]>
git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1988, 1989, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)radix.c 8.4 (Berkeley) 11/2/94
61 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
65 * Routines to build and maintain radix trees for routing lookups.
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #define M_DONTWAIT M_NOWAIT
72 #include <sys/domain.h>
73 #include <sys/syslog.h>
74 #include <net/radix.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <kern/locks.h>
80 static int rn_walktree_from(struct radix_node_head
*h
, void *a
,
81 void *m
, walktree_f_t
*f
, void *w
);
82 static int rn_walktree(struct radix_node_head
*, walktree_f_t
*, void *);
83 static struct radix_node
84 *rn_insert(void *, struct radix_node_head
*, int *,
85 struct radix_node
[2]),
86 *rn_newpair(void *, int, struct radix_node
[2]),
87 *rn_search(void *, struct radix_node
*),
88 *rn_search_m(void *, struct radix_node
*, void *);
90 static int max_keylen
;
91 static struct radix_mask
*rn_mkfreelist
;
92 static struct radix_node_head
*mask_rnhead
;
93 static char *addmask_key
;
94 static char normal_chars
[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
95 static char *rn_zeros
, *rn_ones
;
98 extern lck_grp_t
*domain_proto_mtx_grp
;
99 extern lck_attr_t
*domain_proto_mtx_attr
;
101 #define rn_masktop (mask_rnhead->rnh_treetop)
103 #define Bcmp(a, b, l) \
104 (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (uint32_t)l))
106 static int rn_lexobetter(void *m_arg
, void *n_arg
);
107 static struct radix_mask
*
108 rn_new_radix_mask(struct radix_node
*tt
,
109 struct radix_mask
*next
);
110 static int rn_satisfies_leaf(char *trial
, struct radix_node
*leaf
, int skip
,
111 rn_matchf_t
*f
, void *w
);
113 #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg))
116 * The data structure for the keys is a radix tree with one way
117 * branching removed. The index rn_bit at an internal node n represents a bit
118 * position to be tested. The tree is arranged so that all descendants
119 * of a node n have keys whose bits all agree up to position rn_bit - 1.
120 * (We say the index of n is rn_bit.)
122 * There is at least one descendant which has a one bit at position rn_bit,
123 * and at least one with a zero there.
125 * A route is determined by a pair of key and mask. We require that the
126 * bit-wise logical and of the key and mask to be the key.
127 * We define the index of a route to associated with the mask to be
128 * the first bit number in the mask where 0 occurs (with bit number 0
129 * representing the highest order bit).
131 * We say a mask is normal if every bit is 0, past the index of the mask.
132 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
133 * and m is a normal mask, then the route applies to every descendant of n.
134 * If the index(m) < rn_bit, this implies the trailing last few bits of k
135 * before bit b are all 0, (and hence consequently true of every descendant
136 * of n), so the route applies to all descendants of the node as well.
138 * Similar logic shows that a non-normal mask m such that
139 * index(m) <= index(n) could potentially apply to many children of n.
140 * Thus, for each non-host route, we attach its mask to a list at an internal
141 * node as high in the tree as we can go.
143 * The present version of the code makes use of normal routes in short-
144 * circuiting an explict mask and compare operation when testing whether
145 * a key satisfies a normal route, and also in remembering the unique leaf
146 * that governs a subtree.
