2 * Copyright (c) 1996 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
16 * 4. Modifications may be freely made to this file if the above conditions
20 * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
22 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
24 * This file contains Original Code and/or Modifications of Original Code
25 * as defined in and that are subject to the Apple Public Source License
26 * Version 2.0 (the 'License'). You may not use this file except in
27 * compliance with the License. The rights granted to you under the License
28 * may not be used to create, or enable the creation or redistribution of,
29 * unlawful or unlicensed copies of an Apple operating system, or to
30 * circumvent, violate, or enable the circumvention or violation of, any
31 * terms of an Apple operating system software license agreement.
33 * Please obtain a copy of the License at
34 * http://www.opensource.apple.com/apsl/ and read it before using this file.
36 * The Original Code and all software distributed under the License are
37 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
38 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
39 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
40 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
41 * Please see the License for the specific language governing rights and
42 * limitations under the License.
44 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
47 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
48 * support for mandatory and extensible security protections. This notice
49 * is included in support of clause 2.2 (b) of the Apple Public License,
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
59 * Pipes are implemented as circular buffers. Following are the valid states in pipes operations
61 * _________________________________
62 * 1. |_________________________________| r=w, c=0
64 * _________________________________
65 * 2. |__r:::::wc_______________________| r <= w , c > 0
67 * _________________________________
68 * 3. |::::wc_____r:::::::::::::::::::::| r>w , c > 0
70 * _________________________________
71 * 4. |:::::::wrc:::::::::::::::::::::::| w=r, c = Max size
75 * a-z define the steps in a program flow
76 * 1-4 are the states as defined aboe
77 * Action: is what file operation is done on the pipe
79 * Current:None Action: initialize with size M=200
80 * a. State 1 ( r=0, w=0, c=0)
82 * Current: a Action: write(100) (w < M)
83 * b. State 2 (r=0, w=100, c=100)
85 * Current: b Action: write(100) (w = M-w)
86 * c. State 4 (r=0,w=0,c=200)
88 * Current: b Action: read(70) ( r < c )
89 * d. State 2(r=70,w=100,c=30)
91 * Current: d Action: write(75) ( w < (m-w))
92 * e. State 2 (r=70,w=175,c=105)
94 * Current: d Action: write(110) ( w > (m-w))
95 * f. State 3 (r=70,w=10,c=140)
97 * Current: d Action: read(30) (r >= c )
98 * g. State 1 (r=100,w=100,c=0)
103 * This code create half duplex pipe buffers for facilitating file like
104 * operations on pipes. The initial buffer is very small, but this can
105 * dynamically change to larger sizes based on usage. The buffer size is never
106 * reduced. The total amount of kernel memory used is governed by maxpipekva.
107 * In case of dynamic expansion limit is reached, the output thread is blocked
108 * until the pipe buffer empties enough to continue.
110 * In order to limit the resource use of pipes, two sysctls exist:
112 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
113 * address space available to us in pipe_map.
115 * Memory usage may be monitored through the sysctls
116 * kern.ipc.pipes, kern.ipc.pipekva.
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/filedesc.h>
123 #include <sys/kernel.h>
124 #include <sys/vnode.h>
125 #include <sys/proc_internal.h>
126 #include <sys/kauth.h>
127 #include <sys/file_internal.h>
128 #include <sys/stat.h>
129 #include <sys/ioctl.h>
130 #include <sys/fcntl.h>
131 #include <sys/malloc.h>
132 #include <sys/syslog.h>
133 #include <sys/unistd.h>
134 #include <sys/resourcevar.h>
135 #include <sys/aio_kern.h>
136 #include <sys/signalvar.h>
137 #include <sys/pipe.h>
138 #include <sys/sysproto.h>
139 #include <sys/proc_info.h>
141 #include <security/audit/audit.h>
143 #include <sys/kdebug.h>
145 #include <kern/zalloc.h>
146 #include <kern/kalloc.h>
147 #include <vm/vm_kern.h>
148 #include <libkern/OSAtomic.h>
150 #define f_flag f_fglob->fg_flag
151 #define f_msgcount f_fglob->fg_msgcount
152 #define f_cred f_fglob->fg_cred
153 #define f_ops f_fglob->fg_ops
154 #define f_offset f_fglob->fg_offset
155 #define f_data f_fglob->fg_data
158 * interfaces to the outside world exported through file operations
160 static int pipe_read(struct fileproc
*fp
, struct uio
*uio
,
161 int flags
, vfs_context_t ctx
);
162 static int pipe_write(struct fileproc
*fp
, struct uio
*uio
,
163 int flags
, vfs_context_t ctx
);
164 static int pipe_close(struct fileglob
*fg
, vfs_context_t ctx
);
165 static int pipe_select(struct fileproc
*fp
, int which
, void * wql
,
167 static int pipe_kqfilter(struct fileproc
*fp
, struct knote
*kn
,
169 static int pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
,
171 static int pipe_drain(struct fileproc
*fp
,vfs_context_t ctx
);
173 static const struct fileops pipeops
= {
174 .fo_type
= DTYPE_PIPE
,
175 .fo_read
= pipe_read
,
176 .fo_write
= pipe_write
,
177 .fo_ioctl
= pipe_ioctl
,
178 .fo_select
= pipe_select
,
179 .fo_close
= pipe_close
,
180 .fo_kqfilter
= pipe_kqfilter
,
181 .fo_drain
= pipe_drain
,
184 static void filt_pipedetach(struct knote
*kn
);
186 static int filt_piperead(struct knote
*kn
, long hint
);
187 static int filt_pipereadtouch(struct knote
*kn
, struct kevent_internal_s
*kev
);
188 static int filt_pipereadprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
);
