2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <sys/systm.h>
31 #include <sys/param.h>
32 #include <sys/kernel.h>
33 #include <sys/file_internal.h>
34 #include <sys/dirent.h>
37 #include <sys/buf_internal.h>
38 #include <sys/mount.h>
39 #include <sys/vnode_if.h>
40 #include <sys/vnode_internal.h>
41 #include <sys/malloc.h>
43 #include <sys/ubc_internal.h>
44 #include <sys/paths.h>
45 #include <sys/quota.h>
48 #include <sys/kauth.h>
49 #include <sys/uio_internal.h>
50 #include <sys/fsctl.h>
51 #include <sys/xattr.h>
53 #include <sys/fsevents.h>
54 #include <kern/kalloc.h>
56 #include <miscfs/specfs/specdev.h>
57 #include <miscfs/fifofs/fifo.h>
58 #include <vfs/vfs_support.h>
59 #include <machine/spl.h>
61 #include <sys/kdebug.h>
62 #include <sys/sysctl.h>
66 #include "hfs_catalog.h"
67 #include "hfs_cnode.h"
69 #include "hfs_mount.h"
70 #include "hfs_quota.h"
71 #include "hfs_endian.h"
72 #include "hfs_kdebug.h"
73 #include "hfs_cprotect.h"
76 #include "hfscommon/headers/BTreesInternal.h"
77 #include "hfscommon/headers/FileMgrInternal.h"
79 #define KNDETACH_VNLOCKED 0x00000001
81 /* Global vfs data structures for hfs */
83 /* Always F_FULLFSYNC? 1=yes,0=no (default due to "various" reasons is 'no') */
84 int always_do_fullfsync
= 0;
85 SYSCTL_DECL(_vfs_generic
);
86 SYSCTL_INT (_vfs_generic
, OID_AUTO
, always_do_fullfsync
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &always_do_fullfsync
, 0, "always F_FULLFSYNC when fsync is called");
88 int hfs_makenode(struct vnode
*dvp
, struct vnode
**vpp
,
89 struct componentname
*cnp
, struct vnode_attr
*vap
,
91 int hfs_metasync(struct hfsmount
*hfsmp
, daddr64_t node
, __unused
struct proc
*p
);
92 int hfs_metasync_all(struct hfsmount
*hfsmp
);
94 int hfs_removedir(struct vnode
*, struct vnode
*, struct componentname
*,
96 int hfs_removefile(struct vnode
*, struct vnode
*, struct componentname
*,
97 int, int, int, struct vnode
*, int);
99 /* Used here and in cnode teardown -- for symlinks */
100 int hfs_removefile_callback(struct buf
*bp
, void *hfsmp
);
103 HFS_MOVE_DATA_INCLUDE_RSRC
= 1,
105 typedef uint32_t hfs_move_data_options_t
;
107 static int hfs_move_data(cnode_t
*from_cp
, cnode_t
*to_cp
,
108 hfs_move_data_options_t options
);
109 static int hfs_move_fork(filefork_t
*srcfork
, cnode_t
*src
,
110 filefork_t
*dstfork
, cnode_t
*dst
);
113 static int hfs_move_compressed(cnode_t
*from_vp
, cnode_t
*to_vp
);
116 decmpfs_cnode
* hfs_lazy_init_decmpfs_cnode (struct cnode
*cp
);
119 static int hfsfifo_read(struct vnop_read_args
*);
120 static int hfsfifo_write(struct vnop_write_args
*);
121 static int hfsfifo_close(struct vnop_close_args
*);
123 extern int (**fifo_vnodeop_p
)(void *);
126 int hfs_vnop_close(struct vnop_close_args
*);
127 int hfs_vnop_create(struct vnop_create_args
*);
128 int hfs_vnop_exchange(struct vnop_exchange_args
*);
129 int hfs_vnop_fsync(struct vnop_fsync_args
*);
130 int hfs_vnop_mkdir(struct vnop_mkdir_args
*);
131 int hfs_vnop_mknod(struct vnop_mknod_args
*);
132 int hfs_vnop_getattr(struct vnop_getattr_args
*);
133 int hfs_vnop_open(struct vnop_open_args
*);
134 int hfs_vnop_readdir(struct vnop_readdir_args
*);
135 int hfs_vnop_remove(struct vnop_remove_args
*);
136 int hfs_vnop_rename(struct vnop_rename_args
*);
137 int hfs_vnop_rmdir(struct vnop_rmdir_args
*);
138 int hfs_vnop_symlink(struct vnop_symlink_args
*);
139 int hfs_vnop_setattr(struct vnop_setattr_args
*);
140 int hfs_vnop_readlink(struct vnop_readlink_args
*);
141 int hfs_vnop_pathconf(struct vnop_pathconf_args
*);
142 int hfs_vnop_mmap(struct vnop_mmap_args
*ap
);
143 int hfsspec_read(struct vnop_read_args
*);
144 int hfsspec_write(struct vnop_write_args
*);
145 int hfsspec_close(struct vnop_close_args
*);
147 /* Options for hfs_removedir and hfs_removefile */
148 #define HFSRM_SKIP_RESERVE 0x01
152 /*****************************************************************************
154 * Common Operations on vnodes
156 *****************************************************************************/
159 * Is the given cnode either the .journal or .journal_info_block file on
160 * a volume with an active journal? Many VNOPs use this to deny access
163 * Note: the .journal file on a volume with an external journal still
164 * returns true here, even though it does not actually hold the contents
165 * of the volume's journal.
168 hfs_is_journal_file(struct hfsmount
*hfsmp
, struct cnode
*cp
)
170 if (hfsmp
->jnl
!= NULL
&&
171 (cp
->c_fileid
== hfsmp
->hfs_jnlinfoblkid
||
172 cp
->c_fileid
== hfsmp
->hfs_jnlfileid
)) {
180 * Create a regular file.
183 hfs_vnop_create(struct vnop_create_args
*ap
)
186 * We leave handling of certain race conditions here to the caller
187 * which will have a better understanding of the semantics it
188 * requires. For example, if it turns out that the file exists,
189 * it would be wrong of us to return a reference to the existing
190 * file because the caller might not want that and it would be
191 * misleading to suggest the file had been created when it hadn't
192 * been. Note that our NFS server code does not set the
193 * VA_EXCLUSIVE flag so you cannot assume that callers don't want
194 * EEXIST errors if it's not set. The common case, where users
195 * are calling open with the O_CREAT mode, is handled in VFS; when
196 * we return EEXIST, it will loop and do the look-up again.
198 return hfs_makenode(ap
->a_dvp
, ap
->a_vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
);
202 * Make device special file.
205 hfs_vnop_mknod(struct vnop_mknod_args
*ap
)
207 struct vnode_attr
*vap
= ap
->a_vap
;
208 struct vnode
*dvp
= ap
->a_dvp
;
209 struct vnode
**vpp
= ap
->a_vpp
;
213 if (VTOVCB(dvp
)->vcbSigWord
!= kHFSPlusSigWord
) {
217 /* Create the vnode */
218 error
= hfs_makenode(dvp
, vpp
, ap
->a_cnp
, vap
, ap
->a_context
);
223 cp
->c_touch_acctime
= TRUE
;
224 cp
->c_touch_chgtime
= TRUE
;
225 cp
->c_touch_modtime
= TRUE
;
227 if ((vap
->va_rdev
!= VNOVAL
) &&
228 (vap
->va_type
== VBLK
|| vap
->va_type
== VCHR
))
229 cp
->c_rdev
= vap
->va_rdev
;
236 * hfs_ref_data_vp(): returns the data fork vnode for a given cnode.
237 * In the (hopefully rare) case where the data fork vnode is not
238 * present, it will use hfs_vget() to create a new vnode for the
241 * NOTE: If successful and a vnode is returned, the caller is responsible
242 * for releasing the returned vnode with vnode_rele().
245 hfs_ref_data_vp(struct cnode
*cp
, struct vnode
**data_vp
, int skiplock
)
249 if (!data_vp
|| !cp
) /* sanity check incoming parameters */
252 /* maybe we should take the hfs cnode lock here, and if so, use the skiplock parameter to tell us not to */
254 if (!skiplock
) hfs_lock(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
255 struct vnode
*c_vp
= cp
->c_vp
;
257 /* we already have a data vnode */
259 vref
= vnode_ref(*data_vp
);
260 if (!skiplock
) hfs_unlock(cp
);
266 /* no data fork vnode in the cnode, so ask hfs for one. */
268 if (!cp
->c_rsrc_vp
) {
269 /* if we don't have either a c_vp or c_rsrc_vp, we can't really do anything useful */
271 if (!skiplock
) hfs_unlock(cp
);
275 if (0 == hfs_vget(VTOHFS(cp
->c_rsrc_vp
), cp
->c_cnid
, data_vp
, 1, 0) &&
277 vref
= vnode_ref(*data_vp
);
279 if (!skiplock
) hfs_unlock(cp
);
285 /* there was an error getting the vnode */
287 if (!skiplock
) hfs_unlock(cp
);
292 * hfs_lazy_init_decmpfs_cnode(): returns the decmpfs_cnode for a cnode,
293 * allocating it if necessary; returns NULL if there was an allocation error.
294 * function is non-static so that it can be used from the FCNTL handler.
297 hfs_lazy_init_decmpfs_cnode(struct cnode
*cp
)
300 decmpfs_cnode
*dp
= NULL
;
301 MALLOC_ZONE(dp
, decmpfs_cnode
*, sizeof(decmpfs_cnode
), M_DECMPFS_CNODE
, M_WAITOK
);
303 /* error allocating a decmpfs cnode */
306 decmpfs_cnode_init(dp
);
307 if (!OSCompareAndSwapPtr(NULL
, dp
, (void * volatile *)&cp
->c_decmp
)) {
308 /* another thread got here first, so free the decmpfs_cnode we allocated */
309 decmpfs_cnode_destroy(dp
);
310 FREE_ZONE(dp
, sizeof(*dp
), M_DECMPFS_CNODE
);
318 * hfs_file_is_compressed(): returns 1 if the file is compressed, and 0 (zero) if not.
319 * if the file's compressed flag is set, makes sure that the decmpfs_cnode field
320 * is allocated by calling hfs_lazy_init_decmpfs_cnode(), then makes sure it is populated,
321 * or else fills it in via the decmpfs_file_is_compressed() function.
324 hfs_file_is_compressed(struct cnode
*cp
, int skiplock
)
328 /* fast check to see if file is compressed. If flag is clear, just answer no */
329 if (!(cp
->c_bsdflags
& UF_COMPRESSED
)) {
333 decmpfs_cnode
*dp
= hfs_lazy_init_decmpfs_cnode(cp
);
335 /* error allocating a decmpfs cnode, treat the file as uncompressed */
339 /* flag was set, see if the decmpfs_cnode state is valid (zero == invalid) */
340 uint32_t decmpfs_state
= decmpfs_cnode_get_vnode_state(dp
);
341 switch(decmpfs_state
) {
342 case FILE_IS_COMPRESSED
:
343 case FILE_IS_CONVERTING
: /* treat decompressing files as if they are compressed */
345 case FILE_IS_NOT_COMPRESSED
:
347 /* otherwise the state is not cached yet */
350 /* decmpfs hasn't seen this file yet, so call decmpfs_file_is_compressed() to init the decmpfs_cnode struct */
351 struct vnode
*data_vp
= NULL
;
352 if (0 == hfs_ref_data_vp(cp
, &data_vp
, skiplock
)) {
354 ret
= decmpfs_file_is_compressed(data_vp
, VTOCMP(data_vp
)); // fill in decmpfs_cnode
361 /* hfs_uncompressed_size_of_compressed_file() - get the uncompressed size of the file.
362 * if the caller has passed a valid vnode (has a ref count > 0), then hfsmp and fid are not required.
363 * if the caller doesn't have a vnode, pass NULL in vp, and pass valid hfsmp and fid.
364 * files size is returned in size (required)
365 * if the indicated file is a directory (or something that doesn't have a data fork), then this call
366 * will return an error and the caller should fall back to treating the item as an uncompressed file
369 hfs_uncompressed_size_of_compressed_file(struct hfsmount
*hfsmp
, struct vnode
*vp
, cnid_t fid
, off_t
*size
, int skiplock
)
372 int putaway
= 0; /* flag to remember if we used hfs_vget() */
375 return EINVAL
; /* no place to put the file size */
379 if (!hfsmp
|| !fid
) { /* make sure we have the required parameters */
382 if (0 != hfs_vget(hfsmp
, fid
, &vp
, skiplock
, 0)) { /* vnode is null, use hfs_vget() to get it */
385 putaway
= 1; /* note that hfs_vget() was used to aquire the vnode */
388 /* this double check for compression (hfs_file_is_compressed)
389 * ensures the cached size is present in case decmpfs hasn't
390 * encountered this node yet.
393 if (hfs_file_is_compressed(VTOC(vp
), skiplock
) ) {
394 *size
= decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp
)); /* file info will be cached now, so get size */
396 if (VTOCMP(vp
) && VTOCMP(vp
)->cmp_type
>= CMP_MAX
) {
397 if (VTOCMP(vp
)->cmp_type
!= DATALESS_CMPFS_TYPE
) {
398 // if we don't recognize this type, just use the real data fork size
399 if (VTOC(vp
)->c_datafork
) {
400 *size
= VTOC(vp
)->c_datafork
->ff_size
;
406 *size
= decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp
)); /* file info will be cached now, so get size */
415 if (putaway
) { /* did we use hfs_vget() to get this vnode? */
416 vnode_put(vp
); /* if so, release it and set it to null */
423 hfs_hides_rsrc(vfs_context_t ctx
, struct cnode
*cp
, int skiplock
)
425 if (ctx
== decmpfs_ctx
)
427 if (!hfs_file_is_compressed(cp
, skiplock
))
429 return decmpfs_hides_rsrc(ctx
, cp
->c_decmp
);
433 hfs_hides_xattr(vfs_context_t ctx
, struct cnode
*cp
, const char *name
, int skiplock
)
435 if (ctx
== decmpfs_ctx
)
437 if (!hfs_file_is_compressed(cp
, skiplock
))
439 return decmpfs_hides_xattr(ctx
, cp
->c_decmp
, name
);
441 #endif /* HFS_COMPRESSION */
445 // This function gets the doc_tombstone structure for the
446 // current thread. If the thread doesn't have one, the
447 // structure is allocated.
449 static struct doc_tombstone
*
450 get_uthread_doc_tombstone(void)
453 ut
= get_bsdthread_info(current_thread());
455 if (ut
->t_tombstone
== NULL
) {
456 ut
->t_tombstone
= kalloc(sizeof(struct doc_tombstone
));
457 if (ut
->t_tombstone
) {
458 memset(ut
->t_tombstone
, 0, sizeof(struct doc_tombstone
));
462 return ut
->t_tombstone
;
466 // This routine clears out the current tombstone for the
467 // current thread and if necessary passes the doc-id of
468 // the tombstone on to the dst_cnode.
470 // If the doc-id transfers to dst_cnode, we also generate
471 // a doc-id changed fsevent. Unlike all the other fsevents,
472 // doc-id changed events can only be generated here in HFS
473 // where we have the necessary info.
476 clear_tombstone_docid(struct doc_tombstone
*ut
, __unused
struct hfsmount
*hfsmp
, struct cnode
*dst_cnode
)
478 uint32_t old_id
= ut
->t_lastop_document_id
;
480 ut
->t_lastop_document_id
= 0;
481 ut
->t_lastop_parent
= NULL
;
482 ut
->t_lastop_parent_vid
= 0;
483 ut
->t_lastop_filename
[0] = '\0';
486 // If the lastop item is still the same and needs to be cleared,
489 if (dst_cnode
&& old_id
&& ut
->t_lastop_item
&& vnode_vid(ut
->t_lastop_item
) == ut
->t_lastop_item_vid
) {
491 // clear the document_id from the file that used to have it.
492 // XXXdbg - we need to lock the other vnode and make sure to
493 // update it on disk.
495 struct cnode
*ocp
= VTOC(ut
->t_lastop_item
);
496 struct FndrExtendedFileInfo
*ofip
= (struct FndrExtendedFileInfo
*)((char *)&ocp
->c_attr
.ca_finderinfo
+ 16);
498 // printf("clearing doc-id from ino %d\n", ocp->c_desc.cd_cnid);
499 ofip
->document_id
= 0;
500 ocp
->c_bsdflags
&= ~UF_TRACKED
;
501 ocp
->c_flag
|= C_MODIFIED
;
502 /* cat_update(hfsmp, &ocp->c_desc, &ocp->c_attr, NULL, NULL); */
507 if (dst_cnode
&& old_id
) {
508 struct FndrExtendedFileInfo
*fip
= (struct FndrExtendedFileInfo
*)((char *)&dst_cnode
->c_attr
.ca_finderinfo
+ 16);
510 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
511 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
512 FSE_ARG_INO
, (ino64_t
)ut
->t_lastop_fileid
, // src inode #
513 FSE_ARG_INO
, (ino64_t
)dst_cnode
->c_fileid
, // dst inode #
514 FSE_ARG_INT32
, (uint32_t)fip
->document_id
,
518 // last, clear these now that we're all done
519 ut
->t_lastop_item
= NULL
;
520 ut
->t_lastop_fileid
= 0;
521 ut
->t_lastop_item_vid
= 0;
526 // This function is used to filter out operations on temp
527 // filenames. We have to filter out operations on certain
528 // temp filenames to work-around questionable application
529 // behavior from apps like Autocad that perform unusual
530 // sequences of file system operations for a "safe save".
532 is_ignorable_temp_name(const char *nameptr
, int len
)
535 len
= strlen(nameptr
);
538 if ( strncmp(nameptr
, "atmp", 4) == 0
539 || (len
> 4 && strncmp(nameptr
+len
-4, ".bak", 4) == 0)
540 || (len
> 4 && strncmp(nameptr
+len
-4, ".tmp", 4) == 0)) {
548 // Decide if we need to save a tombstone or not. Normally we always
549 // save a tombstone - but if there already is one and the name we're
550 // given is an ignorable name, then we will not save a tombstone.
553 should_save_docid_tombstone(struct doc_tombstone
*ut
, struct vnode
*vp
, struct componentname
*cnp
)
555 if (cnp
->cn_nameptr
== NULL
) {
559 if (ut
->t_lastop_document_id
&& ut
->t_lastop_item
== vp
&& is_ignorable_temp_name(cnp
->cn_nameptr
, cnp
->cn_namelen
)) {
568 // This function saves a tombstone for the given vnode and name. The
569 // tombstone represents the parent directory and name where the document
570 // used to live and the document-id of that file. This info is recorded
571 // in the doc_tombstone structure hanging off the uthread (which assumes
572 // that all safe-save operations happen on the same thread).
574 // If later on the same parent/name combo comes back into existence then
575 // we'll preserve the doc-id from this vnode onto the new vnode.
578 save_tombstone(struct hfsmount
*hfsmp
, struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
, int for_unlink
)
580 struct cnode
*cp
= VTOC(vp
);
581 struct doc_tombstone
*ut
;
582 ut
= get_uthread_doc_tombstone();
584 if (for_unlink
&& vp
->v_type
== VREG
&& cp
->c_linkcount
> 1) {
586 // a regular file that is being unlinked and that is also
587 // hardlinked should not clear the UF_TRACKED state or
588 // mess with the tombstone because somewhere else in the
589 // file system the file is still alive.
594 ut
->t_lastop_parent
= dvp
;
595 ut
->t_lastop_parent_vid
= vnode_vid(dvp
);
596 ut
->t_lastop_fileid
= cp
->c_fileid
;
598 ut
->t_lastop_item
= NULL
;
599 ut
->t_lastop_item_vid
= 0;
601 ut
->t_lastop_item
= vp
;
602 ut
->t_lastop_item_vid
= vnode_vid(vp
);
605 strlcpy((char *)&ut
->t_lastop_filename
[0], cnp
->cn_nameptr
, sizeof(ut
->t_lastop_filename
));
607 struct FndrExtendedFileInfo
*fip
= (struct FndrExtendedFileInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
608 ut
->t_lastop_document_id
= fip
->document_id
;
611 // clear this so it's never returned again
612 fip
->document_id
= 0;
613 cp
->c_bsdflags
&= ~UF_TRACKED
;
615 if (ut
->t_lastop_document_id
) {
616 (void) cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, NULL
, NULL
);
619 // this event is more of a "pending-delete"
620 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
621 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
622 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // src inode #
623 FSE_ARG_INO
, (ino64_t
)0, // dst inode #
624 FSE_ARG_INT32
, ut
->t_lastop_document_id
, // document id
633 * Open a file/directory.
636 hfs_vnop_open(struct vnop_open_args
*ap
)
638 struct vnode
*vp
= ap
->a_vp
;
642 static int past_bootup
= 0;
643 struct cnode
*cp
= VTOC(vp
);
644 struct hfsmount
*hfsmp
= VTOHFS(vp
);
647 if (ap
->a_mode
& FWRITE
) {
649 if ( hfs_file_is_compressed(cp
, 1) ) { /* 1 == don't take the cnode lock */
650 /* opening a compressed file for write, so convert it to decompressed */
651 struct vnode
*data_vp
= NULL
;
652 error
= hfs_ref_data_vp(cp
, &data_vp
, 1); /* 1 == don't take the cnode lock */
655 error
= decmpfs_decompress_file(data_vp
, VTOCMP(data_vp
), -1, 1, 0);
666 if (hfs_file_is_compressed(cp
, 1) ) { /* 1 == don't take the cnode lock */
667 if (VNODE_IS_RSRC(vp
)) {
668 /* opening the resource fork of a compressed file, so nothing to do */
670 /* opening a compressed file for read, make sure it validates */
671 error
= decmpfs_validate_compressed_file(vp
, VTOCMP(vp
));
680 * Files marked append-only must be opened for appending.
682 if ((cp
->c_bsdflags
& APPEND
) && !vnode_isdir(vp
) &&
683 (ap
->a_mode
& (FWRITE
| O_APPEND
)) == FWRITE
)
686 if (vnode_isreg(vp
) && !UBCINFOEXISTS(vp
))
687 return (EBUSY
); /* file is in use by the kernel */
689 /* Don't allow journal to be opened externally. */
690 if (hfs_is_journal_file(hfsmp
, cp
))
693 bool have_lock
= false;
696 if (ISSET(ap
->a_mode
, FENCRYPTED
) && cp
->c_cpentry
&& vnode_isreg(vp
)) {
697 bool have_trunc_lock
= false;
700 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
702 hfs_unlock_truncate(cp
, 0);
708 if (cp
->c_cpentry
->cp_raw_open_count
+ 1
709 < cp
->c_cpentry
->cp_raw_open_count
) {
710 // Overflow; too many raw opens on this file
713 hfs_unlock_truncate(cp
, 0);
719 hfs_unlock_truncate(cp
, 0);
721 ++cp
->c_cpentry
->cp_raw_open_count
;
725 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) ||
726 (hfsmp
->jnl
== NULL
) ||
728 !vnode_isreg(vp
) || vnode_isinuse(vp
, 0) || vnode_isnamedstream(vp
)) {
730 !vnode_isreg(vp
) || vnode_isinuse(vp
, 0)) {
741 if (!have_lock
&& (error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
745 /* If we're going to write to the file, initialize quotas. */
746 if ((ap
->a_mode
& FWRITE
) && (hfsmp
->hfs_flags
& HFS_QUOTAS
))
747 (void)hfs_getinoquota(cp
);
751 * On the first (non-busy) open of a fragmented
752 * file attempt to de-frag it (if its less than 20MB).
756 fp
->ff_extents
[7].blockCount
!= 0 &&
757 fp
->ff_size
<= (20 * 1024 * 1024)) {
761 * Wait until system bootup is done (3 min).
762 * And don't relocate a file that's been modified
763 * within the past minute -- this can lead to
769 if (tv
.tv_sec
> (60*3)) {
775 if ((now
.tv_sec
- cp
->c_mtime
) > 60) {
779 if (past_bootup
&& no_mods
) {
780 (void) hfs_relocate(vp
, hfsmp
->nextAllocation
+ 4096,
781 vfs_context_ucred(ap
->a_context
),
782 vfs_context_proc(ap
->a_context
));
793 * Close a file/directory.
797 struct vnop_close_args
/* {
800 vfs_context_t a_context;
803 register struct vnode
*vp
= ap
->a_vp
;
804 register struct cnode
*cp
;
805 struct proc
*p
= vfs_context_proc(ap
->a_context
);
806 struct hfsmount
*hfsmp
;
808 int tooktrunclock
= 0;
811 if ( hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0)
817 if (cp
->c_cpentry
&& ISSET(ap
->a_fflag
, FENCRYPTED
) && vnode_isreg(vp
)) {
818 assert(cp
->c_cpentry
->cp_raw_open_count
> 0);
819 --cp
->c_cpentry
->cp_raw_open_count
;
824 * If the rsrc fork is a named stream, it can cause the data fork to
825 * stay around, preventing de-allocation of these blocks.
826 * Do checks for truncation on close. Purge extra extents if they exist.
827 * Make sure the vp is not a directory, and that it has a resource fork,
828 * and that resource fork is also a named stream.
831 if ((vp
->v_type
== VREG
) && (cp
->c_rsrc_vp
)
832 && (vnode_isnamedstream(cp
->c_rsrc_vp
))) {
835 blks
= howmany(VTOF(vp
)->ff_size
, VTOVCB(vp
)->blockSize
);
837 * If there are extra blocks and there are only 2 refs on
838 * this vp (ourselves + rsrc fork holding ref on us), go ahead
839 * and try to truncate.
841 if ((blks
< VTOF(vp
)->ff_blocks
) && (!vnode_isinuse(vp
, 2))) {
842 // release cnode lock; must acquire truncate lock BEFORE cnode lock
845 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
848 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0) {
849 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
850 // bail out if we can't re-acquire cnode lock
853 // now re-test to make sure it's still valid
855 knownrefs
= 1 + vnode_isnamedstream(cp
->c_rsrc_vp
);
856 if (!vnode_isinuse(vp
, knownrefs
)){
857 // now we can truncate the file, if necessary
858 blks
= howmany(VTOF(vp
)->ff_size
, VTOVCB(vp
)->blockSize
);
859 if (blks
< VTOF(vp
)->ff_blocks
){
860 (void) hfs_truncate(vp
, VTOF(vp
)->ff_size
, IO_NDELAY
,
869 // if we froze the fs and we're exiting, then "thaw" the fs
870 if (hfsmp
->hfs_freeze_state
== HFS_FROZEN
871 && hfsmp
->hfs_freezing_proc
== p
&& proc_exiting(p
)) {
875 busy
= vnode_isinuse(vp
, 1);
878 hfs_touchtimes(VTOHFS(vp
), cp
);
880 if (vnode_isdir(vp
)) {
881 hfs_reldirhints(cp
, busy
);
882 } else if (vnode_issystem(vp
) && !busy
) {
887 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
891 if (ap
->a_fflag
& FWASWRITTEN
) {
892 hfs_sync_ejectable(hfsmp
);
898 static bool hfs_should_generate_document_id(hfsmount_t
*hfsmp
, cnode_t
*cp
)
900 return (!ISSET(hfsmp
->hfs_flags
, HFS_READ_ONLY
)
901 && ISSET(cp
->c_bsdflags
, UF_TRACKED
)
902 && cp
->c_desc
.cd_cnid
!= kHFSRootFolderID
903 && (S_ISDIR(cp
->c_mode
) || S_ISREG(cp
->c_mode
) || S_ISLNK(cp
->c_mode
)));
907 * Get basic attributes.
