offset +
3280 oblob->csb_start_offset);
3281 oblob_end_offset = (oblob->csb_base_offset +
3282 oblob->csb_end_offset);
3283 if (blob_start_offset >= oblob_end_offset ||
3284 blob_end_offset <= oblob_start_offset) {
3285 /* no conflict with this existing blob */
3286 } else {
3287 /* conflict ! */
3288 if (blob_start_offset == oblob_start_offset &&
3289 blob_end_offset == oblob_end_offset &&
3290 blob->csb_mem_size == oblob->csb_mem_size &&
3291 blob->csb_flags == oblob->csb_flags &&
3292 (blob->csb_cpu_type == CPU_TYPE_ANY ||
3293 oblob->csb_cpu_type == CPU_TYPE_ANY ||
3294 blob->csb_cpu_type == oblob->csb_cpu_type) &&
3295 !bcmp(blob->csb_cdhash,
3296 oblob->csb_cdhash,
3297 CS_CDHASH_LEN)) {
3298 /*
3299 * We already have this blob:
3300 * we'll return success but
3301 * throw away the new blob.
3302 */
3303 if (oblob->csb_cpu_type == CPU_TYPE_ANY) {
3304 /*
3305 * The old blob matches this one
3306 * but doesn't have any CPU type.
3307 * Update it with whatever the caller
3308 * provided this time.
3309 */
3310 oblob->csb_cpu_type = cputype;
3311 }
3312 vnode_unlock(vp);
3313 if (ret_blob)
3314 *ret_blob = oblob;
3315 error = EAGAIN;
3316 goto out;
3317 } else {
3318 /* different blob: reject the new one */
3319 vnode_unlock(vp);
3320 error = EALREADY;
3321 goto out;
3322 }
3323 }
3324
3325 }
3326
3327
3328 /* mark this vnode's VM object as having "signed pages" */
3329 kr = memory_object_signed(uip->ui_control, TRUE);
3330 if (kr != KERN_SUCCESS) {
3331 vnode_unlock(vp);
3332 error = ENOENT;
3333 goto out;
3334 }
3335
3336 if (uip->cs_blobs == NULL) {
3337 /* loading 1st blob: record the file's current "modify time" */
3338 record_mtime = TRUE;
3339 }
3340
3341 /* set the generation count for cs_blobs */
3342 uip->cs_add_gen = cs_blob_generation_count;
3343
3344 /*
3345 * Add this blob to the list of blobs for this vnode.
3346 * We always add at the front of the list and we never remove a
3347 * blob from the list, so ubc_cs_get_blobs() can return whatever
3348 * the top of the list was and that list will remain valid
3349 * while we validate a page, even after we release the vnode's lock.
3350 */
3351 blob->csb_next = uip->cs_blobs;
3352 uip->cs_blobs = blob;
3353
3354 OSAddAtomic(+1, &cs_blob_count);
3355 if (cs_blob_count > cs_blob_count_peak) {
3356 cs_blob_count_peak = cs_blob_count; /* XXX atomic ? */
3357 }
3358 OSAddAtomic((SInt32) +blob->csb_mem_size, &cs_blob_size);
3359 if ((SInt32) cs_blob_size > cs_blob_size_peak) {
3360 cs_blob_size_peak = (SInt32) cs_blob_size; /* XXX atomic ? */
3361 }
3362 if ((UInt32) blob->csb_mem_size > cs_blob_size_max) {
3363 cs_blob_size_max = (UInt32) blob->csb_mem_size;
3364 }
3365
3366 if (cs_debug > 1) {
3367 proc_t p;
3368 const char *name = vnode_getname_printable(vp);
3369 p = current_proc();
3370 printf("CODE SIGNING: proc %d(%s) "
3371 "loaded %s signatures for file (%s) "
3372 "range 0x%llx:0x%llx flags 0x%x\n",
3373 p->p_pid, p->p_comm,
3374 blob->csb_cpu_type == -1 ? "detached" : "embedded",
3375 name,
3376 blob->csb_base_offset + blob->csb_start_offset,
3377 blob->csb_base_offset + blob->csb_end_offset,
3378 blob->csb_flags);
3379 vnode_putname_printable(name);
3380 }
3381
3382 vnode_unlock(vp);
3383
3384 if (record_mtime) {
3385 vnode_mtime(vp, &uip->cs_mtime, vfs_context_current());
3386 }
3387
3388 if (ret_blob)
3389 *ret_blob = blob;
3390
3391 error = 0; /* success ! */
3392
3393 out:
3394 if (error) {
3395 if (cs_debug)
3396 printf("check_signature[pid: %d]: error = %d\n", current_proc()->p_pid, error);
3397
3398 /* we failed; release what we allocated */
3399 if (blob) {
3400 if (blob->csb_mem_kaddr) {
3401 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3402 blob->csb_mem_kaddr = 0;
3403 }
3404 if (blob->csb_entitlements != NULL) {
3405 osobject_release(blob->csb_entitlements);
3406 blob->csb_entitlements = NULL;
3407 }
3408 kfree(blob, sizeof (*blob));
3409 blob = NULL;
3410 }
3411 }
3412
3413 if (error == EAGAIN) {
3414 /*
3415 * See above: error is EAGAIN if we were asked
3416 * to add an existing blob again. We cleaned the new
3417 * blob and we want to return success.