149 static struct radix_node
*
150 rn_search(void *v_arg
, struct radix_node
*head
)
152 struct radix_node
*x
;
155 for (x
= head
, v
= v_arg
; x
->rn_bit
>= 0;) {
156 if (x
->rn_bmask
& v
[x
->rn_offset
])
164 static struct radix_node
*
165 rn_search_m(void *v_arg
, struct radix_node
*head
, void *m_arg
)
167 struct radix_node
*x
;
168 caddr_t v
= v_arg
, m
= m_arg
;
170 for (x
= head
; x
->rn_bit
>= 0;) {
171 if ((x
->rn_bmask
& m
[x
->rn_offset
]) &&
172 (x
->rn_bmask
& v
[x
->rn_offset
]))
181 rn_refines(void *m_arg
, void *n_arg
)
183 caddr_t m
= m_arg
, n
= n_arg
;
184 caddr_t lim
, lim2
= lim
= n
+ *(u_char
*)n
;
185 int longer
= (*(u_char
*)n
++) - (int)(*(u_char
*)m
++);
186 int masks_are_equal
= 1;
199 if (masks_are_equal
&& (longer
< 0))
200 for (lim2
= m
- longer
; m
< lim2
; )
203 return (!masks_are_equal
);
207 rn_lookup(void *v_arg
, void *m_arg
, struct radix_node_head
*head
)
209 return (rn_lookup_args(v_arg
, m_arg
, head
, NULL
, NULL
));
213 rn_lookup_args(void *v_arg
, void *m_arg
, struct radix_node_head
*head
,
214 rn_matchf_t
*f
, void *w
)
216 struct radix_node
*x
;
217 caddr_t netmask
= NULL
;
220 x
= rn_addmask(m_arg
, 1, head
->rnh_treetop
->rn_offset
);
225 x
= rn_match_args(v_arg
, head
, f
, w
);
227 while (x
&& x
->rn_mask
!= netmask
)
234 * Returns true if address 'trial' has no bits differing from the
235 * leaf's key when compared under the leaf's mask. In other words,
236 * returns true when 'trial' matches leaf. If a leaf-matching
237 * routine is passed in, it is also used to find a match on the
238 * conditions defined by the caller of rn_match.
241 rn_satisfies_leaf(char *trial
, struct radix_node
*leaf
, int skip
,
242 rn_matchf_t
*f
, void *w
)
244 char *cp
= trial
, *cp2
= leaf
->rn_key
, *cp3
= leaf
->rn_mask
;
246 int length
= min(*(u_char
*)cp
, *(u_char
*)cp2
);
251 length
= min(length
, *(u_char
*)cp3
);
252 cplim
= cp
+ length
; cp3
+= skip
; cp2
+= skip
;
253 for (cp
+= skip
; cp
< cplim
; cp
++, cp2
++, cp3
++)
254 if ((*cp
^ *cp2
) & *cp3
)
257 return (RN_MATCHF(leaf
, f
, w
));
261 rn_match(void *v_arg
, struct radix_node_head
*head
)
263 return (rn_match_args(v_arg
, head
, NULL
, NULL
));
267 rn_match_args(void *v_arg
, struct radix_node_head
*head
,
268 rn_matchf_t
*f
, void *w
)
271 struct radix_node
*t
= head
->rnh_treetop
, *x
;
274 struct radix_node
*saved_t
, *top
= t
;
275 int off
= t
->rn_offset
, vlen
= *(u_char
*)cp
, matched_off
;
279 * Open code rn_search(v, top) to avoid overhead of extra
282 for (; t
->rn_bit
>= 0; ) {
283 if (t
->rn_bmask
& cp
[t
->rn_offset
])
289 * See if we match exactly as a host destination
290 * or at least learn how many bits match, for normal mask finesse.
292 * It doesn't hurt us to limit how many bytes to check
293 * to the length of the mask, since if it matches we had a genuine
294 * match and the leaf we have is the most specific one anyway;
295 * if it didn't match with a shorter length it would fail
296 * with a long one. This wins big for class B&C netmasks which
297 * are probably the most common case...
300 vlen
= *(u_char
*)t
->rn_mask
;
301 cp
+= off
; cp2
= t
->rn_key
+ off
; cplim
= v
+ vlen
;
302 for (; cp
< cplim
; cp
++, cp2
++)
306 * This extra grot is in case we are explicitly asked
307 * to look up the default. Ugh!
309 * Never return the root node itself, it seems to cause a
312 if (t
->rn_flags
& RNF_ROOT
)
314 if (t
== NULL
|| RN_MATCHF(t
, f
, w
)) {
318 * Although we found an exact match on the key,
319 * f() is looking for some other criteria as well.
320 * Continue looking as if the exact match failed.
