2 * Copyright (c) 2000-2007, 2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/reason.h>
91 #include <sys/resourcevar.h>
92 #include <sys/vnode_internal.h>
93 #include <sys/file_internal.h>
95 #include <sys/codesign.h>
96 #include <sys/sysproto.h>
98 #include <sys/persona.h>
100 #include <sys/doc_tombstone.h>
102 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
103 extern void (*dtrace_proc_waitfor_exec_ptr
)(proc_t
);
104 extern void dtrace_proc_fork(proc_t
, proc_t
, int);
107 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
108 * we will store its value before actually calling it.
110 static void (*dtrace_proc_waitfor_hook
)(proc_t
) = NULL
;
112 #include <sys/dtrace_ptss.h>
115 #include <security/audit/audit.h>
117 #include <mach/mach_types.h>
118 #include <kern/coalition.h>
119 #include <kern/kern_types.h>
120 #include <kern/kalloc.h>
121 #include <kern/mach_param.h>
122 #include <kern/task.h>
123 #include <kern/thread.h>
124 #include <kern/thread_call.h>
125 #include <kern/zalloc.h>
127 #include <machine/spl.h>
130 #include <security/mac.h>
131 #include <security/mac_mach_internal.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_protos.h>
136 #include <vm/vm_shared_region.h>
138 #include <sys/shm_internal.h> /* for shmfork() */
139 #include <mach/task.h> /* for thread_create() */
140 #include <mach/thread_act.h> /* for thread_resume() */
144 #if CONFIG_MEMORYSTATUS
145 #include <sys/kern_memorystatus.h>
148 /* XXX routines which should have Mach prototypes, but don't */
149 void thread_set_parent(thread_t parent
, int pid
);
150 extern void act_thread_catt(void *ctx
);
151 void thread_set_child(thread_t child
, int pid
);
152 void *act_thread_csave(void);
153 extern boolean_t
task_is_exec_copy(task_t
);
156 thread_t
cloneproc(task_t
, coalition_t
*, proc_t
, int, int);
157 proc_t
forkproc(proc_t
);
158 void forkproc_free(proc_t
);
159 thread_t
fork_create_child(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t child
, int inherit_memory
, int is64bit
, int in_exec
);
160 void proc_vfork_begin(proc_t parent_proc
);
161 void proc_vfork_end(proc_t parent_proc
);
163 #define DOFORK 0x1 /* fork() system call */
164 #define DOVFORK 0x2 /* vfork() system call */
169 * Description: start a vfork on a process
171 * Parameters: parent_proc process (re)entering vfork state
175 * Notes: Although this function increments a count, a count in
176 * excess of 1 is not currently supported. According to the
177 * POSIX standard, calling anything other than execve() or
178 * _exit() following a vfork(), including calling vfork()
179 * itself again, will result in undefined behaviour
182 proc_vfork_begin(proc_t parent_proc
)
184 proc_lock(parent_proc
);
185 parent_proc
->p_lflag
|= P_LVFORK
;
186 parent_proc
->p_vforkcnt
++;
187 proc_unlock(parent_proc
);
193 * Description: stop a vfork on a process
195 * Parameters: parent_proc process leaving vfork state
199 * Notes: Decrements the count; currently, reentrancy of vfork()
200 * is unsupported on the current process
203 proc_vfork_end(proc_t parent_proc
)
205 proc_lock(parent_proc
);
206 parent_proc
->p_vforkcnt
--;
207 if (parent_proc
->p_vforkcnt
< 0)
208 panic("vfork cnt is -ve");
209 if (parent_proc
->p_vforkcnt
== 0)
210 parent_proc
->p_lflag
&= ~P_LVFORK
;
211 proc_unlock(parent_proc
);
218 * Description: vfork system call
220 * Parameters: void [no arguments]
222 * Retval: 0 (to child process)
223 * !0 pid of child (to parent process)
224 * -1 error (see "Returns:")
226 * Returns: EAGAIN Administrative limit reached
227 * EINVAL vfork() called during vfork()
228 * ENOMEM Failed to allocate new process
230 * Note: After a successful call to this function, the parent process
231 * has its task, thread, and uthread lent to the child process,
232 * and control is returned to the caller; if this function is
233 * invoked as a system call, the return is to user space, and
234 * is effectively running on the child process.
236 * Subsequent calls that operate on process state are permitted,
237 * though discouraged, and will operate on the child process; any
238 * operations on the task, thread, or uthread will result in
239 * changes in the parent state, and, if inheritable, the child
240 * state, when a task, thread, and uthread are realized for the
241 * child process at execve() time, will also be effected. Given
242 * this, it's recemmended that people use the posix_spawn() call
245 * BLOCK DIAGRAM OF VFORK
249 * ,----------------. ,-------------.
251 * | parent_thread | ------> | parent_task |
253 * `----------------' `-------------'
254 * uthread | ^ bsd_info | ^
255 * v | vc_thread v | task
256 * ,----------------. ,-------------.
258 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
260 * `----------------' `-------------'
267 * ,----------------. ,-------------.
269 * ,----> | parent_thread | ------> | parent_task |
271 * | `----------------' `-------------'
272 * | uthread | ^ bsd_info | ^
273 * | v | vc_thread v | task
274 * | ,----------------. ,-------------.
276 * | | parent_uthread | <.list. | parent_proc |
278 * | `----------------' `-------------'
281 * | ,----------------.
