]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/sys_pipe.c
xnu-3789.70.16.tar.gz
[apple/xnu.git] / bsd / kern / sys_pipe.c
1 /*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19 /*
20 * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
21 *
22 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
23 *
24 * This file contains Original Code and/or Modifications of Original Code
25 * as defined in and that are subject to the Apple Public Source License
26 * Version 2.0 (the 'License'). You may not use this file except in
27 * compliance with the License. The rights granted to you under the License
28 * may not be used to create, or enable the creation or redistribution of,
29 * unlawful or unlicensed copies of an Apple operating system, or to
30 * circumvent, violate, or enable the circumvention or violation of, any
31 * terms of an Apple operating system software license agreement.
32 *
33 * Please obtain a copy of the License at
34 * http://www.opensource.apple.com/apsl/ and read it before using this file.
35 *
36 * The Original Code and all software distributed under the License are
37 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
38 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
39 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
40 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
41 * Please see the License for the specific language governing rights and
42 * limitations under the License.
43 *
44 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
45 */
46 /*
47 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
48 * support for mandatory and extensible security protections. This notice
49 * is included in support of clause 2.2 (b) of the Apple Public License,
50 * Version 2.0.
51 */
52
53 /*
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
57 * do.
58 *
59 * Pipes are implemented as circular buffers. Following are the valid states in pipes operations
60 *
61 * _________________________________
62 * 1. |_________________________________| r=w, c=0
63 *
64 * _________________________________
65 * 2. |__r:::::wc_______________________| r <= w , c > 0
66 *
67 * _________________________________
68 * 3. |::::wc_____r:::::::::::::::::::::| r>w , c > 0
69 *
70 * _________________________________
71 * 4. |:::::::wrc:::::::::::::::::::::::| w=r, c = Max size
72 *
73 *
74 * Nomenclature:-
75 * a-z define the steps in a program flow
76 * 1-4 are the states as defined aboe
77 * Action: is what file operation is done on the pipe
78 *
79 * Current:None Action: initialize with size M=200
80 * a. State 1 ( r=0, w=0, c=0)
81 *
82 * Current: a Action: write(100) (w < M)
83 * b. State 2 (r=0, w=100, c=100)
84 *
85 * Current: b Action: write(100) (w = M-w)
86 * c. State 4 (r=0,w=0,c=200)
87 *
88 * Current: b Action: read(70) ( r < c )
89 * d. State 2(r=70,w=100,c=30)
90 *
91 * Current: d Action: write(75) ( w < (m-w))
92 * e. State 2 (r=70,w=175,c=105)
93 *
94 * Current: d Action: write(110) ( w > (m-w))
95 * f. State 3 (r=70,w=10,c=140)
96 *
97 * Current: d Action: read(30) (r >= c )
98 * g. State 1 (r=100,w=100,c=0)
99 *
100 */
101
102 /*
103 * This code create half duplex pipe buffers for facilitating file like
104 * operations on pipes. The initial buffer is very small, but this can
105 * dynamically change to larger sizes based on usage. The buffer size is never
106 * reduced. The total amount of kernel memory used is governed by maxpipekva.
107 * In case of dynamic expansion limit is reached, the output thread is blocked
108 * until the pipe buffer empties enough to continue.
109 *
110 * In order to limit the resource use of pipes, two sysctls exist:
111 *
112 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
113 * address space available to us in pipe_map.
114 *
115 * Memory usage may be monitored through the sysctls
116 * kern.ipc.pipes, kern.ipc.pipekva.
117 *
118 */
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/filedesc.h>
123 #include <sys/kernel.h>
124 #include <sys/vnode.h>
125 #include <sys/proc_internal.h>
126 #include <sys/kauth.h>
127 #include <sys/file_internal.h>
128 #include <sys/stat.h>
129 #include <sys/ioctl.h>
130 #include <sys/fcntl.h>
131 #include <sys/malloc.h>
132 #include <sys/syslog.h>
133 #include <sys/unistd.h>
134 #include <sys/resourcevar.h>
135 #include <sys/aio_kern.h>
136 #include <sys/signalvar.h>
137 #include <sys/pipe.h>
138 #include <sys/sysproto.h>
139 #include <sys/proc_info.h>
140
141 #include <security/audit/audit.h>
142
143 #include <sys/kdebug.h>
144
145 #include <kern/zalloc.h>
146 #include <kern/kalloc.h>
147 #include <vm/vm_kern.h>
148 #include <libkern/OSAtomic.h>
149
150 #define f_flag f_fglob->fg_flag
151 #define f_msgcount f_fglob->fg_msgcount
152 #define f_cred f_fglob->fg_cred
153 #define f_ops f_fglob->fg_ops
154 #define f_offset f_fglob->fg_offset
155 #define f_data f_fglob->fg_data
156
157 /*
158 * interfaces to the outside world exported through file operations
159 */
160 static int pipe_read(struct fileproc *fp, struct uio *uio,
161 int flags, vfs_context_t ctx);
162 static int pipe_write(struct fileproc *fp, struct uio *uio,
163 int flags, vfs_context_t ctx);
164 static int pipe_close(struct fileglob *fg, vfs_context_t ctx);
165 static int pipe_select(struct fileproc *fp, int which, void * wql,
166 vfs_context_t ctx);
167 static int pipe_kqfilter(struct fileproc *fp, struct knote *kn,
168 vfs_context_t ctx);
169 static int pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data,
170 vfs_context_t ctx);
171 static int pipe_drain(struct fileproc *fp,vfs_context_t ctx);
172
173 static const struct fileops pipeops = {
174 .fo_type = DTYPE_PIPE,
175 .fo_read = pipe_read,
176 .fo_write = pipe_write,
177 .fo_ioctl = pipe_ioctl,
178 .fo_select = pipe_select,
179 .fo_close = pipe_close,
180 .fo_kqfilter = pipe_kqfilter,
181 .fo_drain = pipe_drain,
182 };
183
184 static void filt_pipedetach(struct knote *kn);
185
186 static int filt_piperead(struct knote *kn, long hint);
187 static int filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev);
188 static int filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
189
190 static int filt_pipewrite(struct knote *kn, long hint);
191 static int filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev);
192 static int filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
193
194 struct filterops pipe_rfiltops = {
195 .f_isfd = 1,
196 .f_detach = filt_pipedetach,
197 .f_event = filt_piperead,
198 .f_touch = filt_pipereadtouch,
199 .f_process = filt_pipereadprocess,
200 };
201
202 struct filterops pipe_wfiltops = {
203 .f_isfd = 1,
204 .f_detach = filt_pipedetach,
205 .f_event = filt_pipewrite,
206 .f_touch = filt_pipewritetouch,
207 .f_process = filt_pipewriteprocess,
208 };
209
210 static int nbigpipe; /* for compatibility sake. no longer used */
211 static int amountpipes; /* total number of pipes in system */
212 static int amountpipekva; /* total memory used by pipes */
213
214 int maxpipekva __attribute__((used)) = PIPE_KVAMAX; /* allowing 16MB max. */
215
216 #if PIPE_SYSCTLS