322 if (t
->rn_parent
->rn_flags
& RNF_ROOT
) {
323 /* Hit the top; have to give up */
330 test
= (*cp
^ *cp2
) & 0xff; /* find first bit that differs */
331 for (b
= 7; (test
>>= 1) > 0;)
334 matched_off
= cp
- v
;
335 b
+= matched_off
<< 3;
338 * If there is a host route in a duped-key chain, it will be first.
340 if ((saved_t
= t
)->rn_mask
== 0)
342 for (; t
; t
= t
->rn_dupedkey
) {
344 * Even if we don't match exactly as a host,
345 * we may match if the leaf we wound up at is
348 if (t
->rn_flags
& RNF_NORMAL
) {
349 if ((rn_bit
<= t
->rn_bit
) && RN_MATCHF(t
, f
, w
))
351 } else if (rn_satisfies_leaf(v
, t
, matched_off
, f
, w
)) {
356 /* start searching up the tree */
358 struct radix_mask
*m
;
362 * If non-contiguous masks ever become important
363 * we can restore the masking and open coding of
364 * the search and satisfaction test and put the
365 * calculation of "off" back before the "do".
368 if (m
->rm_flags
& RNF_NORMAL
) {
369 if ((rn_bit
<= m
->rm_bit
) &&
370 RN_MATCHF(m
->rm_leaf
, f
, w
))
373 off
= min(t
->rn_offset
, matched_off
);
374 x
= rn_search_m(v
, t
, m
->rm_mask
);
375 while (x
&& x
->rn_mask
!= m
->rm_mask
)
377 if (x
&& rn_satisfies_leaf(v
, x
, off
, f
, w
))
388 struct radix_node
*rn_clist
;
393 static struct radix_node
*
394 rn_newpair(void *v
, int b
, struct radix_node nodes
[2])
396 struct radix_node
*tt
= nodes
, *t
= tt
+ 1;
398 t
->rn_bmask
= 0x80 >> (b
& 7);
400 t
->rn_offset
= b
>> 3;
402 tt
->rn_key
= (caddr_t
)v
;
404 tt
->rn_flags
= t
->rn_flags
= RNF_ACTIVE
;
405 tt
->rn_mklist
= t
->rn_mklist
= NULL
;
407 tt
->rn_info
= rn_nodenum
++; t
->rn_info
= rn_nodenum
++;
409 tt
->rn_ybro
= rn_clist
;
415 static struct radix_node
*
416 rn_insert(void *v_arg
, struct radix_node_head
*head
, int *dupentry
,
417 struct radix_node nodes
[2])
420 struct radix_node
*top
= head
->rnh_treetop
;
421 int head_off
= top
->rn_offset
, vlen
= (int)*((u_char
*)v
);
422 struct radix_node
*t
= rn_search(v_arg
, top
);
423 caddr_t cp
= v
+ head_off
;
425 struct radix_node
*tt
;
427 * Find first bit at which v and t->rn_key differ
430 caddr_t cp2
= t
->rn_key
+ head_off
;
432 caddr_t cplim
= v
+ vlen
;
441 cmp_res
= (cp
[-1] ^ cp2
[-1]) & 0xff;
442 for (b
= (cp
- v
) << 3; cmp_res
; b
--)
446 struct radix_node
*p
, *x
= top
;
450 if (cp
[x
->rn_offset
] & x
->rn_bmask
)
454 } while (b
> (unsigned) x
->rn_bit
);
455 /* x->rn_bit < b && x->rn_bit >= 0 */
458 log(LOG_DEBUG
, "rn_insert: Going In:\n"), traverse(p
);
460 t
= rn_newpair(v_arg
, b
, nodes
);
462 if ((cp
[p
->rn_offset
] & p
->rn_bmask
) == 0)
467 t
->rn_parent
= p
; /* frees x, p as temp vars below */
468 if ((cp
[t
->rn_offset
] & t
->rn_bmask
) == 0) {
476 log(LOG_DEBUG
, "rn_insert: Coming Out:\n"), traverse(p
);
483 rn_addmask(void *n_arg
, int search
, int skip
)
485 caddr_t netmask
= (caddr_t
)n_arg
;
486 struct radix_node
*x
;
489 int maskduplicated
, m0
, isnormal
;
490 struct radix_node
*saved_x
;
491 static int last_zeroed
= 0;
493 if ((mlen
= *(u_char
*)netmask
) > max_keylen
)
498 return (mask_rnhead
->rnh_nodes
);
500 Bcopy(rn_ones
+ 1, addmask_key
+ 1, skip
- 1);
501 if ((m0
= mlen
) > skip
)
502 Bcopy(netmask
+ skip
, addmask_key
+ skip
, mlen
- skip
);
504 * Trim trailing zeroes.