283 * p_vforkact | child_proc | <-- current_proc()
288 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
290 thread_t child_thread
;
293 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
, NULL
)) != 0) {
296 uthread_t ut
= get_bsdthread_info(current_thread());
297 proc_t child_proc
= ut
->uu_proc
;
299 retval
[0] = child_proc
->p_pid
;
300 retval
[1] = 1; /* flag child return for user space */
303 * Drop the signal lock on the child which was taken on our
304 * behalf by forkproc()/cloneproc() to prevent signals being
305 * received by the child in a partially constructed state.
307 proc_signalend(child_proc
, 0);
308 proc_transend(child_proc
, 0);
310 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
311 DTRACE_PROC1(create
, proc_t
, child_proc
);
312 ut
->uu_flag
&= ~UT_VFORKING
;
322 * Description: common code used by all new process creation other than the
323 * bootstrap of the initial process on the system
325 * Parameters: parent_proc parent process of the process being
326 * child_threadp pointer to location to receive the
327 * Mach thread_t of the child process
329 * kind kind of creation being requested
330 * coalitions if spawn, the set of coalitions the
331 * child process should join, or NULL to
332 * inherit the parent's. On non-spawns,
333 * this param is ignored and the child
334 * always inherits the parent's
337 * Notes: Permissable values for 'kind':
339 * PROC_CREATE_FORK Create a complete process which will
340 * return actively running in both the
341 * parent and the child; the child copies
342 * the parent address space.
343 * PROC_CREATE_SPAWN Create a complete process which will
344 * return actively running in the parent
345 * only after returning actively running
346 * in the child; the child address space
347 * is newly created by an image activator,
348 * after which the child is run.
349 * PROC_CREATE_VFORK Creates a partial process which will
350 * borrow the parent task, thread, and
351 * uthread to return running in the child;
352 * the child address space and other parts
353 * are lazily created at execve() time, or
354 * the child is terminated, and the parent
355 * does not actively run until that
358 * At first it may seem strange that we return the child thread
359 * address rather than process structure, since the process is
360 * the only part guaranteed to be "new"; however, since we do
361 * not actualy adjust other references between Mach and BSD (see
362 * the block diagram above the implementation of vfork()), this
363 * is the only method which guarantees us the ability to get
364 * back to the other information.
367 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
, coalition_t
*coalitions
)
369 thread_t parent_thread
= (thread_t
)current_thread();
370 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
371 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
372 thread_t child_thread
= NULL
;
379 * Although process entries are dynamically created, we still keep
380 * a global limit on the maximum number we will create. Don't allow
381 * a nonprivileged user to use the last process; don't let root
382 * exceed the limit. The variable nprocs is the current number of
383 * processes, maxproc is the limit.
385 uid
= kauth_getruid();
387 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
395 * Increment the count of procs running with this uid. Don't allow
396 * a nonprivileged user to exceed their current limit, which is
397 * always less than what an rlim_t can hold.
398 * (locking protection is provided by list lock held in chgproccnt)
400 count
= chgproccnt(uid
, 1);
402 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
409 * Determine if MAC policies applied to the process will allow
410 * it to fork. This is an advisory-only check.
412 err
= mac_proc_check_fork(parent_proc
);
419 case PROC_CREATE_VFORK
:
421 * Prevent a vfork while we are in vfork(); we should
422 * also likely preventing a fork here as well, and this
423 * check should then be outside the switch statement,
424 * since the proc struct contents will copy from the
425 * child and the tash/thread/uthread from the parent in
426 * that case. We do not support vfork() in vfork()
427 * because we don't have to; the same non-requirement
428 * is true of both fork() and posix_spawn() and any
429 * call other than execve() amd _exit(), but we've
430 * been historically lenient, so we continue to be so
433 * <rdar://6640521> Probably a source of random panics
435 if (parent_uthread
->uu_flag
& UT_VFORK
) {
436 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
442 * Flag us in progress; if we chose to support vfork() in
443 * vfork(), we would chain our parent at this point (in
444 * effect, a stack push). We don't, since we actually want
445 * to disallow everything not specified in the standard
447 proc_vfork_begin(parent_proc
);
449 /* The newly created process comes with signal lock held */
450 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
451 /* Failed to allocate new process */
452 proc_vfork_end(parent_proc
);
457 // XXX BEGIN: wants to move to be common code (and safe)
460 * allow policies to associate the credential/label that
461 * we referenced from the parent ... with the child
462 * JMM - this really isn't safe, as we can drop that
463 * association without informing the policy in other
464 * situations (keep long enough to get policies changed)
466 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
470 * Propogate change of PID - may get new cred if auditing.
472 * NOTE: This has no effect in the vfork case, since
473 * child_proc->task != current_task(), but we duplicate it
474 * because this is probably, ultimately, wrong, since we
475 * will be running in the "child" which is the parent task
476 * with the wrong token until we get to the execve() or
477 * _exit() call; a lot of "undefined" can happen before
480 * <rdar://6640530> disallow everything but exeve()/_exit()?
482 set_security_token(child_proc
);
484 AUDIT_ARG(pid
, child_proc
->p_pid
);
486 // XXX END: wants to move to be common code (and safe)
489 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
491 * Note: this is where we would "push" state instead of setting
492 * it for nested vfork() support (see proc_vfork_end() for
493 * description if issues here).
495 child_proc
->task
= parent_proc
->task
;
497 child_proc
->p_lflag
|= P_LINVFORK
;
498 child_proc
->p_vforkact
= parent_thread
;
499 child_proc
->p_stat
= SRUN
;
502 * Until UT_VFORKING is cleared at the end of the vfork
503 * syscall, the process identity of this thread is slightly
506 * As long as UT_VFORK and it's associated field (uu_proc)
507 * is set, current_proc() will always return the child process.