910 hfs_vnop_getattr(struct vnop_getattr_args
*ap
)
912 #define VNODE_ATTR_TIMES \
913 (VNODE_ATTR_va_access_time|VNODE_ATTR_va_change_time|VNODE_ATTR_va_modify_time)
914 #define VNODE_ATTR_AUTH \
915 (VNODE_ATTR_va_mode | VNODE_ATTR_va_uid | VNODE_ATTR_va_gid | \
916 VNODE_ATTR_va_flags | VNODE_ATTR_va_acl)
918 struct vnode
*vp
= ap
->a_vp
;
919 struct vnode_attr
*vap
= ap
->a_vap
;
920 struct vnode
*rvp
= NULLVP
;
921 struct hfsmount
*hfsmp
;
929 /* we need to inspect the decmpfs state of the file before we take the hfs cnode lock */
932 off_t uncompressed_size
= -1;
933 if (VATTR_IS_ACTIVE(vap
, va_data_size
) || VATTR_IS_ACTIVE(vap
, va_total_alloc
) || VATTR_IS_ACTIVE(vap
, va_data_alloc
) || VATTR_IS_ACTIVE(vap
, va_total_size
)) {
934 /* we only care about whether the file is compressed if asked for the uncompressed size */
935 if (VNODE_IS_RSRC(vp
)) {
936 /* if it's a resource fork, decmpfs may want us to hide the size */
937 hide_size
= hfs_hides_rsrc(ap
->a_context
, cp
, 0);
939 /* if it's a data fork, we need to know if it was compressed so we can report the uncompressed size */
940 compressed
= hfs_file_is_compressed(cp
, 0);
942 if ((VATTR_IS_ACTIVE(vap
, va_data_size
) || VATTR_IS_ACTIVE(vap
, va_total_size
))) {
943 // if it's compressed
944 if (compressed
|| (!VNODE_IS_RSRC(vp
) && cp
->c_decmp
&& cp
->c_decmp
->cmp_type
>= CMP_MAX
)) {
945 if (0 != hfs_uncompressed_size_of_compressed_file(NULL
, vp
, 0, &uncompressed_size
, 0)) {
946 /* failed to get the uncompressed size, we'll check for this later */
947 uncompressed_size
= -1;
949 // fake that it's compressed
958 * Shortcut for vnode_authorize path. Each of the attributes
959 * in this set is updated atomically so we don't need to take
960 * the cnode lock to access them.
962 if ((vap
->va_active
& ~VNODE_ATTR_AUTH
) == 0) {
963 /* Make sure file still exists. */
964 if (cp
->c_flag
& C_NOEXISTS
)
967 vap
->va_uid
= cp
->c_uid
;
968 vap
->va_gid
= cp
->c_gid
;
969 vap
->va_mode
= cp
->c_mode
;
970 vap
->va_flags
= cp
->c_bsdflags
;
971 vap
->va_supported
|= VNODE_ATTR_AUTH
& ~VNODE_ATTR_va_acl
;
973 if ((cp
->c_attr
.ca_recflags
& kHFSHasSecurityMask
) == 0) {
974 vap
->va_acl
= (kauth_acl_t
) KAUTH_FILESEC_NONE
;
975 VATTR_SET_SUPPORTED(vap
, va_acl
);
982 v_type
= vnode_vtype(vp
);
984 if (VATTR_IS_ACTIVE(vap
, va_document_id
)) {
985 uint32_t document_id
;
987 if (cp
->c_desc
.cd_cnid
== kHFSRootFolderID
)
988 document_id
= kHFSRootFolderID
;
991 * This is safe without a lock because we're just reading
992 * a 32 bit aligned integer which should be atomic on all
993 * platforms we support.
995 document_id
= hfs_get_document_id(cp
);
997 if (!document_id
&& hfs_should_generate_document_id(hfsmp
, cp
)) {
998 uint32_t new_document_id
;
1000 error
= hfs_generate_document_id(hfsmp
, &new_document_id
);
1004 error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
1008 bool want_docid_fsevent
= false;
1010 // Need to check again now that we have the lock
1011 document_id
= hfs_get_document_id(cp
);
1012 if (!document_id
&& hfs_should_generate_document_id(hfsmp
, cp
)) {
1013 cp
->c_attr
.ca_finderextendeddirinfo
.document_id
= document_id
= new_document_id
;
1014 want_docid_fsevent
= true;
1015 SET(cp
->c_flag
, C_MODIFIED
);
1020 if (want_docid_fsevent
) {
1022 add_fsevent(FSE_DOCID_CHANGED
, ap
->a_context
,
1023 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
1024 FSE_ARG_INO
, (ino64_t
)0, // src inode #
1025 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
1026 FSE_ARG_INT32
, document_id
,
1029 if (need_fsevent(FSE_STAT_CHANGED
, vp
)) {
1030 add_fsevent(FSE_STAT_CHANGED
, ap
->a_context
,
1031 FSE_ARG_VNODE
, vp
, FSE_ARG_DONE
);
1038 vap
->va_document_id
= document_id
;
1039 VATTR_SET_SUPPORTED(vap
, va_document_id
);
1043 * If time attributes are requested and we have cnode times
1044 * that require updating, then acquire an exclusive lock on
1045 * the cnode before updating the times. Otherwise we can
1046 * just acquire a shared lock.
1048 if ((vap
->va_active
& VNODE_ATTR_TIMES
) &&
1049 (cp
->c_touch_acctime
|| cp
->c_touch_chgtime
|| cp
->c_touch_modtime
)) {
1050 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
1052 hfs_touchtimes(hfsmp
, cp
);
1054 // downgrade to a shared lock since that's all we need from here on out
1055 cp
->c_lockowner
= HFS_SHARED_OWNER
;
1056 lck_rw_lock_exclusive_to_shared(&cp
->c_rwlock
);
1058 } else if ((error
= hfs_lock(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
))) {
1062 if (v_type
== VDIR
) {
1063 data_size
= (cp
->c_entries
+ 2) * AVERAGE_HFSDIRENTRY_SIZE
;
1065 if (VATTR_IS_ACTIVE(vap
, va_nlink
)) {
1069 * For directories, the va_nlink is esentially a count
1070 * of the ".." references to a directory plus the "."
1071 * reference and the directory itself. So for HFS+ this
1072 * becomes the sub-directory count plus two.
1074 * In the absence of a sub-directory count we use the
1075 * directory's item count. This will be too high in
1076 * most cases since it also includes files.
1078 if ((hfsmp
->hfs_flags
& HFS_FOLDERCOUNT
) &&
1079 (cp
->c_attr
.ca_recflags
& kHFSHasFolderCountMask
))
1080 nlink
= cp
->c_attr
.ca_dircount
; /* implied ".." entries */
1082 nlink
= cp
->c_entries
;
1084 /* Account for ourself and our "." entry */
1086 /* Hide our private directories. */
1087 if (cp
->c_cnid
== kHFSRootFolderID
) {
1088 if (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
!= 0) {
1091 if (hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
!= 0) {
1095 VATTR_RETURN(vap
, va_nlink
, (u_int64_t
)nlink
);
1097 if (VATTR_IS_ACTIVE(vap
, va_nchildren
)) {
1100 entries
= cp
->c_entries
;
1101 /* Hide our private files and directories. */
1102 if (cp
->c_cnid
== kHFSRootFolderID
) {
1103 if (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
!= 0)
1105 if (hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
!= 0)
1107 if (hfsmp
->jnl
|| ((hfsmp
->vcbAtrb
& kHFSVolumeJournaledMask
) && (hfsmp
->hfs_flags
& HFS_READ_ONLY
)))
1108 entries
-= 2; /* hide the journal files */
1110 VATTR_RETURN(vap
, va_nchildren
, entries
);
1113 * The va_dirlinkcount is the count of real directory hard links.
1114 * (i.e. its not the sum of the implied "." and ".." references)
1116 if (VATTR_IS_ACTIVE(vap
, va_dirlinkcount
)) {
1117 VATTR_RETURN(vap
, va_dirlinkcount
, (uint32_t)cp
->c_linkcount
);
1119 } else /* !VDIR */ {
1120 data_size
= VCTOF(vp
, cp
)->ff_size
;
1122 VATTR_RETURN(vap
, va_nlink
, (u_int64_t
)cp
->c_linkcount
);
1123 if (VATTR_IS_ACTIVE(vap
, va_data_alloc
)) {
1128 VATTR_RETURN(vap
, va_data_alloc
, 0);
1129 } else if (compressed
) {
1130 /* for compressed files, we report all allocated blocks as belonging to the data fork */
1131 blocks
= cp
->c_blocks
;
1132 VATTR_RETURN(vap
, va_data_alloc
, blocks
* (u_int64_t
)hfsmp
->blockSize
);
1137 blocks
= VCTOF(vp
, cp
)->ff_blocks
;
1138 VATTR_RETURN(vap
, va_data_alloc
, blocks
* (u_int64_t
)hfsmp
->blockSize
);
1143 /* conditional because 64-bit arithmetic can be expensive */
1144 if (VATTR_IS_ACTIVE(vap
, va_total_size
)) {
1145 if (v_type
== VDIR
) {
1146 VATTR_RETURN(vap
, va_total_size
, (cp
->c_entries
+ 2) * AVERAGE_HFSDIRENTRY_SIZE
);
1148 u_int64_t total_size
= ~0ULL;
1152 /* we're hiding the size of this file, so just return 0 */
1154 } else if (compressed
) {
1155 if (uncompressed_size
== -1) {
1157 * We failed to get the uncompressed size above,
1158 * so we'll fall back to the standard path below
1159 * since total_size is still -1
1162 /* use the uncompressed size we fetched above */
1163 total_size
= uncompressed_size
;
1167 if (total_size
== ~0ULL) {
1168 if (cp
->c_datafork
) {
1169 total_size
= cp
->c_datafork
->ff_size
;
1172 if (cp
->c_blocks
- VTOF(vp
)->ff_blocks
) {
1173 /* We deal with rsrc fork vnode iocount at the end of the function */
1174 error
= hfs_vgetrsrc(hfsmp
, vp
, &rvp
);
1177 * Note that we call hfs_vgetrsrc with error_on_unlinked
1178 * set to FALSE. This is because we may be invoked via
1179 * fstat() on an open-unlinked file descriptor and we must
1180 * continue to support access to the rsrc fork until it disappears.
1181 * The code at the end of this function will be
1182 * responsible for releasing the iocount generated by
1183 * hfs_vgetrsrc. This is because we can't drop the iocount
1184 * without unlocking the cnode first.
1190 if (rcp
&& rcp
->c_rsrcfork
) {
1191 total_size
+= rcp
->c_rsrcfork
->ff_size
;
1196 VATTR_RETURN(vap
, va_total_size
, total_size
);
1199 if (VATTR_IS_ACTIVE(vap
, va_total_alloc
)) {
1200 if (v_type
== VDIR
) {
1201 VATTR_RETURN(vap
, va_total_alloc
, 0);
1203 VATTR_RETURN(vap
, va_total_alloc
, (u_int64_t
)cp
->c_blocks
* (u_int64_t
)hfsmp
->blockSize
);
1208 * If the VFS wants extended security data, and we know that we
1209 * don't have any (because it never told us it was setting any)
1210 * then we can return the supported bit and no data. If we do
1211 * have extended security, we can just leave the bit alone and
1212 * the VFS will use the fallback path to fetch it.
1214 if (VATTR_IS_ACTIVE(vap
, va_acl
)) {
1215 if ((cp
->c_attr
.ca_recflags
& kHFSHasSecurityMask
) == 0) {
1216 vap
->va_acl
= (kauth_acl_t
) KAUTH_FILESEC_NONE
;
1217 VATTR_SET_SUPPORTED(vap
, va_acl
);
1221 vap
->va_access_time
.tv_sec
= cp
->c_atime
;
1222 vap
->va_access_time
.tv_nsec
= 0;
1223 vap
->va_create_time
.tv_sec
= cp
->c_itime
;
1224 vap
->va_create_time
.tv_nsec
= 0;
1225 vap
->va_modify_time
.tv_sec
= cp
->c_mtime
;
1226 vap
->va_modify_time
.tv_nsec
= 0;
1227 vap
->va_change_time
.tv_sec
= cp
->c_ctime
;
1228 vap
->va_change_time
.tv_nsec
= 0;
1229 vap
->va_backup_time
.tv_sec
= cp
->c_btime
;
1230 vap
->va_backup_time
.tv_nsec
= 0;
1232 /* See if we need to emit the date added field to the user */
1233 if (VATTR_IS_ACTIVE(vap
, va_addedtime
)) {
1234 u_int32_t dateadded
= hfs_get_dateadded (cp
);
1236 vap
->va_addedtime
.tv_sec
= dateadded
;
1237 vap
->va_addedtime
.tv_nsec
= 0;
1238 VATTR_SET_SUPPORTED (vap
, va_addedtime
);
1242 /* XXX is this really a good 'optimal I/O size'? */
1243 vap
->va_iosize
= hfsmp
->hfs_logBlockSize
;
1244 vap
->va_uid
= cp
->c_uid
;
1245 vap
->va_gid
= cp
->c_gid
;
1246 vap
->va_mode
= cp
->c_mode
;
1247 vap
->va_flags
= cp
->c_bsdflags
;
1250 * Exporting file IDs from HFS Plus:
1252 * For "normal" files the c_fileid is the same value as the
1253 * c_cnid. But for hard link files, they are different - the
1254 * c_cnid belongs to the active directory entry (ie the link)
1255 * and the c_fileid is for the actual inode (ie the data file).
1257 * The stat call (getattr) uses va_fileid and the Carbon APIs,
1258 * which are hardlink-ignorant, will ask for va_linkid.
1260 vap
->va_fileid
= (u_int64_t
)cp
->c_fileid
;
1262 * We need to use the origin cache for both hardlinked files
1263 * and directories. Hardlinked directories have multiple cnids
1264 * and parents (one per link). Hardlinked files also have their
1265 * own parents and link IDs separate from the indirect inode number.
1266 * If we don't use the cache, we could end up vending the wrong ID
1267 * because the cnode will only reflect the link that was looked up most recently.
1269 if (cp
->c_flag
& C_HARDLINK
) {
1270 vap
->va_linkid
= (u_int64_t
)hfs_currentcnid(cp
);
1271 vap
->va_parentid
= (u_int64_t
)hfs_currentparent(cp
, /* have_lock: */ true);
1273 vap
->va_linkid
= (u_int64_t
)cp
->c_cnid
;
1274 vap
->va_parentid
= (u_int64_t
)cp
->c_parentcnid
;
1276 vap
->va_fsid
= hfsmp
->hfs_raw_dev
;
1277 vap
->va_filerev
= 0;
1278 vap
->va_encoding
= cp
->c_encoding
;
1279 vap
->va_rdev
= (v_type
== VBLK
|| v_type
== VCHR
) ? cp
->c_rdev
: 0;
1281 if (VATTR_IS_ACTIVE(vap
, va_data_size
)) {
1283 vap
->va_data_size
= 0;
1284 else if (compressed
) {
1285 if (uncompressed_size
== -1) {
1286 /* failed to get the uncompressed size above, so just return data_size */
1287 vap
->va_data_size
= data_size
;
1289 /* use the uncompressed size we fetched above */
1290 vap
->va_data_size
= uncompressed_size
;
1293 vap
->va_data_size
= data_size
;
1294 VATTR_SET_SUPPORTED(vap
, va_data_size
);
1297 vap
->va_data_size
= data_size
;
1298 vap
->va_supported
|= VNODE_ATTR_va_data_size
;
1302 if (VATTR_IS_ACTIVE(vap
, va_dataprotect_class
)) {
1303 vap
->va_dataprotect_class
= cp
->c_cpentry
? CP_CLASS(cp
->c_cpentry
->cp_pclass
) : 0;
1304 VATTR_SET_SUPPORTED(vap
, va_dataprotect_class
);
1307 if (VATTR_IS_ACTIVE(vap
, va_write_gencount
)) {
1308 if (ubc_is_mapped_writable(vp
)) {
1310 * Return 0 to the caller to indicate the file may be
1311 * changing. There is no need for us to increment the
1312 * generation counter here because it gets done as part of
1313 * page-out and also when the file is unmapped (to account
1314 * for changes we might not have seen).
1316 vap
->va_write_gencount
= 0;
1318 vap
->va_write_gencount
= hfs_get_gencount(cp
);
1321 VATTR_SET_SUPPORTED(vap
, va_write_gencount
);
1324 /* Mark them all at once instead of individual VATTR_SET_SUPPORTED calls. */
1325 vap
->va_supported
|= VNODE_ATTR_va_access_time
|
1326 VNODE_ATTR_va_create_time
| VNODE_ATTR_va_modify_time
|
1327 VNODE_ATTR_va_change_time
| VNODE_ATTR_va_backup_time
|
1328 VNODE_ATTR_va_iosize
| VNODE_ATTR_va_uid
|
1329 VNODE_ATTR_va_gid
| VNODE_ATTR_va_mode
|
1330 VNODE_ATTR_va_flags
|VNODE_ATTR_va_fileid
|
1331 VNODE_ATTR_va_linkid
| VNODE_ATTR_va_parentid
|
1332 VNODE_ATTR_va_fsid
| VNODE_ATTR_va_filerev
|
1333 VNODE_ATTR_va_encoding
| VNODE_ATTR_va_rdev
;
1335 /* If this is the root, let VFS to find out the mount name, which
1336 * may be different from the real name. Otherwise, we need to take care
1337 * for hardlinked files, which need to be looked up, if necessary
1339 if (VATTR_IS_ACTIVE(vap
, va_name
) && (cp
->c_cnid
!= kHFSRootFolderID
)) {
1340 struct cat_desc linkdesc
;
1342 int uselinkdesc
= 0;
1343 cnid_t nextlinkid
= 0;
1344 cnid_t prevlinkid
= 0;
1346 /* Get the name for ATTR_CMN_NAME. We need to take special care for hardlinks
1347 * here because the info. for the link ID requested by getattrlist may be
1348 * different than what's currently in the cnode. This is because the cnode
1349 * will be filled in with the information for the most recent link ID that went
1350 * through namei/lookup(). If there are competing lookups for hardlinks that point
1351 * to the same inode, one (or more) getattrlists could be vended incorrect name information.
1352 * Also, we need to beware of open-unlinked files which could have a namelen of 0.
1355 if ((cp
->c_flag
& C_HARDLINK
) &&
1356 ((cp
->c_desc
.cd_namelen
== 0) || (vap
->va_linkid
!= cp
->c_cnid
))) {
1358 * If we have no name and our link ID is the raw inode number, then we may
1359 * have an open-unlinked file. Go to the next link in this case.
1361 if ((cp
->c_desc
.cd_namelen
== 0) && (vap
->va_linkid
== cp
->c_fileid
)) {
1362 if ((error
= hfs_lookup_siblinglinks(hfsmp
, vap
->va_linkid
, &prevlinkid
, &nextlinkid
))){
1367 /* just use link obtained from vap above */
1368 nextlinkid
= vap
->va_linkid
;
1371 /* We need to probe the catalog for the descriptor corresponding to the link ID
1372 * stored in nextlinkid. Note that we don't know if we have the exclusive lock
1373 * for the cnode here, so we can't just update the descriptor. Instead,
1374 * we should just store the descriptor's value locally and then use it to pass
1375 * out the name value as needed below.
1378 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
1379 error
= cat_findname(hfsmp
, nextlinkid
, &linkdesc
);
1380 hfs_systemfile_unlock(hfsmp
, lockflags
);
1387 /* By this point, we've either patched up the name above and the c_desc
1388 * points to the correct data, or it already did, in which case we just proceed
1389 * by copying the name into the vap. Note that we will never set va_name to
1390 * supported if nextlinkid is never initialized. This could happen in the degenerate
1391 * case above involving the raw inode number, where it has no nextlinkid. In this case
1392 * we will simply not mark the name bit as supported.
1395 strlcpy(vap
->va_name
, (const char*) linkdesc
.cd_nameptr
, MAXPATHLEN
);
1396 VATTR_SET_SUPPORTED(vap
, va_name
);
1397 cat_releasedesc(&linkdesc
);
1399 else if (cp
->c_desc
.cd_namelen
) {
1400 strlcpy(vap
->va_name
, (const char*) cp
->c_desc
.cd_nameptr
, MAXPATHLEN
);
1401 VATTR_SET_SUPPORTED(vap
, va_name
);
1408 * We need to vnode_put the rsrc fork vnode only *after* we've released
1409 * the cnode lock, since vnode_put can trigger an inactive call, which
1410 * will go back into HFS and try to acquire a cnode lock.
1420 hfs_vnop_setattr(ap
)
1421 struct vnop_setattr_args
/* {
1423 struct vnode_attr *a_vap;
1424 vfs_context_t a_context;
1427 struct vnode_attr
*vap
= ap
->a_vap
;
1428 struct vnode
*vp
= ap
->a_vp
;
1429 struct cnode
*cp
= NULL
;
1430 struct hfsmount
*hfsmp
;
1431 kauth_cred_t cred
= vfs_context_ucred(ap
->a_context
);
1432 struct proc
*p
= vfs_context_proc(ap
->a_context
);
1438 orig_ctime
= VTOC(vp
)->c_ctime
;
1441 int decmpfs_reset_state
= 0;
1443 we call decmpfs_update_attributes even if the file is not compressed
1444 because we want to update the incoming flags if the xattrs are invalid
1446 error
= decmpfs_update_attributes(vp
, vap
);
1451 // if this is not a size-changing setattr and it is not just
1452 // an atime update, then check for a snapshot.
1454 if (!VATTR_IS_ACTIVE(vap
, va_data_size
) && !(vap
->va_active
== VNODE_ATTR_va_access_time
)) {
1455 check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_METADATA_MOD
, NSPACE_REARM_NO_ARG
);
1460 * All metadata changes should be allowed except a size-changing setattr, which
1461 * has effects on file content and requires calling into cp_handle_vnop
1462 * to have content protection check.
1464 if (VATTR_IS_ACTIVE(vap
, va_data_size
)) {
1465 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
1469 #endif /* CONFIG_PROTECT */
1473 /* Don't allow modification of the journal. */
1474 if (hfs_is_journal_file(hfsmp
, VTOC(vp
))) {
1479 // Check if we'll need a document_id and if so, get it before we lock the
1480 // the cnode to avoid any possible deadlock with the root vnode which has
1481 // to get locked to get the document id
1483 u_int32_t document_id
=0;
1484 if (VATTR_IS_ACTIVE(vap
, va_flags
) && (vap
->va_flags
& UF_TRACKED
) && !(VTOC(vp
)->c_bsdflags
& UF_TRACKED
)) {
1485 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&(VTOC(vp
)->c_attr
.ca_finderinfo
) + 16);
1487 // If the document_id is not set, get a new one. It will be set
1488 // on the file down below once we hold the cnode lock.
1490 if (fip
->document_id
== 0) {
1491 if (hfs_generate_document_id(hfsmp
, &document_id
) != 0) {
1499 * File size change request.
1500 * We are guaranteed that this is not a directory, and that
1501 * the filesystem object is writeable.
1503 * NOTE: HFS COMPRESSION depends on the data_size being set *before* the bsd flags are updated
1505 VATTR_SET_SUPPORTED(vap
, va_data_size
);
1506 if (VATTR_IS_ACTIVE(vap
, va_data_size
) && !vnode_islnk(vp
)) {
1508 /* keep the compressed state locked until we're done truncating the file */
1509 decmpfs_cnode
*dp
= VTOCMP(vp
);
1512 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1513 * is filled in; we need a decmpfs_cnode to lock out decmpfs state changes
1514 * on this file while it's truncating
1516 dp
= hfs_lazy_init_decmpfs_cnode(VTOC(vp
));
1518 /* failed to allocate a decmpfs_cnode */
1519 return ENOMEM
; /* what should this be? */
1523 check_for_tracked_file(vp
, orig_ctime
, vap
->va_data_size
== 0 ? NAMESPACE_HANDLER_TRUNCATE_OP
|NAMESPACE_HANDLER_DELETE_OP
: NAMESPACE_HANDLER_TRUNCATE_OP
, NULL
);
1525 decmpfs_lock_compressed_data(dp
, 1);
1526 if (hfs_file_is_compressed(VTOC(vp
), 1)) {
1527 error
= decmpfs_decompress_file(vp
, dp
, -1/*vap->va_data_size*/, 0, 1);
1529 decmpfs_unlock_compressed_data(dp
, 1);
1535 // Take truncate lock
1536 hfs_lock_truncate(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
1538 // hfs_truncate will deal with the cnode lock
1539 error
= hfs_truncate(vp
, vap
->va_data_size
, vap
->va_vaflags
& 0xffff,
1542 hfs_unlock_truncate(VTOC(vp
), HFS_LOCK_DEFAULT
);
1544 decmpfs_unlock_compressed_data(dp
, 1);
1550 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
1556 * If it is just an access time update request by itself
1557 * we know the request is from kernel level code, and we
1558 * can delay it without being as worried about consistency.
1559 * This change speeds up mmaps, in the rare case that they
1560 * get caught behind a sync.
1563 if (vap
->va_active
== VNODE_ATTR_va_access_time
) {
1564 cp
->c_touch_acctime
=TRUE
;
1571 * Owner/group change request.
1572 * We are guaranteed that the new owner/group is valid and legal.
1574 VATTR_SET_SUPPORTED(vap
, va_uid
);
1575 VATTR_SET_SUPPORTED(vap
, va_gid
);
1576 nuid
= VATTR_IS_ACTIVE(vap
, va_uid
) ? vap
->va_uid
: (uid_t
)VNOVAL
;
1577 ngid
= VATTR_IS_ACTIVE(vap
, va_gid
) ? vap
->va_gid
: (gid_t
)VNOVAL
;
1578 if (((nuid
!= (uid_t
)VNOVAL
) || (ngid
!= (gid_t
)VNOVAL
)) &&
1579 ((error
= hfs_chown(vp
, nuid
, ngid
, cred
, p
)) != 0))
1583 * Mode change request.
1584 * We are guaranteed that the mode value is valid and that in
1585 * conjunction with the owner and group, this change is legal.
1587 VATTR_SET_SUPPORTED(vap
, va_mode
);
1588 if (VATTR_IS_ACTIVE(vap
, va_mode
) &&
1589 ((error
= hfs_chmod(vp
, (int)vap
->va_mode
, cred
, p
)) != 0))
1593 * File flags change.
1594 * We are guaranteed that only flags allowed to change given the
1595 * current securelevel are being changed.
1597 VATTR_SET_SUPPORTED(vap
, va_flags
);
1598 if (VATTR_IS_ACTIVE(vap
, va_flags
)) {
1602 if ((cp
->c_bsdflags
^ vap
->va_flags
) & UF_COMPRESSED
) {
1604 * the UF_COMPRESSED was toggled, so reset our cached compressed state
1605 * but we don't want to actually do the update until we've released the cnode lock down below
1606 * NOTE: turning the flag off doesn't actually decompress the file, so that we can
1607 * turn off the flag and look at the "raw" file for debugging purposes
1609 decmpfs_reset_state
= 1;
1612 if ((vap
->va_flags
& UF_TRACKED
) && !(cp
->c_bsdflags
& UF_TRACKED
)) {
1613 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
1616 // we're marking this item UF_TRACKED. if the document_id is
1617 // not set, get a new one and put it on the file.