190 static int filt_pipewrite(struct knote
*kn
, long hint
);
191 static int filt_pipewritetouch(struct knote
*kn
, struct kevent_internal_s
*kev
);
192 static int filt_pipewriteprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
);
194 struct filterops pipe_rfiltops
= {
196 .f_detach
= filt_pipedetach
,
197 .f_event
= filt_piperead
,
198 .f_touch
= filt_pipereadtouch
,
199 .f_process
= filt_pipereadprocess
,
202 struct filterops pipe_wfiltops
= {
204 .f_detach
= filt_pipedetach
,
205 .f_event
= filt_pipewrite
,
206 .f_touch
= filt_pipewritetouch
,
207 .f_process
= filt_pipewriteprocess
,
210 static int nbigpipe
; /* for compatibility sake. no longer used */
211 static int amountpipes
; /* total number of pipes in system */
212 static int amountpipekva
; /* total memory used by pipes */
214 int maxpipekva
__attribute__((used
)) = PIPE_KVAMAX
; /* allowing 16MB max. */
217 SYSCTL_DECL(_kern_ipc
);
219 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekva
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
220 &maxpipekva
, 0, "Pipe KVA limit");
221 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekvawired
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
222 &maxpipekvawired
, 0, "Pipe KVA wired limit");
223 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipes
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
224 &amountpipes
, 0, "Current # of pipes");
225 SYSCTL_INT(_kern_ipc
, OID_AUTO
, bigpipes
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
226 &nbigpipe
, 0, "Current # of big pipes");
227 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekva
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
228 &amountpipekva
, 0, "Pipe KVA usage");
229 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekvawired
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
230 &amountpipekvawired
, 0, "Pipe wired KVA usage");
233 static void pipeclose(struct pipe
*cpipe
);
234 static void pipe_free_kmem(struct pipe
*cpipe
);
235 static int pipe_create(struct pipe
**cpipep
);
236 static int pipespace(struct pipe
*cpipe
, int size
);
237 static int choose_pipespace(unsigned long current
, unsigned long expected
);
238 static int expand_pipespace(struct pipe
*p
, int target_size
);
239 static void pipeselwakeup(struct pipe
*cpipe
, struct pipe
*spipe
);
240 static __inline
int pipeio_lock(struct pipe
*cpipe
, int catch);
241 static __inline
void pipeio_unlock(struct pipe
*cpipe
);
243 extern int postpipeevent(struct pipe
*, int);
244 extern void evpipefree(struct pipe
*cpipe
);
246 static lck_grp_t
*pipe_mtx_grp
;
247 static lck_attr_t
*pipe_mtx_attr
;
248 static lck_grp_attr_t
*pipe_mtx_grp_attr
;
250 static zone_t pipe_zone
;
252 #define MAX_PIPESIZE(pipe) ( MAX(PIPE_SIZE, (pipe)->pipe_buffer.size) )
254 #define PIPE_GARBAGE_AGE_LIMIT 5000 /* In milliseconds */
255 #define PIPE_GARBAGE_QUEUE_LIMIT 32000
257 struct pipe_garbage
{
258 struct pipe
*pg_pipe
;
259 struct pipe_garbage
*pg_next
;
260 uint64_t pg_timestamp
;
263 static zone_t pipe_garbage_zone
;
264 static struct pipe_garbage
*pipe_garbage_head
= NULL
;
265 static struct pipe_garbage
*pipe_garbage_tail
= NULL
;
266 static uint64_t pipe_garbage_age_limit
= PIPE_GARBAGE_AGE_LIMIT
;
267 static int pipe_garbage_count
= 0;
268 static lck_mtx_t
*pipe_garbage_lock
;
269 static void pipe_garbage_collect(struct pipe
*cpipe
);
271 SYSINIT(vfs
, SI_SUB_VFS
, SI_ORDER_ANY
, pipeinit
, NULL
);
273 /* initial setup done at time of sysinit */
280 zone_size
= 8192 * sizeof(struct pipe
);
281 pipe_zone
= zinit(sizeof(struct pipe
), zone_size
, 4096, "pipe zone");
284 /* allocate lock group attribute and group for pipe mutexes */
285 pipe_mtx_grp_attr
= lck_grp_attr_alloc_init();
286 pipe_mtx_grp
= lck_grp_alloc_init("pipe", pipe_mtx_grp_attr
);
288 /* allocate the lock attribute for pipe mutexes */
289 pipe_mtx_attr
= lck_attr_alloc_init();
292 * Set up garbage collection for dead pipes
294 zone_size
= (PIPE_GARBAGE_QUEUE_LIMIT
+ 20) *
295 sizeof(struct pipe_garbage
);
296 pipe_garbage_zone
= (zone_t
)zinit(sizeof(struct pipe_garbage
),
297 zone_size
, 4096, "pipe garbage zone");
298 pipe_garbage_lock
= lck_mtx_alloc_init(pipe_mtx_grp
, pipe_mtx_attr
);
302 /* Bitmap for things to touch in pipe_touch() */
303 #define PIPE_ATIME 0x00000001 /* time of last access */
304 #define PIPE_MTIME 0x00000002 /* time of last modification */
305 #define PIPE_CTIME 0x00000004 /* time of last status change */
308 pipe_touch(struct pipe
*tpipe
, int touch
)
314 if (touch
& PIPE_ATIME
) {
315 tpipe
->st_atimespec
.tv_sec
= now
.tv_sec
;
316 tpipe
->st_atimespec
.tv_nsec
= now
.tv_usec
* 1000;
319 if (touch
& PIPE_MTIME
) {
320 tpipe
->st_mtimespec
.tv_sec
= now
.tv_sec
;
321 tpipe
->st_mtimespec
.tv_nsec
= now
.tv_usec
* 1000;
324 if (touch
& PIPE_CTIME
) {
325 tpipe
->st_ctimespec
.tv_sec
= now
.tv_sec
;
326 tpipe
->st_ctimespec
.tv_nsec
= now
.tv_usec
* 1000;
330 static const unsigned int pipesize_blocks
[] = {512,1024,2048,4096, 4096 * 2, PIPE_SIZE
, PIPE_SIZE
* 4 };
333 * finds the right size from possible sizes in pipesize_blocks
334 * returns the size which matches max(current,expected)
337 choose_pipespace(unsigned long current
, unsigned long expected
)
339 int i
= sizeof(pipesize_blocks
)/sizeof(unsigned int) -1;
340 unsigned long target
;
343 * assert that we always get an atomic transaction sized pipe buffer,
344 * even if the system pipe buffer high-water mark has been crossed.
346 assert(PIPE_BUF
== pipesize_blocks
[0]);
348 if (expected
> current
)
353 while ( i
>0 && pipesize_blocks
[i
-1] > target
) {
358 return pipesize_blocks
[i
];
363 * expand the size of pipe while there is data to be read,
364 * and then free the old buffer once the current buffered
365 * data has been transferred to new storage.
366 * Required: PIPE_LOCK and io lock to be held by caller.