506 for (cp
= addmask_key
+ mlen
; (cp
> addmask_key
) && cp
[-1] == 0;)
508 mlen
= cp
- addmask_key
;
510 if (m0
>= last_zeroed
)
512 return (mask_rnhead
->rnh_nodes
);
514 if (m0
< last_zeroed
)
515 Bzero(addmask_key
+ m0
, last_zeroed
- m0
);
516 *addmask_key
= last_zeroed
= mlen
;
517 x
= rn_search(addmask_key
, rn_masktop
);
518 if (Bcmp(addmask_key
, x
->rn_key
, mlen
) != 0)
522 R_Malloc(x
, struct radix_node
*, max_keylen
+ 2 * sizeof (*x
));
523 if ((saved_x
= x
) == 0)
525 Bzero(x
, max_keylen
+ 2 * sizeof (*x
));
526 netmask
= cp
= (caddr_t
)(x
+ 2);
527 Bcopy(addmask_key
, cp
, mlen
);
528 x
= rn_insert(cp
, mask_rnhead
, &maskduplicated
, x
);
529 if (maskduplicated
) {
530 log(LOG_ERR
, "rn_addmask: mask impossibly already in tree");
534 mask_rnhead
->rnh_cnt
++;
536 * Calculate index of mask, and check for normalcy.
538 cplim
= netmask
+ mlen
; isnormal
= 1;
539 for (cp
= netmask
+ skip
; (cp
< cplim
) && *(u_char
*)cp
== 0xff;)
542 for (j
= 0x80; (j
& *cp
) != 0; j
>>= 1)
544 if (*cp
!= normal_chars
[b
] || cp
!= (cplim
- 1))
547 b
+= (cp
- netmask
) << 3;
550 x
->rn_flags
|= RNF_NORMAL
;
554 static int /* XXX: arbitrary ordering for non-contiguous masks */
555 rn_lexobetter(void *m_arg
, void *n_arg
)
557 u_char
*mp
= m_arg
, *np
= n_arg
, *lim
;
560 return 1; /* not really, but need to check longer one first */
562 for (lim
= mp
+ *mp
; mp
< lim
;)
568 static struct radix_mask
*
569 rn_new_radix_mask(struct radix_node
*tt
, struct radix_mask
*next
)
571 struct radix_mask
*m
;
575 log(LOG_ERR
, "Mask for route not entered\n");
579 m
->rm_bit
= tt
->rn_bit
;
580 m
->rm_flags
= tt
->rn_flags
;
581 if (tt
->rn_flags
& RNF_NORMAL
)
584 m
->rm_mask
= tt
->rn_mask
;
591 rn_addroute(void *v_arg
, void *n_arg
, struct radix_node_head
*head
,
592 struct radix_node treenodes
[2])
594 caddr_t v
= (caddr_t
)v_arg
, netmask
= (caddr_t
)n_arg
;
595 struct radix_node
*t
, *x
= NULL
, *tt
;
596 struct radix_node
*saved_tt
, *top
= head
->rnh_treetop
;
597 short b
= 0, b_leaf
= 0;
600 struct radix_mask
*m
, **mp
;
603 * In dealing with non-contiguous masks, there may be
604 * many different routes which have the same mask.
605 * We will find it useful to have a unique pointer to
606 * the mask to speed avoiding duplicate references at
607 * nodes and possibly save time in calculating indices.