3418 */
3419 error = 0;
3420 }
3421
3422 return error;
3423 }
3424
3425 void
3426 csvnode_print_debug(struct vnode *vp)
3427 {
3428 const char *name = NULL;
3429 struct ubc_info *uip;
3430 struct cs_blob *blob;
3431
3432 name = vnode_getname_printable(vp);
3433 if (name) {
3434 printf("csvnode: name: %s\n", name);
3435 vnode_putname_printable(name);
3436 }
3437
3438 vnode_lock_spin(vp);
3439
3440 if (! UBCINFOEXISTS(vp)) {
3441 blob = NULL;
3442 goto out;
3443 }
3444
3445 uip = vp->v_ubcinfo;
3446 for (blob = uip->cs_blobs; blob != NULL; blob = blob->csb_next) {
3447 printf("csvnode: range: %lu -> %lu flags: 0x%08x platform: %s path: %s team: %s\n",
3448 (unsigned long)blob->csb_start_offset,
3449 (unsigned long)blob->csb_end_offset,
3450 blob->csb_flags,
3451 blob->csb_platform_binary ? "yes" : "no",
3452 blob->csb_platform_path ? "yes" : "no",
3453 blob->csb_teamid ? blob->csb_teamid : "<NO-TEAM>");
3454 }
3455
3456 out:
3457 vnode_unlock(vp);
3458
3459 }
3460
3461 struct cs_blob *
3462 ubc_cs_blob_get(
3463 struct vnode *vp,
3464 cpu_type_t cputype,
3465 off_t offset)
3466 {
3467 struct ubc_info *uip;
3468 struct cs_blob *blob;
3469 off_t offset_in_blob;
3470
3471 vnode_lock_spin(vp);
3472
3473 if (! UBCINFOEXISTS(vp)) {
3474 blob = NULL;
3475 goto out;
3476 }
3477
3478 uip = vp->v_ubcinfo;
3479 for (blob = uip->cs_blobs;
3480 blob != NULL;
3481 blob = blob->csb_next) {
3482 if (cputype != -1 && blob->csb_cpu_type == cputype) {
3483 break;
3484 }
3485 if (offset != -1) {
3486 offset_in_blob = offset - blob->csb_base_offset;
3487 if (offset_in_blob >= blob->csb_start_offset &&
3488 offset_in_blob < blob->csb_end_offset) {
3489 /* our offset is covered by this blob */
3490 break;
3491 }
3492 }
3493 }
3494
3495 out:
3496 vnode_unlock(vp);
3497
3498 return blob;
3499 }
3500
3501 static void
3502 ubc_cs_free(
3503 struct ubc_info *uip)
3504 {
3505 struct cs_blob *blob, *next_blob;
3506
3507 for (blob = uip->cs_blobs;
3508 blob != NULL;
3509 blob = next_blob) {
3510 next_blob = blob->csb_next;
3511 if (blob->csb_mem_kaddr != 0) {
3512 ubc_cs_blob_deallocate(blob->csb_mem_kaddr,
3513 blob->csb_mem_size);
3514 blob->csb_mem_kaddr = 0;
3515 }
3516 if (blob->csb_entitlements != NULL) {
3517 osobject_release(blob->csb_entitlements);
3518 blob->csb_entitlements = NULL;
3519 }
3520 OSAddAtomic(-1, &cs_blob_count);
3521 OSAddAtomic((SInt32) -blob->csb_mem_size, &cs_blob_size);
3522 kfree(blob, sizeof (*blob));
3523 }
3524 #if CHECK_CS_VALIDATION_BITMAP
3525 ubc_cs_validation_bitmap_deallocate( uip->ui_vnode );
3526 #endif
3527 uip->cs_blobs = NULL;
3528 }
3529
3530 /* check cs blob generation on vnode
3531 * returns:
3532 * 0 : Success, the cs_blob attached is current
3533 * ENEEDAUTH : Generation count mismatch. Needs authentication again.