217 SYSCTL_DECL(_kern_ipc);
218
219 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD|CTLFLAG_LOCKED,
220 &maxpipekva, 0, "Pipe KVA limit");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW|CTLFLAG_LOCKED,
222 &maxpipekvawired, 0, "Pipe KVA wired limit");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD|CTLFLAG_LOCKED,
224 &amountpipes, 0, "Current # of pipes");
225 SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD|CTLFLAG_LOCKED,
226 &nbigpipe, 0, "Current # of big pipes");
227 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD|CTLFLAG_LOCKED,
228 &amountpipekva, 0, "Pipe KVA usage");
229 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD|CTLFLAG_LOCKED,
230 &amountpipekvawired, 0, "Pipe wired KVA usage");
231 #endif
232
233 static void pipeclose(struct pipe *cpipe);
234 static void pipe_free_kmem(struct pipe *cpipe);
235 static int pipe_create(struct pipe **cpipep);
236 static int pipespace(struct pipe *cpipe, int size);
237 static int choose_pipespace(unsigned long current, unsigned long expected);
238 static int expand_pipespace(struct pipe *p, int target_size);
239 static void pipeselwakeup(struct pipe *cpipe, struct pipe *spipe);
240 static __inline int pipeio_lock(struct pipe *cpipe, int catch);
241 static __inline void pipeio_unlock(struct pipe *cpipe);
242
243 extern int postpipeevent(struct pipe *, int);
244 extern void evpipefree(struct pipe *cpipe);
245
246 static lck_grp_t *pipe_mtx_grp;
247 static lck_attr_t *pipe_mtx_attr;
248 static lck_grp_attr_t *pipe_mtx_grp_attr;
249
250 static zone_t pipe_zone;
251
252 #define MAX_PIPESIZE(pipe) ( MAX(PIPE_SIZE, (pipe)->pipe_buffer.size) )
253
254 #define PIPE_GARBAGE_AGE_LIMIT 5000 /* In milliseconds */
255 #define PIPE_GARBAGE_QUEUE_LIMIT 32000
256
257 struct pipe_garbage {
258 struct pipe *pg_pipe;
259 struct pipe_garbage *pg_next;
260 uint64_t pg_timestamp;
261 };
262
263 static zone_t pipe_garbage_zone;
264 static struct pipe_garbage *pipe_garbage_head = NULL;
265 static struct pipe_garbage *pipe_garbage_tail = NULL;
266 static uint64_t pipe_garbage_age_limit = PIPE_GARBAGE_AGE_LIMIT;
267 static int pipe_garbage_count = 0;
268 static lck_mtx_t *pipe_garbage_lock;
269 static void pipe_garbage_collect(struct pipe *cpipe);
270
271 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
272
273 /* initial setup done at time of sysinit */
274 void
275 pipeinit(void)
276 {
277 nbigpipe=0;
278 vm_size_t zone_size;
279
280 zone_size = 8192 * sizeof(struct pipe);
281 pipe_zone = zinit(sizeof(struct pipe), zone_size, 4096, "pipe zone");
282
283
284 /* allocate lock group attribute and group for pipe mutexes */
285 pipe_mtx_grp_attr = lck_grp_attr_alloc_init();
286 pipe_mtx_grp = lck_grp_alloc_init("pipe", pipe_mtx_grp_attr);
287
288 /* allocate the lock attribute for pipe mutexes */
289 pipe_mtx_attr = lck_attr_alloc_init();
290
291 /*
292 * Set up garbage collection for dead pipes
293 */
294 zone_size = (PIPE_GARBAGE_QUEUE_LIMIT + 20) *
295 sizeof(struct pipe_garbage);
296 pipe_garbage_zone = (zone_t)zinit(sizeof(struct pipe_garbage),
297 zone_size, 4096, "pipe garbage zone");
298 pipe_garbage_lock = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr);
299
300 }
301
302 /* Bitmap for things to touch in pipe_touch() */
303 #define PIPE_ATIME 0x00000001 /* time of last access */
304 #define PIPE_MTIME 0x00000002 /* time of last modification */
305 #define PIPE_CTIME 0x00000004 /* time of last status change */
306
307 static void
308 pipe_touch(struct pipe *tpipe, int touch)
309 {
310 struct timeval now;
311
312 microtime(&now);
313
314 if (touch & PIPE_ATIME) {
315 tpipe->st_atimespec.tv_sec = now.tv_sec;
316 tpipe->st_atimespec.tv_nsec = now.tv_usec * 1000;
317 }
318
319 if (touch & PIPE_MTIME) {
320 tpipe->st_mtimespec.tv_sec = now.tv_sec;
321 tpipe->st_mtimespec.tv_nsec = now.tv_usec * 1000;
322 }
323
324 if (touch & PIPE_CTIME) {
325 tpipe->st_ctimespec.tv_sec = now.tv_sec;
326 tpipe->st_ctimespec.tv_nsec = now.tv_usec * 1000;
327 }
328 }
329
330 static const unsigned int pipesize_blocks[] = {512,1024,2048,4096, 4096 * 2, PIPE_SIZE , PIPE_SIZE * 4 };
331
332 /*
333 * finds the right size from possible sizes in pipesize_blocks
334 * returns the size which matches max(current,expected)
335 */
336 static int
337 choose_pipespace(unsigned long current, unsigned long expected)
338 {
339 int i = sizeof(pipesize_blocks)/sizeof(unsigned int) -1;
340 unsigned long target;
341
342 /*
343 * assert that we always get an atomic transaction sized pipe buffer,
344 * even if the system pipe buffer high-water mark has been crossed.
345 */
346 assert(PIPE_BUF == pipesize_blocks[0]);
347
348 if (expected > current)
349 target = expected;
350 else
351 target = current;
352
353 while ( i >0 && pipesize_blocks[i-1] > target) {
354 i=i-1;
355
356 }
357
358 return pipesize_blocks[i];
359 }
360
361
362 /*
363 * expand the size of pipe while there is data to be read,
364 * and then free the old buffer once the current buffered
365 * data has been transferred to new storage.
366 * Required: PIPE_LOCK and io lock to be held by caller.
367 * returns 0 on success or no expansion possible
368 */
369 static int
370 expand_pipespace(struct pipe *p, int target_size)
371 {
372 struct pipe tmp, oldpipe;
373 int error;
374 tmp.pipe_buffer.buffer = 0;
375
376 if (p->pipe_buffer.size >= (unsigned) target_size) {
377 return 0; /* the existing buffer is max size possible */
378 }
379
380 /* create enough space in the target */
381 error = pipespace(&tmp, target_size);
382 if (error != 0)
383 return (error);
384
385 oldpipe.pipe_buffer.buffer = p->pipe_buffer.buffer;
386 oldpipe.pipe_buffer.size = p->pipe_buffer.size;
387
388 memcpy(tmp.pipe_buffer.buffer, p->pipe_buffer.buffer, p->pipe_buffer.size);
389 if (p->pipe_buffer.cnt > 0 && p->pipe_buffer.in <= p->pipe_buffer.out ){
390 /* we are in State 3 and need extra copying for read to be consistent */
391 memcpy(&tmp.pipe_buffer.buffer[p->pipe_buffer.size], p->pipe_buffer.buffer, p->pipe_buffer.size);
392 p->pipe_buffer.in += p->pipe_buffer.size;
393 }
394
395 p->pipe_buffer.buffer = tmp.pipe_buffer.buffer;
396 p->pipe_buffer.size = tmp.pipe_buffer.size;
397
398
399 pipe_free_kmem(&oldpipe);
400 return 0;
401 }
402
403 /*
404 * The pipe system call for the DTYPE_PIPE type of pipes
405 *
406 * returns:
407 * FREAD | fd0 | -->[struct rpipe] --> |~~buffer~~| \
408 * (pipe_mutex)
409 * FWRITE | fd1 | -->[struct wpipe] --X /
410 */
411
412 /* ARGSUSED */
413 int
414 pipe(proc_t p, __unused struct pipe_args *uap, int32_t *retval)
415 {
416 struct fileproc *rf, *wf;
417 struct pipe *rpipe, *wpipe;
418 lck_mtx_t *pmtx;
419 int fd, error;
420
421 if ((pmtx = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr)) == NULL)
422 return (ENOMEM);
423
424 rpipe = wpipe = NULL;
425 if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
426 error = ENFILE;
427 goto freepipes;
428 }
429 /*
430 * allocate the space for the normal I/O direction up
431 * front... we'll delay the allocation for the other
432 * direction until a write actually occurs (most likely it won't)...