509 * However dtrace_proc_selfpid() returns the parent pid to
510 * ensure that e.g. the proc:::create probe actions accrue
511 * to the parent. (Otherwise the child magically seems to
512 * have created itself!)
514 parent_uthread
->uu_flag
|= UT_VFORK
| UT_VFORKING
;
515 parent_uthread
->uu_proc
= child_proc
;
516 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
517 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
519 /* temporarily drop thread-set-id state */
520 if (parent_uthread
->uu_flag
& UT_SETUID
) {
521 parent_uthread
->uu_flag
|= UT_WASSETUID
;
522 parent_uthread
->uu_flag
&= ~UT_SETUID
;
525 /* blow thread state information */
526 /* XXX is this actually necessary, given syscall return? */
527 thread_set_child(parent_thread
, child_proc
->p_pid
);
529 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
532 * Preserve synchronization semantics of vfork. If
533 * waiting for child to exec or exit, set P_PPWAIT
534 * on child, and sleep on our proc (in case of exit).
536 child_proc
->p_lflag
|= P_LPPWAIT
;
537 pinsertchild(parent_proc
, child_proc
); /* set visible */
541 case PROC_CREATE_SPAWN
:
543 * A spawned process differs from a forked process in that
544 * the spawned process does not carry around the parents
545 * baggage with regard to address space copying, dtrace,
552 case PROC_CREATE_FORK
:
554 * When we clone the parent process, we are going to inherit
555 * its task attributes and memory, since when we fork, we
556 * will, in effect, create a duplicate of it, with only minor
557 * differences. Contrarily, spawned processes do not inherit.
559 if ((child_thread
= cloneproc(parent_proc
->task
,
560 spawn
? coalitions
: NULL
,
562 spawn
? FALSE
: TRUE
,
564 /* Failed to create thread */
569 /* copy current thread state into the child thread (only for fork) */
571 thread_dup(child_thread
);
574 /* child_proc = child_thread->task->proc; */
575 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
577 // XXX BEGIN: wants to move to be common code (and safe)
580 * allow policies to associate the credential/label that
581 * we referenced from the parent ... with the child
582 * JMM - this really isn't safe, as we can drop that
583 * association without informing the policy in other
584 * situations (keep long enough to get policies changed)
586 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
590 * Propogate change of PID - may get new cred if auditing.
592 * NOTE: This has no effect in the vfork case, since
593 * child_proc->task != current_task(), but we duplicate it
594 * because this is probably, ultimately, wrong, since we
595 * will be running in the "child" which is the parent task
596 * with the wrong token until we get to the execve() or
597 * _exit() call; a lot of "undefined" can happen before
600 * <rdar://6640530> disallow everything but exeve()/_exit()?
602 set_security_token(child_proc
);
604 AUDIT_ARG(pid
, child_proc
->p_pid
);
606 // XXX END: wants to move to be common code (and safe)
609 * Blow thread state information; this is what gives the child
610 * process its "return" value from a fork() call.
612 * Note: this should probably move to fork() proper, since it
613 * is not relevent to spawn, and the value won't matter
614 * until we resume the child there. If you are in here
615 * refactoring code, consider doing this at the same time.
617 thread_set_child(child_thread
, child_proc
->p_pid
);
619 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
622 dtrace_proc_fork(parent_proc
, child_proc
, spawn
);
623 #endif /* CONFIG_DTRACE */
626 * Of note, we need to initialize the bank context behind
627 * the protection of the proc_trans lock to prevent a race with exit.
629 task_bank_init(get_threadtask(child_thread
));
635 panic("fork1 called with unknown kind %d", kind
);
640 /* return the thread pointer to the caller */
641 *child_threadp
= child_thread
;
645 * In the error case, we return a 0 value for the returned pid (but
646 * it is ignored in the trampoline due to the error return); this
647 * is probably not necessary.
650 (void)chgproccnt(uid
, -1);
660 * Description: "Return" to parent vfork thread() following execve/_exit;
661 * this is done by reassociating the parent process structure
662 * with the task, thread, and uthread.
664 * Refer to the ASCII art above vfork() to figure out the
665 * state we're undoing.
667 * Parameters: child_proc Child process
668 * retval System call return value array
669 * rval Return value to present to parent
673 * Notes: The caller resumes or exits the parent, as appropriate, after
674 * calling this function.
677 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
679 task_t parent_task
= get_threadtask(child_proc
->p_vforkact
);
680 proc_t parent_proc
= get_bsdtask_info(parent_task
);
681 thread_t th
= current_thread();
682 uthread_t uth
= get_bsdthread_info(th
);
684 act_thread_catt(uth
->uu_userstate
);
686 /* clear vfork state in parent proc structure */
687 proc_vfork_end(parent_proc
);
689 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
690 uth
->uu_userstate
= 0;
691 uth
->uu_flag
&= ~UT_VFORK
;
692 /* restore thread-set-id state */
693 if (uth
->uu_flag
& UT_WASSETUID
) {
694 uth
->uu_flag
|= UT_SETUID
;
695 uth
->uu_flag
&= UT_WASSETUID
;
698 uth
->uu_sigmask
= uth
->uu_vforkmask
;
700 proc_lock(child_proc
);
701 child_proc
->p_lflag
&= ~P_LINVFORK
;
702 child_proc
->p_vforkact
= 0;
703 proc_unlock(child_proc
);
705 thread_set_parent(th
, rval
);
709 retval
[1] = 0; /* mark parent */
717 * Description: Common operations associated with the creation of a child
720 * Parameters: parent_task parent task
721 * parent_coalitions parent's set of coalitions
722 * child_proc child process
723 * inherit_memory TRUE, if the parents address space is
724 * to be inherited by the child
725 * is64bit TRUE, if the child being created will
726 * be associated with a 64 bit process
727 * rather than a 32 bit process
728 * in_exec TRUE, if called from execve or posix spawn set exec
729 * FALSE, if called from fork or vfexec
731 * Note: This code is called in the fork() case, from the execve() call
732 * graph, if implementing an execve() following a vfork(), from
733 * the posix_spawn() call graph (which implicitly includes a
734 * vfork() equivalent call, and in the system bootstrap case.