367 * returns 0 on success or no expansion possible
370 expand_pipespace(struct pipe
*p
, int target_size
)
372 struct pipe tmp
, oldpipe
;
374 tmp
.pipe_buffer
.buffer
= 0;
376 if (p
->pipe_buffer
.size
>= (unsigned) target_size
) {
377 return 0; /* the existing buffer is max size possible */
380 /* create enough space in the target */
381 error
= pipespace(&tmp
, target_size
);
385 oldpipe
.pipe_buffer
.buffer
= p
->pipe_buffer
.buffer
;
386 oldpipe
.pipe_buffer
.size
= p
->pipe_buffer
.size
;
388 memcpy(tmp
.pipe_buffer
.buffer
, p
->pipe_buffer
.buffer
, p
->pipe_buffer
.size
);
389 if (p
->pipe_buffer
.cnt
> 0 && p
->pipe_buffer
.in
<= p
->pipe_buffer
.out
){
390 /* we are in State 3 and need extra copying for read to be consistent */
391 memcpy(&tmp
.pipe_buffer
.buffer
[p
->pipe_buffer
.size
], p
->pipe_buffer
.buffer
, p
->pipe_buffer
.size
);
392 p
->pipe_buffer
.in
+= p
->pipe_buffer
.size
;
395 p
->pipe_buffer
.buffer
= tmp
.pipe_buffer
.buffer
;
396 p
->pipe_buffer
.size
= tmp
.pipe_buffer
.size
;
399 pipe_free_kmem(&oldpipe
);
404 * The pipe system call for the DTYPE_PIPE type of pipes
407 * FREAD | fd0 | -->[struct rpipe] --> |~~buffer~~| \
409 * FWRITE | fd1 | -->[struct wpipe] --X /
414 pipe(proc_t p
, __unused
struct pipe_args
*uap
, int32_t *retval
)
416 struct fileproc
*rf
, *wf
;
417 struct pipe
*rpipe
, *wpipe
;
421 if ((pmtx
= lck_mtx_alloc_init(pipe_mtx_grp
, pipe_mtx_attr
)) == NULL
)
424 rpipe
= wpipe
= NULL
;
425 if (pipe_create(&rpipe
) || pipe_create(&wpipe
)) {
430 * allocate the space for the normal I/O direction up
431 * front... we'll delay the allocation for the other
432 * direction until a write actually occurs (most likely it won't)...
434 error
= pipespace(rpipe
, choose_pipespace(rpipe
->pipe_buffer
.size
, 0));
438 TAILQ_INIT(&rpipe
->pipe_evlist
);
439 TAILQ_INIT(&wpipe
->pipe_evlist
);
441 error
= falloc(p
, &rf
, &fd
, vfs_context_current());
448 * for now we'll create half-duplex pipes(refer returns section above).
449 * this is what we've always supported..
452 rf
->f_data
= (caddr_t
)rpipe
;
453 rf
->f_ops
= &pipeops
;
455 error
= falloc(p
, &wf
, &fd
, vfs_context_current());
457 fp_free(p
, retval
[0], rf
);
461 wf
->f_data
= (caddr_t
)wpipe
;
462 wf
->f_ops
= &pipeops
;
464 rpipe
->pipe_peer
= wpipe
;
465 wpipe
->pipe_peer
= rpipe
;
466 /* both structures share the same mutex */
467 rpipe
->pipe_mtxp
= wpipe
->pipe_mtxp
= pmtx
;
472 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
474 * struct pipe represents a pipe endpoint. The MAC label is shared
475 * between the connected endpoints. As a result mac_pipe_label_init() and
476 * mac_pipe_label_associate() should only be called on one of the endpoints
477 * after they have been connected.
479 mac_pipe_label_init(rpipe
);
480 mac_pipe_label_associate(kauth_cred_get(), rpipe
);
481 wpipe
->pipe_label
= rpipe
->pipe_label
;
484 procfdtbl_releasefd(p
, retval
[0], NULL
);
485 procfdtbl_releasefd(p
, retval
[1], NULL
);
486 fp_drop(p
, retval
[0], rf
, 1);
487 fp_drop(p
, retval
[1], wf
, 1);
496 lck_mtx_free(pmtx
, pipe_mtx_grp
);
502 pipe_stat(struct pipe
*cpipe
, void *ub
, int isstat64
)
509 struct stat
*sb
= (struct stat
*)0; /* warning avoidance ; protected by isstat64 */
510 struct stat64
* sb64
= (struct stat64
*)0; /* warning avoidance ; protected by isstat64 */
517 error
= mac_pipe_check_stat(kauth_cred_get(), cpipe
);
523 if (cpipe
->pipe_buffer
.buffer
== 0) {
524 /* must be stat'ing the write fd */
525 if (cpipe
->pipe_peer
) {
526 /* the peer still exists, use it's info */
527 pipe_size
= MAX_PIPESIZE(cpipe
->pipe_peer
);
528 pipe_count
= cpipe
->pipe_peer
->pipe_buffer
.cnt
;
533 pipe_size
= MAX_PIPESIZE(cpipe
);
534 pipe_count
= cpipe
->pipe_buffer
.cnt
;
537 * since peer's buffer is setup ouside of lock
538 * we might catch it in transient state
541 pipe_size
= MAX(PIPE_SIZE
, pipesize_blocks
[0]);
544 sb64
= (struct stat64
*)ub
;
546 bzero(sb64
, sizeof(*sb64
));
547 sb64
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
548 sb64
->st_blksize
= pipe_size
;
549 sb64
->st_size
= pipe_count
;
550 sb64
->st_blocks
= (sb64
->st_size
+ sb64
->st_blksize
- 1) / sb64
->st_blksize
;
552 sb64
->st_uid
= kauth_getuid();
553 sb64
->st_gid
= kauth_getgid();
555 sb64
->st_atimespec
.tv_sec
= cpipe
->st_atimespec
.tv_sec
;
556 sb64
->st_atimespec
.tv_nsec
= cpipe
->st_atimespec
.tv_nsec
;
558 sb64
->st_mtimespec
.tv_sec
= cpipe
->st_mtimespec
.tv_sec
;
559 sb64
->st_mtimespec
.tv_nsec
= cpipe
->st_mtimespec
.tv_nsec
;
561 sb64
->st_ctimespec
.tv_sec
= cpipe
->st_ctimespec
.tv_sec
;
562 sb64
->st_ctimespec
.tv_nsec
= cpipe
->st_ctimespec
.tv_nsec
;
565 * Return a relatively unique inode number based on the current
566 * address of this pipe's struct pipe. This number may be recycled
567 * relatively quickly.