433 */
434 error = pipespace(rpipe, choose_pipespace(rpipe->pipe_buffer.size, 0));
435 if (error)
436 goto freepipes;
437
438 TAILQ_INIT(&rpipe->pipe_evlist);
439 TAILQ_INIT(&wpipe->pipe_evlist);
440
441 error = falloc(p, &rf, &fd, vfs_context_current());
442 if (error) {
443 goto freepipes;
444 }
445 retval[0] = fd;
446
447 /*
448 * for now we'll create half-duplex pipes(refer returns section above).
449 * this is what we've always supported..
450 */
451 rf->f_flag = FREAD;
452 rf->f_data = (caddr_t)rpipe;
453 rf->f_ops = &pipeops;
454
455 error = falloc(p, &wf, &fd, vfs_context_current());
456 if (error) {
457 fp_free(p, retval[0], rf);
458 goto freepipes;
459 }
460 wf->f_flag = FWRITE;
461 wf->f_data = (caddr_t)wpipe;
462 wf->f_ops = &pipeops;
463
464 rpipe->pipe_peer = wpipe;
465 wpipe->pipe_peer = rpipe;
466 /* both structures share the same mutex */
467 rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
468
469 retval[1] = fd;
470 #if CONFIG_MACF
471 /*
472 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
473 *
474 * struct pipe represents a pipe endpoint. The MAC label is shared
475 * between the connected endpoints. As a result mac_pipe_label_init() and
476 * mac_pipe_label_associate() should only be called on one of the endpoints
477 * after they have been connected.
478 */
479 mac_pipe_label_init(rpipe);
480 mac_pipe_label_associate(kauth_cred_get(), rpipe);
481 wpipe->pipe_label = rpipe->pipe_label;
482 #endif
483 proc_fdlock_spin(p);
484 procfdtbl_releasefd(p, retval[0], NULL);
485 procfdtbl_releasefd(p, retval[1], NULL);
486 fp_drop(p, retval[0], rf, 1);
487 fp_drop(p, retval[1], wf, 1);
488 proc_fdunlock(p);
489
490
491 return (0);
492
493 freepipes:
494 pipeclose(rpipe);
495 pipeclose(wpipe);
496 lck_mtx_free(pmtx, pipe_mtx_grp);
497
498 return (error);
499 }
500
501 int
502 pipe_stat(struct pipe *cpipe, void *ub, int isstat64)
503 {
504 #if CONFIG_MACF
505 int error;
506 #endif
507 int pipe_size = 0;
508 int pipe_count;
509 struct stat *sb = (struct stat *)0; /* warning avoidance ; protected by isstat64 */
510 struct stat64 * sb64 = (struct stat64 *)0; /* warning avoidance ; protected by isstat64 */
511
512 if (cpipe == NULL)
513 return (EBADF);
514 PIPE_LOCK(cpipe);
515
516 #if CONFIG_MACF
517 error = mac_pipe_check_stat(kauth_cred_get(), cpipe);
518 if (error) {
519 PIPE_UNLOCK(cpipe);
520 return (error);
521 }
522 #endif
523 if (cpipe->pipe_buffer.buffer == 0) {
524 /* must be stat'ing the write fd */
525 if (cpipe->pipe_peer) {
526 /* the peer still exists, use it's info */
527 pipe_size = MAX_PIPESIZE(cpipe->pipe_peer);
528 pipe_count = cpipe->pipe_peer->pipe_buffer.cnt;
529 } else {
530 pipe_count = 0;
531 }
532 } else {
533 pipe_size = MAX_PIPESIZE(cpipe);
534 pipe_count = cpipe->pipe_buffer.cnt;
535 }
536 /*
537 * since peer's buffer is setup ouside of lock
538 * we might catch it in transient state
539 */
540 if (pipe_size == 0)
541 pipe_size = MAX(PIPE_SIZE, pipesize_blocks[0]);
542
543 if (isstat64 != 0) {
544 sb64 = (struct stat64 *)ub;
545
546 bzero(sb64, sizeof(*sb64));
547 sb64->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
548 sb64->st_blksize = pipe_size;
549 sb64->st_size = pipe_count;
550 sb64->st_blocks = (sb64->st_size + sb64->st_blksize - 1) / sb64->st_blksize;
551
552 sb64->st_uid = kauth_getuid();
553 sb64->st_gid = kauth_getgid();
554
555 sb64->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec;
556 sb64->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec;
557
558 sb64->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec;
559 sb64->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec;
560
561 sb64->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec;
562 sb64->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec;
563
564 /*
565 * Return a relatively unique inode number based on the current
566 * address of this pipe's struct pipe. This number may be recycled
567 * relatively quickly.
568 */
569 sb64->st_ino = (ino64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
570 } else {
571 sb = (struct stat *)ub;
572
573 bzero(sb, sizeof(*sb));
574 sb->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
575 sb->st_blksize = pipe_size;
576 sb->st_size = pipe_count;
577 sb->st_blocks = (sb->st_size + sb->st_blksize - 1) / sb->st_blksize;
578
579 sb->st_uid = kauth_getuid();
580 sb->st_gid = kauth_getgid();
581
582 sb->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec;
583 sb->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec;
584
585 sb->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec;
586 sb->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec;
587
588 sb->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec;
589 sb->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec;
590
591 /*
592 * Return a relatively unique inode number based on the current
593 * address of this pipe's struct pipe. This number may be recycled
594 * relatively quickly.
595 */
596 sb->st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
597 }
598 PIPE_UNLOCK(cpipe);
599
600 /*
601 * POSIX: Left as 0: st_dev, st_nlink, st_rdev, st_flags, st_gen,
602 * st_uid, st_gid.
603 *
604 * XXX (st_dev) should be unique, but there is no device driver that
605 * XXX is associated with pipes, since they are implemented via a
606 * XXX struct fileops indirection rather than as FS objects.
607 */
608 return (0);
609 }
610
611
612 /*
613 * Allocate kva for pipe circular buffer, the space is pageable
614 * This routine will 'realloc' the size of a pipe safely, if it fails
615 * it will retain the old buffer.
616 * If it fails it will return ENOMEM.
617 */
618 static int
619 pipespace(struct pipe *cpipe, int size)
620 {
621 vm_offset_t buffer;
622
623 if (size <= 0)
624 return(EINVAL);
625
626 if ((buffer = (vm_offset_t)kalloc(size)) == 0 )
627 return(ENOMEM);
628
629 /* free old resources if we're resizing */
630 pipe_free_kmem(cpipe);
631 cpipe->pipe_buffer.buffer = (caddr_t)buffer;
632 cpipe->pipe_buffer.size = size;
633 cpipe->pipe_buffer.in = 0;
634 cpipe->pipe_buffer.out = 0;
635 cpipe->pipe_buffer.cnt = 0;
636
637 OSAddAtomic(1, &amountpipes);
638 OSAddAtomic(cpipe->pipe_buffer.size, &amountpipekva);
639
640 return (0);
641 }
642
643 /*
644 * initialize and allocate VM and memory for pipe
645 */
646 static int
647 pipe_create(struct pipe **cpipep)
648 {
649 struct pipe *cpipe;
650 cpipe = (struct pipe *)zalloc(pipe_zone);
651
652 if ((*cpipep = cpipe) == NULL)
653 return (ENOMEM);
654
655 /*
656 * protect so pipespace or pipeclose don't follow a junk pointer
657 * if pipespace() fails.