736 * It creates a new task and thread (and as a side effect of the
737 * thread creation, a uthread) in the parent coalition set, which is
738 * then associated with the process 'child'. If the parent
739 * process address space is to be inherited, then a flag
740 * indicates that the newly created task should inherit this from
743 * As a special concession to bootstrapping the initial process
744 * in the system, it's possible for 'parent_task' to be TASK_NULL;
745 * in this case, 'inherit_memory' MUST be FALSE.
748 fork_create_child(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t child_proc
, int inherit_memory
, int is64bit
, int in_exec
)
750 thread_t child_thread
= NULL
;
752 kern_return_t result
;
754 /* Create a new task for the child process */
755 result
= task_create_internal(parent_task
,
759 TF_LRETURNWAIT
| TF_LRETURNWAITER
, /* All created threads will wait in task_wait_to_return */
760 in_exec
? TPF_EXEC_COPY
: TPF_NONE
, /* Mark the task exec copy if in execve */
762 if (result
!= KERN_SUCCESS
) {
763 printf("%s: task_create_internal failed. Code: %d\n",
770 * Set the child process task to the new task if not in exec,
771 * will set the task for exec case in proc_exec_switch_task after image activation.
773 child_proc
->task
= child_task
;
776 /* Set child task process to child proc */
777 set_bsdtask_info(child_task
, child_proc
);
779 /* Propagate CPU limit timer from parent */
780 if (timerisset(&child_proc
->p_rlim_cpu
))
781 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
784 * Set child process BSD visible scheduler priority if nice value
785 * inherited from parent
787 if (child_proc
->p_nice
!= 0)
788 resetpriority(child_proc
);
791 * Create a new thread for the child process
792 * The new thread is waiting on the event triggered by 'task_clear_return_wait'
794 result
= thread_create_waiting(child_task
,
795 (thread_continue_t
)task_wait_to_return
,
796 task_get_return_wait_event(child_task
),
799 if (result
!= KERN_SUCCESS
) {
800 printf("%s: thread_create failed. Code: %d\n",
802 task_deallocate(child_task
);
807 * Tag thread as being the first thread in its task.
809 thread_set_tag(child_thread
, THREAD_TAG_MAINTHREAD
);
812 thread_yield_internal(1);
814 return(child_thread
);
821 * Description: fork system call.
823 * Parameters: parent Parent process to fork
824 * uap (void) [unused]
825 * retval Return value
828 * EAGAIN Resource unavailable, try again
830 * Notes: Attempts to create a new child process which inherits state
831 * from the parent process. If successful, the call returns
832 * having created an initially suspended child process with an
833 * extra Mach task and thread reference, for which the thread
834 * is initially suspended. Until we resume the child process,
835 * it is not yet running.
837 * The return information to the child is contained in the
838 * thread state structure of the new child, and does not
839 * become visible to the child through a normal return process,
840 * since it never made the call into the kernel itself in the
843 * After resuming the thread, this function returns directly to
844 * the parent process which invoked the fork() system call.
846 * Important: The child thread_resume occurs before the parent returns;
847 * depending on scheduling latency, this means that it is not
848 * deterministic as to whether the parent or child is scheduled
849 * to run first. It is entirely possible that the child could
850 * run to completion prior to the parent running.
853 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
855 thread_t child_thread
;
858 retval
[1] = 0; /* flag parent return for user space */
860 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
, NULL
)) == 0) {
864 /* Return to the parent */
865 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
866 retval
[0] = child_proc
->p_pid
;
869 * Drop the signal lock on the child which was taken on our
870 * behalf by forkproc()/cloneproc() to prevent signals being
871 * received by the child in a partially constructed state.
873 proc_signalend(child_proc
, 0);
874 proc_transend(child_proc
, 0);
876 /* flag the fork has occurred */
877 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
878 DTRACE_PROC1(create
, proc_t
, child_proc
);
881 if ((dtrace_proc_waitfor_hook
= dtrace_proc_waitfor_exec_ptr
) != NULL
)
882 (*dtrace_proc_waitfor_hook
)(child_proc
);
885 /* "Return" to the child */
886 task_clear_return_wait(get_threadtask(child_thread
));
888 /* drop the extra references we got during the creation */
889 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
890 task_deallocate(child_task
);
892 thread_deallocate(child_thread
);
902 * Description: Create a new process from a specified process.