569 sb64
->st_ino
= (ino64_t
)VM_KERNEL_ADDRPERM((uintptr_t)cpipe
);
571 sb
= (struct stat
*)ub
;
573 bzero(sb
, sizeof(*sb
));
574 sb
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
575 sb
->st_blksize
= pipe_size
;
576 sb
->st_size
= pipe_count
;
577 sb
->st_blocks
= (sb
->st_size
+ sb
->st_blksize
- 1) / sb
->st_blksize
;
579 sb
->st_uid
= kauth_getuid();
580 sb
->st_gid
= kauth_getgid();
582 sb
->st_atimespec
.tv_sec
= cpipe
->st_atimespec
.tv_sec
;
583 sb
->st_atimespec
.tv_nsec
= cpipe
->st_atimespec
.tv_nsec
;
585 sb
->st_mtimespec
.tv_sec
= cpipe
->st_mtimespec
.tv_sec
;
586 sb
->st_mtimespec
.tv_nsec
= cpipe
->st_mtimespec
.tv_nsec
;
588 sb
->st_ctimespec
.tv_sec
= cpipe
->st_ctimespec
.tv_sec
;
589 sb
->st_ctimespec
.tv_nsec
= cpipe
->st_ctimespec
.tv_nsec
;
592 * Return a relatively unique inode number based on the current
593 * address of this pipe's struct pipe. This number may be recycled
594 * relatively quickly.
596 sb
->st_ino
= (ino_t
)VM_KERNEL_ADDRPERM((uintptr_t)cpipe
);
601 * POSIX: Left as 0: st_dev, st_nlink, st_rdev, st_flags, st_gen,
604 * XXX (st_dev) should be unique, but there is no device driver that
605 * XXX is associated with pipes, since they are implemented via a
606 * XXX struct fileops indirection rather than as FS objects.
613 * Allocate kva for pipe circular buffer, the space is pageable
614 * This routine will 'realloc' the size of a pipe safely, if it fails
615 * it will retain the old buffer.
616 * If it fails it will return ENOMEM.
619 pipespace(struct pipe
*cpipe
, int size
)
626 if ((buffer
= (vm_offset_t
)kalloc(size
)) == 0 )
629 /* free old resources if we're resizing */
630 pipe_free_kmem(cpipe
);
631 cpipe
->pipe_buffer
.buffer
= (caddr_t
)buffer
;
632 cpipe
->pipe_buffer
.size
= size
;
633 cpipe
->pipe_buffer
.in
= 0;
634 cpipe
->pipe_buffer
.out
= 0;
635 cpipe
->pipe_buffer
.cnt
= 0;
637 OSAddAtomic(1, &amountpipes
);
638 OSAddAtomic(cpipe
->pipe_buffer
.size
, &amountpipekva
);
644 * initialize and allocate VM and memory for pipe
647 pipe_create(struct pipe
**cpipep
)
650 cpipe
= (struct pipe
*)zalloc(pipe_zone
);
652 if ((*cpipep
= cpipe
) == NULL
)
656 * protect so pipespace or pipeclose don't follow a junk pointer
657 * if pipespace() fails.
659 bzero(cpipe
, sizeof *cpipe
);
661 /* Initial times are all the time of creation of the pipe */
662 pipe_touch(cpipe
, PIPE_ATIME
| PIPE_MTIME
| PIPE_CTIME
);
668 * lock a pipe for I/O, blocking other access
671 pipeio_lock(struct pipe
*cpipe
, int catch)
674 while (cpipe
->pipe_state
& PIPE_LOCKFL
) {
675 cpipe
->pipe_state
|= PIPE_LWANT
;
676 error
= msleep(cpipe
, PIPE_MTX(cpipe
), catch ? (PRIBIO
| PCATCH
) : PRIBIO
,
681 cpipe
->pipe_state
|= PIPE_LOCKFL
;
686 * unlock a pipe I/O lock
689 pipeio_unlock(struct pipe
*cpipe
)
691 cpipe
->pipe_state
&= ~PIPE_LOCKFL
;
692 if (cpipe
->pipe_state
& PIPE_LWANT
) {
693 cpipe
->pipe_state
&= ~PIPE_LWANT
;
699 * wakeup anyone whos blocked in select
702 pipeselwakeup(struct pipe
*cpipe
, struct pipe
*spipe
)
704 if (cpipe
->pipe_state
& PIPE_SEL
) {
705 cpipe
->pipe_state
&= ~PIPE_SEL
;
706 selwakeup(&cpipe
->pipe_sel
);
708 if (cpipe
->pipe_state
& PIPE_KNOTE
)
709 KNOTE(&cpipe
->pipe_sel
.si_note
, 1);
711 postpipeevent(cpipe
, EV_RWBYTES
);
713 if (spipe
&& (spipe
->pipe_state
& PIPE_ASYNC
) && spipe
->pipe_pgid
) {
714 if (spipe
->pipe_pgid
< 0)
715 gsignal(-spipe
->pipe_pgid
, SIGIO
);
717 proc_signal(spipe
->pipe_pgid
, SIGIO
);
722 * Read n bytes from the buffer. Semantics are similar to file read.
723 * returns: number of bytes read from the buffer
727 pipe_read(struct fileproc
*fp
, struct uio
*uio
, __unused
int flags
,
728 __unused vfs_context_t ctx
)
730 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
738 error
= pipeio_lock(rpipe
, 1);
743 error
= mac_pipe_check_read(kauth_cred_get(), rpipe
);
749 while (uio_resid(uio
)) {
751 * normal pipe buffer receive
753 if (rpipe
->pipe_buffer
.cnt
> 0) {
755 * # bytes to read is min( bytes from read pointer until end of buffer,
756 * total unread bytes,
757 * user requested byte count)
759 size
= rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.out
;
760 if (size
> rpipe
->pipe_buffer
.cnt
)
761 size
= rpipe
->pipe_buffer
.cnt
;
762 // LP64todo - fix this!