3534 */
3535 int
3536 ubc_cs_generation_check(
3537 struct vnode *vp)
3538 {
3539 int retval = ENEEDAUTH;
3540
3541 vnode_lock_spin(vp);
3542
3543 if (UBCINFOEXISTS(vp) && vp->v_ubcinfo->cs_add_gen == cs_blob_generation_count) {
3544 retval = 0;
3545 }
3546
3547 vnode_unlock(vp);
3548 return retval;
3549 }
3550
3551 int
3552 ubc_cs_blob_revalidate(
3553 struct vnode *vp,
3554 struct cs_blob *blob,
3555 struct image_params *imgp,
3556 int flags
3557 )
3558 {
3559 int error = 0;
3560 const CS_CodeDirectory *cd = NULL;
3561 const CS_GenericBlob *entitlements = NULL;
3562 size_t size;
3563 assert(vp != NULL);
3564 assert(blob != NULL);
3565
3566 size = blob->csb_mem_size;
3567 error = cs_validate_csblob((const uint8_t *)blob->csb_mem_kaddr,
3568 &size, &cd, &entitlements);
3569 if (error) {
3570 if (cs_debug) {
3571 printf("CODESIGNING: csblob invalid: %d\n", error);
3572 }
3573 goto out;
3574 }
3575 assert(size == blob->csb_mem_size);
3576
3577 unsigned int cs_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID;
3578
3579 /* callout to mac_vnode_check_signature */
3580 #if CONFIG_MACF
3581 error = mac_vnode_check_signature(vp, blob, imgp, &cs_flags, flags);
3582 if (cs_debug && error) {
3583 printf("revalidate: check_signature[pid: %d], error = %d\n", current_proc()->p_pid, error);
3584 }
3585 #else
3586 (void)flags;
3587 #endif
3588
3589 /* update generation number if success */
3590 vnode_lock_spin(vp);
3591 blob->csb_flags = cs_flags;
3592 if (UBCINFOEXISTS(vp)) {
3593 if (error == 0)
3594 vp->v_ubcinfo->cs_add_gen = cs_blob_generation_count;
3595 else
3596 vp->v_ubcinfo->cs_add_gen = 0;
3597 }
3598
3599 vnode_unlock(vp);
3600
3601 out:
3602 return error;
3603 }
3604
3605 void
3606 cs_blob_reset_cache()
3607 {
3608 /* incrementing odd no by 2 makes sure '0' is never reached. */
3609 OSAddAtomic(+2, &cs_blob_generation_count);
3610 printf("Reseting cs_blob cache from all vnodes. \n");
3611 }
3612
3613 struct cs_blob *
3614 ubc_get_cs_blobs(
3615 struct vnode *vp)
3616 {
3617 struct ubc_info *uip;
3618 struct cs_blob *blobs;
3619
3620 /*
3621 * No need to take the vnode lock here. The caller must be holding
3622 * a reference on the vnode (via a VM mapping or open file descriptor),
3623 * so the vnode will not go away. The ubc_info stays until the vnode
3624 * goes away. And we only modify "blobs" by adding to the head of the
3625 * list.
3626 * The ubc_info could go away entirely if the vnode gets reclaimed as
3627 * part of a forced unmount. In the case of a code-signature validation
3628 * during a page fault, the "paging_in_progress" reference on the VM
3629 * object guarantess that the vnode pager (and the ubc_info) won't go
3630 * away during the fault.