904 * Parameters: parent_task The parent task to be cloned, or
905 * TASK_NULL is task characteristics
906 * are not to be inherited
907 * be cloned, or TASK_NULL if the new
908 * task is not to inherit the VM
909 * characteristics of the parent
910 * parent_proc The parent process to be cloned
911 * inherit_memory True if the child is to inherit
912 * memory from the parent; if this is
913 * non-NULL, then the parent_task must
915 * memstat_internal Whether to track the process in the
916 * jetsam priority list (if configured)
918 * Returns: !NULL pointer to new child thread
919 * NULL Failure (unspecified)
921 * Note: On return newly created child process has signal lock held
922 * to block delivery of signal to it if called with lock set.
923 * fork() code needs to explicity remove this lock before
924 * signals can be delivered
926 * In the case of bootstrap, this function can be called from
927 * bsd_utaskbootstrap() in order to bootstrap the first process;
928 * the net effect is to provide a uthread structure for the
929 * kernel process associated with the kernel task.
931 * XXX: Tristating using the value parent_task as the major key
932 * and inherit_memory as the minor key is something we should
933 * refactor later; we owe the current semantics, ultimately,
934 * to the semantics of task_create_internal. For now, we will
935 * live with this being somewhat awkward.
938 cloneproc(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t parent_proc
, int inherit_memory
, int memstat_internal
)
940 #if !CONFIG_MEMORYSTATUS
941 #pragma unused(memstat_internal)
945 thread_t child_thread
= NULL
;
947 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
948 /* Failed to allocate new process */
952 child_thread
= fork_create_child(parent_task
, parent_coalitions
, child_proc
, inherit_memory
, parent_proc
->p_flag
& P_LP64
, FALSE
);
954 if (child_thread
== NULL
) {
956 * Failed to create thread; now we must deconstruct the new
957 * process previously obtained from forkproc().
959 forkproc_free(child_proc
);
963 child_task
= get_threadtask(child_thread
);
964 if (parent_proc
->p_flag
& P_LP64
) {
965 task_set_64bit(child_task
, TRUE
);
966 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
968 task_set_64bit(child_task
, FALSE
);
969 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
972 #if CONFIG_MEMORYSTATUS
973 if (memstat_internal
) {
975 child_proc
->p_memstat_state
|= P_MEMSTAT_INTERNAL
;
980 /* make child visible */
981 pinsertchild(parent_proc
, child_proc
);
984 * Make child runnable, set start time.
986 child_proc
->p_stat
= SRUN
;
988 return(child_thread
);
993 * Destroy a process structure that resulted from a call to forkproc(), but
994 * which must be returned to the system because of a subsequent failure
995 * preventing it from becoming active.
997 * Parameters: p The incomplete process from forkproc()
1001 * Note: This function should only be used in an error handler following
1002 * a call to forkproc().
1004 * Operations occur in reverse order of those in forkproc().
1007 forkproc_free(proc_t p
)
1010 persona_proc_drop(p
);
1011 #endif /* CONFIG_PERSONAS */
1014 pth_proc_hashdelete(p
);
1017 /* We held signal and a transition locks; drop them */
1018 proc_signalend(p
, 0);
1019 proc_transend(p
, 0);
1022 * If we have our own copy of the resource limits structure, we
1023 * need to free it. If it's a shared copy, we need to drop our
1026 proc_limitdrop(p
, 0);
1030 /* Need to drop references to the shared memory segment(s), if any */
1033 * Use shmexec(): we have no address space, so no mappings
1035 * XXX Yes, the routine is badly named.
1041 /* Need to undo the effects of the fdcopy(), if any */
1045 * Drop the reference on a text vnode pointer, if any
1046 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1047 * XXX if anyone ever uses this field, we will be extremely unhappy.
1050 vnode_rele(p
->p_textvp
);
1054 /* Stop the profiling clock */
1057 /* Update the audit session proc count */
1058 AUDIT_SESSION_PROCEXIT(p
);
1060 #if CONFIG_FINE_LOCK_GROUPS
1061 lck_mtx_destroy(&p
->p_mlock
, proc_mlock_grp
);
1062 lck_mtx_destroy(&p
->p_fdmlock
, proc_fdmlock_grp
);
1063 lck_mtx_destroy(&p
->p_ucred_mlock
, proc_ucred_mlock_grp
);
1065 lck_mtx_destroy(&p
->p_dtrace_sprlock
, proc_lck_grp
);
1067 lck_spin_destroy(&p
->p_slock
, proc_slock_grp
);
1068 #else /* CONFIG_FINE_LOCK_GROUPS */
1069 lck_mtx_destroy(&p
->p_mlock
, proc_lck_grp
);
1070 lck_mtx_destroy(&p
->p_fdmlock
, proc_lck_grp
);
1071 lck_mtx_destroy(&p
->p_ucred_mlock
, proc_lck_grp
);
1073 lck_mtx_destroy(&p
->p_dtrace_sprlock
, proc_lck_grp
);
1075 lck_spin_destroy(&p
->p_slock
, proc_lck_grp
);
1076 #endif /* CONFIG_FINE_LOCK_GROUPS */
1078 /* Release the credential reference */
1079 kauth_cred_unref(&p
->p_ucred
);
1082 /* Decrement the count of processes in the system */
1085 /* Take it out of process hash */
1086 LIST_REMOVE(p
, p_hash
);
1090 thread_call_free(p
->p_rcall
);
1092 /* Free allocated memory */
1093 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1094 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1095 proc_checkdeadrefs(p
);
1096 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1103 * Description: Create a new process structure, given a parent process
1106 * Parameters: parent_proc The parent process
1108 * Returns: !NULL The new process structure
1109 * NULL Error (insufficient free memory)
1111 * Note: When successful, the newly created process structure is
1112 * partially initialized; if a caller needs to deconstruct the
1113 * returned structure, they must call forkproc_free() to do so.