763 if (size
> (u_int
) uio_resid(uio
))
764 size
= (u_int
) uio_resid(uio
);
766 PIPE_UNLOCK(rpipe
); /* we still hold io lock.*/
768 &rpipe
->pipe_buffer
.buffer
[rpipe
->pipe_buffer
.out
],
774 rpipe
->pipe_buffer
.out
+= size
;
775 if (rpipe
->pipe_buffer
.out
>= rpipe
->pipe_buffer
.size
)
776 rpipe
->pipe_buffer
.out
= 0;
778 rpipe
->pipe_buffer
.cnt
-= size
;
781 * If there is no more to read in the pipe, reset
782 * its pointers to the beginning. This improves
785 if (rpipe
->pipe_buffer
.cnt
== 0) {
786 rpipe
->pipe_buffer
.in
= 0;
787 rpipe
->pipe_buffer
.out
= 0;
792 * detect EOF condition
793 * read returns 0 on EOF, no need to set error
795 if (rpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) {
800 * If the "write-side" has been blocked, wake it up now.
802 if (rpipe
->pipe_state
& PIPE_WANTW
) {
803 rpipe
->pipe_state
&= ~PIPE_WANTW
;
808 * Break if some data was read in previous iteration.
814 * Unlock the pipe buffer for our remaining processing.
815 * We will either break out with an error or we will
816 * sleep and relock to loop.
818 pipeio_unlock(rpipe
);
821 * Handle non-blocking mode operation or
822 * wait for more data.
824 if (fp
->f_flag
& FNONBLOCK
) {
827 rpipe
->pipe_state
|= PIPE_WANTR
;
828 error
= msleep(rpipe
, PIPE_MTX(rpipe
), PRIBIO
| PCATCH
, "piperd", 0);
830 error
= pipeio_lock(rpipe
, 1);
839 pipeio_unlock(rpipe
);
845 * PIPE_WANT processing only makes sense if pipe_busy is 0.
847 if ((rpipe
->pipe_busy
== 0) && (rpipe
->pipe_state
& PIPE_WANT
)) {
848 rpipe
->pipe_state
&= ~(PIPE_WANT
|PIPE_WANTW
);
850 } else if (rpipe
->pipe_buffer
.cnt
< rpipe
->pipe_buffer
.size
) {
852 * Handle write blocking hysteresis.
854 if (rpipe
->pipe_state
& PIPE_WANTW
) {
855 rpipe
->pipe_state
&= ~PIPE_WANTW
;
860 if ((rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.cnt
) > 0)
861 pipeselwakeup(rpipe
, rpipe
->pipe_peer
);
863 /* update last read time */
864 pipe_touch(rpipe
, PIPE_ATIME
);
872 * perform a write of n bytes into the read side of buffer. Since
873 * pipes are unidirectional a write is meant to be read by the otherside only.
876 pipe_write(struct fileproc
*fp
, struct uio
*uio
, __unused
int flags
,
877 __unused vfs_context_t ctx
)
882 struct pipe
*wpipe
, *rpipe
;
883 // LP64todo - fix this!
884 orig_resid
= uio_resid(uio
);
887 rpipe
= (struct pipe
*)fp
->f_data
;
890 wpipe
= rpipe
->pipe_peer
;
893 * detect loss of pipe read side, issue SIGPIPE if lost.
895 if (wpipe
== NULL
|| (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
900 error
= mac_pipe_check_write(kauth_cred_get(), wpipe
);
911 * need to allocate some storage... we delay the allocation
912 * until the first write on fd[0] to avoid allocating storage for both
913 * 'pipe ends'... most pipes are half-duplex with the writes targeting
914 * fd[1], so allocating space for both ends is a waste...
917 if ( wpipe
->pipe_buffer
.buffer
== 0 || (
918 (unsigned)orig_resid
> wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
&&
919 amountpipekva
< maxpipekva
) ) {
921 pipe_size
= choose_pipespace(wpipe
->pipe_buffer
.size
, wpipe
->pipe_buffer
.cnt
+ orig_resid
);
925 * need to do initial allocation or resizing of pipe
926 * holding both structure and io locks.
928 if ((error
= pipeio_lock(wpipe
, 1)) == 0) {
929 if (wpipe
->pipe_buffer
.cnt
== 0)
930 error
= pipespace(wpipe
, pipe_size
);
932 error
= expand_pipespace(wpipe
, pipe_size
);
934 pipeio_unlock(wpipe
);
936 /* allocation failed */
937 if (wpipe
->pipe_buffer
.buffer
== 0)
942 * If an error occurred unbusy and return, waking up any pending
946 if ((wpipe
->pipe_busy
== 0) &&
947 (wpipe
->pipe_state
& PIPE_WANT
)) {
948 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
956 while (uio_resid(uio
)) {
959 space
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
961 /* Writes of size <= PIPE_BUF must be atomic. */
962 if ((space
< uio_resid(uio
)) && (orig_resid
<= PIPE_BUF
))
967 if ((error
= pipeio_lock(wpipe
,1)) == 0) {
968 int size
; /* Transfer size */
969 int segsize
; /* first segment to transfer */
971 if (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) {
972 pipeio_unlock(wpipe
);
977 * If a process blocked in pipeio_lock, our
978 * value for space might be bad... the mutex
979 * is dropped while we're blocked
981 if (space
> (int)(wpipe
->pipe_buffer
.size
-
982 wpipe
->pipe_buffer
.cnt
)) {
983 pipeio_unlock(wpipe
);
988 * Transfer size is minimum of uio transfer
989 * and free space in pipe buffer.
991 // LP64todo - fix this!
992 if (space
> uio_resid(uio
))
993 size
= uio_resid(uio
);
997 * First segment to transfer is minimum of
998 * transfer size and contiguous space in
999 * pipe buffer. If first segment to transfer
1000 * is less than the transfer size, we've got
1001 * a wraparound in the buffer.
1003 segsize
= wpipe
->pipe_buffer
.size
-
1004 wpipe
->pipe_buffer
.in
;
1008 /* Transfer first segment */
1011 error
= uiomove(&wpipe
->pipe_buffer
.buffer
[wpipe
->pipe_buffer
.in
],
1015 if (error
== 0 && segsize
< size
) {
1017 * Transfer remaining part now, to
1018 * support atomic writes. Wraparound
1019 * happened. (State 3)
1021 if (wpipe
->pipe_buffer
.in
+ segsize
!=
1022 wpipe
->pipe_buffer
.size
)
1023 panic("Expected pipe buffer "
1024 "wraparound disappeared");
1028 &wpipe
->pipe_buffer
.buffer
[0],
1029 size
- segsize
, uio
);
1033 * readers never know to read until count is updated.