3631 * Other callers need to protect against vnode reclaim by holding the
3632 * vnode lock, for example.
3633 */
3634
3635 if (! UBCINFOEXISTS(vp)) {
3636 blobs = NULL;
3637 goto out;
3638 }
3639
3640 uip = vp->v_ubcinfo;
3641 blobs = uip->cs_blobs;
3642
3643 out:
3644 return blobs;
3645 }
3646
3647 void
3648 ubc_get_cs_mtime(
3649 struct vnode *vp,
3650 struct timespec *cs_mtime)
3651 {
3652 struct ubc_info *uip;
3653
3654 if (! UBCINFOEXISTS(vp)) {
3655 cs_mtime->tv_sec = 0;
3656 cs_mtime->tv_nsec = 0;
3657 return;
3658 }
3659
3660 uip = vp->v_ubcinfo;
3661 cs_mtime->tv_sec = uip->cs_mtime.tv_sec;
3662 cs_mtime->tv_nsec = uip->cs_mtime.tv_nsec;
3663 }
3664
3665 unsigned long cs_validate_page_no_hash = 0;
3666 unsigned long cs_validate_page_bad_hash = 0;
3667 static boolean_t
3668 cs_validate_hash(
3669 struct cs_blob *blobs,
3670 memory_object_t pager,
3671 memory_object_offset_t page_offset,
3672 const void *data,
3673 vm_size_t *bytes_processed,
3674 unsigned *tainted)
3675 {
3676 union cs_hash_union mdctx;
3677 struct cs_hash const *hashtype = NULL;
3678 unsigned char actual_hash[CS_HASH_MAX_SIZE];
3679 unsigned char expected_hash[CS_HASH_MAX_SIZE];
3680 boolean_t found_hash;
3681 struct cs_blob *blob;
3682 const CS_CodeDirectory *cd;
3683 const unsigned char *hash;
3684 boolean_t validated;
3685 off_t offset; /* page offset in the file */
3686 size_t size;
3687 off_t codeLimit = 0;
3688 const char *lower_bound, *upper_bound;
3689 vm_offset_t kaddr, blob_addr;
3690
3691 /* retrieve the expected hash */
3692 found_hash = FALSE;
3693
3694 for (blob = blobs;
3695 blob != NULL;
3696 blob = blob->csb_next) {
3697 offset = page_offset - blob->csb_base_offset;
3698 if (offset < blob->csb_start_offset ||
3699 offset >= blob->csb_end_offset) {
3700 /* our page is not covered by this blob */
3701 continue;
3702 }
3703
3704 /* blob data has been released */
3705 kaddr = blob->csb_mem_kaddr;
3706 if (kaddr == 0) {
3707 continue;
3708 }
3709
3710 blob_addr = kaddr + blob->csb_mem_offset;
3711 lower_bound = CAST_DOWN(char *, blob_addr);
3712 upper_bound = lower_bound + blob->csb_mem_size;
3713
3714 cd = blob->csb_cd;
3715 if (cd != NULL) {
3716 /* all CD's that have been injected is already validated */
3717
3718 hashtype = blob->csb_hashtype;
3719 if (hashtype == NULL)
3720 panic("unknown hash type ?");
3721 if (hashtype->cs_digest_size > sizeof(actual_hash))
3722 panic("hash size too large");
3723 if (offset & blob->csb_hash_pagemask)
3724 panic("offset not aligned to cshash boundary");
3725
3726 codeLimit = ntohl(cd->codeLimit);
3727
3728 hash = hashes(cd, (uint32_t)(offset>>blob->csb_hash_pageshift),
3729 hashtype->cs_size,
3730 lower_bound, upper_bound);
3731 if (hash != NULL) {
3732 bcopy(hash, expected_hash, hashtype->cs_size);
3733 found_hash = TRUE;
3734 }
3735
3736 break;
3737 }
3738 }
3739
3740 if (found_hash == FALSE) {
3741 /*
3742 * We can't verify this page because there is no signature
3743 * for it (yet). It's possible that this part of the object
3744 * is not signed, or that signatures for that part have not
3745 * been loaded yet.
3746 * Report that the page has not been validated and let the
3747 * caller decide if it wants to accept it or not.