1619 if (fip
->document_id
== 0) {
1620 if (document_id
!= 0) {
1621 // printf("SETATTR: assigning doc-id %d to %s (ino %d)\n", document_id, vp->v_name, cp->c_desc.cd_cnid);
1622 fip
->document_id
= (uint32_t)document_id
;
1624 add_fsevent(FSE_DOCID_CHANGED
, ap
->a_context
,
1625 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
1626 FSE_ARG_INO
, (ino64_t
)0, // src inode #
1627 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
1628 FSE_ARG_INT32
, document_id
,
1632 // printf("hfs: could not acquire a new document_id for %s (ino %d)\n", vp->v_name, cp->c_desc.cd_cnid);
1636 } else if (!(vap
->va_flags
& UF_TRACKED
) && (cp
->c_bsdflags
& UF_TRACKED
)) {
1638 // UF_TRACKED is being cleared so clear the document_id
1640 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
1641 if (fip
->document_id
) {
1642 // printf("SETATTR: clearing doc-id %d from %s (ino %d)\n", fip->document_id, vp->v_name, cp->c_desc.cd_cnid);
1644 add_fsevent(FSE_DOCID_CHANGED
, ap
->a_context
,
1645 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
1646 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // src inode #
1647 FSE_ARG_INO
, (ino64_t
)0, // dst inode #
1648 FSE_ARG_INT32
, fip
->document_id
, // document id
1651 fip
->document_id
= 0;
1652 cp
->c_bsdflags
&= ~UF_TRACKED
;
1656 cp
->c_bsdflags
= vap
->va_flags
;
1657 cp
->c_flag
|= C_MODIFIED
;
1658 cp
->c_touch_chgtime
= TRUE
;
1662 * Mirror the UF_HIDDEN flag to the invisible bit of the Finder Info.
1664 * The fdFlags for files and frFlags for folders are both 8 bytes
1665 * into the userInfo (the first 16 bytes of the Finder Info). They
1666 * are both 16-bit fields.
1668 fdFlags
= (u_int16_t
*) &cp
->c_finderinfo
[8];
1669 if (vap
->va_flags
& UF_HIDDEN
)
1670 *fdFlags
|= OSSwapHostToBigConstInt16(kFinderInvisibleMask
);
1672 *fdFlags
&= ~OSSwapHostToBigConstInt16(kFinderInvisibleMask
);
1676 * Timestamp updates.
1678 VATTR_SET_SUPPORTED(vap
, va_create_time
);
1679 VATTR_SET_SUPPORTED(vap
, va_access_time
);
1680 VATTR_SET_SUPPORTED(vap
, va_modify_time
);
1681 VATTR_SET_SUPPORTED(vap
, va_backup_time
);
1682 VATTR_SET_SUPPORTED(vap
, va_change_time
);
1683 if (VATTR_IS_ACTIVE(vap
, va_create_time
) ||
1684 VATTR_IS_ACTIVE(vap
, va_access_time
) ||
1685 VATTR_IS_ACTIVE(vap
, va_modify_time
) ||
1686 VATTR_IS_ACTIVE(vap
, va_backup_time
)) {
1687 if (VATTR_IS_ACTIVE(vap
, va_create_time
))
1688 cp
->c_itime
= vap
->va_create_time
.tv_sec
;
1689 if (VATTR_IS_ACTIVE(vap
, va_access_time
)) {
1690 cp
->c_atime
= vap
->va_access_time
.tv_sec
;
1691 cp
->c_touch_acctime
= FALSE
;
1693 if (VATTR_IS_ACTIVE(vap
, va_modify_time
)) {
1694 cp
->c_mtime
= vap
->va_modify_time
.tv_sec
;
1695 cp
->c_touch_modtime
= FALSE
;
1696 cp
->c_touch_chgtime
= TRUE
;
1698 hfs_clear_might_be_dirty_flag(cp
);
1701 * The utimes system call can reset the modification
1702 * time but it doesn't know about HFS create times.
1703 * So we need to ensure that the creation time is
1704 * always at least as old as the modification time.
1706 if ((VTOVCB(vp
)->vcbSigWord
== kHFSPlusSigWord
) &&
1707 (cp
->c_cnid
!= kHFSRootFolderID
) &&
1708 !VATTR_IS_ACTIVE(vap
, va_create_time
) &&
1709 (cp
->c_mtime
< cp
->c_itime
)) {
1710 cp
->c_itime
= cp
->c_mtime
;
1713 if (VATTR_IS_ACTIVE(vap
, va_backup_time
))
1714 cp
->c_btime
= vap
->va_backup_time
.tv_sec
;
1715 cp
->c_flag
|= C_MINOR_MOD
;
1719 * Set name encoding.
1721 VATTR_SET_SUPPORTED(vap
, va_encoding
);
1722 if (VATTR_IS_ACTIVE(vap
, va_encoding
)) {
1723 cp
->c_encoding
= vap
->va_encoding
;
1724 cp
->c_flag
|= C_MODIFIED
;
1725 hfs_setencodingbits(hfsmp
, cp
->c_encoding
);
1728 if ((error
= hfs_update(vp
, 0)) != 0)
1732 /* Purge origin cache for cnode, since caller now has correct link ID for it
1733 * We purge it here since it was acquired for us during lookup, and we no longer need it.
1735 if ((cp
->c_flag
& C_HARDLINK
) && (vp
->v_type
!= VDIR
)){
1736 hfs_relorigin(cp
, 0);
1741 if (decmpfs_reset_state
) {
1743 * we've changed the UF_COMPRESSED flag, so reset the decmpfs state for this cnode
1744 * but don't do it while holding the hfs cnode lock
1746 decmpfs_cnode
*dp
= VTOCMP(vp
);
1749 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1750 * is filled in; we need a decmpfs_cnode to prevent decmpfs state changes
1751 * on this file if it's locked
1753 dp
= hfs_lazy_init_decmpfs_cnode(VTOC(vp
));
1755 /* failed to allocate a decmpfs_cnode */
1756 return ENOMEM
; /* what should this be? */
1759 decmpfs_cnode_set_vnode_state(dp
, FILE_TYPE_UNKNOWN
, 0);
1768 * Change the mode on a file.
1769 * cnode must be locked before calling.
1772 hfs_chmod(struct vnode
*vp
, int mode
, __unused kauth_cred_t cred
, __unused
struct proc
*p
)
1774 register struct cnode
*cp
= VTOC(vp
);
1776 if (VTOVCB(vp
)->vcbSigWord
!= kHFSPlusSigWord
)
1779 // Don't allow modification of the journal or journal_info_block
1780 if (hfs_is_journal_file(VTOHFS(vp
), cp
)) {
1784 #if OVERRIDE_UNKNOWN_PERMISSIONS
1785 if (((unsigned int)vfs_flags(VTOVFS(vp
))) & MNT_UNKNOWNPERMISSIONS
) {
1790 mode_t new_mode
= (cp
->c_mode
& ~ALLPERMS
) | (mode
& ALLPERMS
);
1791 if (new_mode
!= cp
->c_mode
) {
1792 cp
->c_mode
= new_mode
;
1793 cp
->c_flag
|= C_MINOR_MOD
;
1795 cp
->c_touch_chgtime
= TRUE
;
1801 hfs_write_access(struct vnode
*vp
, kauth_cred_t cred
, struct proc
*p
, Boolean considerFlags
)
1803 struct cnode
*cp
= VTOC(vp
);
1808 * Disallow write attempts on read-only file systems;
1809 * unless the file is a socket, fifo, or a block or
1810 * character device resident on the file system.
1812 switch (vnode_vtype(vp
)) {
1816 if (VTOHFS(vp
)->hfs_flags
& HFS_READ_ONLY
)
1823 /* If immutable bit set, nobody gets to write it. */
1824 if (considerFlags
&& (cp
->c_bsdflags
& IMMUTABLE
))
1827 /* Otherwise, user id 0 always gets access. */
1828 if (!suser(cred
, NULL
))
1831 /* Otherwise, check the owner. */
1832 if ((retval
= hfs_owner_rights(VTOHFS(vp
), cp
->c_uid
, cred
, p
, false)) == 0)
1833 return ((cp
->c_mode
& S_IWUSR
) == S_IWUSR
? 0 : EACCES
);
1835 /* Otherwise, check the groups. */
1836 if (kauth_cred_ismember_gid(cred
, cp
->c_gid
, &is_member
) == 0 && is_member
) {
1837 return ((cp
->c_mode
& S_IWGRP
) == S_IWGRP
? 0 : EACCES
);
1840 /* Otherwise, check everyone else. */
1841 return ((cp
->c_mode
& S_IWOTH
) == S_IWOTH
? 0 : EACCES
);
1846 * Perform chown operation on cnode cp;
1847 * code must be locked prior to call.
1851 hfs_chown(struct vnode
*vp
, uid_t uid
, gid_t gid
, __unused kauth_cred_t cred
,
1852 __unused
struct proc
*p
)
1854 hfs_chown(struct vnode
*vp
, uid_t uid
, gid_t gid
, kauth_cred_t cred
,
1855 __unused
struct proc
*p
)
1858 register struct cnode
*cp
= VTOC(vp
);
1867 if (VTOVCB(vp
)->vcbSigWord
!= kHFSPlusSigWord
)
1870 if (((unsigned int)vfs_flags(VTOVFS(vp
))) & MNT_UNKNOWNPERMISSIONS
)
1873 if (uid
== (uid_t
)VNOVAL
)
1875 if (gid
== (gid_t
)VNOVAL
)
1878 #if 0 /* we are guaranteed that this is already the case */
1880 * If we don't own the file, are trying to change the owner
1881 * of the file, or are not a member of the target group,
1882 * the caller must be superuser or the call fails.
1884 if ((kauth_cred_getuid(cred
) != cp
->c_uid
|| uid
!= cp
->c_uid
||
1885 (gid
!= cp
->c_gid
&&
1886 (kauth_cred_ismember_gid(cred
, gid
, &is_member
) || !is_member
))) &&
1887 (error
= suser(cred
, 0)))
1894 if (ouid
== uid
&& ogid
== gid
) {
1895 // No change, just set change time
1896 cp
->c_touch_chgtime
= TRUE
;
1901 if ((error
= hfs_getinoquota(cp
)))
1904 dqrele(cp
->c_dquot
[USRQUOTA
]);
1905 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1908 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1909 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1913 * Eventually need to account for (fake) a block per directory
1914 * if (vnode_isdir(vp))
1915 * change = VTOHFS(vp)->blockSize;
1919 change
= (int64_t)(cp
->c_blocks
) * (int64_t)VTOVCB(vp
)->blockSize
;
1920 (void) hfs_chkdq(cp
, -change
, cred
, CHOWN
);
1921 (void) hfs_chkiq(cp
, -1, cred
, CHOWN
);
1922 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1923 dqrele(cp
->c_dquot
[i
]);
1924 cp
->c_dquot
[i
] = NODQUOT
;
1930 if ((error
= hfs_getinoquota(cp
)) == 0) {
1932 dqrele(cp
->c_dquot
[USRQUOTA
]);
1933 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1936 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1937 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1939 if ((error
= hfs_chkdq(cp
, change
, cred
, CHOWN
)) == 0) {
1940 if ((error
= hfs_chkiq(cp
, 1, cred
, CHOWN
)) == 0)
1943 (void) hfs_chkdq(cp
, -change
, cred
, CHOWN
|FORCE
);
1945 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1946 dqrele(cp
->c_dquot
[i
]);
1947 cp
->c_dquot
[i
] = NODQUOT
;
1952 if (hfs_getinoquota(cp
) == 0) {
1954 dqrele(cp
->c_dquot
[USRQUOTA
]);
1955 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1958 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1959 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1961 (void) hfs_chkdq(cp
, change
, cred
, FORCE
|CHOWN
);
1962 (void) hfs_chkiq(cp
, 1, cred
, FORCE
|CHOWN
);
1963 (void) hfs_getinoquota(cp
);
1967 if (hfs_getinoquota(cp
))
1968 panic("hfs_chown: lost quota");
1972 * Without quotas, we could probably make this a minor
1975 cp
->c_flag
|= C_MODIFIED
;
1978 According to the SUSv3 Standard, chown() shall mark
1979 for update the st_ctime field of the file.
1980 (No exceptions mentioned)
1982 cp
->c_touch_chgtime
= TRUE
;
1988 * Flush the resource fork if it exists. vp is the data fork and has
1991 static int hfs_flush_rsrc(vnode_t vp
, vfs_context_t ctx
)
1993 cnode_t
*cp
= VTOC(vp
);
1995 hfs_lock(cp
, HFS_SHARED_LOCK
, 0);
1997 vnode_t rvp
= cp
->c_rsrc_vp
;
2004 int vid
= vnode_vid(rvp
);
2008 int error
= vnode_getwithvid(rvp
, vid
);
2011 return error
== ENOENT
? 0 : error
;
2013 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, 0);
2014 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
2015 hfs_filedone(rvp
, ctx
, HFS_FILE_DONE_NO_SYNC
);
2017 hfs_unlock_truncate(cp
, 0);
2019 error
= ubc_msync(rvp
, 0, ubc_getsize(rvp
), NULL
,
2020 UBC_PUSHALL
| UBC_SYNC
);
2026 #endif // HFS_COMPRESSION
2029 * hfs_vnop_exchange:
2032 * 'from' vnode/cnode
2038 * hfs_vnop_exchange is used to service the exchangedata(2) system call.
2039 * Per the requirements of that system call, this function "swaps" some
2040 * of the information that lives in one catalog record for some that
2041 * lives in another. Note that not everything is swapped; in particular,
2042 * the extent information stored in each cnode is kept local to that
2043 * cnode. This allows existing file descriptor references to continue
2044 * to operate on the same content, regardless of the location in the
2045 * namespace that the file may have moved to. See inline comments
2046 * in the function for more information.
2049 hfs_vnop_exchange(ap
)
2050 struct vnop_exchange_args
/* {
2051 struct vnode *a_fvp;
2052 struct vnode *a_tvp;
2054 vfs_context_t a_context;
2057 struct vnode
*from_vp
= ap
->a_fvp
;
2058 struct vnode
*to_vp
= ap
->a_tvp
;
2059 struct cnode
*from_cp
;
2060 struct cnode
*to_cp
;
2061 struct hfsmount
*hfsmp
;
2062 struct cat_desc tempdesc
;
2063 struct cat_attr tempattr
;
2064 const unsigned char *from_nameptr
;
2065 const unsigned char *to_nameptr
;
2066 char from_iname
[32];
2068 uint32_t to_flag_special
;
2069 uint32_t from_flag_special
;
2073 int error
= 0, started_tr
= 0, got_cookie
= 0;
2074 cat_cookie_t cookie
;
2075 time_t orig_from_ctime
, orig_to_ctime
;
2076 bool have_cnode_locks
= false, have_from_trunc_lock
= false, have_to_trunc_lock
= false;
2079 * VFS does the following checks:
2080 * 1. Validate that both are files.
2081 * 2. Validate that both are on the same mount.
2082 * 3. Validate that they're not the same vnode.
2085 from_cp
= VTOC(from_vp
);
2086 to_cp
= VTOC(to_vp
);
2087 hfsmp
= VTOHFS(from_vp
);
2089 orig_from_ctime
= from_cp
->c_ctime
;
2090 orig_to_ctime
= to_cp
->c_ctime
;
2094 * Do not allow exchangedata/F_MOVEDATAEXTENTS on data-protected filesystems
2095 * because the EAs will not be swapped. As a result, the persistent keys would not
2096 * match and the files will be garbage.
2098 if (cp_fs_protected (vnode_mount(from_vp
))) {
2104 if (!ISSET(ap
->a_options
, FSOPT_EXCHANGE_DATA_ONLY
)) {
2105 if ( hfs_file_is_compressed(from_cp
, 0) ) {
2106 if ( 0 != ( error
= decmpfs_decompress_file(from_vp
, VTOCMP(from_vp
), -1, 0, 1) ) ) {
2111 if ( hfs_file_is_compressed(to_cp
, 0) ) {
2112 if ( 0 != ( error
= decmpfs_decompress_file(to_vp
, VTOCMP(to_vp
), -1, 0, 1) ) ) {
2117 #endif // HFS_COMPRESSION
2119 // Resource forks cannot be exchanged.
2120 if (VNODE_IS_RSRC(from_vp
) || VNODE_IS_RSRC(to_vp
))
2124 * Normally, we want to notify the user handlers about the event,
2125 * except if it's a handler driving the event.
2127 if ((ap
->a_options
& FSOPT_EXCHANGE_DATA_ONLY
) == 0) {
2128 check_for_tracked_file(from_vp
, orig_from_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
2129 check_for_tracked_file(to_vp
, orig_to_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
2132 * This is currently used by mtmd so we should tidy up the
2133 * file now because the data won't be used again in the
2136 hfs_lock_truncate(from_cp
, HFS_EXCLUSIVE_LOCK
, 0);
2137 hfs_lock_always(from_cp
, HFS_EXCLUSIVE_LOCK
);
2138 hfs_filedone(from_vp
, ap
->a_context
, HFS_FILE_DONE_NO_SYNC
);
2139 hfs_unlock(from_cp
);
2140 hfs_unlock_truncate(from_cp
, 0);
2142 // Flush all the data from the source file
2143 error
= ubc_msync(from_vp
, 0, ubc_getsize(from_vp
), NULL
,
2144 UBC_PUSHALL
| UBC_SYNC
);
2150 * If this is a compressed file, we need to do the same for
2151 * the resource fork.
2153 if (ISSET(from_cp
->c_bsdflags
, UF_COMPRESSED
)) {
2154 error
= hfs_flush_rsrc(from_vp
, ap
->a_context
);
2161 * We're doing a data-swap so we need to take the truncate
2162 * lock exclusively. We need an exclusive lock because we
2163 * will be completely truncating the source file and we must
2164 * make sure nobody else sneaks in and trys to issue I/O
2165 * whilst we don't have the cnode lock.
2167 * After taking the truncate lock we do a quick check to
2168 * verify there are no other references (including mmap
2169 * references), but we must remember that this does not stop
2170 * anybody coming in later and taking a reference. We will
2171 * have the truncate lock exclusively so that will prevent
2172 * them from issuing any I/O.
2175 if (to_cp
< from_cp
) {
2176 hfs_lock_truncate(to_cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2177 have_to_trunc_lock
= true;
2180 hfs_lock_truncate(from_cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2181 have_from_trunc_lock
= true;
2184 * Do an early check to verify the source is not in use by
2185 * anyone. We should be called from an FD opened as F_EVTONLY
2186 * so that doesn't count as a reference.
2188 if (vnode_isinuse(from_vp
, 0)) {
2193 if (to_cp
>= from_cp
) {
2194 hfs_lock_truncate(to_cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2195 have_to_trunc_lock
= true;
2199 if ((error
= hfs_lockpair(from_cp
, to_cp
, HFS_EXCLUSIVE_LOCK
)))
2201 have_cnode_locks
= true;
2203 // Don't allow modification of the journal or journal_info_block
2204 if (hfs_is_journal_file(hfsmp
, from_cp
) ||
2205 hfs_is_journal_file(hfsmp
, to_cp
)) {
2211 * Ok, now that all of the pre-flighting is done, call the underlying
2212 * function if needed.
2214 if (ISSET(ap
->a_options
, FSOPT_EXCHANGE_DATA_ONLY
)) {
2216 if (ISSET(from_cp
->c_bsdflags
, UF_COMPRESSED
)) {
2217 error
= hfs_move_compressed(from_cp
, to_cp
);
2222 error
= hfs_move_data(from_cp
, to_cp
, 0);
2226 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
2232 * Reserve some space in the Catalog file.
2234 if ((error
= cat_preflight(hfsmp
, CAT_EXCHANGE
, &cookie
, vfs_context_proc(ap
->a_context
)))) {
2239 /* The backend code always tries to delete the virtual
2240 * extent id for exchanging files so we need to lock
2241 * the extents b-tree.
2243 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
| SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
2245 /* Account for the location of the catalog objects. */
2246 if (from_cp
->c_flag
& C_HARDLINK
) {
2247 MAKE_INODE_NAME(from_iname
, sizeof(from_iname
),
2248 from_cp
->c_attr
.ca_linkref
);
2249 from_nameptr
= (unsigned char *)from_iname
;
2250 from_parid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
2251 from_cp
->c_hint
= 0;
2253 from_nameptr
= from_cp
->c_desc
.cd_nameptr
;
2254 from_parid
= from_cp
->c_parentcnid
;
2256 if (to_cp
->c_flag
& C_HARDLINK
) {
2257 MAKE_INODE_NAME(to_iname
, sizeof(to_iname
),
2258 to_cp
->c_attr
.ca_linkref
);
2259 to_nameptr
= (unsigned char *)to_iname
;
2260 to_parid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
2263 to_nameptr
= to_cp
->c_desc
.cd_nameptr
;
2264 to_parid
= to_cp
->c_parentcnid
;
2268 * ExchangeFileIDs swaps the on-disk, or in-BTree extent information
2269 * attached to two different file IDs. It also swaps the extent
2270 * information that may live in the extents-overflow B-Tree.
2272 * We do this in a transaction as this may require a lot of B-Tree nodes
2273 * to do completely, particularly if one of the files in question
2274 * has a lot of extents.
2276 * For example, assume "file1" has fileID 50, and "file2" has fileID 52.
2277 * For the on-disk records, which are assumed to be synced, we will
2278 * first swap the resident inline-8 extents as part of the catalog records.
2279 * Then we will swap any extents overflow records for each file.
2281 * When ExchangeFileIDs returns successfully, "file1" will have fileID 52,
2282 * and "file2" will have fileID 50. However, note that this is only
2283 * approximately half of the work that exchangedata(2) will need to
2284 * accomplish. In other words, we swap "too much" of the information
2285 * because if we only called ExchangeFileIDs, both the fileID and extent
2286 * information would be the invariants of this operation. We don't
2287 * actually want that; we want to conclude with "file1" having
2288 * file ID 50, and "file2" having fileID 52.
2290 * The remainder of hfs_vnop_exchange will swap the file ID and other cnode
2291 * data back to the proper ownership, while still allowing the cnode to remain
2292 * pointing at the same set of extents that it did originally.
2294 error
= ExchangeFileIDs(hfsmp
, from_nameptr
, to_nameptr
, from_parid
,
2295 to_parid
, from_cp
->c_hint
, to_cp
->c_hint
);
2296 hfs_systemfile_unlock(hfsmp
, lockflags
);
2299 * Note that we don't need to exchange any extended attributes
2300 * since the attributes are keyed by file ID.
2303 if (error
!= E_NONE
) {
2304 error
= MacToVFSError(error
);
2308 /* Purge the vnodes from the name cache */
2310 cache_purge(from_vp
);
2314 /* Bump both source and destination write counts before any swaps. */
2316 hfs_incr_gencount (from_cp
);
2317 hfs_incr_gencount (to_cp
);
2320 /* Save a copy of "from" attributes before swapping. */
2321 bcopy(&from_cp
->c_desc
, &tempdesc
, sizeof(struct cat_desc
));
2322 bcopy(&from_cp
->c_attr
, &tempattr
, sizeof(struct cat_attr
));
2324 /* Save whether or not each cnode is a hardlink or has EAs */
2325 from_flag_special
= from_cp
->c_flag
& (C_HARDLINK
| C_HASXATTRS
);
2326 to_flag_special
= to_cp
->c_flag
& (C_HARDLINK
| C_HASXATTRS
);
2328 /* Drop the special bits from each cnode */
2329 from_cp
->c_flag
&= ~(C_HARDLINK
| C_HASXATTRS
);
2330 to_cp
->c_flag
&= ~(C_HARDLINK
| C_HASXATTRS
);
2333 * Now complete the in-memory portion of the copy.
2335 * ExchangeFileIDs swaps the on-disk records involved. We complete the
2336 * operation by swapping the in-memory contents of the two files here.
2337 * We swap the cnode descriptors, which contain name, BSD attributes,
2338 * timestamps, etc, about the file.
2340 * NOTE: We do *NOT* swap the fileforks of the two cnodes. We have
2341 * already swapped the on-disk extent information. As long as we swap the
2342 * IDs, the in-line resident 8 extents that live in the filefork data
2343 * structure will point to the right data for the new file ID if we leave
2346 * As a result, any file descriptor that points to a particular
2347 * vnode (even though it should change names), will continue
2348 * to point to the same content.
2351 /* Copy the "to" -> "from" cnode */
2352 bcopy(&to_cp
->c_desc
, &from_cp
->c_desc
, sizeof(struct cat_desc
));
2354 from_cp
->c_hint
= 0;
2356 * If 'to' was a hardlink, then we copied over its link ID/CNID/(namespace ID)
2357 * when we bcopy'd the descriptor above. However, the cnode attributes
2358 * are not bcopied. As a result, make sure to swap the file IDs of each item.
2360 * Further, other hardlink attributes must be moved along in this swap:
2361 * the linkcount, the linkref, and the firstlink all need to move
2362 * along with the file IDs. See note below regarding the flags and
2363 * what moves vs. what does not.
2366 * linkcount == total # of hardlinks.
2367 * linkref == the indirect inode pointer.
2368 * firstlink == the first hardlink in the chain (written to the raw inode).
2369 * These three are tied to the fileID and must move along with the rest of the data.
2371 from_cp
->c_fileid
= to_cp
->c_attr
.ca_fileid
;
2373 from_cp
->c_itime
= to_cp
->c_itime
;
2374 from_cp
->c_btime
= to_cp
->c_btime
;
2375 from_cp
->c_atime
= to_cp
->c_atime
;
2376 from_cp
->c_ctime
= to_cp
->c_ctime
;
2377 from_cp
->c_gid
= to_cp
->c_gid
;
2378 from_cp
->c_uid
= to_cp
->c_uid
;
2379 from_cp
->c_bsdflags
= to_cp
->c_bsdflags
;
2380 from_cp
->c_mode
= to_cp
->c_mode
;
2381 from_cp
->c_linkcount
= to_cp
->c_linkcount
;
2382 from_cp
->c_attr
.ca_linkref
= to_cp
->c_attr
.ca_linkref
;
2383 from_cp
->c_attr
.ca_firstlink
= to_cp
->c_attr
.ca_firstlink
;
2386 * The cnode flags need to stay with the cnode and not get transferred
2387 * over along with everything else because they describe the content; they are
2388 * not attributes that reflect changes specific to the file ID. In general,
2389 * fields that are tied to the file ID are the ones that will move.
2391 * This reflects the fact that the file may have borrowed blocks, dirty metadata,
2392 * or other extents, which may not yet have been written to the catalog. If
2393 * they were, they would have been transferred above in the ExchangeFileIDs call above...
2395 * The flags that are special are:
2396 * C_HARDLINK, C_HASXATTRS
2398 * These flags move with the item and file ID in the namespace since their
2399 * state is tied to that of the file ID.
2401 * So to transfer the flags, we have to take the following steps
2402 * 1) Store in a localvar whether or not the special bits are set.
2403 * 2) Drop the special bits from the current flags
2404 * 3) swap the special flag bits to their destination
2406 from_cp
->c_flag
|= to_flag_special
| C_MODIFIED
;
2407 from_cp
->c_attr
.ca_recflags
= to_cp
->c_attr
.ca_recflags
;
2408 bcopy(to_cp
->c_finderinfo
, from_cp
->c_finderinfo
, 32);
2411 /* Copy the "from" -> "to" cnode */
2412 bcopy(&tempdesc
, &to_cp
->c_desc
, sizeof(struct cat_desc
));
2415 * Pull the file ID from the tempattr we copied above. We can't assume
2416 * it is the same as the CNID.