658 */
659 bzero(cpipe, sizeof *cpipe);
660
661 /* Initial times are all the time of creation of the pipe */
662 pipe_touch(cpipe, PIPE_ATIME | PIPE_MTIME | PIPE_CTIME);
663 return (0);
664 }
665
666
667 /*
668 * lock a pipe for I/O, blocking other access
669 */
670 static inline int
671 pipeio_lock(struct pipe *cpipe, int catch)
672 {
673 int error;
674 while (cpipe->pipe_state & PIPE_LOCKFL) {
675 cpipe->pipe_state |= PIPE_LWANT;
676 error = msleep(cpipe, PIPE_MTX(cpipe), catch ? (PRIBIO | PCATCH) : PRIBIO,
677 "pipelk", 0);
678 if (error != 0)
679 return (error);
680 }
681 cpipe->pipe_state |= PIPE_LOCKFL;
682 return (0);
683 }
684
685 /*
686 * unlock a pipe I/O lock
687 */
688 static inline void
689 pipeio_unlock(struct pipe *cpipe)
690 {
691 cpipe->pipe_state &= ~PIPE_LOCKFL;
692 if (cpipe->pipe_state & PIPE_LWANT) {
693 cpipe->pipe_state &= ~PIPE_LWANT;
694 wakeup(cpipe);
695 }
696 }
697
698 /*
699 * wakeup anyone whos blocked in select
700 */
701 static void
702 pipeselwakeup(struct pipe *cpipe, struct pipe *spipe)
703 {
704 if (cpipe->pipe_state & PIPE_SEL) {
705 cpipe->pipe_state &= ~PIPE_SEL;
706 selwakeup(&cpipe->pipe_sel);
707 }
708 if (cpipe->pipe_state & PIPE_KNOTE)
709 KNOTE(&cpipe->pipe_sel.si_note, 1);
710
711 postpipeevent(cpipe, EV_RWBYTES);
712
713 if (spipe && (spipe->pipe_state & PIPE_ASYNC) && spipe->pipe_pgid) {
714 if (spipe->pipe_pgid < 0)
715 gsignal(-spipe->pipe_pgid, SIGIO);
716 else
717 proc_signal(spipe->pipe_pgid, SIGIO);
718 }
719 }
720
721 /*
722 * Read n bytes from the buffer. Semantics are similar to file read.
723 * returns: number of bytes read from the buffer
724 */
725 /* ARGSUSED */
726 static int
727 pipe_read(struct fileproc *fp, struct uio *uio, __unused int flags,
728 __unused vfs_context_t ctx)
729 {
730 struct pipe *rpipe = (struct pipe *)fp->f_data;
731 int error;
732 int nread = 0;
733 u_int size;
734
735 PIPE_LOCK(rpipe);
736 ++rpipe->pipe_busy;
737
738 error = pipeio_lock(rpipe, 1);
739 if (error)
740 goto unlocked_error;
741
742 #if CONFIG_MACF
743 error = mac_pipe_check_read(kauth_cred_get(), rpipe);
744 if (error)
745 goto locked_error;
746 #endif
747
748
749 while (uio_resid(uio)) {
750 /*
751 * normal pipe buffer receive
752 */
753 if (rpipe->pipe_buffer.cnt > 0) {
754 /*
755 * # bytes to read is min( bytes from read pointer until end of buffer,
756 * total unread bytes,
757 * user requested byte count)
758 */
759 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
760 if (size > rpipe->pipe_buffer.cnt)
761 size = rpipe->pipe_buffer.cnt;
762 // LP64todo - fix this!
763 if (size > (u_int) uio_resid(uio))
764 size = (u_int) uio_resid(uio);
765
766 PIPE_UNLOCK(rpipe); /* we still hold io lock.*/
767 error = uiomove(
768 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
769 size, uio);
770 PIPE_LOCK(rpipe);
771 if (error)
772 break;
773
774 rpipe->pipe_buffer.out += size;
775 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
776 rpipe->pipe_buffer.out = 0;
777
778 rpipe->pipe_buffer.cnt -= size;
779
780 /*
781 * If there is no more to read in the pipe, reset
782 * its pointers to the beginning. This improves
783 * cache hit stats.
784 */
785 if (rpipe->pipe_buffer.cnt == 0) {
786 rpipe->pipe_buffer.in = 0;
787 rpipe->pipe_buffer.out = 0;
788 }
789 nread += size;
790 } else {
791 /*
792 * detect EOF condition
793 * read returns 0 on EOF, no need to set error
794 */
795 if (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
796 break;
797 }
798
799 /*
800 * If the "write-side" has been blocked, wake it up now.
801 */
802 if (rpipe->pipe_state & PIPE_WANTW) {
803 rpipe->pipe_state &= ~PIPE_WANTW;
804 wakeup(rpipe);
805 }
806
807 /*
808 * Break if some data was read in previous iteration.
809 */
810 if (nread > 0)
811 break;
812
813 /*
814 * Unlock the pipe buffer for our remaining processing.
815 * We will either break out with an error or we will
816 * sleep and relock to loop.
817 */
818 pipeio_unlock(rpipe);
819
820 /*
821 * Handle non-blocking mode operation or
822 * wait for more data.
823 */
824 if (fp->f_flag & FNONBLOCK) {
825 error = EAGAIN;
826 } else {
827 rpipe->pipe_state |= PIPE_WANTR;
828 error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "piperd", 0);
829 if (error == 0)
830 error = pipeio_lock(rpipe, 1);
831 }
832 if (error)
833 goto unlocked_error;
834 }
835 }
836 #if CONFIG_MACF
837 locked_error:
838 #endif
839 pipeio_unlock(rpipe);
840
841 unlocked_error:
842 --rpipe->pipe_busy;
843
844 /*
845 * PIPE_WANT processing only makes sense if pipe_busy is 0.
846 */
847 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
848 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
849 wakeup(rpipe);
850 } else if (rpipe->pipe_buffer.cnt < rpipe->pipe_buffer.size) {
851 /*
852 * Handle write blocking hysteresis.
853 */
854 if (rpipe->pipe_state & PIPE_WANTW) {
855 rpipe->pipe_state &= ~PIPE_WANTW;
856 wakeup(rpipe);
857 }
858 }
859
860 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) > 0)
861 pipeselwakeup(rpipe, rpipe->pipe_peer);
862
863 /* update last read time */
864 pipe_touch(rpipe, PIPE_ATIME);
865
866 PIPE_UNLOCK(rpipe);
867
868 return (error);
869 }
870
871 /*
872 * perform a write of n bytes into the read side of buffer. Since
873 * pipes are unidirectional a write is meant to be read by the otherside only.
874 */
875 static int
876 pipe_write(struct fileproc *fp, struct uio *uio, __unused int flags,
877 __unused vfs_context_t ctx)
878 {
879 int error = 0;
880 int orig_resid;
881 int pipe_size;
882 struct pipe *wpipe, *rpipe;
883 // LP64todo - fix this!