3748 */
3749 cs_validate_page_no_hash++;
3750 if (cs_debug > 1) {
3751 printf("CODE SIGNING: cs_validate_page: "
3752 "mobj %p off 0x%llx: no hash to validate !?\n",
3753 pager, page_offset);
3754 }
3755 validated = FALSE;
3756 *tainted = 0;
3757 } else {
3758
3759 *tainted = 0;
3760
3761 size = blob->csb_hash_pagesize;
3762 *bytes_processed = size;
3763
3764 const uint32_t *asha1, *esha1;
3765 if ((off_t)(offset + size) > codeLimit) {
3766 /* partial page at end of segment */
3767 assert(offset < codeLimit);
3768 size = (size_t) (codeLimit & blob->csb_hash_pagemask);
3769 *tainted |= CS_VALIDATE_NX;
3770 }
3771
3772 hashtype->cs_init(&mdctx);
3773
3774 if (blob->csb_hash_firstlevel_pagesize) {
3775 const unsigned char *partial_data = (const unsigned char *)data;
3776 size_t i;
3777 for (i=0; i < size;) {
3778 union cs_hash_union partialctx;
3779 unsigned char partial_digest[CS_HASH_MAX_SIZE];
3780 size_t partial_size = MIN(size-i, blob->csb_hash_firstlevel_pagesize);
3781
3782 hashtype->cs_init(&partialctx);
3783 hashtype->cs_update(&partialctx, partial_data, partial_size);
3784 hashtype->cs_final(partial_digest, &partialctx);
3785
3786 /* Update cumulative multi-level hash */
3787 hashtype->cs_update(&mdctx, partial_digest, hashtype->cs_size);
3788 partial_data = partial_data + partial_size;
3789 i += partial_size;
3790 }
3791 } else {
3792 hashtype->cs_update(&mdctx, data, size);
3793 }
3794 hashtype->cs_final(actual_hash, &mdctx);
3795
3796 asha1 = (const uint32_t *) actual_hash;
3797 esha1 = (const uint32_t *) expected_hash;
3798
3799 if (bcmp(expected_hash, actual_hash, hashtype->cs_size) != 0) {
3800 if (cs_debug) {
3801 printf("CODE SIGNING: cs_validate_page: "
3802 "mobj %p off 0x%llx size 0x%lx: "
3803 "actual [0x%x 0x%x 0x%x 0x%x 0x%x] != "
3804 "expected [0x%x 0x%x 0x%x 0x%x 0x%x]\n",
3805 pager, page_offset, size,
3806 asha1[0], asha1[1], asha1[2],
3807 asha1[3], asha1[4],
3808 esha1[0], esha1[1], esha1[2],
3809 esha1[3], esha1[4]);
3810 }
3811 cs_validate_page_bad_hash++;
3812 *tainted |= CS_VALIDATE_TAINTED;
3813 } else {
3814 if (cs_debug > 10) {
3815 printf("CODE SIGNING: cs_validate_page: "
3816 "mobj %p off 0x%llx size 0x%lx: "
3817 "SHA1 OK\n",
3818 pager, page_offset, size);
3819 }
3820 }
3821 validated = TRUE;
3822 }
3823
3824 return validated;
3825 }
3826
3827 boolean_t
3828 cs_validate_range(
3829 struct vnode *vp,
3830 memory_object_t pager,
3831 memory_object_offset_t page_offset,
3832 const void *data,
3833 vm_size_t dsize,
3834 unsigned *tainted)
3835 {
3836 vm_size_t offset_in_range;
3837 boolean_t all_subranges_validated = TRUE; /* turn false if any subrange fails */
3838
3839 struct cs_blob *blobs = ubc_get_cs_blobs(vp);
3840
3841 *tainted = 0;
3842
3843 for (offset_in_range = 0;
3844 offset_in_range < dsize;
3845 /* offset_in_range updated based on bytes processed */) {
3846 unsigned subrange_tainted = 0;
3847 boolean_t subrange_validated;
3848 vm_size_t bytes_processed = 0;
3849
3850 subrange_validated = cs_validate_hash(blobs,
3851 pager,
3852 page_offset + offset_in_range,
3853 (const void *)((const char *)data + offset_in_range),