1036 wpipe
->pipe_buffer
.in
+= size
;
1037 if (wpipe
->pipe_buffer
.in
>
1038 wpipe
->pipe_buffer
.size
) {
1039 if (wpipe
->pipe_buffer
.in
!=
1041 wpipe
->pipe_buffer
.size
)
1044 wpipe
->pipe_buffer
.in
= size
-
1048 wpipe
->pipe_buffer
.cnt
+= size
;
1049 if (wpipe
->pipe_buffer
.cnt
>
1050 wpipe
->pipe_buffer
.size
)
1051 panic("Pipe buffer overflow");
1054 pipeio_unlock(wpipe
);
1061 * If the "read-side" has been blocked, wake it up now.
1063 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1064 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1068 * don't block on non-blocking I/O
1069 * we'll do the pipeselwakeup on the way out
1071 if (fp
->f_flag
& FNONBLOCK
) {
1077 * If read side wants to go away, we just issue a signal
1080 if (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) {
1086 * We have no more space and have something to offer,
1087 * wake up select/poll.
1089 pipeselwakeup(wpipe
, wpipe
);
1091 wpipe
->pipe_state
|= PIPE_WANTW
;
1093 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipewr", 0);
1101 if ((wpipe
->pipe_busy
== 0) && (wpipe
->pipe_state
& PIPE_WANT
)) {
1102 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1105 if (wpipe
->pipe_buffer
.cnt
> 0) {
1107 * If there are any characters in the buffer, we wake up
1108 * the reader if it was blocked waiting for data.
1110 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1111 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1115 * wake up thread blocked in select/poll or post the notification
1117 pipeselwakeup(wpipe
, wpipe
);
1120 /* Update modification, status change (# of bytes in pipe) times */
1121 pipe_touch(rpipe
, PIPE_MTIME
| PIPE_CTIME
);
1122 pipe_touch(wpipe
, PIPE_MTIME
| PIPE_CTIME
);
1129 * we implement a very minimal set of ioctls for compatibility with sockets.
1133 pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
,
1134 __unused vfs_context_t ctx
)
1136 struct pipe
*mpipe
= (struct pipe
*)fp
->f_data
;
1144 error
= mac_pipe_check_ioctl(kauth_cred_get(), mpipe
, cmd
);
1160 mpipe
->pipe_state
|= PIPE_ASYNC
;
1162 mpipe
->pipe_state
&= ~PIPE_ASYNC
;
1168 *(int *)data
= mpipe
->pipe_buffer
.cnt
;
1173 mpipe
->pipe_pgid
= *(int *)data
;
1179 *(int *)data
= mpipe
->pipe_pgid
;
1191 pipe_select(struct fileproc
*fp
, int which
, void *wql
, vfs_context_t ctx
)
1193 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
1197 if (rpipe
== NULL
|| rpipe
== (struct pipe
*)-1)
1202 wpipe
= rpipe
->pipe_peer
;
1207 * XXX We should use a per thread credential here; minimally, the
1208 * XXX process credential should have a persistent reference on it
1209 * XXX before being passed in here.
1211 if (mac_pipe_check_select(vfs_context_ucred(ctx
), rpipe
, which
)) {
1219 if ((rpipe
->pipe_state
& PIPE_DIRECTW
) ||
1220 (rpipe
->pipe_buffer
.cnt
> 0) ||
1221 (rpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
1225 rpipe
->pipe_state
|= PIPE_SEL
;
1226 selrecord(vfs_context_proc(ctx
), &rpipe
->pipe_sel
, wql
);
1232 wpipe
->pipe_state
|= PIPE_WSELECT
;
1233 if (wpipe
== NULL
|| (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) ||
1234 (((wpipe
->pipe_state
& PIPE_DIRECTW
) == 0) &&
1235 (MAX_PIPESIZE(wpipe
) - wpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)) {
1239 wpipe
->pipe_state
|= PIPE_SEL
;
1240 selrecord(vfs_context_proc(ctx
), &wpipe
->pipe_sel
, wql
);
1244 rpipe
->pipe_state
|= PIPE_SEL
;
1245 selrecord(vfs_context_proc(ctx
), &rpipe
->pipe_sel
, wql
);
1256 pipe_close(struct fileglob
*fg
, __unused vfs_context_t ctx
)
1260 proc_fdlock_spin(vfs_context_proc(ctx
));
1261 cpipe
= (struct pipe
*)fg
->fg_data
;
1263 proc_fdunlock(vfs_context_proc(ctx
));
1271 pipe_free_kmem(struct pipe
*cpipe
)
1273 if (cpipe
->pipe_buffer
.buffer
!= NULL
) {
1274 OSAddAtomic(-(cpipe
->pipe_buffer
.size
), &amountpipekva
);
1275 OSAddAtomic(-1, &amountpipes
);
1276 kfree((void *)cpipe
->pipe_buffer
.buffer
,
1277 cpipe
->pipe_buffer
.size
);
1278 cpipe
->pipe_buffer
.buffer
= NULL
;
1279 cpipe
->pipe_buffer
.size
= 0;
1287 pipeclose(struct pipe
*cpipe
)
1293 /* partially created pipes won't have a valid mutex. */
1294 if (PIPE_MTX(cpipe
) != NULL
)
1299 * If the other side is blocked, wake it up saying that
1300 * we want to close it down.
1302 cpipe
->pipe_state
&= ~PIPE_DRAIN
;
1303 cpipe
->pipe_state
|= PIPE_EOF
;
1304 pipeselwakeup(cpipe
, cpipe
);
1306 while (cpipe
->pipe_busy
) {
1307 cpipe
->pipe_state
|= PIPE_WANT
;
1310 msleep(cpipe
, PIPE_MTX(cpipe
), PRIBIO
, "pipecl", 0);
1315 * Free the shared pipe label only after the two ends are disconnected.