884 orig_resid = uio_resid(uio);
885 int space;
886
887 rpipe = (struct pipe *)fp->f_data;
888
889 PIPE_LOCK(rpipe);
890 wpipe = rpipe->pipe_peer;
891
892 /*
893 * detect loss of pipe read side, issue SIGPIPE if lost.
894 */
895 if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
896 PIPE_UNLOCK(rpipe);
897 return (EPIPE);
898 }
899 #if CONFIG_MACF
900 error = mac_pipe_check_write(kauth_cred_get(), wpipe);
901 if (error) {
902 PIPE_UNLOCK(rpipe);
903 return (error);
904 }
905 #endif
906 ++wpipe->pipe_busy;
907
908 pipe_size = 0;
909
910 /*
911 * need to allocate some storage... we delay the allocation
912 * until the first write on fd[0] to avoid allocating storage for both
913 * 'pipe ends'... most pipes are half-duplex with the writes targeting
914 * fd[1], so allocating space for both ends is a waste...
915 */
916
917 if ( wpipe->pipe_buffer.buffer == 0 || (
918 (unsigned)orig_resid > wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt &&
919 amountpipekva < maxpipekva ) ) {
920
921 pipe_size = choose_pipespace(wpipe->pipe_buffer.size, wpipe->pipe_buffer.cnt + orig_resid);
922 }
923 if (pipe_size) {
924 /*
925 * need to do initial allocation or resizing of pipe
926 * holding both structure and io locks.
927 */
928 if ((error = pipeio_lock(wpipe, 1)) == 0) {
929 if (wpipe->pipe_buffer.cnt == 0)
930 error = pipespace(wpipe, pipe_size);
931 else
932 error = expand_pipespace(wpipe, pipe_size);
933
934 pipeio_unlock(wpipe);
935
936 /* allocation failed */
937 if (wpipe->pipe_buffer.buffer == 0)
938 error = ENOMEM;
939 }
940 if (error) {
941 /*
942 * If an error occurred unbusy and return, waking up any pending
943 * readers.
944 */
945 --wpipe->pipe_busy;
946 if ((wpipe->pipe_busy == 0) &&
947 (wpipe->pipe_state & PIPE_WANT)) {
948 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
949 wakeup(wpipe);
950 }
951 PIPE_UNLOCK(rpipe);
952 return(error);
953 }
954 }
955
956 while (uio_resid(uio)) {
957
958 retrywrite:
959 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
960
961 /* Writes of size <= PIPE_BUF must be atomic. */
962 if ((space < uio_resid(uio)) && (orig_resid <= PIPE_BUF))
963 space = 0;
964
965 if (space > 0) {
966
967 if ((error = pipeio_lock(wpipe,1)) == 0) {
968 int size; /* Transfer size */
969 int segsize; /* first segment to transfer */
970
971 if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
972 pipeio_unlock(wpipe);
973 error = EPIPE;
974 break;
975 }
976 /*
977 * If a process blocked in pipeio_lock, our
978 * value for space might be bad... the mutex
979 * is dropped while we're blocked
980 */
981 if (space > (int)(wpipe->pipe_buffer.size -
982 wpipe->pipe_buffer.cnt)) {
983 pipeio_unlock(wpipe);
984 goto retrywrite;
985 }
986
987 /*
988 * Transfer size is minimum of uio transfer
989 * and free space in pipe buffer.
990 */
991 // LP64todo - fix this!
992 if (space > uio_resid(uio))
993 size = uio_resid(uio);
994 else
995 size = space;
996 /*
997 * First segment to transfer is minimum of
998 * transfer size and contiguous space in
999 * pipe buffer. If first segment to transfer
1000 * is less than the transfer size, we've got
1001 * a wraparound in the buffer.
1002 */
1003 segsize = wpipe->pipe_buffer.size -
1004 wpipe->pipe_buffer.in;
1005 if (segsize > size)
1006 segsize = size;
1007
1008 /* Transfer first segment */
1009
1010 PIPE_UNLOCK(rpipe);
1011 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1012 segsize, uio);
1013 PIPE_LOCK(rpipe);
1014
1015 if (error == 0 && segsize < size) {
1016 /*
1017 * Transfer remaining part now, to
1018 * support atomic writes. Wraparound
1019 * happened. (State 3)
1020 */
1021 if (wpipe->pipe_buffer.in + segsize !=
1022 wpipe->pipe_buffer.size)
1023 panic("Expected pipe buffer "
1024 "wraparound disappeared");
1025
1026 PIPE_UNLOCK(rpipe);
1027 error = uiomove(
1028 &wpipe->pipe_buffer.buffer[0],
1029 size - segsize, uio);
1030 PIPE_LOCK(rpipe);
1031 }
1032 /*
1033 * readers never know to read until count is updated.
1034 */
1035 if (error == 0) {
1036 wpipe->pipe_buffer.in += size;
1037 if (wpipe->pipe_buffer.in >
1038 wpipe->pipe_buffer.size) {
1039 if (wpipe->pipe_buffer.in !=
1040 size - segsize +
1041 wpipe->pipe_buffer.size)
1042 panic("Expected "
1043 "wraparound bad");
1044 wpipe->pipe_buffer.in = size -
1045 segsize;
1046 }
1047
1048 wpipe->pipe_buffer.cnt += size;
1049 if (wpipe->pipe_buffer.cnt >
1050 wpipe->pipe_buffer.size)
1051 panic("Pipe buffer overflow");
1052
1053 }
1054 pipeio_unlock(wpipe);
1055 }
1056 if (error)
1057 break;
1058
1059 } else {
1060 /*
1061 * If the "read-side" has been blocked, wake it up now.
1062 */
1063 if (wpipe->pipe_state & PIPE_WANTR) {
1064 wpipe->pipe_state &= ~PIPE_WANTR;
1065 wakeup(wpipe);
1066 }
1067 /*
1068 * don't block on non-blocking I/O
1069 * we'll do the pipeselwakeup on the way out
1070 */
1071 if (fp->f_flag & FNONBLOCK) {
1072 error = EAGAIN;
1073 break;
1074 }
1075
1076 /*
1077 * If read side wants to go away, we just issue a signal
1078 * to ourselves.
1079 */
1080 if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
1081 error = EPIPE;
1082 break;
1083 }
1084
1085 /*
1086 * We have no more space and have something to offer,
1087 * wake up select/poll.
1088 */
1089 pipeselwakeup(wpipe, wpipe);
1090
1091 wpipe->pipe_state |= PIPE_WANTW;
1092
1093 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipewr", 0);
1094
1095 if (error != 0)
1096 break;
1097 }
1098 }
1099 --wpipe->pipe_busy;
1100
1101 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1102 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1103 wakeup(wpipe);
1104 }
1105 if (wpipe->pipe_buffer.cnt > 0) {
1106 /*
1107 * If there are any characters in the buffer, we wake up
1108 * the reader if it was blocked waiting for data.
1109 */
1110 if (wpipe->pipe_state & PIPE_WANTR) {
1111 wpipe->pipe_state &= ~PIPE_WANTR;
1112 wakeup(wpipe);
1113 }
1114 /*
1115 * wake up thread blocked in select/poll or post the notification
1116 */
1117 pipeselwakeup(wpipe, wpipe);
1118 }
1119
1120 /* Update modification, status change (# of bytes in pipe) times */
1121 pipe_touch(rpipe, PIPE_MTIME | PIPE_CTIME);
1122 pipe_touch(wpipe, PIPE_MTIME | PIPE_CTIME);
1123 PIPE_UNLOCK(rpipe);
1124
1125 return (error);
1126 }
1127
1128 /*
1129 * we implement a very minimal set of ioctls for compatibility with sockets.