2418 to_cp
->c_fileid
= tempattr
.ca_fileid
;
2419 to_cp
->c_itime
= tempattr
.ca_itime
;
2420 to_cp
->c_btime
= tempattr
.ca_btime
;
2421 to_cp
->c_atime
= tempattr
.ca_atime
;
2422 to_cp
->c_ctime
= tempattr
.ca_ctime
;
2423 to_cp
->c_gid
= tempattr
.ca_gid
;
2424 to_cp
->c_uid
= tempattr
.ca_uid
;
2425 to_cp
->c_bsdflags
= tempattr
.ca_flags
;
2426 to_cp
->c_mode
= tempattr
.ca_mode
;
2427 to_cp
->c_linkcount
= tempattr
.ca_linkcount
;
2428 to_cp
->c_attr
.ca_linkref
= tempattr
.ca_linkref
;
2429 to_cp
->c_attr
.ca_firstlink
= tempattr
.ca_firstlink
;
2432 * Only OR in the "from" flags into our cnode flags below.
2433 * Leave the rest of the flags alone.
2435 to_cp
->c_flag
|= from_flag_special
| C_MODIFIED
;
2437 to_cp
->c_attr
.ca_recflags
= tempattr
.ca_recflags
;
2438 bcopy(tempattr
.ca_finderinfo
, to_cp
->c_finderinfo
, 32);
2441 /* Rehash the cnodes using their new file IDs */
2442 hfs_chash_rehash(hfsmp
, from_cp
, to_cp
);
2445 * When a file moves out of "Cleanup At Startup"
2446 * we can drop its NODUMP status.
2448 if ((from_cp
->c_bsdflags
& UF_NODUMP
) &&
2449 (from_cp
->c_parentcnid
!= to_cp
->c_parentcnid
)) {
2450 from_cp
->c_bsdflags
&= ~UF_NODUMP
;
2451 from_cp
->c_touch_chgtime
= TRUE
;
2453 if ((to_cp
->c_bsdflags
& UF_NODUMP
) &&
2454 (to_cp
->c_parentcnid
!= from_cp
->c_parentcnid
)) {
2455 to_cp
->c_bsdflags
&= ~UF_NODUMP
;
2456 to_cp
->c_touch_chgtime
= TRUE
;
2461 cat_postflight(hfsmp
, &cookie
, vfs_context_proc(ap
->a_context
));
2464 hfs_end_transaction(hfsmp
);
2467 if (have_cnode_locks
)
2468 hfs_unlockpair(from_cp
, to_cp
);
2470 if (have_from_trunc_lock
)
2471 hfs_unlock_truncate(from_cp
, 0);
2473 if (have_to_trunc_lock
)
2474 hfs_unlock_truncate(to_cp
, 0);
2481 * This function is used specifically for the case when a namespace
2482 * handler is trying to steal data before it's deleted. Note that we
2483 * don't bother deleting the xattr from the source because it will get
2484 * deleted a short time later anyway.
2486 * cnodes must be locked
2488 static int hfs_move_compressed(cnode_t
*from_cp
, cnode_t
*to_cp
)
2493 CLR(from_cp
->c_bsdflags
, UF_COMPRESSED
);
2494 SET(from_cp
->c_flag
, C_MODIFIED
);
2496 ret
= hfs_move_data(from_cp
, to_cp
, HFS_MOVE_DATA_INCLUDE_RSRC
);
2501 * Transfer the xattr that decmpfs uses. Ideally, this code
2502 * should be with the other decmpfs code but it's file system
2503 * agnostic and this path is currently, and likely to remain, HFS+
2504 * specific. It's easier and more performant if we implement it
2508 size_t size
= MAX_DECMPFS_XATTR_SIZE
;
2509 MALLOC(data
, void *, size
, M_TEMP
, M_WAITOK
);
2511 ret
= hfs_xattr_read(from_cp
->c_vp
, DECMPFS_XATTR_NAME
, data
, &size
);
2515 ret
= hfs_xattr_write(to_cp
->c_vp
, DECMPFS_XATTR_NAME
, data
, size
);
2519 SET(to_cp
->c_bsdflags
, UF_COMPRESSED
);
2520 SET(to_cp
->c_flag
, C_MODIFIED
);
2528 #endif // HFS_COMPRESSION
2531 hfs_vnop_mmap(struct vnop_mmap_args
*ap
)
2533 struct vnode
*vp
= ap
->a_vp
;
2534 cnode_t
*cp
= VTOC(vp
);
2537 if (VNODE_IS_RSRC(vp
)) {
2538 /* allow pageins of the resource fork */
2540 int compressed
= hfs_file_is_compressed(cp
, 1); /* 1 == don't take the cnode lock */
2541 time_t orig_ctime
= cp
->c_ctime
;
2543 if (!compressed
&& (cp
->c_bsdflags
& UF_COMPRESSED
)) {
2544 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
2550 if (ap
->a_fflags
& PROT_WRITE
) {
2551 check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
2556 // NOTE: we return ENOTSUP because we want the cluster layer
2557 // to actually do all the real work.
2562 static errno_t
hfs_vnop_mnomap(struct vnop_mnomap_args
*ap
)
2564 vnode_t vp
= ap
->a_vp
;
2567 * Whilst the file was mapped, there may not have been any
2568 * page-outs so we need to increment the generation counter now.
2569 * Unfortunately this may lead to a change in the generation
2570 * counter when no actual change has been made, but there is
2571 * little we can do about that with our current architecture.
2573 if (ubc_is_mapped_writable(vp
)) {
2574 cnode_t
*cp
= VTOC(vp
);
2575 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
2576 hfs_incr_gencount(cp
);
2579 * We don't want to set the modification time here since a
2580 * change to that is not acceptable if no changes were made.
2581 * Instead we set a flag so that if we get any page-outs we
2582 * know to update the modification time. It's possible that
2583 * they weren't actually because of changes made whilst the
2584 * file was mapped but that's not easy to fix now.
2586 SET(cp
->c_flag
, C_MIGHT_BE_DIRTY_FROM_MAPPING
);
2595 * Mark the resource fork as needing a ubc_setsize when we drop the
2598 static void hfs_rsrc_setsize(cnode_t
*cp
)
2601 * We need to take an iocount if we don't have one. vnode_get
2602 * will return ENOENT if the vnode is terminating which is what we
2603 * want as it's not safe to call ubc_setsize in that case.
2605 if (cp
->c_rsrc_vp
&& !vnode_get(cp
->c_rsrc_vp
)) {
2606 // Shouldn't happen, but better safe...
2607 if (ISSET(cp
->c_flag
, C_NEED_RVNODE_PUT
))
2608 vnode_put(cp
->c_rsrc_vp
);
2609 SET(cp
->c_flag
, C_NEED_RVNODE_PUT
| C_NEED_RSRC_SETSIZE
);
2616 * This is a non-symmetric variant of exchangedata. In this function,
2617 * the contents of the data fork (and optionally the resource fork)
2618 * are moved from from_cp to to_cp.
2620 * The cnodes must be locked.
2622 * The cnode pointed to by 'to_cp' *must* be empty prior to invoking
2623 * this function. We impose this restriction because we may not be
2624 * able to fully delete the entire file's contents in a single
2625 * transaction, particularly if it has a lot of extents. In the
2626 * normal file deletion codepath, the file is screened for two
2627 * conditions: 1) bigger than 400MB, and 2) more than 8 extents. If
2628 * so, the file is relocated to the hidden directory and the deletion
2629 * is broken up into multiple truncates. We can't do that here
2630 * because both files need to exist in the namespace. The main reason
2631 * this is imposed is that we may have to touch a whole lot of bitmap
2632 * blocks if there are many extents.
2634 * Any data written to 'from_cp' after this call completes is not
2635 * guaranteed to be moved.
2638 * cnode_t *from_cp : source file
2639 * cnode_t *to_cp : destination file; must be empty
2643 * EBUSY - File has been deleted or is in use
2644 * EFBIG - Destination file was not empty
2645 * EIO - An I/O error
2647 * other - Other errors that can be returned from called functions
2649 int hfs_move_data(cnode_t
*from_cp
, cnode_t
*to_cp
,
2650 hfs_move_data_options_t options
)
2652 hfsmount_t
*hfsmp
= VTOHFS(from_cp
->c_vp
);
2655 bool return_EIO_on_error
= false;
2656 const bool include_rsrc
= ISSET(options
, HFS_MOVE_DATA_INCLUDE_RSRC
);
2658 /* Verify that neither source/dest file is open-unlinked */
2659 if (ISSET(from_cp
->c_flag
, C_DELETED
| C_NOEXISTS
)
2660 || ISSET(to_cp
->c_flag
, C_DELETED
| C_NOEXISTS
)) {
2665 * Verify the source file is not in use by anyone besides us.
2667 * This function is typically invoked by a namespace handler
2668 * process responding to a temporarily stalled system call.
2669 * The FD that it is working off of is opened O_EVTONLY, so
2670 * it really has no active usecounts (the kusecount from O_EVTONLY
2671 * is subtracted from the total usecounts).
2673 * As a result, we shouldn't have any active usecounts against
2674 * this vnode when we go to check it below.
2676 if (vnode_isinuse(from_cp
->c_vp
, 0))
2679 if (include_rsrc
&& from_cp
->c_rsrc_vp
) {
2680 if (vnode_isinuse(from_cp
->c_rsrc_vp
, 0))
2684 * In the code below, if the destination file doesn't have a
2685 * c_rsrcfork then we don't create it which means we we cannot
2686 * transfer the ff_invalidranges and cf_vblocks fields. These
2687 * shouldn't be set because we flush the resource fork before
2688 * calling this function but there is a tiny window when we
2689 * did not have any locks...
2691 if (!to_cp
->c_rsrcfork
2692 && (!TAILQ_EMPTY(&from_cp
->c_rsrcfork
->ff_invalidranges
)
2693 || from_cp
->c_rsrcfork
->ff_unallocblocks
)) {
2695 * The file isn't really busy now but something did slip
2696 * in and tinker with the file while we didn't have any
2697 * locks, so this is the most meaningful return code for
2704 // Check the destination file is empty
2705 if (to_cp
->c_datafork
->ff_blocks
2706 || to_cp
->c_datafork
->ff_size
2709 || (to_cp
->c_rsrcfork
&& to_cp
->c_rsrcfork
->ff_size
)))) {
2713 if ((error
= hfs_start_transaction (hfsmp
)))
2716 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
| SFL_ATTRIBUTE
,
2717 HFS_EXCLUSIVE_LOCK
);
2719 // filefork_t is 128 bytes which should be OK
2720 filefork_t rfork_buf
, *from_rfork
= NULL
;
2723 from_rfork
= from_cp
->c_rsrcfork
;
2726 * Creating resource fork vnodes is expensive, so just get get
2727 * the fork data if we need it.
2729 if (!from_rfork
&& hfs_has_rsrc(from_cp
)) {
2730 from_rfork
= &rfork_buf
;
2732 from_rfork
->ff_cp
= from_cp
;
2733 TAILQ_INIT(&from_rfork
->ff_invalidranges
);
2735 error
= cat_idlookup(hfsmp
, from_cp
->c_fileid
, 0, 1, NULL
, NULL
,
2736 &from_rfork
->ff_data
);
2744 * From here on, any failures mean that we might be leaving things
2745 * in a weird or inconsistent state. Ideally, we should back out
2746 * all the changes, but to do that properly we need to fix
2747 * MoveData. We'll save fixing that for another time. For now,
2748 * just return EIO in all cases to the caller so that they know.
2750 return_EIO_on_error
= true;
2752 bool data_overflow_extents
= overflow_extents(from_cp
->c_datafork
);
2754 // Move the data fork
2755 if ((error
= hfs_move_fork (from_cp
->c_datafork
, from_cp
,
2756 to_cp
->c_datafork
, to_cp
))) {
2760 SET(from_cp
->c_flag
, C_NEED_DATA_SETSIZE
);
2761 SET(to_cp
->c_flag
, C_NEED_DATA_SETSIZE
);
2763 // We move the resource fork later
2766 * Note that because all we're doing is moving the extents around,
2767 * we can probably do this in a single transaction: Each extent
2768 * record (group of 8) is 64 bytes. A extent overflow B-Tree node
2769 * is typically 4k. This means each node can hold roughly ~60
2770 * extent records == (480 extents).
2772 * If a file was massively fragmented and had 20k extents, this
2773 * means we'd roughly touch 20k/480 == 41 to 42 nodes, plus the
2774 * index nodes, for half of the operation. (inserting or
2775 * deleting). So if we're manipulating 80-100 nodes, this is
2776 * basically 320k of data to write to the journal in a bad case.
2778 if (data_overflow_extents
) {
2779 if ((error
= MoveData(hfsmp
, from_cp
->c_cnid
, to_cp
->c_cnid
, 0)))
2783 if (from_rfork
&& overflow_extents(from_rfork
)) {
2784 if ((error
= MoveData(hfsmp
, from_cp
->c_cnid
, to_cp
->c_cnid
, 1)))
2789 from_cp
->c_touch_acctime
= TRUE
;
2790 from_cp
->c_touch_chgtime
= TRUE
;
2791 from_cp
->c_touch_modtime
= TRUE
;
2792 hfs_touchtimes(hfsmp
, from_cp
);
2794 to_cp
->c_touch_acctime
= TRUE
;
2795 to_cp
->c_touch_chgtime
= TRUE
;
2796 to_cp
->c_touch_modtime
= TRUE
;
2797 hfs_touchtimes(hfsmp
, to_cp
);
2799 struct cat_fork dfork_buf
;
2800 const struct cat_fork
*dfork
, *rfork
;
2802 dfork
= hfs_prepare_fork_for_update(to_cp
->c_datafork
, NULL
,
2803 &dfork_buf
, hfsmp
->blockSize
);
2804 rfork
= hfs_prepare_fork_for_update(from_rfork
, NULL
,
2805 &rfork_buf
.ff_data
, hfsmp
->blockSize
);
2807 // Update the catalog nodes, to_cp first
2808 if ((error
= cat_update(hfsmp
, &to_cp
->c_desc
, &to_cp
->c_attr
,
2813 CLR(to_cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
);
2815 // Update in-memory resource fork data here
2818 uint32_t moving
= from_rfork
->ff_blocks
+ from_rfork
->ff_unallocblocks
;
2820 from_cp
->c_blocks
-= moving
;
2821 to_cp
->c_blocks
+= moving
;
2823 // Update to_cp's resource data if it has it
2824 filefork_t
*to_rfork
= to_cp
->c_rsrcfork
;
2826 TAILQ_SWAP(&to_rfork
->ff_invalidranges
,
2827 &from_rfork
->ff_invalidranges
, rl_entry
, rl_link
);
2828 to_rfork
->ff_data
= from_rfork
->ff_data
;
2830 // Deal with ubc_setsize
2831 hfs_rsrc_setsize(to_cp
);
2834 // Wipe out the resource fork in from_cp
2835 rl_init(&from_rfork
->ff_invalidranges
);
2836 bzero(&from_rfork
->ff_data
, sizeof(from_rfork
->ff_data
));
2838 // Deal with ubc_setsize
2839 hfs_rsrc_setsize(from_cp
);
2842 // Currently unnecessary, but might be useful in future...
2843 dfork
= hfs_prepare_fork_for_update(from_cp
->c_datafork
, NULL
, &dfork_buf
,
2845 rfork
= hfs_prepare_fork_for_update(from_rfork
, NULL
, &rfork_buf
.ff_data
,
2849 if ((error
= cat_update(hfsmp
, &from_cp
->c_desc
, &from_cp
->c_attr
,
2854 CLR(from_cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
);
2858 hfs_systemfile_unlock(hfsmp
, lockflags
);
2859 hfs_end_transaction(hfsmp
);
2862 if (error
&& error
!= EIO
&& return_EIO_on_error
) {
2863 printf("hfs_move_data: encountered error %d\n", error
);
2871 * Move all of the catalog and runtime data in srcfork to dstfork.
2873 * This allows us to maintain the invalid ranges across the move data
2874 * operation so we don't need to force all of the pending IO right
2875 * now. In addition, we move all non overflow-extent extents into the
2878 * The destination fork must be empty and should have been checked
2879 * prior to calling this.
2881 static int hfs_move_fork(filefork_t
*srcfork
, cnode_t
*src_cp
,
2882 filefork_t
*dstfork
, cnode_t
*dst_cp
)
2884 // Move the invalid ranges
2885 TAILQ_SWAP(&dstfork
->ff_invalidranges
, &srcfork
->ff_invalidranges
,
2887 rl_remove_all(&srcfork
->ff_invalidranges
);
2889 // Move the fork data (copy whole structure)
2890 dstfork
->ff_data
= srcfork
->ff_data
;
2891 bzero(&srcfork
->ff_data
, sizeof(srcfork
->ff_data
));
2894 src_cp
->c_blocks
-= dstfork
->ff_blocks
+ dstfork
->ff_unallocblocks
;
2895 dst_cp
->c_blocks
+= dstfork
->ff_blocks
+ dstfork
->ff_unallocblocks
;
2901 #include <i386/panic_hooks.h>
2903 struct hfs_fsync_panic_hook
{
2908 static void hfs_fsync_panic_hook(panic_hook_t
*hook_
)
2910 struct hfs_fsync_panic_hook
*hook
= (struct hfs_fsync_panic_hook
*)hook_
;
2911 extern int kdb_log(const char *fmt
, ...);
2913 // Get the physical region just before cp
2914 panic_phys_range_t range
;
2917 if (panic_phys_range_before(hook
->cp
, &phys
, &range
)) {
2918 kdb_log("cp = %p, phys = %p, prev (%p: %p-%p)\n",
2919 hook
->cp
, phys
, range
.type
, range
.phys_start
,
2920 range
.phys_start
+ range
.len
);
2922 kdb_log("cp = %p, phys = %p, prev (!)\n", hook
->cp
, phys
);
2924 panic_dump_mem((void *)(((vm_offset_t
)hook
->cp
- 4096) & ~4095), 12288);
2931 * cnode must be locked
2934 hfs_fsync(struct vnode
*vp
, int waitfor
, hfs_fsync_mode_t fsyncmode
, struct proc
*p
)
2936 struct cnode
*cp
= VTOC(vp
);
2937 struct filefork
*fp
= NULL
;
2939 struct hfsmount
*hfsmp
= VTOHFS(vp
);
2941 int waitdata
; /* attributes necessary for data retrieval */
2942 int wait
; /* all other attributes (e.g. atime, etc.) */
2944 int took_trunc_lock
= 0;
2945 int locked_buffers
= 0;
2946 int fsync_default
= 1;
2949 * Applications which only care about data integrity rather than full
2950 * file integrity may opt out of (delay) expensive metadata update
2951 * operations as a performance optimization.
2953 wait
= (waitfor
== MNT_WAIT
);
2954 waitdata
= (waitfor
== MNT_DWAIT
) | wait
;
2956 if (always_do_fullfsync
)
2957 fsyncmode
= HFS_FSYNC_FULL
;
2958 if (fsyncmode
!= HFS_FSYNC
)
2961 /* HFS directories don't have any data blocks. */
2962 if (vnode_isdir(vp
))
2967 * For system files flush the B-tree header and
2968 * for regular files write out any clusters
2970 if (vnode_issystem(vp
)) {
2971 if (VTOF(vp
)->fcbBTCBPtr
!= NULL
) {
2973 if (hfsmp
->jnl
== NULL
) {
2974 BTFlushPath(VTOF(vp
));
2977 } else if (UBCINFOEXISTS(vp
)) {
2979 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
2980 took_trunc_lock
= 1;
2982 struct hfs_fsync_panic_hook hook
;
2984 panic_hook(&hook
.hook
, hfs_fsync_panic_hook
);
2986 if (fp
->ff_unallocblocks
!= 0) {
2987 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2989 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2992 panic_unhook(&hook
.hook
);
2994 /* Don't hold cnode lock when calling into cluster layer. */
2995 (void) cluster_push(vp
, waitdata
? IO_SYNC
: 0);
2997 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
3000 * When MNT_WAIT is requested and the zero fill timeout
3001 * has expired then we must explicitly zero out any areas
3002 * that are currently marked invalid (holes).
3004 * Files with NODUMP can bypass zero filling here.
3006 if (fp
&& (((cp
->c_flag
& C_ALWAYS_ZEROFILL
) && !TAILQ_EMPTY(&fp
->ff_invalidranges
)) ||
3007 ((wait
|| (cp
->c_flag
& C_ZFWANTSYNC
)) &&
3008 ((cp
->c_bsdflags
& UF_NODUMP
) == 0) &&
3009 UBCINFOEXISTS(vp
) && (vnode_issystem(vp
) ==0) &&
3010 cp
->c_zftimeout
!= 0))) {
3013 if ((cp
->c_flag
& C_ALWAYS_ZEROFILL
) == 0 && fsync_default
&& tv
.tv_sec
< (long)cp
->c_zftimeout
) {
3014 /* Remember that a force sync was requested. */
3015 cp
->c_flag
|= C_ZFWANTSYNC
;
3018 if (!TAILQ_EMPTY(&fp
->ff_invalidranges
)) {
3019 if (!took_trunc_lock
|| (cp
->c_truncatelockowner
== HFS_SHARED_OWNER
)) {
3021 if (took_trunc_lock
) {
3022 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
3024 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
3025 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
3026 took_trunc_lock
= 1;
3028 hfs_flush_invalid_ranges(vp
);
3030 (void) cluster_push(vp
, waitdata
? IO_SYNC
: 0);
3031 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
3035 if (took_trunc_lock
) {
3036 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
3037 took_trunc_lock
= 0;
3040 * if we have a journal and if journal_active() returns != 0 then the
3041 * we shouldn't do anything to a locked block (because it is part
3042 * of a transaction). otherwise we'll just go through the normal
3043 * code path and flush the buffer. note journal_active() can return
3044 * -1 if the journal is invalid -- however we still need to skip any
3045 * locked blocks as they get cleaned up when we finish the transaction
3046 * or close the journal.
3048 // if (hfsmp->jnl && journal_active(hfsmp->jnl) >= 0)
3050 lockflag
= BUF_SKIP_LOCKED
;
3055 * Flush all dirty buffers associated with a vnode.
3056 * Record how many of them were dirty AND locked (if necessary).
3058 locked_buffers
= buf_flushdirtyblks_skipinfo(vp
, waitdata
, lockflag
, "hfs_fsync");
3059 if ((lockflag
& BUF_SKIP_LOCKED
) && (locked_buffers
) && (vnode_vtype(vp
) == VLNK
)) {
3061 * If there are dirty symlink buffers, then we may need to take action
3062 * to prevent issues later on if we are journaled. If we're fsyncing a
3063 * symlink vnode then we are in one of three cases:
3065 * 1) automatic sync has fired. In this case, we don't want the behavior to change.
3067 * 2) Someone has opened the FD for the symlink (not what it points to)
3068 * and has issued an fsync against it. This should be rare, and we don't
3069 * want the behavior to change.
3071 * 3) We are being called by a vclean which is trying to reclaim this
3072 * symlink vnode. If this is the case, then allowing this fsync to
3073 * proceed WITHOUT flushing the journal could result in the vclean
3074 * invalidating the buffer's blocks before the journal transaction is
3075 * written to disk. To prevent this, we force a journal flush
3076 * if the vnode is in the middle of a recycle (VL_TERMINATE or VL_DEAD is set).
3078 if (vnode_isrecycled(vp
)) {
3084 if (vnode_isreg(vp
) && vnode_issystem(vp
)) {
3085 if (VTOF(vp
)->fcbBTCBPtr
!= NULL
) {
3087 BTSetLastSync(VTOF(vp
), tv
.tv_sec
);
3089 cp
->c_touch_acctime
= FALSE
;
3090 cp
->c_touch_chgtime
= FALSE
;
3091 cp
->c_touch_modtime
= FALSE
;
3092 } else if ( !(vp
->v_flag
& VSWAP
) ) /* User file */ {
3093 retval
= hfs_update(vp
, HFS_UPDATE_FORCE
);
3096 * When MNT_WAIT is requested push out the catalog record for
3097 * this file. If they asked for a full fsync, we can skip this
3098 * because the journal_flush or hfs_metasync_all will push out
3099 * all of the metadata changes.
3101 if ((retval
== 0) && wait
&& fsync_default
&& cp
->c_hint
&&
3102 !ISSET(cp
->c_flag
, C_DELETED
| C_NOEXISTS
)) {
3103 hfs_metasync(VTOHFS(vp
), (daddr64_t
)cp
->c_hint
, p
);
3107 * If this was a full fsync, make sure all metadata
3108 * changes get to stable storage.
3110 if (!fsync_default
) {
3112 if (fsyncmode
== HFS_FSYNC_FULL
)
3113 hfs_flush(hfsmp
, HFS_FLUSH_FULL
);
3116 HFS_FLUSH_JOURNAL_BARRIER
);
3118 retval
= hfs_metasync_all(hfsmp
);
3119 /* XXX need to pass context! */
3120 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
3125 if (!hfs_is_dirty(cp
) && !ISSET(cp
->c_flag
, C_DELETED
))
3126 vnode_cleardirty(vp
);
3132 /* Sync an hfs catalog b-tree node */
3134 hfs_metasync(struct hfsmount
*hfsmp
, daddr64_t node
, __unused
struct proc
*p
)
3140 vp
= HFSTOVCB(hfsmp
)->catalogRefNum
;
3142 // XXXdbg - don't need to do this on a journaled volume
3147 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
3149 * Look for a matching node that has been delayed
3150 * but is not part of a set (B_LOCKED).
3152 * BLK_ONLYVALID causes buf_getblk to return a
3153 * buf_t for the daddr64_t specified only if it's
3154 * currently resident in the cache... the size
3155 * parameter to buf_getblk is ignored when this flag
3158 bp
= buf_getblk(vp
, node
, 0, 0, 0, BLK_META
| BLK_ONLYVALID
);
3161 if ((buf_flags(bp
) & (B_LOCKED
| B_DELWRI
)) == B_DELWRI
)
3162 (void) VNOP_BWRITE(bp
);
3167 hfs_systemfile_unlock(hfsmp
, lockflags
);
3174 * Sync all hfs B-trees. Use this instead of journal_flush for a volume
3175 * without a journal. Note that the volume bitmap does not get written;
3176 * we rely on fsck_hfs to fix that up (which it can do without any loss
3180 hfs_metasync_all(struct hfsmount
*hfsmp
)
3184 /* Lock all of the B-trees so we get a mutually consistent state */
3185 lockflags
= hfs_systemfile_lock(hfsmp
,
3186 SFL_CATALOG
|SFL_EXTENTS
|SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
3188 /* Sync each of the B-trees */
3189 if (hfsmp
->hfs_catalog_vp
)
3190 hfs_btsync(hfsmp
->hfs_catalog_vp
, 0);
3191 if (hfsmp
->hfs_extents_vp
)
3192 hfs_btsync(hfsmp
->hfs_extents_vp
, 0);
3193 if (hfsmp
->hfs_attribute_vp
)
3194 hfs_btsync(hfsmp
->hfs_attribute_vp
, 0);
3196 /* Wait for all of the writes to complete */
3197 if (hfsmp
->hfs_catalog_vp
)
3198 vnode_waitforwrites(hfsmp
->hfs_catalog_vp
, 0, 0, 0, "hfs_metasync_all");
3199 if (hfsmp
->hfs_extents_vp
)
3200 vnode_waitforwrites(hfsmp
->hfs_extents_vp
, 0, 0, 0, "hfs_metasync_all");
3201 if (hfsmp
->hfs_attribute_vp
)
3202 vnode_waitforwrites(hfsmp
->hfs_attribute_vp
, 0, 0, 0, "hfs_metasync_all");
3204 hfs_systemfile_unlock(hfsmp
, lockflags
);
3212 hfs_btsync_callback(struct buf
*bp
, __unused
void *dummy
)
3214 buf_clearflags(bp
, B_LOCKED
);
3215 (void) buf_bawrite(bp
);
3217 return(BUF_CLAIMED
);
3222 hfs_btsync(struct vnode
*vp
, int sync_transaction
)
3224 struct cnode
*cp
= VTOC(vp
);
3228 if (sync_transaction
)
3229 flags
|= BUF_SKIP_NONLOCKED
;
3231 * Flush all dirty buffers associated with b-tree.