610 if ((x
= rn_addmask(netmask
, 0, top
->rn_offset
)) == 0)
617 * Deal with duplicated keys: attach node to previous instance
619 saved_tt
= tt
= rn_insert(v
, head
, &keyduplicated
, treenodes
);
621 for (t
= tt
; tt
; t
= tt
, tt
= tt
->rn_dupedkey
) {
622 if (tt
->rn_mask
== netmask
)
626 ((b_leaf
< tt
->rn_bit
) /* index(netmask) > node */
627 || rn_refines(netmask
, tt
->rn_mask
)
628 || rn_lexobetter(netmask
, tt
->rn_mask
))))
632 * If the mask is not duplicated, we wouldn't
633 * find it among possible duplicate key entries
634 * anyway, so the above test doesn't hurt.
636 * We sort the masks for a duplicated key the same way as
637 * in a masklist -- most specific to least specific.
638 * This may require the unfortunate nuisance of relocating
639 * the head of the list.
641 if (tt
== saved_tt
) {
642 struct radix_node
*xx
= x
;
643 /* link in at head of list */
644 (tt
= treenodes
)->rn_dupedkey
= t
;
645 tt
->rn_flags
= t
->rn_flags
;
646 tt
->rn_parent
= x
= t
->rn_parent
;
647 t
->rn_parent
= tt
; /* parent */
652 saved_tt
= tt
; x
= xx
;
654 (tt
= treenodes
)->rn_dupedkey
= t
->rn_dupedkey
;
656 tt
->rn_parent
= t
; /* parent */
657 if (tt
->rn_dupedkey
) /* parent */
658 tt
->rn_dupedkey
->rn_parent
= tt
; /* parent */
661 t
=tt
+1; tt
->rn_info
= rn_nodenum
++; t
->rn_info
= rn_nodenum
++;
662 tt
->rn_twin
= t
; tt
->rn_ybro
= rn_clist
; rn_clist
= tt
;
664 tt
->rn_key
= (caddr_t
) v
;
666 tt
->rn_flags
= RNF_ACTIVE
;
673 tt
->rn_mask
= netmask
;
674 tt
->rn_bit
= x
->rn_bit
;
675 tt
->rn_flags
|= x
->rn_flags
& RNF_NORMAL
;
677 t
= saved_tt
->rn_parent
;
680 b_leaf
= -1 - t
->rn_bit
;
681 if (t
->rn_right
== saved_tt
)
685 /* Promote general routes from below */
687 for (mp
= &t
->rn_mklist
; x
; x
= x
->rn_dupedkey
)
688 if (x
->rn_mask
&& (x
->rn_bit
>= b_leaf
) && x
->rn_mklist
== 0) {
689 *mp
= m
= rn_new_radix_mask(x
, NULL
);
693 } else if (x
->rn_mklist
) {
695 * Skip over masks whose index is > that of new node
697 for (mp
= &x
->rn_mklist
; (m
= *mp
); mp
= &m
->rm_mklist
)
698 if (m
->rm_bit
>= b_leaf
)
700 t
->rn_mklist
= m
; *mp
= NULL
;
703 /* Add new route to highest possible ancestor's list */
704 if ((netmask
== 0) || (b
> t
->rn_bit
))
705 return tt
; /* can't lift at all */
710 } while (b
<= t
->rn_bit
&& x
!= top
);
712 * Search through routes associated with node to
713 * insert new route according to index.
714 * Need same criteria as when sorting dupedkeys to avoid
715 * double loop on deletion.