1130 */
1131 /* ARGSUSED 3 */
1132 static int
1133 pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data,
1134 __unused vfs_context_t ctx)
1135 {
1136 struct pipe *mpipe = (struct pipe *)fp->f_data;
1137 #if CONFIG_MACF
1138 int error;
1139 #endif
1140
1141 PIPE_LOCK(mpipe);
1142
1143 #if CONFIG_MACF
1144 error = mac_pipe_check_ioctl(kauth_cred_get(), mpipe, cmd);
1145 if (error) {
1146 PIPE_UNLOCK(mpipe);
1147
1148 return (error);
1149 }
1150 #endif
1151
1152 switch (cmd) {
1153
1154 case FIONBIO:
1155 PIPE_UNLOCK(mpipe);
1156 return (0);
1157
1158 case FIOASYNC:
1159 if (*(int *)data) {
1160 mpipe->pipe_state |= PIPE_ASYNC;
1161 } else {
1162 mpipe->pipe_state &= ~PIPE_ASYNC;
1163 }
1164 PIPE_UNLOCK(mpipe);
1165 return (0);
1166
1167 case FIONREAD:
1168 *(int *)data = mpipe->pipe_buffer.cnt;
1169 PIPE_UNLOCK(mpipe);
1170 return (0);
1171
1172 case TIOCSPGRP:
1173 mpipe->pipe_pgid = *(int *)data;
1174
1175 PIPE_UNLOCK(mpipe);
1176 return (0);
1177
1178 case TIOCGPGRP:
1179 *(int *)data = mpipe->pipe_pgid;
1180
1181 PIPE_UNLOCK(mpipe);
1182 return (0);
1183
1184 }
1185 PIPE_UNLOCK(mpipe);
1186 return (ENOTTY);
1187 }
1188
1189
1190 static int
1191 pipe_select(struct fileproc *fp, int which, void *wql, vfs_context_t ctx)
1192 {
1193 struct pipe *rpipe = (struct pipe *)fp->f_data;
1194 struct pipe *wpipe;
1195 int retnum = 0;
1196
1197 if (rpipe == NULL || rpipe == (struct pipe *)-1)
1198 return (retnum);
1199
1200 PIPE_LOCK(rpipe);
1201
1202 wpipe = rpipe->pipe_peer;
1203
1204
1205 #if CONFIG_MACF
1206 /*
1207 * XXX We should use a per thread credential here; minimally, the
1208 * XXX process credential should have a persistent reference on it
1209 * XXX before being passed in here.
1210 */
1211 if (mac_pipe_check_select(vfs_context_ucred(ctx), rpipe, which)) {
1212 PIPE_UNLOCK(rpipe);
1213 return (0);
1214 }
1215 #endif
1216 switch (which) {
1217
1218 case FREAD:
1219 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1220 (rpipe->pipe_buffer.cnt > 0) ||
1221 (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
1222
1223 retnum = 1;
1224 } else {
1225 rpipe->pipe_state |= PIPE_SEL;
1226 selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql);
1227 }
1228 break;
1229
1230 case FWRITE:
1231 if (wpipe)
1232 wpipe->pipe_state |= PIPE_WSELECT;
1233 if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) ||
1234 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1235 (MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) {
1236
1237 retnum = 1;
1238 } else {
1239 wpipe->pipe_state |= PIPE_SEL;
1240 selrecord(vfs_context_proc(ctx), &wpipe->pipe_sel, wql);
1241 }
1242 break;
1243 case 0:
1244 rpipe->pipe_state |= PIPE_SEL;
1245 selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql);
1246 break;
1247 }
1248 PIPE_UNLOCK(rpipe);
1249
1250 return (retnum);
1251 }
1252
1253
1254 /* ARGSUSED 1 */
1255 static int
1256 pipe_close(struct fileglob *fg, __unused vfs_context_t ctx)
1257 {
1258 struct pipe *cpipe;
1259
1260 proc_fdlock_spin(vfs_context_proc(ctx));
1261 cpipe = (struct pipe *)fg->fg_data;
1262 fg->fg_data = NULL;
1263 proc_fdunlock(vfs_context_proc(ctx));
1264 if (cpipe)
1265 pipeclose(cpipe);
1266
1267 return (0);
1268 }
1269
1270 static void
1271 pipe_free_kmem(struct pipe *cpipe)
1272 {
1273 if (cpipe->pipe_buffer.buffer != NULL) {
1274 OSAddAtomic(-(cpipe->pipe_buffer.size), &amountpipekva);
1275 OSAddAtomic(-1, &amountpipes);
1276 kfree((void *)cpipe->pipe_buffer.buffer,
1277 cpipe->pipe_buffer.size);
1278 cpipe->pipe_buffer.buffer = NULL;
1279 cpipe->pipe_buffer.size = 0;
1280 }
1281 }
1282
1283 /*
1284 * shutdown the pipe
1285 */
1286 static void
1287 pipeclose(struct pipe *cpipe)
1288 {
1289 struct pipe *ppipe;
1290
1291 if (cpipe == NULL)
1292 return;
1293 /* partially created pipes won't have a valid mutex. */
1294 if (PIPE_MTX(cpipe) != NULL)
1295 PIPE_LOCK(cpipe);
1296
1297
1298 /*
1299 * If the other side is blocked, wake it up saying that
1300 * we want to close it down.
1301 */
1302 cpipe->pipe_state &= ~PIPE_DRAIN;
1303 cpipe->pipe_state |= PIPE_EOF;
1304 pipeselwakeup(cpipe, cpipe);
1305
1306 while (cpipe->pipe_busy) {
1307 cpipe->pipe_state |= PIPE_WANT;
1308
1309 wakeup(cpipe);
1310 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1311 }
1312
1313 #if CONFIG_MACF
1314 /*
1315 * Free the shared pipe label only after the two ends are disconnected.
1316 */
1317 if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1318 mac_pipe_label_destroy(cpipe);
1319 #endif
1320
1321 /*
1322 * Disconnect from peer
1323 */
1324 if ((ppipe = cpipe->pipe_peer) != NULL) {
1325
1326 ppipe->pipe_state &= ~(PIPE_DRAIN);
1327 ppipe->pipe_state |= PIPE_EOF;
1328
1329 pipeselwakeup(ppipe, ppipe);
1330 wakeup(ppipe);
1331
1332 if (cpipe->pipe_state & PIPE_KNOTE)
1333 KNOTE(&ppipe->pipe_sel.si_note, 1);
1334
1335 postpipeevent(ppipe, EV_RCLOSED);
1336
1337 ppipe->pipe_peer = NULL;
1338 }
1339 evpipefree(cpipe);
1340
1341 /*
1342 * free resources
1343 */
1344 if (PIPE_MTX(cpipe) != NULL) {
1345 if (ppipe != NULL) {
1346 /*
1347 * since the mutex is shared and the peer is still
1348 * alive, we need to release the mutex, not free it
1349 */
1350 PIPE_UNLOCK(cpipe);
1351 } else {
1352 /*
1353 * peer is gone, so we're the sole party left with
1354 * interest in this mutex... unlock and free it
1355 */
1356 PIPE_UNLOCK(cpipe);
1357 lck_mtx_free(PIPE_MTX(cpipe), pipe_mtx_grp);
1358 }
1359 }
1360 pipe_free_kmem(cpipe);
1361 if (cpipe->pipe_state & PIPE_WSELECT) {
1362 pipe_garbage_collect(cpipe);
1363 } else {
1364 zfree(pipe_zone, cpipe);
1365 pipe_garbage_collect(NULL);
1366 }
1367
1368 }
1369
1370 /*ARGSUSED*/
1371 static int
1372 filt_piperead_common(struct knote *kn, struct pipe *rpipe)
1373 {
1374 struct pipe *wpipe;
1375 int retval;
1376
1377 /*
1378 * we're being called back via the KNOTE post
1379 * we made in pipeselwakeup, and we already hold the mutex...