3233 buf_iterate(vp
, hfs_btsync_callback
, flags
, 0);
3236 if (vnode_issystem(vp
) && (VTOF(vp
)->fcbBTCBPtr
!= NULL
))
3237 (void) BTSetLastSync(VTOF(vp
), tv
.tv_sec
);
3238 cp
->c_touch_acctime
= FALSE
;
3239 cp
->c_touch_chgtime
= FALSE
;
3240 cp
->c_touch_modtime
= FALSE
;
3246 * Remove a directory.
3250 struct vnop_rmdir_args
/* {
3251 struct vnode *a_dvp;
3253 struct componentname *a_cnp;
3254 vfs_context_t a_context;
3257 struct vnode
*dvp
= ap
->a_dvp
;
3258 struct vnode
*vp
= ap
->a_vp
;
3259 struct cnode
*dcp
= VTOC(dvp
);
3260 struct cnode
*cp
= VTOC(vp
);
3264 orig_ctime
= VTOC(vp
)->c_ctime
;
3266 if (!S_ISDIR(cp
->c_mode
)) {
3273 check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
3276 if ((error
= hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
))) {
3280 /* Check for a race with rmdir on the parent directory */
3281 if (dcp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
3282 hfs_unlockpair (dcp
, cp
);
3287 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
3289 if ((cp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
3292 hfs_unlockpair(dcp
, cp
);
3294 if (hfs_generate_document_id(VTOHFS(vp
), &newid
) == 0) {
3295 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3296 ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
3298 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
3299 FSE_ARG_DEV
, VTOHFS(vp
)->hfs_raw_dev
,
3300 FSE_ARG_INO
, (ino64_t
)0, // src inode #
3301 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
3302 FSE_ARG_INT32
, newid
,
3306 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
3307 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3311 error
= hfs_removedir(dvp
, vp
, ap
->a_cnp
, 0, 0);
3313 hfs_unlockpair(dcp
, cp
);
3319 * Remove a directory
3321 * Both dvp and vp cnodes are locked
3324 hfs_removedir(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
,
3325 int skip_reserve
, int only_unlink
)
3329 struct hfsmount
* hfsmp
;
3330 struct cat_desc desc
;
3332 int error
= 0, started_tr
= 0;
3339 return (EINVAL
); /* cannot remove "." */
3341 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
3344 if (cp
->c_entries
!= 0) {
3349 * If the directory is open or in use (e.g. opendir() or current working
3350 * directory for some process); wait for inactive/reclaim to actually
3351 * remove cnode from the catalog. Both inactive and reclaim codepaths are capable
3352 * of removing open-unlinked directories from the catalog, as well as getting rid
3353 * of EAs still on the element. So change only_unlink to true, so that it will get
3356 * Otherwise, we can get into a weird old mess where the directory has C_DELETED,
3357 * but it really means C_NOEXISTS because the item was actually removed from the
3358 * catalog. Then when we try to remove the entry from the catalog later on, it won't
3359 * really be there anymore.
3361 if (vnode_isinuse(vp
, 0)) {
3365 /* Deal with directory hardlinks */
3366 if (cp
->c_flag
& C_HARDLINK
) {
3368 * Note that if we have a directory which was a hardlink at any point,
3369 * its actual directory data is stored in the directory inode in the hidden
3370 * directory rather than the leaf element(s) present in the namespace.
3372 * If there are still other hardlinks to this directory,
3373 * then we'll just eliminate this particular link and the vnode will still exist.
3374 * If this is the last link to an empty directory, then we'll open-unlink the
3375 * directory and it will be only tagged with C_DELETED (as opposed to C_NOEXISTS).
3377 * We could also return EBUSY here.
3380 return hfs_unlink(hfsmp
, dvp
, vp
, cnp
, skip_reserve
);
3384 * In a few cases, we may want to allow the directory to persist in an
3385 * open-unlinked state. If the directory is being open-unlinked (still has usecount
3386 * references), or if it has EAs, or if it was being deleted as part of a rename,
3387 * then we go ahead and move it to the hidden directory.
3389 * If the directory is being open-unlinked, then we want to keep the catalog entry
3390 * alive so that future EA calls and fchmod/fstat etc. do not cause issues later.
3392 * If the directory had EAs, then we want to use the open-unlink trick so that the
3393 * EA removal is not done in one giant transaction. Otherwise, it could cause a panic
3394 * due to overflowing the journal.
3396 * Finally, if it was deleted as part of a rename, we move it to the hidden directory
3397 * in order to maintain rename atomicity.
3399 * Note that the allow_dirs argument to hfs_removefile specifies that it is
3400 * supposed to handle directories for this case.
3403 if (((hfsmp
->hfs_attribute_vp
!= NULL
) &&
3404 ((cp
->c_attr
.ca_recflags
& kHFSHasAttributesMask
) != 0)) ||
3405 (only_unlink
!= 0)) {
3407 int ret
= hfs_removefile(dvp
, vp
, cnp
, 0, 0, 1, NULL
, only_unlink
);
3409 * Even though hfs_vnop_rename calls vnode_recycle for us on tvp we call
3410 * it here just in case we were invoked by rmdir() on a directory that had
3411 * EAs. To ensure that we start reclaiming the space as soon as possible,
3412 * we call vnode_recycle on the directory.
3420 dcp
->c_flag
|= C_DIR_MODIFICATION
;
3423 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
3424 (void)hfs_getinoquota(cp
);
3426 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
3432 * Verify the directory is empty (and valid).
3433 * (Rmdir ".." won't be valid since
3434 * ".." will contain a reference to
3435 * the current directory and thus be
3438 if ((dcp
->c_bsdflags
& APPEND
) || (cp
->c_bsdflags
& (IMMUTABLE
| APPEND
))) {
3443 /* Remove the entry from the namei cache: */
3447 * Protect against a race with rename by using the component
3448 * name passed in and parent id from dvp (instead of using
3449 * the cp->c_desc which may have changed).
3451 desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
3452 desc
.cd_namelen
= cnp
->cn_namelen
;
3453 desc
.cd_parentcnid
= dcp
->c_fileid
;
3454 desc
.cd_cnid
= cp
->c_cnid
;
3455 desc
.cd_flags
= CD_ISDIR
;
3456 desc
.cd_encoding
= cp
->c_encoding
;
3459 if (!hfs_valid_cnode(hfsmp
, dvp
, cnp
, cp
->c_fileid
, NULL
, &error
)) {
3464 /* Remove entry from catalog */
3465 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
| SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
3467 if (!skip_reserve
) {
3469 * Reserve some space in the Catalog file.
3471 if ((error
= cat_preflight(hfsmp
, CAT_DELETE
, NULL
, 0))) {
3472 hfs_systemfile_unlock(hfsmp
, lockflags
);
3477 error
= cat_delete(hfsmp
, &desc
, &cp
->c_attr
);
3481 // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
3482 // we don't need to touch the document_id as it's handled by the rename code.
3483 // otherwise it's a normal remove and we need to save the document id in the
3484 // per thread struct and clear it from the cnode.
3486 struct doc_tombstone
*ut
;
3487 ut
= get_uthread_doc_tombstone();
3488 if (!skip_reserve
&& (cp
->c_bsdflags
& UF_TRACKED
) && should_save_docid_tombstone(ut
, vp
, cnp
)) {
3490 if (ut
->t_lastop_document_id
) {
3491 clear_tombstone_docid(ut
, hfsmp
, NULL
);
3493 save_tombstone(hfsmp
, dvp
, vp
, cnp
, 1);
3497 /* The parent lost a child */
3498 if (dcp
->c_entries
> 0)
3500 DEC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
3501 dcp
->c_dirchangecnt
++;
3502 hfs_incr_gencount(dcp
);
3504 dcp
->c_touch_chgtime
= TRUE
;
3505 dcp
->c_touch_modtime
= TRUE
;
3506 dcp
->c_flag
|= C_MODIFIED
;
3508 hfs_update(dcp
->c_vp
, 0);
3511 hfs_systemfile_unlock(hfsmp
, lockflags
);
3517 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
3518 (void)hfs_chkiq(cp
, -1, NOCRED
, 0);
3521 hfs_volupdate(hfsmp
, VOL_RMDIR
, (dcp
->c_cnid
== kHFSRootFolderID
));
3523 /* Mark C_NOEXISTS since the catalog entry is now gone */
3524 cp
->c_flag
|= C_NOEXISTS
;
3527 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
3528 wakeup((caddr_t
)&dcp
->c_flag
);
3531 hfs_end_transaction(hfsmp
);
3539 * Remove a file or link.
3543 struct vnop_remove_args
/* {
3544 struct vnode *a_dvp;
3546 struct componentname *a_cnp;
3548 vfs_context_t a_context;
3551 struct vnode
*dvp
= ap
->a_dvp
;
3552 struct vnode
*vp
= ap
->a_vp
;
3553 struct cnode
*dcp
= VTOC(dvp
);
3555 struct vnode
*rvp
= NULL
;
3556 int error
=0, recycle_rsrc
=0;
3557 int recycle_vnode
= 0;
3558 uint32_t rsrc_vid
= 0;
3565 orig_ctime
= VTOC(vp
)->c_ctime
;
3566 if (!vnode_isnamedstream(vp
) && ((ap
->a_flags
& VNODE_REMOVE_SKIP_NAMESPACE_EVENT
) == 0)) {
3567 error
= check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
3569 // XXXdbg - decide on a policy for handling namespace handler failures!
3570 // for now we just let them proceed.
3579 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
3581 if ((error
= hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
))) {
3582 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
3589 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
3591 if ((cp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
3594 hfs_unlockpair(dcp
, cp
);
3596 if (hfs_generate_document_id(VTOHFS(vp
), &newid
) == 0) {
3597 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3598 ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
3600 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
3601 FSE_ARG_DEV
, VTOHFS(vp
)->hfs_raw_dev
,
3602 FSE_ARG_INO
, (ino64_t
)0, // src inode #
3603 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
3604 FSE_ARG_INT32
, newid
,
3608 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
3609 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3614 * Lazily respond to determining if there is a valid resource fork
3615 * vnode attached to 'cp' if it is a regular file or symlink.
3616 * If the vnode does not exist, then we may proceed without having to
3619 * If, however, it does exist, then we need to acquire an iocount on the
3620 * vnode after acquiring its vid. This ensures that if we have to do I/O
3621 * against it, it can't get recycled from underneath us in the middle
3624 * Note: this function may be invoked for directory hardlinks, so just skip these
3625 * steps if 'vp' is a directory.
3628 if ((vp
->v_type
== VLNK
) || (vp
->v_type
== VREG
)) {
3629 if ((cp
->c_rsrc_vp
) && (rvp
== NULL
)) {
3630 /* We need to acquire the rsrc vnode */
3631 rvp
= cp
->c_rsrc_vp
;
3632 rsrc_vid
= vnode_vid (rvp
);
3634 /* Unlock everything to acquire iocount on the rsrc vnode */
3635 hfs_unlock_truncate (cp
, HFS_LOCK_DEFAULT
);
3636 hfs_unlockpair (dcp
, cp
);
3637 /* Use the vid to maintain identity on rvp */
3638 if (vnode_getwithvid(rvp
, rsrc_vid
)) {
3640 * If this fails, then it was recycled or
3641 * reclaimed in the interim. Reset fields and
3652 * Check to see if we raced rmdir for the parent directory
3653 * hfs_removefile already checks for a race on vp/cp
3655 if (dcp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
3660 error
= hfs_removefile(dvp
, vp
, ap
->a_cnp
, ap
->a_flags
, 0, 0, NULL
, 0);
3663 * If the remove succeeded in deleting the file, then we may need to mark
3664 * the resource fork for recycle so that it is reclaimed as quickly
3665 * as possible. If it were not recycled quickly, then this resource fork
3666 * vnode could keep a v_parent reference on the data fork, which prevents it
3667 * from going through reclaim (by giving it extra usecounts), except in the force-
3670 * However, a caveat: we need to continue to supply resource fork
3671 * access to open-unlinked files even if the resource fork is not open. This is
3672 * a requirement for the compressed files work. Luckily, hfs_vgetrsrc will handle
3673 * this already if the data fork has been re-parented to the hidden directory.
3675 * As a result, all we really need to do here is mark the resource fork vnode
3676 * for recycle. If it goes out of core, it can be brought in again if needed.
3677 * If the cnode was instead marked C_NOEXISTS, then there wouldn't be any
3681 hfs_hotfile_deleted(vp
);
3687 * If the target was actually removed from the catalog schedule it for
3688 * full reclamation/inactivation. We hold an iocount on it so it should just
3689 * get marked with MARKTERM
3691 if (cp
->c_flag
& C_NOEXISTS
) {
3698 * Drop the truncate lock before unlocking the cnode
3699 * (which can potentially perform a vnode_put and
3700 * recycle the vnode which in turn might require the
3704 hfs_unlockpair(dcp
, cp
);
3705 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
3708 /* inactive or reclaim on rvp will clean up the blocks from the rsrc fork */
3711 if (recycle_vnode
) {
3716 /* drop iocount on rsrc fork, was obtained at beginning of fxn */
3725 hfs_removefile_callback(struct buf
*bp
, void *hfsmp
) {
3727 if ( !(buf_flags(bp
) & B_META
))
3728 panic("hfs: symlink bp @ %p is not marked meta-data!\n", bp
);
3730 * it's part of the current transaction, kill it.
3732 journal_kill_block(((struct hfsmount
*)hfsmp
)->jnl
, bp
);
3734 return (BUF_CLAIMED
);
3740 * Similar to hfs_vnop_remove except there are additional options.
3741 * This function may be used to remove directories if they have
3742 * lots of EA's -- note the 'allow_dirs' argument.
3744 * This function is able to delete blocks & fork data for the resource
3745 * fork even if it does not exist in core (and have a backing vnode).
3746 * It should infer the correct behavior based on the number of blocks
3747 * in the cnode and whether or not the resource fork pointer exists or
3748 * not. As a result, one only need pass in the 'vp' corresponding to the
3749 * data fork of this file (or main vnode in the case of a directory).
3750 * Passing in a resource fork will result in an error.
3752 * Because we do not create any vnodes in this function, we are not at
3753 * risk of deadlocking against ourselves by double-locking.
3755 * Requires cnode and truncate locks to be held.
3758 hfs_removefile(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
,
3759 int flags
, int skip_reserve
, int allow_dirs
,
3760 __unused
struct vnode
*rvp
, int only_unlink
)
3764 struct vnode
*rsrc_vp
= NULL
;
3765 struct hfsmount
*hfsmp
;
3766 struct cat_desc desc
;
3768 int dataforkbusy
= 0;
3769 int rsrcforkbusy
= 0;
3773 int isbigfile
= 0, defer_remove
=0, isdir
=0;
3780 /* Check if we lost a race post lookup. */
3781 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
3785 if (!hfs_valid_cnode(hfsmp
, dvp
, cnp
, cp
->c_fileid
, NULL
, &error
)) {
3789 /* Make sure a remove is permitted */
3790 if (VNODE_IS_RSRC(vp
)) {
3795 * We know it's a data fork.
3796 * Probe the cnode to see if we have a valid resource fork
3799 rsrc_vp
= cp
->c_rsrc_vp
;
3802 /* Don't allow deleting the journal or journal_info_block. */
3803 if (hfs_is_journal_file(hfsmp
, cp
)) {
3808 * Hard links require special handling.
3810 if (cp
->c_flag
& C_HARDLINK
) {
3811 if ((flags
& VNODE_REMOVE_NODELETEBUSY
) && vnode_isinuse(vp
, 0)) {
3814 /* A directory hard link with a link count of one is
3815 * treated as a regular directory. Therefore it should
3816 * only be removed using rmdir().
3818 if ((vnode_isdir(vp
) == 1) && (cp
->c_linkcount
== 1) &&
3819 (allow_dirs
== 0)) {
3822 return hfs_unlink(hfsmp
, dvp
, vp
, cnp
, skip_reserve
);
3826 /* Directories should call hfs_rmdir! (unless they have a lot of attributes) */
3827 if (vnode_isdir(vp
)) {
3828 if (allow_dirs
== 0)
3829 return (EPERM
); /* POSIX */
3832 /* Sanity check the parent ids. */
3833 if ((cp
->c_parentcnid
!= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3834 (cp
->c_parentcnid
!= dcp
->c_fileid
)) {
3838 dcp
->c_flag
|= C_DIR_MODIFICATION
;
3840 // this guy is going away so mark him as such
3841 cp
->c_flag
|= C_DELETED
;
3844 /* Remove our entry from the namei cache. */
3848 * If the caller was operating on a file (as opposed to a
3849 * directory with EAs), then we need to figure out
3850 * whether or not it has a valid resource fork vnode.
3852 * If there was a valid resource fork vnode, then we need
3853 * to use hfs_truncate to eliminate its data. If there is
3854 * no vnode, then we hold the cnode lock which would
3855 * prevent it from being created. As a result,
3856 * we can use the data deletion functions which do not
3857 * require that a cnode/vnode pair exist.
3860 /* Check if this file is being used. */
3862 dataforkbusy
= vnode_isinuse(vp
, 0);
3864 * At this point, we know that 'vp' points to the
3865 * a data fork because we checked it up front. And if
3866 * there is no rsrc fork, rsrc_vp will be NULL.
3868 if (rsrc_vp
&& (cp
->c_blocks
- VTOF(vp
)->ff_blocks
)) {
3869 rsrcforkbusy
= vnode_isinuse(rsrc_vp
, 0);
3873 /* Check if we have to break the deletion into multiple pieces. */
3875 isbigfile
= cp
->c_datafork
->ff_size
>= HFS_BIGFILE_SIZE
;
3877 /* Check if the file has xattrs. If it does we'll have to delete them in
3878 individual transactions in case there are too many */
3879 if ((hfsmp
->hfs_attribute_vp
!= NULL
) &&
3880 (cp
->c_attr
.ca_recflags
& kHFSHasAttributesMask
) != 0) {
3884 /* If we are explicitly told to only unlink item and move to hidden dir, then do it */
3890 * Carbon semantics prohibit deleting busy files.
3891 * (enforced when VNODE_REMOVE_NODELETEBUSY is requested)
3893 if (dataforkbusy
|| rsrcforkbusy
) {
3894 if ((flags
& VNODE_REMOVE_NODELETEBUSY
) ||
3895 (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
== 0)) {
3902 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
3903 (void)hfs_getinoquota(cp
);
3907 * Do a ubc_setsize to indicate we need to wipe contents if:
3908 * 1) item is a regular file.
3909 * 2) Neither fork is busy AND we are not told to unlink this.
3911 * We need to check for the defer_remove since it can be set without
3912 * having a busy data or rsrc fork
3914 if (isdir
== 0 && (!dataforkbusy
|| !rsrcforkbusy
) && (defer_remove
== 0)) {
3916 * A ubc_setsize can cause a pagein so defer it
3917 * until after the cnode lock is dropped. The
3918 * cnode lock cannot be dropped/reacquired here
3919 * since we might already hold the journal lock.
3921 if (!dataforkbusy
&& cp
->c_datafork
->ff_blocks
&& !isbigfile
) {
3922 cp
->c_flag
|= C_NEED_DATA_SETSIZE
;
3924 if (!rsrcforkbusy
&& rsrc_vp
) {
3925 cp
->c_flag
|= C_NEED_RSRC_SETSIZE
;
3929 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
3934 // XXXdbg - if we're journaled, kill any dirty symlink buffers
3935 if (hfsmp
->jnl
&& vnode_islnk(vp
) && (defer_remove
== 0)) {
3936 buf_iterate(vp
, hfs_removefile_callback
, BUF_SKIP_NONLOCKED
, (void *)hfsmp
);
3940 * Prepare to truncate any non-busy forks. Busy forks will
3941 * get truncated when their vnode goes inactive.
3942 * Note that we will only enter this region if we
3943 * can avoid creating an open-unlinked file. If
3944 * either region is busy, we will have to create an open
3947 * Since we are deleting the file, we need to stagger the runtime
3948 * modifications to do things in such a way that a crash won't
3949 * result in us getting overlapped extents or any other
3950 * bad inconsistencies. As such, we call prepare_release_storage
3951 * which updates the UBC, updates quota information, and releases
3952 * any loaned blocks that belong to this file. No actual
3953 * truncation or bitmap manipulation is done until *AFTER*
3954 * the catalog record is removed.
3956 if (isdir
== 0 && (!dataforkbusy
&& !rsrcforkbusy
) && (only_unlink
== 0)) {
3958 if (!dataforkbusy
&& !isbigfile
&& cp
->c_datafork
->ff_blocks
!= 0) {
3960 error
= hfs_prepare_release_storage (hfsmp
, vp
);
3968 * If the resource fork vnode does not exist, we can skip this step.
3970 if (!rsrcforkbusy
&& rsrc_vp
) {
3971 error
= hfs_prepare_release_storage (hfsmp
, rsrc_vp
);
3980 * Protect against a race with rename by using the component
3981 * name passed in and parent id from dvp (instead of using
3982 * the cp->c_desc which may have changed). Also, be aware that
3983 * because we allow directories to be passed in, we need to special case
3984 * this temporary descriptor in case we were handed a directory.
3987 desc
.cd_flags
= CD_ISDIR
;
3992 desc
.cd_encoding
= cp
->c_desc
.cd_encoding
;
3993 desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
3994 desc
.cd_namelen
= cnp
->cn_namelen
;
3995 desc
.cd_parentcnid
= dcp
->c_fileid
;
3996 desc
.cd_hint
= cp
->c_desc
.cd_hint
;
3997 desc
.cd_cnid
= cp
->c_cnid
;
4001 * There are two cases to consider:
4002 * 1. File/Dir is busy/big/defer_remove ==> move/rename the file/dir
4003 * 2. File is not in use ==> remove the file
4005 * We can get a directory in case 1 because it may have had lots of attributes,
4006 * which need to get removed here.
4008 if (dataforkbusy
|| rsrcforkbusy
|| isbigfile
|| defer_remove
) {
4010 struct cat_desc to_desc
;
4011 struct cat_desc todir_desc
;
4014 * Orphan this file or directory (move to hidden directory).
4015 * Again, we need to take care that we treat directories as directories,
4016 * and files as files. Because directories with attributes can be passed in
4017 * check to make sure that we have a directory or a file before filling in the
4018 * temporary descriptor's flags. We keep orphaned directories AND files in
4019 * the FILE_HARDLINKS private directory since we're generalizing over all
4020 * orphaned filesystem objects.
4022 bzero(&todir_desc
, sizeof(todir_desc
));
4023 todir_desc
.cd_parentcnid
= 2;
4025 MAKE_DELETED_NAME(delname
, sizeof(delname
), cp
->c_fileid
);
4026 bzero(&to_desc
, sizeof(to_desc
));
4027 to_desc
.cd_nameptr
= (const u_int8_t
*)delname
;
4028 to_desc
.cd_namelen
= strlen(delname
);
4029 to_desc
.cd_parentcnid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
4031 to_desc
.cd_flags
= CD_ISDIR
;
4034 to_desc
.cd_flags
= 0;
4036 to_desc
.cd_cnid
= cp
->c_cnid
;
4038 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4039 if (!skip_reserve
) {
4040 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
, NULL
, 0))) {
4041 hfs_systemfile_unlock(hfsmp
, lockflags
);
4046 error
= cat_rename(hfsmp
, &desc
, &todir_desc
,
4047 &to_desc
, (struct cat_desc
*)NULL
);
4050 hfsmp
->hfs_private_attr
[FILE_HARDLINKS
].ca_entries
++;
4052 INC_FOLDERCOUNT(hfsmp
, hfsmp
->hfs_private_attr
[FILE_HARDLINKS
]);
4054 (void) cat_update(hfsmp
, &hfsmp
->hfs_private_desc
[FILE_HARDLINKS
],
4055 &hfsmp
->hfs_private_attr
[FILE_HARDLINKS
], NULL
, NULL
);
4057 /* Update the parent directory */
4058 if (dcp
->c_entries
> 0)
4061 DEC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
4063 dcp
->c_dirchangecnt
++;
4064 hfs_incr_gencount(dcp
);
4066 dcp
->c_ctime
= tv
.tv_sec
;
4067 dcp
->c_mtime
= tv
.tv_sec
;
4068 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
4070 /* Update the file or directory's state */
4071 cp
->c_flag
|= C_DELETED
;
4072 cp
->c_ctime
= tv
.tv_sec
;
4074 (void) cat_update(hfsmp
, &to_desc
, &cp
->c_attr
, NULL
, NULL
);
4076 hfs_systemfile_unlock(hfsmp
, lockflags
);
4083 * Nobody is using this item; we can safely remove everything.
4085 struct filefork
*temp_rsrc_fork
= NULL
;
4088 int blksize
= hfsmp
->blockSize
;
4090 u_int32_t fileid
= cp
->c_fileid
;
4093 * Figure out if we need to read the resource fork data into
4094 * core before wiping out the catalog record.
4096 * 1) Must not be a directory
4097 * 2) cnode's c_rsrcfork ptr must be NULL.
4098 * 3) rsrc fork must have actual blocks
4100 if ((isdir
== 0) && (cp
->c_rsrcfork
== NULL
) &&
4101 (cp
->c_blocks
- VTOF(vp
)->ff_blocks
)) {
4103 * The resource fork vnode & filefork did not exist.
4104 * Create a temporary one for use in this function only.
4106 MALLOC_ZONE (temp_rsrc_fork
, struct filefork
*, sizeof (struct filefork
), M_HFSFORK
, M_WAITOK
);
4107 bzero(temp_rsrc_fork
, sizeof(struct filefork
));
4108 temp_rsrc_fork
->ff_cp
= cp
;
4109 rl_init(&temp_rsrc_fork
->ff_invalidranges
);
4112 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
| SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
4114 /* Look up the resource fork first, if necessary */
4115 if (temp_rsrc_fork
) {
4116 error
= cat_lookup (hfsmp
, &desc
, 1, 0, (struct cat_desc
*) NULL
,
4117 (struct cat_attr
*) NULL
, &temp_rsrc_fork
->ff_data
, NULL
);
4119 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
4120 hfs_systemfile_unlock (hfsmp
, lockflags
);
4125 if (!skip_reserve
) {
4126 if ((error
= cat_preflight(hfsmp
, CAT_DELETE
, NULL
, 0))) {
4127 if (temp_rsrc_fork
) {
4128 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
4130 hfs_systemfile_unlock(hfsmp
, lockflags
);
4135 error
= cat_delete(hfsmp
, &desc
, &cp
->c_attr
);
4137 if (error
&& error
!= ENXIO
&& error
!= ENOENT
) {
4138 printf("hfs_removefile: deleting file %s (id=%d) vol=%s err=%d\n",
4139 cp
->c_desc
.cd_nameptr
, cp
->c_attr
.ca_fileid
, hfsmp
->vcbVN
, error
);
4143 /* Update the parent directory */
4144 if (dcp
->c_entries
> 0)
4146 dcp
->c_dirchangecnt
++;
4147 hfs_incr_gencount(dcp
);
4149 dcp
->c_ctime
= tv
.tv_sec
;
4150 dcp
->c_mtime
= tv
.tv_sec
;
4151 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
4153 hfs_systemfile_unlock(hfsmp
, lockflags
);
4156 if (temp_rsrc_fork
) {
4157 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
4163 * Now that we've wiped out the catalog record, the file effectively doesn't
4164 * exist anymore. So update the quota records to reflect the loss of the
4165 * data fork and the resource fork.