3854 &bytes_processed,
3855 &subrange_tainted);
3856
3857 *tainted |= subrange_tainted;
3858
3859 if (bytes_processed == 0) {
3860 /* Cannote make forward progress, so return an error */
3861 all_subranges_validated = FALSE;
3862 break;
3863 } else if (subrange_validated == FALSE) {
3864 all_subranges_validated = FALSE;
3865 /* Keep going to detect other types of failures in subranges */
3866 }
3867
3868 offset_in_range += bytes_processed;
3869 }
3870
3871 return all_subranges_validated;
3872 }
3873
3874 int
3875 ubc_cs_getcdhash(
3876 vnode_t vp,
3877 off_t offset,
3878 unsigned char *cdhash)
3879 {
3880 struct cs_blob *blobs, *blob;
3881 off_t rel_offset;
3882 int ret;
3883
3884 vnode_lock(vp);
3885
3886 blobs = ubc_get_cs_blobs(vp);
3887 for (blob = blobs;
3888 blob != NULL;
3889 blob = blob->csb_next) {
3890 /* compute offset relative to this blob */
3891 rel_offset = offset - blob->csb_base_offset;
3892 if (rel_offset >= blob->csb_start_offset &&
3893 rel_offset < blob->csb_end_offset) {
3894 /* this blob does cover our "offset" ! */
3895 break;
3896 }
3897 }
3898
3899 if (blob == NULL) {
3900 /* we didn't find a blob covering "offset" */
3901 ret = EBADEXEC; /* XXX any better error ? */
3902 } else {
3903 /* get the SHA1 hash of that blob */
3904 bcopy(blob->csb_cdhash, cdhash, sizeof (blob->csb_cdhash));
3905 ret = 0;
3906 }
3907
3908 vnode_unlock(vp);
3909
3910 return ret;
3911 }
3912
3913 boolean_t
3914 ubc_cs_is_range_codesigned(
3915 vnode_t vp,
3916 mach_vm_offset_t start,
3917 mach_vm_size_t size)
3918 {
3919 struct cs_blob *csblob;
3920 mach_vm_offset_t blob_start;
3921 mach_vm_offset_t blob_end;
3922
3923 if (vp == NULL) {
3924 /* no file: no code signature */
3925 return FALSE;
3926 }
3927 if (size == 0) {
3928 /* no range: no code signature */
3929 return FALSE;
3930 }
3931 if (start + size < start) {
3932 /* overflow */
3933 return FALSE;
3934 }
3935
3936 csblob = ubc_cs_blob_get(vp, -1, start);
3937 if (csblob == NULL) {
3938 return FALSE;
3939 }
3940
3941 /*
3942 * We currently check if the range is covered by a single blob,
3943 * which should always be the case for the dyld shared cache.
3944 * If we ever want to make this routine handle other cases, we
3945 * would have to iterate if the blob does not cover the full range.
3946 */
3947 blob_start = (mach_vm_offset_t) (csblob->csb_base_offset +
3948 csblob->csb_start_offset);
3949 blob_end = (mach_vm_offset_t) (csblob->csb_base_offset +
3950 csblob->csb_end_offset);
3951 if (blob_start > start || blob_end < (start + size)) {
3952 /* range not fully covered by this code-signing blob */
3953 return FALSE;
3954 }
3955
3956 return TRUE;
3957 }
3958
3959 #if CHECK_CS_VALIDATION_BITMAP
3960 #define stob(s) ((atop_64((s)) + 07) >> 3)
3961 extern boolean_t root_fs_upgrade_try;
3962
3963 /*
3964 * Should we use the code-sign bitmap to avoid repeated code-sign validation?
3965 * Depends:
3966 * a) Is the target vnode on the root filesystem?
3967 * b) Has someone tried to mount the root filesystem read-write?
3968 * If answers are (a) yes AND (b) no, then we can use the bitmap.