1380 */
1381
1382 wpipe = rpipe->pipe_peer;
1383 kn->kn_data = rpipe->pipe_buffer.cnt;
1384 if ((rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) ||
1385 (wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
1386 kn->kn_flags |= EV_EOF;
1387 retval = 1;
1388 } else {
1389 int64_t lowwat = 1;
1390 if (kn->kn_sfflags & NOTE_LOWAT) {
1391 if (rpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(rpipe))
1392 lowwat = MAX_PIPESIZE(rpipe);
1393 else if (kn->kn_sdata > lowwat)
1394 lowwat = kn->kn_sdata;
1395 }
1396 retval = kn->kn_data >= lowwat;
1397 }
1398 return (retval);
1399 }
1400
1401 static int
1402 filt_piperead(struct knote *kn, long hint)
1403 {
1404 #pragma unused(hint)
1405 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1406
1407 return filt_piperead_common(kn, rpipe);
1408 }
1409
1410 static int
1411 filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev)
1412 {
1413 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1414 int retval;
1415
1416 PIPE_LOCK(rpipe);
1417
1418 /* accept new inputs (and save the low water threshold and flag) */
1419 kn->kn_sdata = kev->data;
1420 kn->kn_sfflags = kev->fflags;
1421 if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
1422 kn->kn_udata = kev->udata;
1423
1424 /* identify if any events are now fired */
1425 retval = filt_piperead_common(kn, rpipe);
1426
1427 PIPE_UNLOCK(rpipe);
1428
1429 return retval;
1430 }
1431
1432 static int
1433 filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
1434 {
1435 #pragma unused(data)
1436 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1437 int retval;
1438
1439 PIPE_LOCK(rpipe);
1440 retval = filt_piperead_common(kn, rpipe);
1441 if (retval) {
1442 *kev = kn->kn_kevent;
1443 if (kn->kn_flags & EV_CLEAR) {
1444 kn->kn_fflags = 0;
1445 kn->kn_data = 0;
1446 }
1447 }
1448 PIPE_UNLOCK(rpipe);
1449
1450 return (retval);
1451 }
1452
1453 /*ARGSUSED*/
1454 static int
1455 filt_pipewrite_common(struct knote *kn, struct pipe *rpipe)
1456 {
1457 struct pipe *wpipe;
1458
1459 /*
1460 * we're being called back via the KNOTE post
1461 * we made in pipeselwakeup, and we already hold the mutex...
1462 */
1463 wpipe = rpipe->pipe_peer;
1464
1465 if ((wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
1466 kn->kn_data = 0;
1467 kn->kn_flags |= EV_EOF;
1468 return (1);
1469 }
1470 kn->kn_data = MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt;
1471
1472 int64_t lowwat = PIPE_BUF;
1473 if (kn->kn_sfflags & NOTE_LOWAT) {
1474 if (wpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(wpipe))
1475 lowwat = MAX_PIPESIZE(wpipe);
1476 else if (kn->kn_sdata > lowwat)
1477 lowwat = kn->kn_sdata;
1478 }
1479
1480 return (kn->kn_data >= lowwat);
1481 }
1482
1483 /*ARGSUSED*/
1484 static int
1485 filt_pipewrite(struct knote *kn, long hint)
1486 {
1487 #pragma unused(hint)
1488 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1489
1490 return filt_pipewrite_common(kn, rpipe);
1491 }
1492
1493
1494 static int
1495 filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev)
1496 {
1497 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1498 int res;
1499
1500 PIPE_LOCK(rpipe);
1501
1502 /* accept new kevent data (and save off lowat threshold and flag) */
1503 kn->kn_sfflags = kev->fflags;
1504 kn->kn_sdata = kev->data;
1505 if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
1506 kn->kn_udata = kev->udata;
1507
1508 /* determine if any event is now deemed fired */
1509 res = filt_pipewrite_common(kn, rpipe);
1510
1511 PIPE_UNLOCK(rpipe);
1512
1513 return res;
1514 }
1515
1516 static int
1517 filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
1518 {
1519 #pragma unused(data)
1520 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1521 int res;
1522
1523 PIPE_LOCK(rpipe);
1524 res = filt_pipewrite_common(kn, rpipe);
1525 if (res) {
1526 *kev = kn->kn_kevent;
1527 if (kn->kn_flags & EV_CLEAR) {
1528 kn->kn_fflags = 0;
1529 kn->kn_data = 0;
1530 }
1531 }
1532 PIPE_UNLOCK(rpipe);
1533
1534 return res;
1535 }
1536
1537 /*ARGSUSED*/
1538 static int
1539 pipe_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx)
1540 {
1541 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1542 int res;
1543
1544 PIPE_LOCK(cpipe);
1545 #if CONFIG_MACF
1546 /*
1547 * XXX We should use a per thread credential here; minimally, the
1548 * XXX process credential should have a persistent reference on it
1549 * XXX before being passed in here.