4168 if (cp
->c_datafork
->ff_blocks
> 0) {
4169 savedbytes
= ((off_t
)cp
->c_datafork
->ff_blocks
* (off_t
)blksize
);
4170 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
4174 * We may have just deleted the catalog record for a resource fork even
4175 * though it did not exist in core as a vnode. However, just because there
4176 * was a resource fork pointer in the cnode does not mean that it had any blocks.
4178 if (temp_rsrc_fork
|| cp
->c_rsrcfork
) {
4179 if (cp
->c_rsrcfork
) {
4180 if (cp
->c_rsrcfork
->ff_blocks
> 0) {
4181 savedbytes
= ((off_t
)cp
->c_rsrcfork
->ff_blocks
* (off_t
)blksize
);
4182 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
4186 /* we must have used a temporary fork */
4187 savedbytes
= ((off_t
)temp_rsrc_fork
->ff_blocks
* (off_t
)blksize
);
4188 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
4192 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
4193 (void)hfs_chkiq(cp
, -1, NOCRED
, 0);
4198 * If we didn't get any errors deleting the catalog entry, then go ahead
4199 * and release the backing store now. The filefork pointers are still valid.
4201 if (temp_rsrc_fork
) {
4202 error
= hfs_release_storage (hfsmp
, cp
->c_datafork
, temp_rsrc_fork
, fileid
);
4205 /* if cp->c_rsrcfork == NULL, hfs_release_storage will skip over it. */
4206 error
= hfs_release_storage (hfsmp
, cp
->c_datafork
, cp
->c_rsrcfork
, fileid
);
4210 * If we encountered an error updating the extents and bitmap,
4211 * mark the volume inconsistent. At this point, the catalog record has
4212 * already been deleted, so we can't recover it at this point. We need
4213 * to proceed and update the volume header and mark the cnode C_NOEXISTS.
4214 * The subsequent fsck should be able to recover the free space for us.
4216 hfs_mark_inconsistent(hfsmp
, HFS_OP_INCOMPLETE
);
4219 /* reset update_vh to 0, since hfs_release_storage should have done it for us */
4223 /* Get rid of the temporary rsrc fork */
4224 if (temp_rsrc_fork
) {
4225 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
4228 cp
->c_flag
|= C_NOEXISTS
;
4229 cp
->c_flag
&= ~C_DELETED
;
4231 cp
->c_touch_chgtime
= TRUE
;
4235 * We must never get a directory if we're in this else block. We could
4236 * accidentally drop the number of files in the volume header if we did.
4238 hfs_volupdate(hfsmp
, VOL_RMFILE
, (dcp
->c_cnid
== kHFSRootFolderID
));
4243 // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
4244 // we don't need to touch the document_id as it's handled by the rename code.
4245 // otherwise it's a normal remove and we need to save the document id in the
4246 // per thread struct and clear it from the cnode.
4248 struct doc_tombstone
*ut
;
4249 ut
= get_uthread_doc_tombstone();
4250 if (!error
&& !skip_reserve
&& (cp
->c_bsdflags
& UF_TRACKED
) && should_save_docid_tombstone(ut
, vp
, cnp
)) {
4252 if (ut
->t_lastop_document_id
) {
4253 clear_tombstone_docid(ut
, hfsmp
, NULL
);
4255 save_tombstone(hfsmp
, dvp
, vp
, cnp
, 1);
4261 * All done with this cnode's descriptor...
4263 * Note: all future catalog calls for this cnode must be by
4264 * fileid only. This is OK for HFS (which doesn't have file
4265 * thread records) since HFS doesn't support the removal of
4268 cat_releasedesc(&cp
->c_desc
);
4272 cp
->c_flag
&= ~C_DELETED
;
4277 * If we bailed out earlier, we may need to update the volume header
4278 * to deal with the borrowed blocks accounting.
4280 hfs_volupdate (hfsmp
, VOL_UPDATE
, 0);
4284 hfs_end_transaction(hfsmp
);
4287 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
4288 wakeup((caddr_t
)&dcp
->c_flag
);
4294 __private_extern__
void
4295 replace_desc(struct cnode
*cp
, struct cat_desc
*cdp
)
4297 // fixes 4348457 and 4463138
4298 if (&cp
->c_desc
== cdp
) {
4302 /* First release allocated name buffer */
4303 if (cp
->c_desc
.cd_flags
& CD_HASBUF
&& cp
->c_desc
.cd_nameptr
!= 0) {
4304 const u_int8_t
*name
= cp
->c_desc
.cd_nameptr
;
4306 cp
->c_desc
.cd_nameptr
= 0;
4307 cp
->c_desc
.cd_namelen
= 0;
4308 cp
->c_desc
.cd_flags
&= ~CD_HASBUF
;
4309 vfs_removename((const char *)name
);
4311 bcopy(cdp
, &cp
->c_desc
, sizeof(cp
->c_desc
));
4313 /* Cnode now owns the name buffer */
4314 cdp
->cd_nameptr
= 0;
4315 cdp
->cd_namelen
= 0;
4316 cdp
->cd_flags
&= ~CD_HASBUF
;
4323 * The VFS layer guarantees that:
4324 * - source and destination will either both be directories, or
4325 * both not be directories.
4326 * - all the vnodes are from the same file system
4328 * When the target is a directory, HFS must ensure that its empty.
4330 * Note that this function requires up to 6 vnodes in order to work properly
4331 * if it is operating on files (and not on directories). This is because only
4332 * files can have resource forks, and we now require iocounts to be held on the
4333 * vnodes corresponding to the resource forks (if applicable) as well as
4334 * the files or directories undergoing rename. The problem with not holding
4335 * iocounts on the resource fork vnodes is that it can lead to a deadlock
4336 * situation: The rsrc fork of the source file may be recycled and reclaimed
4337 * in order to provide a vnode for the destination file's rsrc fork. Since
4338 * data and rsrc forks share the same cnode, we'd eventually try to lock the
4339 * source file's cnode in order to sync its rsrc fork to disk, but it's already
4340 * been locked. By taking the rsrc fork vnodes up front we ensure that they
4341 * cannot be recycled, and that the situation mentioned above cannot happen.
4345 struct vnop_rename_args
/* {
4346 struct vnode *a_fdvp;
4347 struct vnode *a_fvp;
4348 struct componentname *a_fcnp;
4349 struct vnode *a_tdvp;
4350 struct vnode *a_tvp;
4351 struct componentname *a_tcnp;
4352 vfs_context_t a_context;
4355 struct vnode
*tvp
= ap
->a_tvp
;
4356 struct vnode
*tdvp
= ap
->a_tdvp
;
4357 struct vnode
*fvp
= ap
->a_fvp
;
4358 struct vnode
*fdvp
= ap
->a_fdvp
;
4360 * Note that we only need locals for the target/destination's
4361 * resource fork vnode (and only if necessary). We don't care if the
4362 * source has a resource fork vnode or not.
4364 struct vnode
*tvp_rsrc
= NULLVP
;
4365 uint32_t tvp_rsrc_vid
= 0;
4366 struct componentname
*tcnp
= ap
->a_tcnp
;
4367 struct componentname
*fcnp
= ap
->a_fcnp
;
4368 struct proc
*p
= vfs_context_proc(ap
->a_context
);
4373 struct cnode
*error_cnode
;
4374 struct cat_desc from_desc
;
4375 struct cat_desc to_desc
;
4376 struct cat_desc out_desc
;
4377 struct hfsmount
*hfsmp
;
4378 cat_cookie_t cookie
;
4379 int tvp_deleted
= 0;
4380 int started_tr
= 0, got_cookie
= 0;
4381 int took_trunc_lock
= 0;
4384 time_t orig_from_ctime
, orig_to_ctime
;
4385 int emit_rename
= 1;
4386 int emit_delete
= 1;
4390 orig_from_ctime
= VTOC(fvp
)->c_ctime
;
4391 if (tvp
&& VTOC(tvp
)) {
4392 orig_to_ctime
= VTOC(tvp
)->c_ctime
;
4397 hfsmp
= VTOHFS(tdvp
);
4399 * Do special case checks here. If fvp == tvp then we need to check the
4400 * cnode with locks held.
4403 int is_hardlink
= 0;
4405 * In this case, we do *NOT* ever emit a DELETE event.
4406 * We may not necessarily emit a RENAME event
4409 if ((error
= hfs_lock(VTOC(fvp
), HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
))) {
4412 /* Check to see if the item is a hardlink or not */
4413 is_hardlink
= (VTOC(fvp
)->c_flag
& C_HARDLINK
);
4414 hfs_unlock (VTOC(fvp
));
4417 * If the item is not a hardlink, then case sensitivity must be off, otherwise
4418 * two names should not resolve to the same cnode unless they were case variants.
4423 * Hardlinks are a little trickier. We only want to emit a rename event
4424 * if the item is a hardlink, the parent directories are the same, case sensitivity
4425 * is off, and the case folded names are the same. See the fvp == tvp case below for more
4429 if ((fdvp
== tdvp
) && ((hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) == 0)) {
4430 if (hfs_namecmp((const u_int8_t
*)fcnp
->cn_nameptr
, fcnp
->cn_namelen
,
4431 (const u_int8_t
*)tcnp
->cn_nameptr
, tcnp
->cn_namelen
) == 0) {
4432 /* Then in this case only it is ok to emit a rename */
4439 /* c_bsdflags should only be assessed while holding the cnode lock.
4440 * This is not done consistently throughout the code and can result
4441 * in race. This will be fixed via rdar://12181064
4443 if (VTOC(fvp
)->c_bsdflags
& UF_TRACKED
) {
4446 check_for_tracked_file(fvp
, orig_from_ctime
, NAMESPACE_HANDLER_RENAME_OP
, NULL
);
4449 if (tvp
&& VTOC(tvp
)) {
4451 check_for_tracked_file(tvp
, orig_to_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
4456 /* When tvp exists, take the truncate lock for hfs_removefile(). */
4457 if (tvp
&& (vnode_isreg(tvp
) || vnode_islnk(tvp
))) {
4458 hfs_lock_truncate(VTOC(tvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4459 took_trunc_lock
= 1;
4463 error
= hfs_lockfour(VTOC(fdvp
), VTOC(fvp
), VTOC(tdvp
), tvp
? VTOC(tvp
) : NULL
,
4464 HFS_EXCLUSIVE_LOCK
, &error_cnode
);
4466 if (took_trunc_lock
) {
4467 hfs_unlock_truncate(VTOC(tvp
), HFS_LOCK_DEFAULT
);
4468 took_trunc_lock
= 0;
4472 * We hit an error path. If we were trying to re-acquire the locks
4473 * after coming through here once, we might have already obtained
4474 * an iocount on tvp's resource fork vnode. Drop that before dealing
4475 * with the failure. Note this is safe -- since we are in an
4476 * error handling path, we can't be holding the cnode locks.
4479 vnode_put (tvp_rsrc
);
4485 * tvp might no longer exist. If the cause of the lock failure
4486 * was tvp, then we can try again with tvp/tcp set to NULL.
4487 * This is ok because the vfs syscall will vnode_put the vnodes
4488 * after we return from hfs_vnop_rename.
4490 if ((error
== ENOENT
) && (tvp
!= NULL
) && (error_cnode
== VTOC(tvp
))) {
4496 /* If we want to reintroduce notifications for failed renames, this
4497 is the place to do it. */
4505 tcp
= tvp
? VTOC(tvp
) : NULL
;
4508 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
4511 if ((fcp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
4514 hfs_unlockfour(VTOC(fdvp
), VTOC(fvp
), VTOC(tdvp
), tvp
? VTOC(tvp
) : NULL
);
4517 if (hfs_generate_document_id(hfsmp
, &newid
) == 0) {
4518 hfs_lock(fcp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4519 ((struct FndrExtendedDirInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
4521 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
4522 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
4523 FSE_ARG_INO
, (ino64_t
)0, // src inode #
4524 FSE_ARG_INO
, (ino64_t
)fcp
->c_fileid
, // dst inode #
4525 FSE_ARG_INT32
, newid
,
4530 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
4534 // check if we're going to need to fix tcp as well. if we aren't, go back relock
4535 // everything. otherwise continue on and fix up tcp as well before relocking.
4537 if (tcp
== NULL
|| !(tcp
->c_bsdflags
& UF_TRACKED
) || ((struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16))->document_id
!= 0) {
4543 // same thing for tcp if it's set
4545 if (tcp
&& (tcp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
4549 hfs_unlockfour(VTOC(fdvp
), VTOC(fvp
), VTOC(tdvp
), tvp
? VTOC(tvp
) : NULL
);
4553 if (hfs_generate_document_id(hfsmp
, &newid
) == 0) {
4554 hfs_lock(tcp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4555 ((struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
4557 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
4558 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
4559 FSE_ARG_INO
, (ino64_t
)0, // src inode #
4560 FSE_ARG_INO
, (ino64_t
)tcp
->c_fileid
, // dst inode #
4561 FSE_ARG_INT32
, newid
,
4566 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
4569 // go back up and relock everything. next time through the if statement won't be true
4570 // and we'll skip over this block of code.
4577 * Acquire iocounts on the destination's resource fork vnode
4578 * if necessary. If dst/src are files and the dst has a resource
4579 * fork vnode, then we need to try and acquire an iocount on the rsrc vnode.
4580 * If it does not exist, then we don't care and can skip it.
4582 if ((vnode_isreg(fvp
)) || (vnode_islnk(fvp
))) {
4583 if ((tvp
) && (tcp
->c_rsrc_vp
) && (tvp_rsrc
== NULL
)) {
4584 tvp_rsrc
= tcp
->c_rsrc_vp
;
4586 * We can look at the vid here because we're holding the
4587 * cnode lock on the underlying cnode for this rsrc vnode.
4589 tvp_rsrc_vid
= vnode_vid (tvp_rsrc
);
4591 /* Unlock everything to acquire iocount on this rsrc vnode */
4592 if (took_trunc_lock
) {
4593 hfs_unlock_truncate (VTOC(tvp
), HFS_LOCK_DEFAULT
);
4594 took_trunc_lock
= 0;
4596 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
4598 if (vnode_getwithvid (tvp_rsrc
, tvp_rsrc_vid
)) {
4599 /* iocount acquisition failed. Reset fields and start over.. */
4609 /* Ensure we didn't race src or dst parent directories with rmdir. */
4610 if (fdcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
4615 if (tdcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
4621 /* Check for a race against unlink. The hfs_valid_cnode checks validate
4622 * the parent/child relationship with fdcp and tdcp, as well as the
4623 * component name of the target cnodes.
4625 if ((fcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) || !hfs_valid_cnode(hfsmp
, fdvp
, fcnp
, fcp
->c_fileid
, NULL
, &error
)) {
4630 if (tcp
&& ((tcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) || !hfs_valid_cnode(hfsmp
, tdvp
, tcnp
, tcp
->c_fileid
, NULL
, &error
))) {
4632 // hmm, the destination vnode isn't valid any more.
4633 // in this case we can just drop him and pretend he
4634 // never existed in the first place.
4636 if (took_trunc_lock
) {
4637 hfs_unlock_truncate(VTOC(tvp
), HFS_LOCK_DEFAULT
);
4638 took_trunc_lock
= 0;
4642 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
4647 // retry the locking with tvp null'ed out
4651 fdcp
->c_flag
|= C_DIR_MODIFICATION
;
4653 tdcp
->c_flag
|= C_DIR_MODIFICATION
;
4657 * Disallow renaming of a directory hard link if the source and
4658 * destination parent directories are different, or a directory whose
4659 * descendant is a directory hard link and the one of the ancestors
4660 * of the destination directory is a directory hard link.
4662 if (vnode_isdir(fvp
) && (fdvp
!= tdvp
)) {
4663 if (fcp
->c_flag
& C_HARDLINK
) {
4667 if (fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) {
4668 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
4669 if (cat_check_link_ancestry(hfsmp
, tdcp
->c_fileid
, 0)) {
4671 hfs_systemfile_unlock(hfsmp
, lockflags
);
4674 hfs_systemfile_unlock(hfsmp
, lockflags
);
4679 * The following edge case is caught here:
4680 * (to cannot be a descendent of from)
4693 if (tdcp
->c_parentcnid
== fcp
->c_fileid
) {
4699 * The following two edge cases are caught here:
4700 * (note tvp is not empty)
4713 if (tvp
&& vnode_isdir(tvp
) && (tcp
->c_entries
!= 0) && fvp
!= tvp
) {
4719 * The following edge case is caught here:
4720 * (the from child and parent are the same)
4733 * Make sure "from" vnode and its parent are changeable.
4735 if ((fcp
->c_bsdflags
& (IMMUTABLE
| APPEND
)) || (fdcp
->c_bsdflags
& APPEND
)) {
4741 * If the destination parent directory is "sticky", then the
4742 * user must own the parent directory, or the destination of
4743 * the rename, otherwise the destination may not be changed
4744 * (except by root). This implements append-only directories.
4746 * Note that checks for immutable and write access are done
4747 * by the call to hfs_removefile.
4749 if (tvp
&& (tdcp
->c_mode
& S_ISTXT
) &&
4750 (suser(vfs_context_ucred(tcnp
->cn_context
), NULL
)) &&
4751 (kauth_cred_getuid(vfs_context_ucred(tcnp
->cn_context
)) != tdcp
->c_uid
) &&
4752 (hfs_owner_rights(hfsmp
, tcp
->c_uid
, vfs_context_ucred(tcnp
->cn_context
), p
, false)) ) {
4757 /* Don't allow modification of the journal or journal_info_block */
4758 if (hfs_is_journal_file(hfsmp
, fcp
) ||
4759 (tcp
&& hfs_is_journal_file(hfsmp
, tcp
))) {
4766 (void)hfs_getinoquota(tcp
);
4768 /* Preflighting done, take fvp out of the name space. */
4771 #if CONFIG_SECLUDED_RENAME
4773 * Check for "secure" rename that imposes additional restrictions on the
4774 * source vnode. We wait until here to check in order to prevent a race
4775 * with other threads that manage to look up fvp, but their open or link
4776 * is blocked by our locks. At this point, with fvp out of the name cache,
4777 * and holding the lock on fdvp, no other thread can find fvp.
4779 * TODO: Do we need to limit these checks to regular files only?
4781 if (fcnp
->cn_flags
& CN_SECLUDE_RENAME
) {
4782 if (vnode_isdir(fvp
)) {
4788 * Neither fork of source may be open or memory mapped.
4789 * We also don't want it in use by any other system call.
4790 * The file must not have hard links.
4792 * We can't simply use vnode_isinuse() because that does not
4793 * count opens with O_EVTONLY. We don't want a malicious
4794 * process using O_EVTONLY to subvert a secluded rename.
4796 if (fcp
->c_linkcount
!= 1) {
4801 if (fcp
->c_rsrc_vp
&& (fcp
->c_rsrc_vp
->v_usecount
> 0 ||
4802 fcp
->c_rsrc_vp
->v_iocount
> 0)) {
4803 /* Resource fork is in use (including O_EVTONLY) */
4807 if (fcp
->c_vp
&& (fcp
->c_vp
->v_usecount
> (fcp
->c_rsrc_vp
? 1 : 0) ||
4808 fcp
->c_vp
->v_iocount
> 1)) {
4810 * Data fork is in use, including O_EVTONLY, but not
4811 * including a reference from the resource fork.
4819 bzero(&from_desc
, sizeof(from_desc
));
4820 from_desc
.cd_nameptr
= (const u_int8_t
*)fcnp
->cn_nameptr
;
4821 from_desc
.cd_namelen
= fcnp
->cn_namelen
;
4822 from_desc
.cd_parentcnid
= fdcp
->c_fileid
;
4823 from_desc
.cd_flags
= fcp
->c_desc
.cd_flags
& ~(CD_HASBUF
| CD_DECOMPOSED
);
4824 from_desc
.cd_cnid
= fcp
->c_cnid
;
4826 bzero(&to_desc
, sizeof(to_desc
));
4827 to_desc
.cd_nameptr
= (const u_int8_t
*)tcnp
->cn_nameptr
;
4828 to_desc
.cd_namelen
= tcnp
->cn_namelen
;
4829 to_desc
.cd_parentcnid
= tdcp
->c_fileid
;
4830 to_desc
.cd_flags
= fcp
->c_desc
.cd_flags
& ~(CD_HASBUF
| CD_DECOMPOSED
);
4831 to_desc
.cd_cnid
= fcp
->c_cnid
;
4833 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
4838 /* hfs_vnop_link() and hfs_vnop_rename() set kHFSHasChildLinkMask
4839 * inside a journal transaction and without holding a cnode lock.
4840 * As setting of this bit depends on being in journal transaction for
4841 * concurrency, check this bit again after we start journal transaction for rename
4842 * to ensure that this directory does not have any descendant that
4843 * is a directory hard link.
4845 if (vnode_isdir(fvp
) && (fdvp
!= tdvp
)) {
4846 if (fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) {
4847 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
4848 if (cat_check_link_ancestry(hfsmp
, tdcp
->c_fileid
, 0)) {
4850 hfs_systemfile_unlock(hfsmp
, lockflags
);
4853 hfs_systemfile_unlock(hfsmp
, lockflags
);
4857 // if it's a hardlink then re-lookup the name so
4858 // that we get the correct cnid in from_desc (see
4859 // the comment in hfs_removefile for more details)
4861 if (fcp
->c_flag
& C_HARDLINK
) {
4862 struct cat_desc tmpdesc
;
4865 tmpdesc
.cd_nameptr
= (const u_int8_t
*)fcnp
->cn_nameptr
;
4866 tmpdesc
.cd_namelen
= fcnp
->cn_namelen
;
4867 tmpdesc
.cd_parentcnid
= fdcp
->c_fileid
;
4868 tmpdesc
.cd_hint
= fdcp
->c_childhint
;
4869 tmpdesc
.cd_flags
= fcp
->c_desc
.cd_flags
& CD_ISDIR
;
4870 tmpdesc
.cd_encoding
= 0;
4872 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
4874 if (cat_lookup(hfsmp
, &tmpdesc
, 0, 0, NULL
, NULL
, NULL
, &real_cnid
) != 0) {
4875 hfs_systemfile_unlock(hfsmp
, lockflags
);
4879 // use the real cnid instead of whatever happened to be there
4880 from_desc
.cd_cnid
= real_cnid
;
4881 hfs_systemfile_unlock(hfsmp
, lockflags
);
4885 * Reserve some space in the Catalog file.
4887 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
+ CAT_DELETE
, &cookie
, p
))) {
4893 * If the destination exists then it may need to be removed.
4895 * Due to HFS's locking system, we should always move the
4896 * existing 'tvp' element to the hidden directory in hfs_vnop_rename.
4897 * Because the VNOP_LOOKUP call enters and exits the filesystem independently
4898 * of the actual vnop that it was trying to do (stat, link, readlink),
4899 * we must release the cnode lock of that element during the interim to
4900 * do MAC checking, vnode authorization, and other calls. In that time,
4901 * the item can be deleted (or renamed over). However, only in the rename
4902 * case is it inappropriate to return ENOENT from any of those calls. Either
4903 * the call should return information about the old element (stale), or get
4904 * information about the newer element that we are about to write in its place.
4906 * HFS lookup has been modified to detect a rename and re-drive its
4907 * lookup internally. For other calls that have already succeeded in
4908 * their lookup call and are waiting to acquire the cnode lock in order
4909 * to proceed, that cnode lock will not fail due to the cnode being marked
4910 * C_NOEXISTS, because it won't have been marked as such. It will only
4911 * have C_DELETED. Thus, they will simply act on the stale open-unlinked
4912 * element. All future callers will get the new element.
4914 * To implement this behavior, we pass the "only_unlink" argument to
4915 * hfs_removefile and hfs_removedir. This will result in the vnode acting
4916 * as though it is open-unlinked. Additionally, when we are done moving the
4917 * element to the hidden directory, we vnode_recycle the target so that it is
4918 * reclaimed as soon as possible. Reclaim and inactive are both
4919 * capable of clearing out unused blocks for an open-unlinked file or dir.
4923 // if the destination has a document id, we need to preserve it
4926 uint32_t document_id
;
4927 struct FndrExtendedDirInfo
*ffip
= (struct FndrExtendedDirInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16);
4928 struct FndrExtendedDirInfo
*tfip
= (struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16);
4930 if (ffip
->document_id
&& tfip
->document_id
) {
4931 // both documents are tracked. only save a tombstone from tcp and do nothing else.
4932 save_tombstone(hfsmp
, tdvp
, tvp
, tcnp
, 0);
4934 struct doc_tombstone
*ut
;
4935 ut
= get_uthread_doc_tombstone();
4937 document_id
= tfip
->document_id
;
4938 tfip
->document_id
= 0;
4940 if (document_id
!= 0) {
4941 // clear UF_TRACKED as well since tcp is now no longer tracked
4942 tcp
->c_bsdflags
&= ~UF_TRACKED
;
4943 (void) cat_update(hfsmp
, &tcp
->c_desc
, &tcp
->c_attr
, NULL
, NULL
);
4946 if (ffip
->document_id
== 0 && document_id
!= 0) {
4947 // printf("RENAME: preserving doc-id %d onto %s (from ino %d, to ino %d)\n", document_id, tcp->c_desc.cd_nameptr, tcp->c_desc.cd_cnid, fcp->c_desc.cd_cnid);
4948 fcp
->c_bsdflags
|= UF_TRACKED
;
4949 ffip
->document_id
= document_id
;
4951 (void) cat_update(hfsmp
, &fcp
->c_desc
, &fcp
->c_attr
, NULL
, NULL
);
4953 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
4954 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
4955 FSE_ARG_INO
, (ino64_t
)tcp
->c_fileid
, // src inode #
4956 FSE_ARG_INO
, (ino64_t
)fcp
->c_fileid
, // dst inode #
4957 FSE_ARG_INT32
, (uint32_t)ffip
->document_id
,
4960 } else if ((fcp
->c_bsdflags
& UF_TRACKED
) && should_save_docid_tombstone(ut
, fvp
, fcnp
)) {
4962 if (ut
->t_lastop_document_id
) {
4963 clear_tombstone_docid(ut
, hfsmp
, NULL
);
4965 save_tombstone(hfsmp
, fdvp
, fvp
, fcnp
, 0);
4967 //printf("RENAME: (dest-exists): saving tombstone doc-id %lld @ %s (ino %d)\n",
4968 // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
4974 * When fvp matches tvp they could be case variants
4975 * or matching hard links.