1317 if (cpipe
->pipe_label
!= NULL
&& cpipe
->pipe_peer
== NULL
)
1318 mac_pipe_label_destroy(cpipe
);
1322 * Disconnect from peer
1324 if ((ppipe
= cpipe
->pipe_peer
) != NULL
) {
1326 ppipe
->pipe_state
&= ~(PIPE_DRAIN
);
1327 ppipe
->pipe_state
|= PIPE_EOF
;
1329 pipeselwakeup(ppipe
, ppipe
);
1332 if (cpipe
->pipe_state
& PIPE_KNOTE
)
1333 KNOTE(&ppipe
->pipe_sel
.si_note
, 1);
1335 postpipeevent(ppipe
, EV_RCLOSED
);
1337 ppipe
->pipe_peer
= NULL
;
1344 if (PIPE_MTX(cpipe
) != NULL
) {
1345 if (ppipe
!= NULL
) {
1347 * since the mutex is shared and the peer is still
1348 * alive, we need to release the mutex, not free it
1353 * peer is gone, so we're the sole party left with
1354 * interest in this mutex... unlock and free it
1357 lck_mtx_free(PIPE_MTX(cpipe
), pipe_mtx_grp
);
1360 pipe_free_kmem(cpipe
);
1361 if (cpipe
->pipe_state
& PIPE_WSELECT
) {
1362 pipe_garbage_collect(cpipe
);
1364 zfree(pipe_zone
, cpipe
);
1365 pipe_garbage_collect(NULL
);
1372 filt_piperead_common(struct knote
*kn
, struct pipe
*rpipe
)
1378 * we're being called back via the KNOTE post
1379 * we made in pipeselwakeup, and we already hold the mutex...
1382 wpipe
= rpipe
->pipe_peer
;
1383 kn
->kn_data
= rpipe
->pipe_buffer
.cnt
;
1384 if ((rpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) ||
1385 (wpipe
== NULL
) || (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
1386 kn
->kn_flags
|= EV_EOF
;
1390 if (kn
->kn_sfflags
& NOTE_LOWAT
) {
1391 if (rpipe
->pipe_buffer
.size
&& kn
->kn_sdata
> MAX_PIPESIZE(rpipe
))
1392 lowwat
= MAX_PIPESIZE(rpipe
);
1393 else if (kn
->kn_sdata
> lowwat
)
1394 lowwat
= kn
->kn_sdata
;
1396 retval
= kn
->kn_data
>= lowwat
;
1402 filt_piperead(struct knote
*kn
, long hint
)
1404 #pragma unused(hint)
1405 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1407 return filt_piperead_common(kn
, rpipe
);
1411 filt_pipereadtouch(struct knote
*kn
, struct kevent_internal_s
*kev
)
1413 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1418 /* accept new inputs (and save the low water threshold and flag) */
1419 kn
->kn_sdata
= kev
->data
;
1420 kn
->kn_sfflags
= kev
->fflags
;
1421 if ((kn
->kn_status
& KN_UDATA_SPECIFIC
) == 0)
1422 kn
->kn_udata
= kev
->udata
;
1424 /* identify if any events are now fired */
1425 retval
= filt_piperead_common(kn
, rpipe
);
1433 filt_pipereadprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
)
1435 #pragma unused(data)
1436 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1440 retval
= filt_piperead_common(kn
, rpipe
);
1442 *kev
= kn
->kn_kevent
;
1443 if (kn
->kn_flags
& EV_CLEAR
) {
1455 filt_pipewrite_common(struct knote
*kn
, struct pipe
*rpipe
)
1460 * we're being called back via the KNOTE post
1461 * we made in pipeselwakeup, and we already hold the mutex...
1463 wpipe
= rpipe
->pipe_peer
;
1465 if ((wpipe
== NULL
) || (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
1467 kn
->kn_flags
|= EV_EOF
;
1470 kn
->kn_data
= MAX_PIPESIZE(wpipe
) - wpipe
->pipe_buffer
.cnt
;
1472 int64_t lowwat
= PIPE_BUF
;
1473 if (kn
->kn_sfflags
& NOTE_LOWAT
) {
1474 if (wpipe
->pipe_buffer
.size
&& kn
->kn_sdata
> MAX_PIPESIZE(wpipe
))
1475 lowwat
= MAX_PIPESIZE(wpipe
);
1476 else if (kn
->kn_sdata
> lowwat
)
1477 lowwat
= kn
->kn_sdata
;
1480 return (kn
->kn_data
>= lowwat
);
1485 filt_pipewrite(struct knote
*kn
, long hint
)
1487 #pragma unused(hint)
1488 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1490 return filt_pipewrite_common(kn
, rpipe
);
1495 filt_pipewritetouch(struct knote
*kn
, struct kevent_internal_s
*kev
)
1497 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1502 /* accept new kevent data (and save off lowat threshold and flag) */
1503 kn
->kn_sfflags
= kev
->fflags
;
1504 kn
->kn_sdata
= kev
->data
;
1505 if ((kn
->kn_status
& KN_UDATA_SPECIFIC
) == 0)
1506 kn
->kn_udata
= kev
->udata
;
1508 /* determine if any event is now deemed fired */
1509 res
= filt_pipewrite_common(kn
, rpipe
);
1517 filt_pipewriteprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
)
1519 #pragma unused(data)
1520 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1524 res
= filt_pipewrite_common(kn
, rpipe
);
1526 *kev
= kn
->kn_kevent
;
1527 if (kn
->kn_flags
& EV_CLEAR
) {
1539 pipe_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused vfs_context_t ctx
)
1541 struct pipe
*cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1547 * XXX We should use a per thread credential here; minimally, the
1548 * XXX process credential should have a persistent reference on it
1549 * XXX before being passed in here.