1116 forkproc(proc_t parent_proc
)
1118 proc_t child_proc
; /* Our new process */
1119 static int nextpid
= 0, pidwrap
= 0, nextpidversion
= 0;
1120 static uint64_t nextuniqueid
= 0;
1122 struct session
*sessp
;
1123 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1125 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1126 if (child_proc
== NULL
) {
1127 printf("forkproc: M_PROC zone exhausted\n");
1130 /* zero it out as we need to insert in hash */
1131 bzero(child_proc
, sizeof *child_proc
);
1133 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1134 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1135 if (child_proc
->p_stats
== NULL
) {
1136 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1137 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1141 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1142 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1143 if (child_proc
->p_sigacts
== NULL
) {
1144 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1145 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1146 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1151 /* allocate a callout for use by interval timers */
1152 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1153 if (child_proc
->p_rcall
== NULL
) {
1154 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1155 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1156 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1163 * Find an unused PID.
1171 * If the process ID prototype has wrapped around,
1172 * restart somewhat above 0, as the low-numbered procs
1173 * tend to include daemons that don't exit.
1175 if (nextpid
>= PID_MAX
) {
1181 /* if the pid stays in hash both for zombie and runniing state */
1182 if (pfind_locked(nextpid
) != PROC_NULL
) {
1187 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1191 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1197 child_proc
->p_pid
= nextpid
;
1198 child_proc
->p_responsible_pid
= nextpid
; /* initially responsible for self */
1199 child_proc
->p_idversion
= nextpidversion
++;
1200 /* kernel process is handcrafted and not from fork, so start from 1 */
1201 child_proc
->p_uniqueid
= ++nextuniqueid
;
1203 if (child_proc
->p_pid
!= 0) {
1204 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
)
1205 panic("proc in the list already\n");
1208 /* Insert in the hash */
1209 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1210 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1215 * We've identified the PID we are going to use; initialize the new
1216 * process structure.
1218 child_proc
->p_stat
= SIDL
;
1219 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1222 * The zero'ing of the proc was at the allocation time due to need
1223 * for insertion to hash. Copy the section that is to be copied
1224 * directly from the parent.
1226 bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1227 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1230 * Some flags are inherited from the parent.
1231 * Duplicate sub-structures as needed.
1232 * Increase reference counts on shared objects.
1233 * The p_stats and p_sigacts substructs are set in vm_fork.
1235 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_DISABLE_ASLR
| P_DELAYIDLESLEEP
| P_SUGID
));
1236 if (parent_proc
->p_flag
& P_PROFIL
)
1237 startprofclock(child_proc
);
1239 child_proc
->p_vfs_iopolicy
= (parent_proc
->p_vfs_iopolicy
& (P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY
));
1242 * Note that if the current thread has an assumed identity, this
1243 * credential will be granted to the new process.
1245 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1246 /* update cred on proc */
1247 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1248 /* update audit session proc count */
1249 AUDIT_SESSION_PROCNEW(child_proc
);
1251 #if CONFIG_FINE_LOCK_GROUPS
1252 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1253 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1254 lck_mtx_init(&child_proc
->p_ucred_mlock
, proc_ucred_mlock_grp
, proc_lck_attr
);
1256 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1258 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1259 #else /* !CONFIG_FINE_LOCK_GROUPS */
1260 lck_mtx_init(&child_proc
->p_mlock
, proc_lck_grp
, proc_lck_attr
);
1261 lck_mtx_init(&child_proc
->p_fdmlock
, proc_lck_grp
, proc_lck_attr
);
1262 lck_mtx_init(&child_proc
->p_ucred_mlock
, proc_lck_grp
, proc_lck_attr
);
1264 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1266 lck_spin_init(&child_proc
->p_slock
, proc_lck_grp
, proc_lck_attr
);
1267 #endif /* !CONFIG_FINE_LOCK_GROUPS */
1268 klist_init(&child_proc
->p_klist
);
1270 if (child_proc
->p_textvp
!= NULLVP
) {
1271 /* bump references to the text vnode */
1272 /* Need to hold iocount across the ref call */
1273 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1274 error
= vnode_ref(child_proc
->p_textvp
);
1275 vnode_put(child_proc
->p_textvp
);
1277 child_proc
->p_textvp
= NULLVP
;
1282 * Copy the parents per process open file table to the child; if
1283 * there is a per-thread current working directory, set the childs
1284 * per-process current working directory to that instead of the
1287 * XXX may fail to copy descriptors to child
1289 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1292 if (parent_proc
->vm_shm
) {
1293 /* XXX may fail to attach shm to child */
1294 (void)shmfork(parent_proc
, child_proc
);
1298 * inherit the limit structure to child
1300 proc_limitfork(parent_proc
, child_proc
);
1302 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1303 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1304 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1307 /* Intialize new process stats, including start time */
1308 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1309 bzero(child_proc
->p_stats
, sizeof(*child_proc
->p_stats
));
1310 microtime_with_abstime(&child_proc
->p_start
, &child_proc
->p_stats
->ps_start
);
1312 if (parent_proc
->p_sigacts
!= NULL
)
1313 (void)memcpy(child_proc
->p_sigacts
,
1314 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1316 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1318 sessp
= proc_session(parent_proc
);
1319 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
)
1320 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1321 session_rele(sessp
);
1324 * block all signals to reach the process.