4978 if (!(fcp
->c_flag
& C_HARDLINK
)) {
4980 * If they're not hardlinks, then fvp == tvp must mean we
4981 * are using case-insensitive HFS because case-sensitive would
4982 * not use the same vnode for both. In this case we just update
4983 * the catalog for: a -> A
4985 goto skip_rm
; /* simple case variant */
4988 /* For all cases below, we must be using hardlinks */
4989 else if ((fdvp
!= tdvp
) ||
4990 (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
)) {
4992 * If the parent directories are not the same, AND the two items
4993 * are hardlinks, posix says to do nothing:
4994 * dir1/fred <-> dir2/bob and the op was mv dir1/fred -> dir2/bob
4995 * We just return 0 in this case.
4997 * If case sensitivity is on, and we are using hardlinks
4998 * then renaming is supposed to do nothing.
4999 * dir1/fred <-> dir2/FRED, and op == mv dir1/fred -> dir2/FRED
5001 goto out
; /* matching hardlinks, nothing to do */
5003 } else if (hfs_namecmp((const u_int8_t
*)fcnp
->cn_nameptr
, fcnp
->cn_namelen
,
5004 (const u_int8_t
*)tcnp
->cn_nameptr
, tcnp
->cn_namelen
) == 0) {
5006 * If we get here, then the following must be true:
5007 * a) We are running case-insensitive HFS+.
5008 * b) Both paths 'fvp' and 'tvp' are in the same parent directory.
5009 * c) the two names are case-variants of each other.
5011 * In this case, we are really only dealing with a single catalog record
5012 * whose name is being updated.
5014 * op is dir1/fred -> dir1/FRED
5016 * We need to special case the name matching, because if
5017 * dir1/fred <-> dir1/bob were the two links, and the
5018 * op was dir1/fred -> dir1/bob
5019 * That would fail/do nothing.
5021 goto skip_rm
; /* case-variant hardlink in the same dir */
5023 goto out
; /* matching hardlink, nothing to do */
5028 if (vnode_isdir(tvp
)) {
5030 * hfs_removedir will eventually call hfs_removefile on the directory
5031 * we're working on, because only hfs_removefile does the renaming of the
5032 * item to the hidden directory. The directory will stay around in the
5033 * hidden directory with C_DELETED until it gets an inactive or a reclaim.
5034 * That way, we can destroy all of the EAs as needed and allow new ones to be
5037 error
= hfs_removedir(tdvp
, tvp
, tcnp
, HFSRM_SKIP_RESERVE
, 1);
5040 error
= hfs_removefile(tdvp
, tvp
, tcnp
, 0, HFSRM_SKIP_RESERVE
, 0, NULL
, 1);
5043 * If the destination file had a resource fork vnode, then we need to get rid of
5044 * its blocks when there are no more references to it. Because the call to
5045 * hfs_removefile above always open-unlinks things, we need to force an inactive/reclaim
5046 * on the resource fork vnode, in order to prevent block leaks. Otherwise,
5047 * the resource fork vnode could prevent the data fork vnode from going out of scope
5048 * because it holds a v_parent reference on it. So we mark it for termination
5049 * with a call to vnode_recycle. hfs_vnop_reclaim has been modified so that it
5050 * can clean up the blocks of open-unlinked files and resource forks.
5052 * We can safely call vnode_recycle on the resource fork because we took an iocount
5053 * reference on it at the beginning of the function.
5056 if ((error
== 0) && (tcp
->c_flag
& C_DELETED
) && (tvp_rsrc
)) {
5057 vnode_recycle(tvp_rsrc
);
5067 /* Mark 'tcp' as being deleted due to a rename */
5068 tcp
->c_flag
|= C_RENAMED
;
5071 * Aggressively mark tvp/tcp for termination to ensure that we recover all blocks
5072 * as quickly as possible.
5076 struct doc_tombstone
*ut
;
5077 ut
= get_uthread_doc_tombstone();
5080 // There is nothing at the destination. If the file being renamed is
5081 // tracked, save a "tombstone" of the document_id. If the file is
5082 // not a tracked file, then see if it needs to inherit a tombstone.
5084 // NOTE: we do not save a tombstone if the file being renamed begins
5085 // with "atmp" which is done to work-around AutoCad's bizarre
5086 // 5-step un-safe save behavior
5088 if (fcp
->c_bsdflags
& UF_TRACKED
) {
5089 if (should_save_docid_tombstone(ut
, fvp
, fcnp
)) {
5090 save_tombstone(hfsmp
, fdvp
, fvp
, fcnp
, 0);
5092 //printf("RENAME: (no dest): saving tombstone doc-id %lld @ %s (ino %d)\n",
5093 // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
5095 // intentionally do nothing
5097 } else if ( ut
->t_lastop_document_id
!= 0
5098 && tdvp
== ut
->t_lastop_parent
5099 && vnode_vid(tdvp
) == ut
->t_lastop_parent_vid
5100 && strcmp((char *)ut
->t_lastop_filename
, (char *)tcnp
->cn_nameptr
) == 0) {
5102 //printf("RENAME: %s (ino %d) inheriting doc-id %lld\n", tcnp->cn_nameptr, fcp->c_desc.cd_cnid, ut->t_lastop_document_id);
5103 struct FndrExtendedFileInfo
*fip
= (struct FndrExtendedFileInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16);
5104 fcp
->c_bsdflags
|= UF_TRACKED
;
5105 fip
->document_id
= ut
->t_lastop_document_id
;
5106 cat_update(hfsmp
, &fcp
->c_desc
, &fcp
->c_attr
, NULL
, NULL
);
5108 clear_tombstone_docid(ut
, hfsmp
, fcp
); // will send the docid-changed fsevent
5110 } else if (ut
->t_lastop_document_id
&& should_save_docid_tombstone(ut
, fvp
, fcnp
) && should_save_docid_tombstone(ut
, tvp
, tcnp
)) {
5111 // no match, clear the tombstone
5112 //printf("RENAME: clearing the tombstone %lld @ %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
5113 clear_tombstone_docid(ut
, hfsmp
, NULL
);
5119 * All done with tvp and fvp.
5121 * We also jump to this point if there was no destination observed during lookup and namei.
5122 * However, because only iocounts are held at the VFS layer, there is nothing preventing a
5123 * competing thread from racing us and creating a file or dir at the destination of this rename
5124 * operation. If this occurs, it may cause us to get a spurious EEXIST out of the cat_rename
5125 * call below. To preserve rename's atomicity, we need to signal VFS to re-drive the
5126 * namei/lookup and restart the rename operation. EEXIST is an allowable errno to be bubbled
5127 * out of the rename syscall, but not for this reason, since it is a synonym errno for ENOTEMPTY.
5128 * To signal VFS, we return ERECYCLE (which is also used for lookup restarts). This errno
5129 * will be swallowed and it will restart the operation.
5132 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
5133 error
= cat_rename(hfsmp
, &from_desc
, &tdcp
->c_desc
, &to_desc
, &out_desc
);
5134 hfs_systemfile_unlock(hfsmp
, lockflags
);
5137 if (error
== EEXIST
) {
5143 /* Invalidate negative cache entries in the destination directory */
5144 if (tdcp
->c_flag
& C_NEG_ENTRIES
) {
5145 cache_purge_negatives(tdvp
);
5146 tdcp
->c_flag
&= ~C_NEG_ENTRIES
;
5149 /* Update cnode's catalog descriptor */
5150 replace_desc(fcp
, &out_desc
);
5151 fcp
->c_parentcnid
= tdcp
->c_fileid
;
5154 /* Now indicate this cnode needs to have date-added written to the finderinfo */
5155 fcp
->c_flag
|= C_NEEDS_DATEADDED
;
5156 (void) hfs_update (fvp
, 0);
5159 hfs_volupdate(hfsmp
, vnode_isdir(fvp
) ? VOL_RMDIR
: VOL_RMFILE
,
5160 (fdcp
->c_cnid
== kHFSRootFolderID
));
5161 hfs_volupdate(hfsmp
, vnode_isdir(fvp
) ? VOL_MKDIR
: VOL_MKFILE
,
5162 (tdcp
->c_cnid
== kHFSRootFolderID
));
5164 /* Update both parent directories. */
5166 if (vnode_isdir(fvp
)) {
5167 /* If the source directory has directory hard link
5168 * descendants, set the kHFSHasChildLinkBit in the
5169 * destination parent hierarchy
5171 if ((fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) &&
5172 !(tdcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
)) {
5174 tdcp
->c_attr
.ca_recflags
|= kHFSHasChildLinkMask
;
5176 error
= cat_set_childlinkbit(hfsmp
, tdcp
->c_parentcnid
);
5178 printf ("hfs_vnop_rename: error updating parent chain for %u\n", tdcp
->c_cnid
);
5182 INC_FOLDERCOUNT(hfsmp
, tdcp
->c_attr
);
5183 DEC_FOLDERCOUNT(hfsmp
, fdcp
->c_attr
);
5186 tdcp
->c_dirchangecnt
++;
5187 tdcp
->c_flag
|= C_MODIFIED
;
5188 hfs_incr_gencount(tdcp
);
5190 if (fdcp
->c_entries
> 0)
5192 fdcp
->c_dirchangecnt
++;
5193 fdcp
->c_flag
|= C_MODIFIED
;
5194 fdcp
->c_touch_chgtime
= TRUE
;
5195 fdcp
->c_touch_modtime
= TRUE
;
5197 if (ISSET(fcp
->c_flag
, C_HARDLINK
)) {
5198 hfs_relorigin(fcp
, fdcp
->c_fileid
);
5199 if (fdcp
->c_fileid
!= fdcp
->c_cnid
)
5200 hfs_relorigin(fcp
, fdcp
->c_cnid
);
5203 (void) hfs_update(fdvp
, 0);
5205 hfs_incr_gencount(fdcp
);
5207 tdcp
->c_childhint
= out_desc
.cd_hint
; /* Cache directory's location */
5208 tdcp
->c_touch_chgtime
= TRUE
;
5209 tdcp
->c_touch_modtime
= TRUE
;
5211 (void) hfs_update(tdvp
, 0);
5213 /* Update the vnode's name now that the rename has completed. */
5214 vnode_update_identity(fvp
, tdvp
, tcnp
->cn_nameptr
, tcnp
->cn_namelen
,
5215 tcnp
->cn_hash
, (VNODE_UPDATE_PARENT
| VNODE_UPDATE_NAME
));
5218 * At this point, we may have a resource fork vnode attached to the
5219 * 'from' vnode. If it exists, we will want to update its name, because
5220 * it contains the old name + _PATH_RSRCFORKSPEC. ("/..namedfork/rsrc").
5222 * Note that the only thing we need to update here is the name attached to
5223 * the vnode, since a resource fork vnode does not have a separate resource
5224 * cnode -- it's still 'fcp'.
5226 if (fcp
->c_rsrc_vp
) {
5227 char* rsrc_path
= NULL
;
5230 /* Create a new temporary buffer that's going to hold the new name */
5231 MALLOC_ZONE (rsrc_path
, caddr_t
, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
5232 len
= snprintf (rsrc_path
, MAXPATHLEN
, "%s%s", tcnp
->cn_nameptr
, _PATH_RSRCFORKSPEC
);
5233 len
= MIN(len
, MAXPATHLEN
);
5236 * vnode_update_identity will do the following for us:
5237 * 1) release reference on the existing rsrc vnode's name.
5238 * 2) copy/insert new name into the name cache
5239 * 3) attach the new name to the resource vnode
5240 * 4) update the vnode's vid
5242 vnode_update_identity (fcp
->c_rsrc_vp
, fvp
, rsrc_path
, len
, 0, (VNODE_UPDATE_NAME
| VNODE_UPDATE_CACHE
));
5244 /* Free the memory associated with the resource fork's name */
5245 FREE_ZONE (rsrc_path
, MAXPATHLEN
, M_NAMEI
);
5249 cat_postflight(hfsmp
, &cookie
, p
);
5252 hfs_end_transaction(hfsmp
);
5255 fdcp
->c_flag
&= ~C_DIR_MODIFICATION
;
5256 wakeup((caddr_t
)&fdcp
->c_flag
);
5258 tdcp
->c_flag
&= ~C_DIR_MODIFICATION
;
5259 wakeup((caddr_t
)&tdcp
->c_flag
);
5262 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
5264 if (took_trunc_lock
) {
5265 hfs_unlock_truncate(VTOC(tvp
), HFS_LOCK_DEFAULT
);
5268 /* Now vnode_put the resource forks vnodes if necessary */
5270 vnode_put(tvp_rsrc
);
5274 /* After tvp is removed the only acceptable error is EIO */
5275 if (error
&& tvp_deleted
)
5278 /* If we want to reintroduce notifications for renames, this is the
5289 hfs_vnop_mkdir(struct vnop_mkdir_args
*ap
)
5291 /***** HACK ALERT ********/
5292 ap
->a_cnp
->cn_flags
|= MAKEENTRY
;
5293 return hfs_makenode(ap
->a_dvp
, ap
->a_vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
);
5298 * Create a symbolic link.
5301 hfs_vnop_symlink(struct vnop_symlink_args
*ap
)
5303 struct vnode
**vpp
= ap
->a_vpp
;
5304 struct vnode
*dvp
= ap
->a_dvp
;
5305 struct vnode
*vp
= NULL
;
5306 struct cnode
*cp
= NULL
;
5307 struct hfsmount
*hfsmp
;
5308 struct filefork
*fp
;
5309 struct buf
*bp
= NULL
;
5315 /* HFS standard disks don't support symbolic links */
5316 if (VTOVCB(dvp
)->vcbSigWord
!= kHFSPlusSigWord
)
5319 /* Check for empty target name */
5320 if (ap
->a_target
[0] == 0)
5323 hfsmp
= VTOHFS(dvp
);
5324 len
= strlen(ap
->a_target
);
5326 /* Check for free space */
5327 if (((u_int64_t
)hfs_freeblks(hfsmp
, 0) * (u_int64_t
)hfsmp
->blockSize
) < len
) {
5331 /* Create the vnode */
5332 ap
->a_vap
->va_mode
|= S_IFLNK
;
5333 if ((error
= hfs_makenode(dvp
, vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
))) {
5337 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
5343 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
5348 (void)hfs_getinoquota(cp
);
5351 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
5357 * Allocate space for the link.
5359 * Since we're already inside a transaction,
5361 * Don't need truncate lock since a symlink is treated as a system file.
5363 error
= hfs_truncate(vp
, len
, IO_NOZEROFILL
, 0, ap
->a_context
);
5365 /* On errors, remove the symlink file */
5368 * End the transaction so we don't re-take the cnode lock
5369 * below while inside a transaction (lock order violation).
5371 hfs_end_transaction(hfsmp
);
5373 /* hfs_removefile() requires holding the truncate lock */
5375 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
5376 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5378 if (hfs_start_transaction(hfsmp
) != 0) {
5380 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5384 (void) hfs_removefile(dvp
, vp
, ap
->a_cnp
, 0, 0, 0, NULL
, 0);
5385 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5389 /* Write the link to disk */
5390 bp
= buf_getblk(vp
, (daddr64_t
)0, roundup((int)fp
->ff_size
, hfsmp
->hfs_physical_block_size
),
5393 journal_modify_block_start(hfsmp
->jnl
, bp
);
5395 datap
= (char *)buf_dataptr(bp
);
5396 bzero(datap
, buf_size(bp
));
5397 bcopy(ap
->a_target
, datap
, len
);
5400 journal_modify_block_end(hfsmp
->jnl
, bp
, NULL
, NULL
);
5406 hfs_end_transaction(hfsmp
);
5407 if ((cp
!= NULL
) && (vp
!= NULL
)) {
5420 /* structures to hold a "." or ".." directory entry */
5421 struct hfs_stddotentry
{
5422 u_int32_t d_fileno
; /* unique file number */
5423 u_int16_t d_reclen
; /* length of this structure */
5424 u_int8_t d_type
; /* dirent file type */
5425 u_int8_t d_namlen
; /* len of filename */
5426 char d_name
[4]; /* "." or ".." */
5429 struct hfs_extdotentry
{
5430 u_int64_t d_fileno
; /* unique file number */
5431 u_int64_t d_seekoff
; /* seek offset (optional, used by servers) */
5432 u_int16_t d_reclen
; /* length of this structure */
5433 u_int16_t d_namlen
; /* len of filename */
5434 u_int8_t d_type
; /* dirent file type */
5435 u_char d_name
[3]; /* "." or ".." */
5439 struct hfs_stddotentry std
;
5440 struct hfs_extdotentry ext
;
5444 * hfs_vnop_readdir reads directory entries into the buffer pointed
5445 * to by uio, in a filesystem independent format. Up to uio_resid
5446 * bytes of data can be transferred. The data in the buffer is a
5447 * series of packed dirent structures where each one contains the
5448 * following entries:
5450 * u_int32_t d_fileno; // file number of entry
5451 * u_int16_t d_reclen; // length of this record
5452 * u_int8_t d_type; // file type
5453 * u_int8_t d_namlen; // length of string in d_name
5454 * char d_name[MAXNAMELEN+1]; // null terminated file name
5456 * The current position (uio_offset) refers to the next block of
5457 * entries. The offset can only be set to a value previously
5458 * returned by hfs_vnop_readdir or zero. This offset does not have
5459 * to match the number of bytes returned (in uio_resid).
5461 * In fact, the offset used by HFS is essentially an index (26 bits)
5462 * with a tag (6 bits). The tag is for associating the next request
5463 * with the current request. This enables us to have multiple threads
5464 * reading the directory while the directory is also being modified.
5466 * Each tag/index pair is tied to a unique directory hint. The hint
5467 * contains information (filename) needed to build the catalog b-tree
5468 * key for finding the next set of entries.
5470 * If the directory is marked as deleted-but-in-use (cp->c_flag & C_DELETED),
5471 * do NOT synthesize entries for "." and "..".
5474 hfs_vnop_readdir(ap
)
5475 struct vnop_readdir_args
/* {
5481 vfs_context_t a_context;
5484 struct vnode
*vp
= ap
->a_vp
;
5485 uio_t uio
= ap
->a_uio
;
5487 struct hfsmount
*hfsmp
;
5488 directoryhint_t
*dirhint
= NULL
;
5489 directoryhint_t localhint
;
5494 user_addr_t user_start
= 0;
5495 user_size_t user_len
= 0;
5502 cnid_t cnid_hint
= 0;
5503 int bump_valence
= 0;
5506 startoffset
= offset
= uio_offset(uio
);
5507 extended
= (ap
->a_flags
& VNODE_READDIR_EXTENDED
);
5508 nfs_cookies
= extended
&& (ap
->a_flags
& VNODE_READDIR_REQSEEKOFF
);
5510 /* Sanity check the uio data. */
5511 if (uio_iovcnt(uio
) > 1)
5514 if (VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
) {
5515 int compressed
= hfs_file_is_compressed(VTOC(vp
), 0); /* 0 == take the cnode lock */
5516 if (VTOCMP(vp
) != NULL
&& !compressed
) {
5517 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
5527 /* Note that the dirhint calls require an exclusive lock. */
5528 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
5531 /* Pick up cnid hint (if any). */
5533 cnid_hint
= (cnid_t
)(uio_offset(uio
) >> 32);
5534 uio_setoffset(uio
, uio_offset(uio
) & 0x00000000ffffffffLL
);
5535 if (cnid_hint
== INT_MAX
) { /* searching pass the last item */
5541 * Synthesize entries for "." and "..", unless the directory has
5542 * been deleted, but not closed yet (lazy delete in progress).
5544 if (offset
== 0 && !(cp
->c_flag
& C_DELETED
)) {
5545 hfs_dotentry_t dotentry
[2];
5549 struct hfs_extdotentry
*entry
= &dotentry
[0].ext
;
5551 entry
->d_fileno
= cp
->c_cnid
;
5552 entry
->d_reclen
= sizeof(struct hfs_extdotentry
);
5553 entry
->d_type
= DT_DIR
;
5554 entry
->d_namlen
= 1;
5555 entry
->d_name
[0] = '.';
5556 entry
->d_name
[1] = '\0';
5557 entry
->d_name
[2] = '\0';
5558 entry
->d_seekoff
= 1;
5561 entry
->d_fileno
= cp
->c_parentcnid
;
5562 entry
->d_reclen
= sizeof(struct hfs_extdotentry
);
5563 entry
->d_type
= DT_DIR
;
5564 entry
->d_namlen
= 2;
5565 entry
->d_name
[0] = '.';
5566 entry
->d_name
[1] = '.';
5567 entry
->d_name
[2] = '\0';
5568 entry
->d_seekoff
= 2;
5569 uiosize
= 2 * sizeof(struct hfs_extdotentry
);
5571 struct hfs_stddotentry
*entry
= &dotentry
[0].std
;
5573 entry
->d_fileno
= cp
->c_cnid
;
5574 entry
->d_reclen
= sizeof(struct hfs_stddotentry
);
5575 entry
->d_type
= DT_DIR
;
5576 entry
->d_namlen
= 1;
5577 *(int *)&entry
->d_name
[0] = 0;
5578 entry
->d_name
[0] = '.';
5581 entry
->d_fileno
= cp
->c_parentcnid
;
5582 entry
->d_reclen
= sizeof(struct hfs_stddotentry
);
5583 entry
->d_type
= DT_DIR
;
5584 entry
->d_namlen
= 2;
5585 *(int *)&entry
->d_name
[0] = 0;
5586 entry
->d_name
[0] = '.';
5587 entry
->d_name
[1] = '.';
5588 uiosize
= 2 * sizeof(struct hfs_stddotentry
);
5590 if ((error
= uiomove((caddr_t
)&dotentry
, uiosize
, uio
))) {
5597 * Intentionally avoid checking the valence here. If we
5598 * have FS corruption that reports the valence is 0, even though it
5599 * has contents, we might artificially skip over iterating
5604 // We have to lock the user's buffer here so that we won't
5605 // fault on it after we've acquired a shared lock on the
5606 // catalog file. The issue is that you can get a 3-way
5607 // deadlock if someone else starts a transaction and then
5608 // tries to lock the catalog file but can't because we're
5609 // here and we can't service our page fault because VM is
5610 // blocked trying to start a transaction as a result of
5611 // trying to free up pages for our page fault. It's messy
5612 // but it does happen on dual-processors that are paging
5613 // heavily (see radar 3082639 for more info). By locking
5614 // the buffer up-front we prevent ourselves from faulting
5615 // while holding the shared catalog file lock.
5617 // Fortunately this and hfs_search() are the only two places
5618 // currently (10/30/02) that can fault on user data with a
5619 // shared lock on the catalog file.
5621 if (hfsmp
->jnl
&& uio_isuserspace(uio
)) {
5622 user_start
= uio_curriovbase(uio
);
5623 user_len
= uio_curriovlen(uio
);
5625 if ((error
= vslock(user_start
, user_len
)) != 0) {
5630 /* Convert offset into a catalog directory index. */
5631 index
= (offset
& HFS_INDEX_MASK
) - 2;
5632 tag
= offset
& ~HFS_INDEX_MASK
;
5634 /* Lock catalog during cat_findname and cat_getdirentries. */
5635 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
5637 /* When called from NFS, try and resolve a cnid hint. */
5638 if (nfs_cookies
&& cnid_hint
!= 0) {
5639 if (cat_findname(hfsmp
, cnid_hint
, &localhint
.dh_desc
) == 0) {
5640 if ( localhint
.dh_desc
.cd_parentcnid
== cp
->c_fileid
) {
5641 localhint
.dh_index
= index
- 1;
5642 localhint
.dh_time
= 0;
5643 bzero(&localhint
.dh_link
, sizeof(localhint
.dh_link
));
5644 dirhint
= &localhint
; /* don't forget to release the descriptor */
5646 cat_releasedesc(&localhint
.dh_desc
);
5651 /* Get a directory hint (cnode must be locked exclusive) */
5652 if (dirhint
== NULL
) {
5653 dirhint
= hfs_getdirhint(cp
, ((index
- 1) & HFS_INDEX_MASK
) | tag
, 0);
5655 /* Hide tag from catalog layer. */
5656 dirhint
->dh_index
&= HFS_INDEX_MASK
;
5657 if (dirhint
->dh_index
== HFS_INDEX_MASK
) {
5658 dirhint
->dh_index
= -1;
5663 dirhint
->dh_threadhint
= cp
->c_dirthreadhint
;
5667 * If we have a non-zero index, there is a possibility that during the last
5668 * call to hfs_vnop_readdir we hit EOF for this directory. If that is the case
5669 * then we don't want to return any new entries for the caller. Just return 0
5670 * items, mark the eofflag, and bail out. Because we won't have done any work, the
5671 * code at the end of the function will release the dirhint for us.
5673 * Don't forget to unlock the catalog lock on the way out, too.
5675 if (dirhint
->dh_desc
.cd_flags
& CD_EOF
) {
5678 uio_setoffset(uio
, startoffset
);
5679 hfs_systemfile_unlock (hfsmp
, lockflags
);
5685 /* Pack the buffer with dirent entries. */
5686 error
= cat_getdirentries(hfsmp
, cp
->c_entries
, dirhint
, uio
, ap
->a_flags
, &items
, &eofflag
);
5688 if (index
== 0 && error
== 0) {
5689 cp
->c_dirthreadhint
= dirhint
->dh_threadhint
;
5692 hfs_systemfile_unlock(hfsmp
, lockflags
);
5698 /* Get index to the next item */
5701 if (items
>= (int)cp
->c_entries
) {
5706 * Detect valence FS corruption.
5708 * We are holding the cnode lock exclusive, so there should not be
5709 * anybody modifying the valence field of this cnode. If we enter
5710 * this block, that means we observed filesystem corruption, because
5711 * this directory reported a valence of 0, yet we found at least one
5712 * item. In this case, we need to minimally self-heal this
5713 * directory to prevent userland from tripping over a directory
5714 * that appears empty (getattr of valence reports 0), but actually
5717 * We'll force the cnode update at the end of the function after
5718 * completing all of the normal getdirentries steps.
5720 if ((cp
->c_entries
== 0) && (items
> 0)) {
5721 /* disk corruption */
5723 /* Mark the cnode as dirty. */
5724 cp
->c_flag
|= C_MODIFIED
;
5725 printf("hfs_vnop_readdir: repairing valence to non-zero! \n");
5730 /* Convert catalog directory index back into an offset. */
5732 tag
= (++cp
->c_dirhinttag
) << HFS_INDEX_BITS
;
5733 uio_setoffset(uio
, (index
+ 2) | tag
);
5734 dirhint
->dh_index
|= tag
;
5737 cp
->c_touch_acctime
= TRUE
;
5739 if (ap
->a_numdirent
) {
5740 if (startoffset
== 0)
5742 *ap
->a_numdirent
= items
;
5747 vsunlock(user_start
, user_len
, TRUE
);
5749 /* If we didn't do anything then go ahead and dump the hint. */
5750 if ((dirhint
!= NULL
) &&
5751 (dirhint
!= &localhint
) &&
5752 (uio_offset(uio
) == startoffset
)) {
5753 hfs_reldirhint(cp
, dirhint
);
5756 if (ap
->a_eofflag
) {
5757 *ap
->a_eofflag
= eofflag
;
5759 if (dirhint
== &localhint
) {
5760 cat_releasedesc(&localhint
.dh_desc
);
5764 /* force the update before dropping the cnode lock*/
5775 * Read contents of a symbolic link.