717 for (mp
= &x
->rn_mklist
; (m
= *mp
); mp
= &m
->rm_mklist
) {
718 if (m
->rm_bit
< b_leaf
)
720 if (m
->rm_bit
> b_leaf
)
722 if (m
->rm_flags
& RNF_NORMAL
) {
723 mmask
= m
->rm_leaf
->rn_mask
;
724 if (tt
->rn_flags
& RNF_NORMAL
) {
726 "Non-unique normal route, mask not entered");
731 if (mmask
== netmask
) {
736 if (rn_refines(netmask
, mmask
)
737 || rn_lexobetter(netmask
, mmask
))
740 *mp
= rn_new_radix_mask(tt
, *mp
);
745 rn_delete(void *v_arg
, void *netmask_arg
, struct radix_node_head
*head
)
747 struct radix_node
*t
, *p
, *x
, *tt
;
748 struct radix_mask
*m
, *saved_m
, **mp
;
749 struct radix_node
*dupedkey
, *saved_tt
, *top
;
751 int b
, head_off
, vlen
;
754 netmask
= netmask_arg
;
755 x
= head
->rnh_treetop
;
756 tt
= rn_search(v
, x
);
757 head_off
= x
->rn_offset
;
762 Bcmp(v
+ head_off
, tt
->rn_key
+ head_off
, vlen
- head_off
))
765 * Delete our route from mask lists.
768 if ((x
= rn_addmask(netmask
, 1, head_off
)) == 0)
771 while (tt
->rn_mask
!= netmask
)
772 if ((tt
= tt
->rn_dupedkey
) == 0)
775 if (tt
->rn_mask
== 0 || (saved_m
= m
= tt
->rn_mklist
) == 0)
777 if (tt
->rn_flags
& RNF_NORMAL
) {
778 if (m
->rm_leaf
!= tt
|| m
->rm_refs
> 0) {
779 log(LOG_ERR
, "rn_delete: inconsistent annotation\n");
780 return NULL
; /* dangling ref could cause disaster */
783 if (m
->rm_mask
!= tt
->rn_mask
) {
784 log(LOG_ERR
, "rn_delete: inconsistent annotation\n");
787 if (--m
->rm_refs
>= 0)
791 t
= saved_tt
->rn_parent
;
793 goto on1
; /* Wasn't lifted at all */
797 } while (b
<= t
->rn_bit
&& x
!= top
);
798 for (mp
= &x
->rn_mklist
; (m
= *mp
); mp
= &m
->rm_mklist
)
805 log(LOG_ERR
, "rn_delete: couldn't find our annotation\n");
806 if (tt
->rn_flags
& RNF_NORMAL
)
807 return (NULL
); /* Dangling ref to us */
811 * Eliminate us from tree
813 if (tt
->rn_flags
& RNF_ROOT
)
817 /* Get us out of the creation list */
818 for (t
= rn_clist
; t
&& t
->rn_ybro
!= tt
; t
= t
->rn_ybro
) {}
819 if (t
) t
->rn_ybro
= tt
->rn_ybro
;
822 dupedkey
= saved_tt
->rn_dupedkey
;
825 * at this point, tt is the deletion target and saved_tt
826 * is the head of the dupekey chain
828 if (tt
== saved_tt
) {
829 /* remove from head of chain */
830 x
= dupedkey
; x
->rn_parent
= t
;
831 if (t
->rn_left
== tt
)
836 /* find node in front of tt on the chain */
837 for (x
= p
= saved_tt
; p
&& p
->rn_dupedkey
!= tt
;)
840 p
->rn_dupedkey
= tt
->rn_dupedkey
;
841 if (tt
->rn_dupedkey
) /* parent */
842 tt
->rn_dupedkey
->rn_parent
= p
;
844 } else log(LOG_ERR
, "rn_delete: couldn't find us\n");
847 if (t
->rn_flags
& RNF_ACTIVE
) {
861 x
->rn_left
->rn_parent
= x
;
862 x
->rn_right
->rn_parent
= x
;
866 if (t
->rn_left
== tt
)
871 if (p
->rn_right
== t
)
877 * Demote routes attached to us.
880 if (x
->rn_bit
>= 0) {
881 for (mp
= &x
->rn_mklist
; (m
= *mp
);)
885 /* If there are any key,mask pairs in a sibling
886 duped-key chain, some subset will appear sorted
887 in the same order attached to our mklist */
888 for (m
= t
->rn_mklist
; m
&& x
; x
= x
->rn_dupedkey
)
889 if (m
== x
->rn_mklist
) {
890 struct radix_mask
*mm
= m
->rm_mklist
;
892 if (--(m
->rm_refs
) < 0)
897 log(LOG_ERR
, "rn_delete: Orphaned Mask "
898 "0x%llx at 0x%llx\n",
899 (uint64_t)VM_KERNEL_ADDRPERM(m
),
900 (uint64_t)VM_KERNEL_ADDRPERM(x
));
904 * We may be holding an active internal node in the tree.