3969 */
3970 #define USE_CODE_SIGN_BITMAP(vp) ( (vp != NULL) && (vp->v_mount != NULL) && (vp->v_mount->mnt_flag & MNT_ROOTFS) && !root_fs_upgrade_try)
3971 kern_return_t
3972 ubc_cs_validation_bitmap_allocate(
3973 vnode_t vp)
3974 {
3975 kern_return_t kr = KERN_SUCCESS;
3976 struct ubc_info *uip;
3977 char *target_bitmap;
3978 vm_object_size_t bitmap_size;
3979
3980 if ( ! USE_CODE_SIGN_BITMAP(vp) || (! UBCINFOEXISTS(vp))) {
3981 kr = KERN_INVALID_ARGUMENT;
3982 } else {
3983 uip = vp->v_ubcinfo;
3984
3985 if ( uip->cs_valid_bitmap == NULL ) {
3986 bitmap_size = stob(uip->ui_size);
3987 target_bitmap = (char*) kalloc( (vm_size_t)bitmap_size );
3988 if (target_bitmap == 0) {
3989 kr = KERN_NO_SPACE;
3990 } else {
3991 kr = KERN_SUCCESS;
3992 }
3993 if( kr == KERN_SUCCESS ) {
3994 memset( target_bitmap, 0, (size_t)bitmap_size);
3995 uip->cs_valid_bitmap = (void*)target_bitmap;
3996 uip->cs_valid_bitmap_size = bitmap_size;
3997 }
3998 }
3999 }
4000 return kr;
4001 }
4002
4003 kern_return_t
4004 ubc_cs_check_validation_bitmap (
4005 vnode_t vp,
4006 memory_object_offset_t offset,
4007 int optype)
4008 {
4009 kern_return_t kr = KERN_SUCCESS;
4010
4011 if ( ! USE_CODE_SIGN_BITMAP(vp) || ! UBCINFOEXISTS(vp)) {
4012 kr = KERN_INVALID_ARGUMENT;
4013 } else {
4014 struct ubc_info *uip = vp->v_ubcinfo;
4015 char *target_bitmap = uip->cs_valid_bitmap;
4016
4017 if ( target_bitmap == NULL ) {
4018 kr = KERN_INVALID_ARGUMENT;
4019 } else {
4020 uint64_t bit, byte;
4021 bit = atop_64( offset );
4022 byte = bit >> 3;
4023
4024 if ( byte > uip->cs_valid_bitmap_size ) {
4025 kr = KERN_INVALID_ARGUMENT;
4026 } else {
4027
4028 if (optype == CS_BITMAP_SET) {
4029 target_bitmap[byte] |= (1 << (bit & 07));
4030 kr = KERN_SUCCESS;
4031 } else if (optype == CS_BITMAP_CLEAR) {
4032 target_bitmap[byte] &= ~(1 << (bit & 07));
4033 kr = KERN_SUCCESS;
4034 } else if (optype == CS_BITMAP_CHECK) {
4035 if ( target_bitmap[byte] & (1 << (bit & 07))) {
4036 kr = KERN_SUCCESS;
4037 } else {
4038 kr = KERN_FAILURE;
4039 }
4040 }
4041 }
4042 }
4043 }
4044 return kr;
4045 }
4046
4047 void
4048 ubc_cs_validation_bitmap_deallocate(
4049 vnode_t vp)
4050 {
4051 struct ubc_info *uip;
4052 void *target_bitmap;
4053 vm_object_size_t bitmap_size;
4054
4055 if ( UBCINFOEXISTS(vp)) {
4056 uip = vp->v_ubcinfo;
4057
4058 if ( (target_bitmap = uip->cs_valid_bitmap) != NULL ) {
4059 bitmap_size = uip->cs_valid_bitmap_size;
4060 kfree( target_bitmap, (vm_size_t) bitmap_size );
4061 uip->cs_valid_bitmap = NULL;
4062 }
4063 }
4064 }
4065 #else
4066 kern_return_t ubc_cs_validation_bitmap_allocate(__unused vnode_t vp){
4067 return KERN_INVALID_ARGUMENT;
4068 }
4069
4070 kern_return_t ubc_cs_check_validation_bitmap(
4071 __unused struct vnode *vp,
4072 __unused memory_object_offset_t offset,
4073 __unused int optype){
4074
4075 return KERN_INVALID_ARGUMENT;
4076 }
4077
4078 void ubc_cs_validation_bitmap_deallocate(__unused vnode_t vp){
4079 return;
4080 }
4081 #endif /* CHECK_CS_VALIDATION_BITMAP */