1551 if (mac_pipe_check_kqfilter(vfs_context_ucred(ctx
), kn
, cpipe
) != 0) {
1553 kn
->kn_flags
= EV_ERROR
;
1554 kn
->kn_data
= EPERM
;
1559 switch (kn
->kn_filter
) {
1561 kn
->kn_filtid
= EVFILTID_PIPE_R
;
1563 /* determine initial state */
1564 res
= filt_piperead_common(kn
, cpipe
);
1568 kn
->kn_filtid
= EVFILTID_PIPE_W
;
1570 if (cpipe
->pipe_peer
== NULL
) {
1572 * other end of pipe has been closed
1575 kn
->kn_flags
= EV_ERROR
;
1576 kn
->kn_data
= EPIPE
;
1579 if (cpipe
->pipe_peer
)
1580 cpipe
= cpipe
->pipe_peer
;
1582 /* determine inital state */
1583 res
= filt_pipewrite_common(kn
, cpipe
);
1587 kn
->kn_flags
= EV_ERROR
;
1588 kn
->kn_data
= EINVAL
;
1592 if (KNOTE_ATTACH(&cpipe
->pipe_sel
.si_note
, kn
))
1593 cpipe
->pipe_state
|= PIPE_KNOTE
;
1600 filt_pipedetach(struct knote
*kn
)
1602 struct pipe
*cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1606 if (kn
->kn_filter
== EVFILT_WRITE
) {
1607 if (cpipe
->pipe_peer
== NULL
) {
1611 cpipe
= cpipe
->pipe_peer
;
1613 if (cpipe
->pipe_state
& PIPE_KNOTE
) {
1614 if (KNOTE_DETACH(&cpipe
->pipe_sel
.si_note
, kn
))
1615 cpipe
->pipe_state
&= ~PIPE_KNOTE
;
1621 fill_pipeinfo(struct pipe
* cpipe
, struct pipe_info
* pinfo
)
1627 struct vinfo_stat
* ub
;
1636 error
= mac_pipe_check_stat(kauth_cred_get(), cpipe
);
1642 if (cpipe
->pipe_buffer
.buffer
== 0) {
1644 * must be stat'ing the write fd
1646 if (cpipe
->pipe_peer
) {
1648 * the peer still exists, use it's info
1650 pipe_size
= MAX_PIPESIZE(cpipe
->pipe_peer
);
1651 pipe_count
= cpipe
->pipe_peer
->pipe_buffer
.cnt
;
1656 pipe_size
= MAX_PIPESIZE(cpipe
);
1657 pipe_count
= cpipe
->pipe_buffer
.cnt
;
1660 * since peer's buffer is setup ouside of lock
1661 * we might catch it in transient state
1664 pipe_size
= PIPE_SIZE
;
1666 ub
= &pinfo
->pipe_stat
;
1668 bzero(ub
, sizeof(*ub
));
1669 ub
->vst_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
1670 ub
->vst_blksize
= pipe_size
;
1671 ub
->vst_size
= pipe_count
;
1672 if (ub
->vst_blksize
!= 0)
1673 ub
->vst_blocks
= (ub
->vst_size
+ ub
->vst_blksize
- 1) / ub
->vst_blksize
;
1676 ub
->vst_uid
= kauth_getuid();
1677 ub
->vst_gid
= kauth_getgid();
1680 ub
->vst_atime
= now
.tv_sec
;
1681 ub
->vst_atimensec
= now
.tv_usec
* 1000;
1683 ub
->vst_mtime
= now
.tv_sec
;
1684 ub
->vst_mtimensec
= now
.tv_usec
* 1000;
1686 ub
->vst_ctime
= now
.tv_sec
;
1687 ub
->vst_ctimensec
= now
.tv_usec
* 1000;
1690 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
1691 * XXX (st_dev, st_ino) should be unique.
1694 pinfo
->pipe_handle
= (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe
);
1695 pinfo
->pipe_peerhandle
= (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(cpipe
->pipe_peer
));
1696 pinfo
->pipe_status
= cpipe
->pipe_state
;
1705 pipe_drain(struct fileproc
*fp
, __unused vfs_context_t ctx
)
1708 /* Note: fdlock already held */
1709 struct pipe
*ppipe
, *cpipe
= (struct pipe
*)(fp
->f_fglob
->fg_data
);
1713 cpipe
->pipe_state
|= PIPE_DRAIN
;
1714 cpipe
->pipe_state
&= ~(PIPE_WANTR
| PIPE_WANTW
);
1717 /* Must wake up peer: a writer sleeps on the read side */
1718 if ((ppipe
= cpipe
->pipe_peer
)) {
1719 ppipe
->pipe_state
|= PIPE_DRAIN
;
1720 ppipe
->pipe_state
&= ~(PIPE_WANTR
| PIPE_WANTW
);
1733 * When a thread sets a write-select on a pipe, it creates an implicit,
1734 * untracked dependency between that thread and the peer of the pipe
1735 * on which the select is set. If the peer pipe is closed and freed
1736 * before the select()ing thread wakes up, the system will panic as
1737 * it attempts to unwind the dangling select(). To avoid that panic,
1738 * we notice whenever a dangerous select() is set on a pipe, and
1739 * defer the final deletion of the pipe until that select()s are all
1740 * resolved. Since we can't currently detect exactly when that
1741 * resolution happens, we use a simple garbage collection queue to
1742 * reap the at-risk pipes 'later'.
1745 pipe_garbage_collect(struct pipe
*cpipe
)
1748 struct pipe_garbage
*pgp
;
1750 /* Convert msecs to nsecs and then to abstime */
1751 old
= pipe_garbage_age_limit
* 1000000;
1752 nanoseconds_to_absolutetime(old
, &old
);
1754 lck_mtx_lock(pipe_garbage_lock
);
1756 /* Free anything that's been on the queue for <mumble> seconds */
1757 now
= mach_absolute_time();
1759 while ((pgp
= pipe_garbage_head
) && pgp
->pg_timestamp
< old
) {
1760 pipe_garbage_head
= pgp
->pg_next
;
1761 if (pipe_garbage_head
== NULL
)
1762 pipe_garbage_tail
= NULL
;
1763 pipe_garbage_count
--;
1764 zfree(pipe_zone
, pgp
->pg_pipe
);
1765 zfree(pipe_garbage_zone
, pgp
);
1768 /* Add the new pipe (if any) to the tail of the garbage queue */
1770 cpipe
->pipe_state
= PIPE_DEAD
;
1771 pgp
= (struct pipe_garbage
*)zalloc(pipe_garbage_zone
);
1774 * We're too low on memory to garbage collect the
1775 * pipe. Freeing it runs the risk of panicing the
1776 * system. All we can do is leak it and leave
1777 * a breadcrumb behind. The good news, such as it
1778 * is, is that this will probably never happen.
1779 * We will probably hit the panic below first.
1781 printf("Leaking pipe %p - no room left in the queue",
1783 lck_mtx_unlock(pipe_garbage_lock
);
1787 pgp
->pg_pipe
= cpipe
;
1788 pgp
->pg_timestamp
= now
;
1789 pgp
->pg_next
= NULL
;
1791 if (pipe_garbage_tail
)
1792 pipe_garbage_tail
->pg_next
= pgp
;
1793 pipe_garbage_tail
= pgp
;
1794 if (pipe_garbage_head
== NULL
)
1795 pipe_garbage_head
= pipe_garbage_tail
;
1797 if (pipe_garbage_count
++ >= PIPE_GARBAGE_QUEUE_LIMIT
)
1798 panic("Length of pipe garbage queue exceeded %d",
1799 PIPE_GARBAGE_QUEUE_LIMIT
);
1801 lck_mtx_unlock(pipe_garbage_lock
);