1325 * no transition race should be occuring with the child yet,
1326 * but indicate that the process is in (the creation) transition.
1328 proc_signalstart(child_proc
, 0);
1329 proc_transstart(child_proc
, 0, 0);
1331 child_proc
->p_pcaction
= 0;
1333 TAILQ_INIT(&child_proc
->p_uthlist
);
1334 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1335 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1337 /* Inherit the parent flags for code sign */
1338 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1341 * Copy work queue information
1343 * Note: This should probably only happen in the case where we are
1344 * creating a child that is a copy of the parent; since this
1345 * routine is called in the non-duplication case of vfork()
1346 * or posix_spawn(), then this information should likely not
1349 * <rdar://6640553> Work queue pointers that no longer point to code
1351 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1352 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1353 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1354 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1355 child_proc
->p_lflag
|= P_LREGISTER
;
1357 child_proc
->p_wqkqueue
= NULL
;
1358 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1359 child_proc
->p_dispatchqueue_serialno_offset
= parent_proc
->p_dispatchqueue_serialno_offset
;
1361 pth_proc_hashinit(child_proc
);
1365 child_proc
->p_persona
= NULL
;
1366 error
= persona_proc_inherit(child_proc
, parent_proc
);
1368 printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n", persona_get_uid(parent_proc
->p_persona
));
1369 forkproc_free(child_proc
);
1375 #if CONFIG_MEMORYSTATUS
1376 /* Memorystatus init */
1377 child_proc
->p_memstat_state
= 0;
1378 child_proc
->p_memstat_effectivepriority
= JETSAM_PRIORITY_DEFAULT
;
1379 child_proc
->p_memstat_requestedpriority
= JETSAM_PRIORITY_DEFAULT
;
1380 child_proc
->p_memstat_userdata
= 0;
1381 child_proc
->p_memstat_idle_start
= 0;
1382 child_proc
->p_memstat_idle_delta
= 0;
1383 child_proc
->p_memstat_memlimit
= 0;
1384 child_proc
->p_memstat_memlimit_active
= 0;
1385 child_proc
->p_memstat_memlimit_inactive
= 0;
1387 child_proc
->p_memstat_suspendedfootprint
= 0;
1389 child_proc
->p_memstat_dirty
= 0;
1390 child_proc
->p_memstat_idledeadline
= 0;
1391 #endif /* CONFIG_MEMORYSTATUS */
1400 lck_mtx_assert(proc_list_mlock
, LCK_MTX_ASSERT_NOTOWNED
);
1401 lck_mtx_lock(&p
->p_mlock
);
1405 proc_unlock(proc_t p
)
1407 lck_mtx_unlock(&p
->p_mlock
);
1411 proc_spinlock(proc_t p
)
1413 lck_spin_lock(&p
->p_slock
);
1417 proc_spinunlock(proc_t p
)
1419 lck_spin_unlock(&p
->p_slock
);
1423 proc_list_lock(void)
1425 lck_mtx_lock(proc_list_mlock
);
1429 proc_list_unlock(void)
1431 lck_mtx_unlock(proc_list_mlock
);
1435 proc_ucred_lock(proc_t p
)
1437 lck_mtx_lock(&p
->p_ucred_mlock
);
1441 proc_ucred_unlock(proc_t p
)
1443 lck_mtx_unlock(&p
->p_ucred_mlock
);
1446 #include <kern/zalloc.h>
1448 struct zone
*uthread_zone
= NULL
;
1450 static lck_grp_t
*rethrottle_lock_grp
;
1451 static lck_attr_t
*rethrottle_lock_attr
;
1452 static lck_grp_attr_t
*rethrottle_lock_grp_attr
;
1455 uthread_zone_init(void)
1457 assert(uthread_zone
== NULL
);
1459 rethrottle_lock_grp_attr
= lck_grp_attr_alloc_init();
1460 rethrottle_lock_grp
= lck_grp_alloc_init("rethrottle", rethrottle_lock_grp_attr
);
1461 rethrottle_lock_attr
= lck_attr_alloc_init();
1463 uthread_zone
= zinit(sizeof(struct uthread
),
1464 thread_max
* sizeof(struct uthread
),
1465 THREAD_CHUNK
* sizeof(struct uthread
),
1470 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1474 uthread_t uth_parent
;
1477 if (uthread_zone
== NULL
)
1478 uthread_zone_init();
1480 ut
= (void *)zalloc(uthread_zone
);
1481 bzero(ut
, sizeof(struct uthread
));
1483 p
= (proc_t
) get_bsdtask_info(task
);
1484 uth
= (uthread_t
)ut
;
1485 uth
->uu_thread
= thread
;
1487 lck_spin_init(&uth
->uu_rethrottle_lock
, rethrottle_lock_grp
,
1488 rethrottle_lock_attr
);
1491 * Thread inherits credential from the creating thread, if both
1492 * are in the same task.
1494 * If the creating thread has no credential or is from another
1495 * task we can leave the new thread credential NULL. If it needs
1496 * one later, it will be lazily assigned from the task's process.