1550 */
1551 if (mac_pipe_check_kqfilter(vfs_context_ucred(ctx), kn, cpipe) != 0) {
1552 PIPE_UNLOCK(cpipe);
1553 kn->kn_flags = EV_ERROR;
1554 kn->kn_data = EPERM;
1555 return 0;
1556 }
1557 #endif
1558
1559 switch (kn->kn_filter) {
1560 case EVFILT_READ:
1561 kn->kn_filtid = EVFILTID_PIPE_R;
1562
1563 /* determine initial state */
1564 res = filt_piperead_common(kn, cpipe);
1565 break;
1566
1567 case EVFILT_WRITE:
1568 kn->kn_filtid = EVFILTID_PIPE_W;
1569
1570 if (cpipe->pipe_peer == NULL) {
1571 /*
1572 * other end of pipe has been closed
1573 */
1574 PIPE_UNLOCK(cpipe);
1575 kn->kn_flags = EV_ERROR;
1576 kn->kn_data = EPIPE;
1577 return 0;
1578 }
1579 if (cpipe->pipe_peer)
1580 cpipe = cpipe->pipe_peer;
1581
1582 /* determine inital state */
1583 res = filt_pipewrite_common(kn, cpipe);
1584 break;
1585 default:
1586 PIPE_UNLOCK(cpipe);
1587 kn->kn_flags = EV_ERROR;
1588 kn->kn_data = EINVAL;
1589 return 0;
1590 }
1591
1592 if (KNOTE_ATTACH(&cpipe->pipe_sel.si_note, kn))
1593 cpipe->pipe_state |= PIPE_KNOTE;
1594
1595 PIPE_UNLOCK(cpipe);
1596 return res;
1597 }
1598
1599 static void
1600 filt_pipedetach(struct knote *kn)
1601 {
1602 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1603
1604 PIPE_LOCK(cpipe);
1605
1606 if (kn->kn_filter == EVFILT_WRITE) {
1607 if (cpipe->pipe_peer == NULL) {
1608 PIPE_UNLOCK(cpipe);
1609 return;
1610 }
1611 cpipe = cpipe->pipe_peer;
1612 }
1613 if (cpipe->pipe_state & PIPE_KNOTE) {
1614 if (KNOTE_DETACH(&cpipe->pipe_sel.si_note, kn))
1615 cpipe->pipe_state &= ~PIPE_KNOTE;
1616 }
1617 PIPE_UNLOCK(cpipe);
1618 }
1619
1620 int
1621 fill_pipeinfo(struct pipe * cpipe, struct pipe_info * pinfo)
1622 {
1623 #if CONFIG_MACF
1624 int error;
1625 #endif
1626 struct timeval now;
1627 struct vinfo_stat * ub;
1628 int pipe_size = 0;
1629 int pipe_count;
1630
1631 if (cpipe == NULL)
1632 return (EBADF);
1633 PIPE_LOCK(cpipe);
1634
1635 #if CONFIG_MACF
1636 error = mac_pipe_check_stat(kauth_cred_get(), cpipe);
1637 if (error) {
1638 PIPE_UNLOCK(cpipe);
1639 return (error);
1640 }
1641 #endif
1642 if (cpipe->pipe_buffer.buffer == 0) {
1643 /*
1644 * must be stat'ing the write fd
1645 */
1646 if (cpipe->pipe_peer) {
1647 /*
1648 * the peer still exists, use it's info
1649 */
1650 pipe_size = MAX_PIPESIZE(cpipe->pipe_peer);
1651 pipe_count = cpipe->pipe_peer->pipe_buffer.cnt;
1652 } else {
1653 pipe_count = 0;
1654 }
1655 } else {
1656 pipe_size = MAX_PIPESIZE(cpipe);
1657 pipe_count = cpipe->pipe_buffer.cnt;
1658 }
1659 /*
1660 * since peer's buffer is setup ouside of lock
1661 * we might catch it in transient state
1662 */
1663 if (pipe_size == 0)
1664 pipe_size = PIPE_SIZE;
1665
1666 ub = &pinfo->pipe_stat;
1667
1668 bzero(ub, sizeof(*ub));
1669 ub->vst_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
1670 ub->vst_blksize = pipe_size;
1671 ub->vst_size = pipe_count;
1672 if (ub->vst_blksize != 0)
1673 ub->vst_blocks = (ub->vst_size + ub->vst_blksize - 1) / ub->vst_blksize;
1674 ub->vst_nlink = 1;
1675
1676 ub->vst_uid = kauth_getuid();
1677 ub->vst_gid = kauth_getgid();
1678
1679 microtime(&now);
1680 ub->vst_atime = now.tv_sec;
1681 ub->vst_atimensec = now.tv_usec * 1000;
1682
1683 ub->vst_mtime = now.tv_sec;
1684 ub->vst_mtimensec = now.tv_usec * 1000;
1685
1686 ub->vst_ctime = now.tv_sec;
1687 ub->vst_ctimensec = now.tv_usec * 1000;
1688
1689 /*
1690 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
1691 * XXX (st_dev, st_ino) should be unique.
1692 */
1693
1694 pinfo->pipe_handle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
1695 pinfo->pipe_peerhandle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(cpipe->pipe_peer));
1696 pinfo->pipe_status = cpipe->pipe_state;
1697
1698 PIPE_UNLOCK(cpipe);
1699
1700 return (0);
1701 }
1702
1703
1704 static int
1705 pipe_drain(struct fileproc *fp, __unused vfs_context_t ctx)
1706 {
1707
1708 /* Note: fdlock already held */
1709 struct pipe *ppipe, *cpipe = (struct pipe *)(fp->f_fglob->fg_data);
1710
1711 if (cpipe) {
1712 PIPE_LOCK(cpipe);
1713 cpipe->pipe_state |= PIPE_DRAIN;
1714 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1715 wakeup(cpipe);
1716
1717 /* Must wake up peer: a writer sleeps on the read side */
1718 if ((ppipe = cpipe->pipe_peer)) {
1719 ppipe->pipe_state |= PIPE_DRAIN;
1720 ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1721 wakeup(ppipe);
1722 }
1723
1724 PIPE_UNLOCK(cpipe);
1725 return 0;
1726 }
1727
1728 return 1;
1729 }
1730
1731
1732 /*
1733 * When a thread sets a write-select on a pipe, it creates an implicit,
1734 * untracked dependency between that thread and the peer of the pipe
1735 * on which the select is set. If the peer pipe is closed and freed
1736 * before the select()ing thread wakes up, the system will panic as
1737 * it attempts to unwind the dangling select(). To avoid that panic,
1738 * we notice whenever a dangerous select() is set on a pipe, and
1739 * defer the final deletion of the pipe until that select()s are all
1740 * resolved. Since we can't currently detect exactly when that
1741 * resolution happens, we use a simple garbage collection queue to
1742 * reap the at-risk pipes 'later'.
1743 */
1744 static void
1745 pipe_garbage_collect(struct pipe *cpipe)
1746 {
1747 uint64_t old, now;
1748 struct pipe_garbage *pgp;
1749
1750 /* Convert msecs to nsecs and then to abstime */
1751 old = pipe_garbage_age_limit * 1000000;
1752 nanoseconds_to_absolutetime(old, &old);
1753
1754 lck_mtx_lock(pipe_garbage_lock);
1755
1756 /* Free anything that's been on the queue for <mumble> seconds */
1757 now = mach_absolute_time();
1758 old = now - old;
1759 while ((pgp = pipe_garbage_head) && pgp->pg_timestamp < old) {
1760 pipe_garbage_head = pgp->pg_next;
1761 if (pipe_garbage_head == NULL)
1762 pipe_garbage_tail = NULL;
1763 pipe_garbage_count--;
1764 zfree(pipe_zone, pgp->pg_pipe);
1765 zfree(pipe_garbage_zone, pgp);
1766 }
1767
1768 /* Add the new pipe (if any) to the tail of the garbage queue */
1769 if (cpipe) {
1770 cpipe->pipe_state = PIPE_DEAD;
1771 pgp = (struct pipe_garbage *)zalloc(pipe_garbage_zone);
1772 if (pgp == NULL) {
1773 /*
1774 * We're too low on memory to garbage collect the
1775 * pipe. Freeing it runs the risk of panicing the
1776 * system. All we can do is leak it and leave
1777 * a breadcrumb behind. The good news, such as it
1778 * is, is that this will probably never happen.
1779 * We will probably hit the panic below first.
1780 */
1781 printf("Leaking pipe %p - no room left in the queue",
1782 cpipe);
1783 lck_mtx_unlock(pipe_garbage_lock);
1784 return;
1785 }
1786
1787 pgp->pg_pipe = cpipe;
1788 pgp->pg_timestamp = now;
1789 pgp->pg_next = NULL;
1790
1791 if (pipe_garbage_tail)
1792 pipe_garbage_tail->pg_next = pgp;
1793 pipe_garbage_tail = pgp;
1794 if (pipe_garbage_head == NULL)
1795 pipe_garbage_head = pipe_garbage_tail;
1796
1797 if (pipe_garbage_count++ >= PIPE_GARBAGE_QUEUE_LIMIT)
1798 panic("Length of pipe garbage queue exceeded %d",
1799 PIPE_GARBAGE_QUEUE_LIMIT);
1800 }
1801 lck_mtx_unlock(pipe_garbage_lock);
1802 }
1803