915 t
->rn_left
->rn_parent
= t
;
916 t
->rn_right
->rn_parent
= t
;
924 tt
->rn_flags
&= ~RNF_ACTIVE
;
925 tt
[1].rn_flags
&= ~RNF_ACTIVE
;
930 * This is the same as rn_walktree() except for the parameters and the
934 rn_walktree_from(struct radix_node_head
*h
, void *a
, void *m
, walktree_f_t
*f
,
938 struct radix_node
*base
, *next
;
939 u_char
*xa
= (u_char
*)a
;
940 u_char
*xm
= (u_char
*)m
;
941 struct radix_node
*rn
, *last
;
947 * This gets complicated because we may delete the node while
948 * applying the function f to it; we cannot simply use the next
949 * leaf as the successor node in advance, because that leaf may
950 * be removed as well during deletion when it is a clone of the
951 * current node. When that happens, we would end up referring
952 * to an already-freed radix node as the successor node. To get
953 * around this issue, if we detect that the radix tree has changed
954 * in dimension (smaller than before), we simply restart the walk
955 * from the top of tree.
960 rnh_cnt
= h
->rnh_cnt
;
963 * rn_search_m is sort-of-open-coded here.
965 for (rn
= h
->rnh_treetop
; rn
->rn_bit
>= 0; ) {
967 if (!(rn
->rn_bmask
& xm
[rn
->rn_offset
]))
970 if (rn
->rn_bmask
& xa
[rn
->rn_offset
])
977 * Two cases: either we stepped off the end of our mask,
978 * in which case last == rn, or we reached a leaf, in which
979 * case we want to start from the last node we looked at.
980 * Either way, last is the node we want to start from.
985 /* First time through node, go left */
986 while (rn
->rn_bit
>= 0)
991 /* If at right child go back up, otherwise, go right */
992 while (rn
->rn_parent
->rn_right
== rn
993 && !(rn
->rn_flags
& RNF_ROOT
)) {
996 /* if went up beyond last, stop */
997 if (rn
->rn_bit
<= lastb
) {
1000 * XXX we should jump to the 'Process leaves'
1001 * part, because the values of 'rn' and 'next'
1002 * we compute will not be used. Not a big deal
1003 * because this loop will terminate, but it is
1004 * inefficient and hard to understand!
1010 * The following code (bug fix) inherited from FreeBSD is
1011 * currently disabled, because our implementation uses the
1012 * RTF_PRCLONING scheme that has been abandoned in current
1013 * FreeBSD release. The scheme involves setting such a flag
1014 * for the default route entry, and therefore all off-link
1015 * destinations would become clones of that entry. Enabling
1016 * the following code would be problematic at this point,
1017 * because the removal of default route would cause only
1018 * the left-half of the tree to be traversed, leaving the
1019 * right-half untouched. If there are clones of the entry
1020 * that reside in that right-half, they would not be deleted
1021 * and would linger around until they expire or explicitly
1022 * deleted, which is a very bad thing.
1024 * This code should be uncommented only after we get rid
1025 * of the RTF_PRCLONING scheme.
1029 * At the top of the tree, no need to traverse the right
1030 * half, prevent the traversal of the entire tree in the
1031 * case of default route.