1498 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1499 if ((noinherit
== 0) && task
== current_task() &&
1500 uth_parent
!= NULL
&&
1501 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1503 * XXX The new thread is, in theory, being created in context
1504 * XXX of parent thread, so a direct reference to the parent
1507 kauth_cred_ref(uth_parent
->uu_ucred
);
1508 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1509 /* the credential we just inherited is an assumed credential */
1510 if (uth_parent
->uu_flag
& UT_SETUID
)
1511 uth
->uu_flag
|= UT_SETUID
;
1513 /* sometimes workqueue threads are created out task context */
1514 if ((task
!= kernel_task
) && (p
!= PROC_NULL
))
1515 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1517 uth
->uu_ucred
= NOCRED
;
1521 if ((task
!= kernel_task
) && p
) {
1524 if (noinherit
!= 0) {
1525 /* workq threads will not inherit masks */
1526 uth
->uu_sigmask
= ~workq_threadmask
;
1527 } else if (uth_parent
) {
1528 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
)
1529 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1531 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1533 uth
->uu_context
.vc_thread
= thread
;
1535 * Do not add the uthread to proc uthlist for exec copy task,
1536 * since they do not hold a ref on proc.
1538 if (!task_is_exec_copy(task
)) {
1539 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1544 if (p
->p_dtrace_ptss_pages
!= NULL
&& !task_is_exec_copy(task
)) {
1545 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1554 * This routine frees the thread name field of the uthread_t structure. Split out of
1555 * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork.
1558 uthread_cleanup_name(void *uthread
)
1560 uthread_t uth
= (uthread_t
)uthread
;
1564 * Set pth_name to NULL before calling free().
1565 * Previously there was a race condition in the
1566 * case this code was executing during a stackshot
1567 * where the stackshot could try and copy pth_name
1568 * after it had been freed and before if was marked
1571 if (uth
->pth_name
!= NULL
) {
1572 void *pth_name
= uth
->pth_name
;
1573 uth
->pth_name
= NULL
;
1574 kfree(pth_name
, MAXTHREADNAMESIZE
);
1580 * This routine frees all the BSD context in uthread except the credential.
1581 * It does not free the uthread structure as well
1584 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1586 struct _select
*sel
;
1587 uthread_t uth
= (uthread_t
)uthread
;
1588 proc_t p
= (proc_t
)bsd_info
;
1591 if (__improbable(uthread_get_proc_refcount(uthread
) != 0)) {
1592 panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0", uthread
);
1596 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1598 * task is marked as a low priority I/O type
1599 * and we've somehow managed to not dismiss the throttle
1600 * through the normal exit paths back to user space...
1601 * no need to throttle this thread since its going away
1602 * but we do need to update our bookeeping w/r to throttled threads
1604 * Calling this routine will clean up any throttle info reference
1605 * still inuse by the thread.
1607 throttle_lowpri_io(0);
1610 * Per-thread audit state should never last beyond system
1611 * call return. Since we don't audit the thread creation/
1612 * removal, the thread state pointer should never be
1613 * non-NULL when we get here.
1615 assert(uth
->uu_ar
== NULL
);
1617 if (uth
->uu_kqueue_bound
) {
1618 kevent_qos_internal_unbind(p
,
1619 uth
->uu_kqueue_bound
,
1621 uth
->uu_kqueue_flags
);
1622 uth
->uu_kqueue_flags
= 0;
1623 uth
->uu_kqueue_bound
= 0;
1626 sel
= &uth
->uu_select
;
1627 /* cleanup the select bit space */
1629 FREE(sel
->ibits
, M_TEMP
);
1630 FREE(sel
->obits
, M_TEMP
);
1635 vnode_rele(uth
->uu_cdir
);
1636 uth
->uu_cdir
= NULLVP
;
1639 if (uth
->uu_wqset
) {
1640 if (waitq_set_is_valid(uth
->uu_wqset
))
1641 waitq_set_deinit(uth
->uu_wqset
);
1642 FREE(uth
->uu_wqset
, M_SELECT
);
1643 uth
->uu_wqset
= NULL
;
1644 uth
->uu_wqstate_sz
= 0;
1647 os_reason_free(uth
->uu_exit_reason
);
1649 if ((task
!= kernel_task
) && p
) {
1651 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1652 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1655 * Remove the thread from the process list and
1656 * transfer [appropriate] pending signals to the process.
1657 * Do not remove the uthread from proc uthlist for exec
1658 * copy task, since they does not have a ref on proc and
1659 * would not have been added to the list.
1661 if (get_bsdtask_info(task
) == p
&& !task_is_exec_copy(task
)) {
1664 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1665 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1669 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1670 uth
->t_dtrace_scratch
= NULL
;
1671 if (tmpptr
!= NULL
&& !task_is_exec_copy(task
)) {
1672 dtrace_ptss_release_entry(p
, tmpptr
);
1678 /* This routine releases the credential stored in uthread */
1680 uthread_cred_free(void *uthread
)
1682 uthread_t uth
= (uthread_t
)uthread
;
1684 /* and free the uthread itself */
1685 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1686 kauth_cred_t oldcred
= uth
->uu_ucred
;
1687 uth
->uu_ucred
= NOCRED
;
1688 kauth_cred_unref(&oldcred
);
1692 /* This routine frees the uthread structure held in thread structure */
1694 uthread_zone_free(void *uthread
)
1696 uthread_t uth
= (uthread_t
)uthread
;
1698 if (uth
->t_tombstone
) {
1699 kfree(uth
->t_tombstone
, sizeof(struct doc_tombstone
));
1700 uth
->t_tombstone
= NULL
;
1703 lck_spin_destroy(&uth
->uu_rethrottle_lock
, rethrottle_lock_grp
);
1705 uthread_cleanup_name(uthread
);
1706 /* and free the uthread itself */
1707 zfree(uthread_zone
, uthread
);