1033 if (rn
->rn_parent
->rn_flags
& RNF_ROOT
)
1037 /* Find the next *leaf* to start from */
1038 for (rn
= rn
->rn_parent
->rn_right
; rn
->rn_bit
>= 0;)
1041 /* Process leaves */
1042 while ((rn
= base
) != 0) {
1043 base
= rn
->rn_dupedkey
;
1044 if (!(rn
->rn_flags
& RNF_ROOT
)
1045 && (error
= (*f
)(rn
, w
)))
1048 /* If one or more nodes got deleted, restart from top */
1049 if (h
->rnh_cnt
< rnh_cnt
)
1052 if (rn
->rn_flags
& RNF_ROOT
)
1059 rn_walktree(struct radix_node_head
*h
, walktree_f_t
*f
, void *w
)
1062 struct radix_node
*base
, *next
;
1063 struct radix_node
*rn
;
1067 * This gets complicated because we may delete the node while
1068 * applying the function f to it; we cannot simply use the next
1069 * leaf as the successor node in advance, because that leaf may
1070 * be removed as well during deletion when it is a clone of the
1071 * current node. When that happens, we would end up referring
1072 * to an already-freed radix node as the successor node. To get
1073 * around this issue, if we detect that the radix tree has changed
1074 * in dimension (smaller than before), we simply restart the walk
1075 * from the top of tree.
1078 rn
= h
->rnh_treetop
;
1079 rnh_cnt
= h
->rnh_cnt
;
1081 /* First time through node, go left */
1082 while (rn
->rn_bit
>= 0)
1086 /* If at right child go back up, otherwise, go right */
1087 while (rn
->rn_parent
->rn_right
== rn
&&
1088 (rn
->rn_flags
& RNF_ROOT
) == 0)
1090 /* Find the next *leaf* to start from */
1091 for (rn
= rn
->rn_parent
->rn_right
; rn
->rn_bit
>= 0;)
1094 /* Process leaves */
1095 while ((rn
= base
) != NULL
) {
1096 base
= rn
->rn_dupedkey
;
1097 if (!(rn
->rn_flags
& RNF_ROOT
)
1098 && (error
= (*f
)(rn
, w
)))
1101 /* If one or more nodes got deleted, restart from top */
1102 if (h
->rnh_cnt
< rnh_cnt
)
1105 if (rn
->rn_flags
& RNF_ROOT
)
1112 rn_inithead(void **head
, int off
)
1114 struct radix_node_head
*rnh
;
1115 struct radix_node
*t
, *tt
, *ttt
;
1118 R_Malloc(rnh
, struct radix_node_head
*, sizeof (*rnh
));
1121 Bzero(rnh
, sizeof (*rnh
));
1123 t
= rn_newpair(rn_zeros
, off
, rnh
->rnh_nodes
);
1124 ttt
= rnh
->rnh_nodes
+ 2;
1128 tt
->rn_flags
= t
->rn_flags
= RNF_ROOT
| RNF_ACTIVE
;
1129 tt
->rn_bit
= -1 - off
;
1131 ttt
->rn_key
= rn_ones
;
1132 rnh
->rnh_addaddr
= rn_addroute
;
1133 rnh
->rnh_deladdr
= rn_delete
;
1134 rnh
->rnh_matchaddr
= rn_match
;
1135 rnh
->rnh_matchaddr_args
= rn_match_args
;
1136 rnh
->rnh_lookup
= rn_lookup
;
1137 rnh
->rnh_lookup_args
= rn_lookup_args
;
1138 rnh
->rnh_walktree
= rn_walktree
;
1139 rnh
->rnh_walktree_from
= rn_walktree_from
;
1140 rnh
->rnh_treetop
= t
;
1151 /* lock already held when rn_init is called */
1152 TAILQ_FOREACH(dom
, &domains
, dom_entry
) {
1153 if (dom
->dom_maxrtkey
> max_keylen
)
1154 max_keylen
= dom
->dom_maxrtkey
;
1156 if (max_keylen
== 0) {
1158 "rn_init: radix functions require max_keylen be set\n");
1161 R_Malloc(rn_zeros
, char *, 3 * max_keylen
);
1162 if (rn_zeros
== NULL
)
1164 Bzero(rn_zeros
, 3 * max_keylen
);
1165 rn_ones
= cp
= rn_zeros
+ max_keylen
;
1166 addmask_key
= cplim
= rn_ones
+ max_keylen
;
1169 if (rn_inithead((void **)&mask_rnhead
, 0) == 0)