5778 hfs_vnop_readlink(ap
)
5779 struct vnop_readlink_args
/* {
5782 vfs_context_t a_context;
5785 struct vnode
*vp
= ap
->a_vp
;
5787 struct filefork
*fp
;
5790 if (!vnode_islnk(vp
))
5793 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
5798 /* Zero length sym links are not allowed */
5799 if (fp
->ff_size
== 0 || fp
->ff_size
> MAXPATHLEN
) {
5804 /* Cache the path so we don't waste buffer cache resources */
5805 if (fp
->ff_symlinkptr
== NULL
) {
5806 struct buf
*bp
= NULL
;
5808 MALLOC(fp
->ff_symlinkptr
, char *, fp
->ff_size
, M_TEMP
, M_WAITOK
);
5809 if (fp
->ff_symlinkptr
== NULL
) {
5813 error
= (int)buf_meta_bread(vp
, (daddr64_t
)0,
5814 roundup((int)fp
->ff_size
, VTOHFS(vp
)->hfs_physical_block_size
),
5815 vfs_context_ucred(ap
->a_context
), &bp
);
5819 if (fp
->ff_symlinkptr
) {
5820 FREE(fp
->ff_symlinkptr
, M_TEMP
);
5821 fp
->ff_symlinkptr
= NULL
;
5825 bcopy((char *)buf_dataptr(bp
), fp
->ff_symlinkptr
, (size_t)fp
->ff_size
);
5827 if (VTOHFS(vp
)->jnl
&& (buf_flags(bp
) & B_LOCKED
) == 0) {
5828 buf_markinvalid(bp
); /* data no longer needed */
5832 error
= uiomove((caddr_t
)fp
->ff_symlinkptr
, (int)fp
->ff_size
, ap
->a_uio
);
5835 * Keep track blocks read
5837 if ((VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) && (error
== 0)) {
5840 * If this file hasn't been seen since the start of
5841 * the current sampling period then start over.
5843 if (cp
->c_atime
< VTOHFS(vp
)->hfc_timebase
)
5844 VTOF(vp
)->ff_bytesread
= fp
->ff_size
;
5846 VTOF(vp
)->ff_bytesread
+= fp
->ff_size
;
5848 // if (VTOF(vp)->ff_bytesread > fp->ff_size)
5849 // cp->c_touch_acctime = TRUE;
5859 * Get configurable pathname variables.
5862 hfs_vnop_pathconf(ap
)
5863 struct vnop_pathconf_args
/* {
5867 vfs_context_t a_context;
5871 int std_hfs
= (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_STANDARD
);
5872 switch (ap
->a_name
) {
5875 *ap
->a_retval
= HFS_LINK_MAX
;
5885 *ap
->a_retval
= kHFSPlusMaxFileNameChars
; /* 255 */
5889 *ap
->a_retval
= kHFSMaxFileNameChars
; /* 31 */
5894 *ap
->a_retval
= PATH_MAX
; /* 1024 */
5897 *ap
->a_retval
= PIPE_BUF
;
5899 case _PC_CHOWN_RESTRICTED
:
5900 *ap
->a_retval
= 200112; /* _POSIX_CHOWN_RESTRICTED */
5903 *ap
->a_retval
= 200112; /* _POSIX_NO_TRUNC */
5905 case _PC_NAME_CHARS_MAX
:
5907 *ap
->a_retval
= kHFSPlusMaxFileNameChars
; /* 255 */
5911 *ap
->a_retval
= kHFSMaxFileNameChars
; /* 31 */
5915 case _PC_CASE_SENSITIVE
:
5916 if (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_CASE_SENSITIVE
)
5921 case _PC_CASE_PRESERVING
:
5924 case _PC_FILESIZEBITS
:
5925 /* number of bits to store max file size */
5935 case _PC_XATTR_SIZE_BITS
:
5936 /* Number of bits to store maximum extended attribute size */
5937 *ap
->a_retval
= HFS_XATTR_SIZE_BITS
;
5947 * Prepares a fork for cat_update by making sure ff_size and ff_blocks
5948 * are no bigger than the valid data on disk thus reducing the chance
5949 * of exposing uninitialised data in the event of a non clean unmount.
5950 * fork_buf is where to put the temporary copy if required. (It can
5953 const struct cat_fork
*
5954 hfs_prepare_fork_for_update(filefork_t
*ff
,
5955 const struct cat_fork
*cf
,
5956 struct cat_fork
*cf_buf
,
5957 uint32_t block_size
)
5965 cf_buf
= &ff
->ff_data
;
5967 off_t max_size
= ff
->ff_size
;
5969 // Check first invalid range
5970 if (!TAILQ_EMPTY(&ff
->ff_invalidranges
))
5971 max_size
= TAILQ_FIRST(&ff
->ff_invalidranges
)->rl_start
;
5973 if (!ff
->ff_unallocblocks
&& ff
->ff_size
<= max_size
)
5974 return cf
; // Nothing to do
5976 if (ff
->ff_blocks
< ff
->ff_unallocblocks
) {
5977 panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
5978 ff
->ff_blocks
, ff
->ff_unallocblocks
);
5981 struct cat_fork
*out
= cf_buf
;
5984 bcopy(cf
, out
, sizeof(*cf
));
5986 // Adjust cf_blocks for cf_vblocks
5987 out
->cf_blocks
-= out
->cf_vblocks
;
5990 * Here we trim the size with the updated cf_blocks. This is
5991 * probably unnecessary now because the invalid ranges should
5992 * catch this (but that wasn't always the case).
5994 off_t alloc_bytes
= hfs_blk_to_bytes(out
->cf_blocks
, block_size
);
5995 if (out
->cf_size
> alloc_bytes
)
5996 out
->cf_size
= alloc_bytes
;
5998 // Trim cf_size to first invalid range
5999 if (out
->cf_size
> max_size
)
6000 out
->cf_size
= max_size
;
6006 * Update a cnode's on-disk metadata.
6008 * The cnode must be locked exclusive. See declaration for possible
6012 hfs_update(struct vnode
*vp
, int options
)
6014 struct cnode
*cp
= VTOC(vp
);
6016 const struct cat_fork
*dataforkp
= NULL
;
6017 const struct cat_fork
*rsrcforkp
= NULL
;
6018 struct cat_fork datafork
;
6019 struct cat_fork rsrcfork
;
6020 struct hfsmount
*hfsmp
;
6023 uint32_t tstate
= 0;
6025 if (ISSET(cp
->c_flag
, C_NOEXISTS
))
6031 if (((vnode_issystem(vp
) && (cp
->c_cnid
< kHFSFirstUserCatalogNodeID
))) ||
6032 hfsmp
->hfs_catalog_vp
== NULL
){
6035 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) || (cp
->c_mode
== 0)) {
6036 CLR(cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
| C_NEEDS_DATEADDED
);
6037 cp
->c_touch_acctime
= 0;
6038 cp
->c_touch_chgtime
= 0;
6039 cp
->c_touch_modtime
= 0;
6042 if (kdebug_enable
) {
6043 if (cp
->c_touch_acctime
|| cp
->c_atime
!= cp
->c_attr
.ca_atimeondisk
)
6044 tstate
|= DBG_HFS_UPDATE_ACCTIME
;
6045 if (cp
->c_touch_modtime
)
6046 tstate
|= DBG_HFS_UPDATE_MODTIME
;
6047 if (cp
->c_touch_chgtime
)
6048 tstate
|= DBG_HFS_UPDATE_CHGTIME
;
6050 if (cp
->c_flag
& C_MODIFIED
)
6051 tstate
|= DBG_HFS_UPDATE_MODIFIED
;
6052 if (ISSET(options
, HFS_UPDATE_FORCE
))
6053 tstate
|= DBG_HFS_UPDATE_FORCE
;
6054 if (cp
->c_flag
& C_NEEDS_DATEADDED
)
6055 tstate
|= DBG_HFS_UPDATE_DATEADDED
;
6056 if (cp
->c_flag
& C_MINOR_MOD
)
6057 tstate
|= DBG_HFS_UPDATE_MINOR
;
6059 hfs_touchtimes(hfsmp
, cp
);
6061 if (!ISSET(cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
)
6062 && !hfs_should_save_atime(cp
)) {
6063 // Nothing to update
6067 KDBG(HFSDBG_UPDATE
| DBG_FUNC_START
, VM_KERNEL_ADDRPERM(vp
), tstate
);
6069 bool check_txn
= false;
6071 if (!ISSET(options
, HFS_UPDATE_FORCE
) && !ISSET(cp
->c_flag
, C_MODIFIED
)) {
6073 * This must be a minor modification. If the current
6074 * transaction already has an update for this node, then we
6075 * bundle in the modification.
6078 && journal_current_txn(hfsmp
->jnl
) == cp
->c_update_txn
) {
6081 tstate
|= DBG_HFS_UPDATE_SKIPPED
;
6087 if ((error
= hfs_start_transaction(hfsmp
)) != 0)
6091 && journal_current_txn(hfsmp
->jnl
) != cp
->c_update_txn
) {
6092 hfs_end_transaction(hfsmp
);
6093 tstate
|= DBG_HFS_UPDATE_SKIPPED
;
6099 dataforkp
= &cp
->c_datafork
->ff_data
;
6101 rsrcforkp
= &cp
->c_rsrcfork
->ff_data
;
6104 * Modify the values passed to cat_update based on whether or not
6105 * the file has invalid ranges or borrowed blocks.
6107 dataforkp
= hfs_prepare_fork_for_update(cp
->c_datafork
, NULL
, &datafork
, hfsmp
->blockSize
);
6108 rsrcforkp
= hfs_prepare_fork_for_update(cp
->c_rsrcfork
, NULL
, &rsrcfork
, hfsmp
->blockSize
);
6110 if (__improbable(kdebug_enable
& KDEBUG_TRACE
)) {
6111 long dbg_parms
[NUMPARMS
];
6114 dbg_namelen
= NUMPARMS
* sizeof(long);
6115 vn_getpath(vp
, (char *)dbg_parms
, &dbg_namelen
);
6117 if (dbg_namelen
< (int)sizeof(dbg_parms
))
6118 memset((char *)dbg_parms
+ dbg_namelen
, 0, sizeof(dbg_parms
) - dbg_namelen
);
6120 kdebug_lookup_gen_events(dbg_parms
, dbg_namelen
, (void *)vp
, TRUE
);
6124 * Lock the Catalog b-tree file.
6126 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
6128 error
= cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, dataforkp
, rsrcforkp
);
6131 cp
->c_update_txn
= journal_current_txn(hfsmp
->jnl
);
6133 hfs_systemfile_unlock(hfsmp
, lockflags
);
6135 CLR(cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
);
6137 hfs_end_transaction(hfsmp
);
6141 KDBG(HFSDBG_UPDATE
| DBG_FUNC_END
, VM_KERNEL_ADDRPERM(vp
), tstate
, error
);
6147 * Allocate a new node
6150 hfs_makenode(struct vnode
*dvp
, struct vnode
**vpp
, struct componentname
*cnp
,
6151 struct vnode_attr
*vap
, vfs_context_t ctx
)
6153 struct cnode
*cp
= NULL
;
6154 struct cnode
*dcp
= NULL
;
6156 struct hfsmount
*hfsmp
;
6157 struct cat_desc in_desc
, out_desc
;
6158 struct cat_attr attr
;
6161 int error
, started_tr
= 0;
6162 enum vtype vnodetype
;
6164 int newvnode_flags
= 0;
6165 u_int32_t gnv_flags
= 0;
6166 int protectable_target
= 0;
6170 struct cprotect
*entry
= NULL
;
6171 int32_t cp_class
= -1;
6174 * By default, it's OK for AKS to overrride our target class preferences.
6176 uint32_t keywrap_flags
= CP_KEYWRAP_DIFFCLASS
;
6178 if (VATTR_IS_ACTIVE(vap
, va_dataprotect_class
)) {
6179 cp_class
= (int32_t)vap
->va_dataprotect_class
;
6181 * Since the user specifically requested this target class be used,
6182 * we want to fail this creation operation if we cannot wrap to their
6183 * target class. The CP_KEYWRAP_DIFFCLASS bit says that it is OK to
6184 * use a different class than the one specified, so we turn that off
6187 keywrap_flags
&= ~CP_KEYWRAP_DIFFCLASS
;
6189 int protected_mount
= 0;
6193 if ((error
= hfs_lock(VTOC(dvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
6196 /* set the cnode pointer only after successfully acquiring lock */
6199 /* Don't allow creation of new entries in open-unlinked directories */
6200 if ((error
= hfs_checkdeleted(dcp
))) {
6205 dcp
->c_flag
|= C_DIR_MODIFICATION
;
6207 hfsmp
= VTOHFS(dvp
);
6211 out_desc
.cd_flags
= 0;
6212 out_desc
.cd_nameptr
= NULL
;
6214 vnodetype
= vap
->va_type
;
6215 if (vnodetype
== VNON
)
6217 mode
= MAKEIMODE(vnodetype
, vap
->va_mode
);
6219 if (S_ISDIR (mode
) || S_ISREG (mode
)) {
6220 protectable_target
= 1;
6224 /* Check if were out of usable disk space. */
6225 if ((hfs_freeblks(hfsmp
, 1) == 0) && (vfs_context_suser(ctx
) != 0)) {
6232 /* Setup the default attributes */
6233 bzero(&attr
, sizeof(attr
));
6234 attr
.ca_mode
= mode
;
6235 attr
.ca_linkcount
= 1;
6236 if (VATTR_IS_ACTIVE(vap
, va_rdev
)) {
6237 attr
.ca_rdev
= vap
->va_rdev
;
6239 if (VATTR_IS_ACTIVE(vap
, va_create_time
)) {
6240 VATTR_SET_SUPPORTED(vap
, va_create_time
);
6241 attr
.ca_itime
= vap
->va_create_time
.tv_sec
;
6243 attr
.ca_itime
= tv
.tv_sec
;
6246 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) && gTimeZone
.tz_dsttime
) {
6247 attr
.ca_itime
+= 3600; /* Same as what hfs_update does */
6250 attr
.ca_atime
= attr
.ca_ctime
= attr
.ca_mtime
= attr
.ca_itime
;
6251 attr
.ca_atimeondisk
= attr
.ca_atime
;
6252 if (VATTR_IS_ACTIVE(vap
, va_flags
)) {
6253 VATTR_SET_SUPPORTED(vap
, va_flags
);
6254 attr
.ca_flags
= vap
->va_flags
;
6258 * HFS+ only: all files get ThreadExists
6259 * HFSX only: dirs get HasFolderCount
6261 if (!(hfsmp
->hfs_flags
& HFS_STANDARD
)) {
6262 if (vnodetype
== VDIR
) {
6263 if (hfsmp
->hfs_flags
& HFS_FOLDERCOUNT
)
6264 attr
.ca_recflags
= kHFSHasFolderCountMask
;
6266 attr
.ca_recflags
= kHFSThreadExistsMask
;
6271 if (cp_fs_protected(hfsmp
->hfs_mp
)) {
6272 protected_mount
= 1;
6275 * On a content-protected HFS+/HFSX filesystem, files and directories
6276 * cannot be created without atomically setting/creating the EA that
6277 * contains the protection class metadata and keys at the same time, in
6278 * the same transaction. As a result, pre-set the "EAs exist" flag
6279 * on the cat_attr for protectable catalog record creations. This will
6280 * cause the cnode creation routine in hfs_getnewvnode to mark the cnode
6283 if ((protected_mount
) && (protectable_target
)) {
6284 attr
.ca_recflags
|= kHFSHasAttributesMask
;
6285 /* delay entering in the namecache */
6292 * Add the date added to the item. See above, as
6293 * all of the dates are set to the itime.
6295 hfs_write_dateadded (&attr
, attr
.ca_atime
);
6297 /* Initialize the gen counter to 1 */
6298 hfs_write_gencount(&attr
, (uint32_t)1);
6300 attr
.ca_uid
= vap
->va_uid
;
6301 attr
.ca_gid
= vap
->va_gid
;
6302 VATTR_SET_SUPPORTED(vap
, va_mode
);
6303 VATTR_SET_SUPPORTED(vap
, va_uid
);
6304 VATTR_SET_SUPPORTED(vap
, va_gid
);
6307 /* check to see if this node's creation would cause us to go over
6308 * quota. If so, abort this operation.
6310 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
6311 if ((error
= hfs_quotacheck(hfsmp
, 1, attr
.ca_uid
, attr
.ca_gid
,
6312 vfs_context_ucred(ctx
)))) {
6319 /* Tag symlinks with a type and creator. */
6320 if (vnodetype
== VLNK
) {
6321 struct FndrFileInfo
*fip
;
6323 fip
= (struct FndrFileInfo
*)&attr
.ca_finderinfo
;
6324 fip
->fdType
= SWAP_BE32(kSymLinkFileType
);
6325 fip
->fdCreator
= SWAP_BE32(kSymLinkCreator
);
6328 /* Setup the descriptor */
6329 in_desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
6330 in_desc
.cd_namelen
= cnp
->cn_namelen
;
6331 in_desc
.cd_parentcnid
= dcp
->c_fileid
;
6332 in_desc
.cd_flags
= S_ISDIR(mode
) ? CD_ISDIR
: 0;
6333 in_desc
.cd_hint
= dcp
->c_childhint
;
6334 in_desc
.cd_encoding
= 0;
6338 * To preserve file creation atomicity with regards to the content protection EA,
6339 * we must create the file in the catalog and then write out its EA in the same
6342 * We only denote the target class in this EA; key generation is not completed
6343 * until the file has been inserted into the catalog and will be done
6344 * in a separate transaction.
6346 if ((protected_mount
) && (protectable_target
)) {
6347 error
= cp_setup_newentry(hfsmp
, dcp
, cp_class
, attr
.ca_mode
, &entry
);
6354 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
6359 // have to also lock the attribute file because cat_create() needs
6360 // to check that any fileID it wants to use does not have orphaned
6361 // attributes in it.
6362 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
6365 /* Reserve some space in the Catalog file. */
6366 if ((error
= cat_preflight(hfsmp
, CAT_CREATE
, NULL
, 0))) {
6367 hfs_systemfile_unlock(hfsmp
, lockflags
);
6371 if ((error
= cat_acquire_cnid(hfsmp
, &new_id
))) {
6372 hfs_systemfile_unlock (hfsmp
, lockflags
);
6376 error
= cat_create(hfsmp
, new_id
, &in_desc
, &attr
, &out_desc
);
6378 /* Update the parent directory */
6379 dcp
->c_childhint
= out_desc
.cd_hint
; /* Cache directory's location */
6382 if (vnodetype
== VDIR
) {
6383 INC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
6385 dcp
->c_dirchangecnt
++;
6386 hfs_incr_gencount(dcp
);
6388 dcp
->c_touch_chgtime
= dcp
->c_touch_modtime
= true;
6389 dcp
->c_flag
|= C_MODIFIED
;
6391 hfs_update(dcp
->c_vp
, 0);
6395 * If we are creating a content protected file, now is when
6396 * we create the EA. We must create it in the same transaction
6397 * that creates the file. We can also guarantee that the file
6398 * MUST exist because we are still holding the catalog lock
6401 if ((attr
.ca_fileid
!= 0) && (protected_mount
) && (protectable_target
)) {
6402 error
= cp_setxattr (NULL
, entry
, hfsmp
, attr
.ca_fileid
, XATTR_CREATE
);
6407 * If we fail the EA creation, then we need to delete the file.
6408 * Luckily, we are still holding all of the right locks.
6410 delete_err
= cat_delete (hfsmp
, &out_desc
, &attr
);
6411 if (delete_err
== 0) {
6412 /* Update the parent directory */
6413 if (dcp
->c_entries
> 0)
6415 dcp
->c_dirchangecnt
++;
6416 dcp
->c_ctime
= tv
.tv_sec
;
6417 dcp
->c_mtime
= tv
.tv_sec
;
6418 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
6421 /* Emit EINVAL if we fail to create EA*/
6427 hfs_systemfile_unlock(hfsmp
, lockflags
);
6431 uint32_t txn
= hfsmp
->jnl
? journal_current_txn(hfsmp
->jnl
) : 0;
6433 /* Invalidate negative cache entries in the directory */
6434 if (dcp
->c_flag
& C_NEG_ENTRIES
) {
6435 cache_purge_negatives(dvp
);
6436 dcp
->c_flag
&= ~C_NEG_ENTRIES
;
6439 hfs_volupdate(hfsmp
, vnodetype
== VDIR
? VOL_MKDIR
: VOL_MKFILE
,
6440 (dcp
->c_cnid
== kHFSRootFolderID
));
6443 // have to end the transaction here before we call hfs_getnewvnode()
6444 // because that can cause us to try and reclaim a vnode on a different
6445 // file system which could cause us to start a transaction which can
6446 // deadlock with someone on that other file system (since we could be
6447 // holding two transaction locks as well as various vnodes and we did
6448 // not obtain the locks on them in the proper order).
6450 // NOTE: this means that if the quota check fails or we have to update
6451 // the change time on a block-special device that those changes
6452 // will happen as part of independent transactions.
6455 hfs_end_transaction(hfsmp
);
6461 * At this point, we must have encountered success with writing the EA.
6462 * Destroy our temporary cprotect (which had no keys).
6465 if ((attr
.ca_fileid
!= 0) && (protected_mount
) && (protectable_target
)) {
6466 cp_entry_destroy (hfsmp
, entry
);
6470 gnv_flags
|= GNV_CREATE
;
6472 gnv_flags
|= GNV_NOCACHE
;
6476 * Create a vnode for the object just created.
6478 * NOTE: Maintaining the cnode lock on the parent directory is important,
6479 * as it prevents race conditions where other threads want to look up entries
6480 * in the directory and/or add things as we are in the process of creating
6481 * the vnode below. However, this has the potential for causing a
6482 * double lock panic when dealing with shadow files on a HFS boot partition.
6483 * The panic could occur if we are not cleaning up after ourselves properly
6484 * when done with a shadow file or in the error cases. The error would occur if we
6485 * try to create a new vnode, and then end up reclaiming another shadow vnode to
6486 * create the new one. However, if everything is working properly, this should
6487 * be a non-issue as we would never enter that reclaim codepath.
6489 * The cnode is locked on successful return.
6491 error
= hfs_getnewvnode(hfsmp
, dvp
, cnp
, &out_desc
, gnv_flags
, &attr
,
6492 NULL
, &tvp
, &newvnode_flags
);
6498 cp
->c_update_txn
= txn
;
6500 struct doc_tombstone
*ut
;
6501 ut
= get_uthread_doc_tombstone();
6502 if ( ut
->t_lastop_document_id
!= 0
6503 && ut
->t_lastop_parent
== dvp
6504 && ut
->t_lastop_parent_vid
== vnode_vid(dvp
)
6505 && strcmp((char *)ut
->t_lastop_filename
, (const char *)cp
->c_desc
.cd_nameptr
) == 0) {
6506 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
6508 //printf("CREATE: preserving doc-id %lld on %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
6509 fip
->document_id
= (uint32_t)(ut
->t_lastop_document_id
& 0xffffffff);
6511 cp
->c_bsdflags
|= UF_TRACKED
;
6512 cp
->c_flag
|= C_MODIFIED
;
6514 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
6515 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
6517 (void) cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, NULL
, NULL
);
6519 hfs_systemfile_unlock (hfsmp
, lockflags
);
6520 (void) hfs_end_transaction(hfsmp
);
6523 clear_tombstone_docid(ut
, hfsmp
, cp
); // will send the docid-changed fsevent
6524 } else if (ut
->t_lastop_document_id
!= 0) {
6525 int len
= cnp
->cn_namelen
;
6527 len
= strlen(cnp
->cn_nameptr
);
6530 if (is_ignorable_temp_name(cnp
->cn_nameptr
, cnp
->cn_namelen
)) {
6531 // printf("CREATE: not clearing tombstone because %s is a temp name.\n", cnp->cn_nameptr);
6533 // Clear the tombstone because the thread is not recreating the same path
6534 // printf("CREATE: clearing tombstone because %s is NOT a temp name.\n", cnp->cn_nameptr);
6535 clear_tombstone_docid(ut
, hfsmp
, NULL
);
6539 if ((hfsmp
->hfs_flags
& HFS_CS_HOTFILE_PIN
) && (vnode_isfastdevicecandidate(dvp
) && !vnode_isautocandidate(dvp
))) {
6541 //printf("hfs: flagging %s (fileid: %d) as VFASTDEVCANDIDATE (dvp name: %s)\n",
6542 // cnp->cn_nameptr ? cnp->cn_nameptr : "<NONAME>",
6544 // dvp->v_name ? dvp->v_name : "no-dir-name");
6547 // On new files we set the FastDevCandidate flag so that
6548 // any new blocks allocated to it will be pinned.
6550 cp
->c_attr
.ca_recflags
|= kHFSFastDevCandidateMask
;
6551 vnode_setfastdevicecandidate(tvp
);
6554 // properly inherit auto-cached flags
6556 if (vnode_isautocandidate(dvp
)) {
6557 cp
->c_attr
.ca_recflags
|= kHFSAutoCandidateMask
;
6558 vnode_setautocandidate(tvp
);
6563 // We also want to add it to the hotfile adoption list so
6564 // that it will eventually land in the hotfile btree
6566 (void) hfs_addhotfile(tvp
);
6573 * Now that we have a vnode-in-hand, generate keys for this namespace item.
6574 * If we fail to create the keys, then attempt to delete the item from the
6575 * namespace. If we can't delete the item, that's not desirable but also not fatal..
6576 * All of the places which deal with restoring/unwrapping keys must also be
6577 * prepared to encounter an entry that does not have keys.
6579 if ((protectable_target
) && (protected_mount
)) {
6580 struct cprotect
*keyed_entry
= NULL
;
6582 if (cp
->c_cpentry
== NULL
) {
6583 panic ("hfs_makenode: no cpentry for cnode (%p)", cp
);
6586 error
= cp_generate_keys (hfsmp
, cp
, CP_CLASS(cp
->c_cpentry
->cp_pclass
), keywrap_flags
, &keyed_entry
);
6589 * Upon success, the keys were generated and written out.
6590 * Update the cp pointer in the cnode.
6592 cp_replace_entry (hfsmp
, cp
, keyed_entry
);
6594 cache_enter (dvp
, tvp
, cnp
);
6598 /* If key creation OR the setxattr failed, emit EPERM to userland */
6602 * Beware! This slightly violates the lock ordering for the
6603 * cnode/vnode 'tvp'. Ordinarily, you must acquire the truncate lock
6604 * which guards file size changes before acquiring the normal cnode lock
6605 * and calling hfs_removefile on an item.
6607 * However, in this case, we are still holding the directory lock so
6608 * 'tvp' is not lookup-able and it was a newly created vnode so it
6609 * cannot have any content yet. The only reason we are initiating
6610 * the removefile is because we could not generate content protection keys
6611 * for this namespace item. Note also that we pass a '1' in the allow_dirs
6612 * argument for hfs_removefile because we may be creating a directory here.
6614 * All this to say that while it is technically a violation it is
6615 * impossible to race with another thread for this cnode so it is safe.
6617 int err
= hfs_removefile (dvp
, tvp
, cnp
, 0, 0, 1, NULL
, 0);
6619 printf("hfs_makenode: removefile failed (%d) for CP entry %p\n", err
, tvp
);
6622 /* Release the cnode lock and mark the vnode for termination */
6624 err
= vnode_recycle (tvp
);
6626 printf("hfs_makenode: vnode_recycle failed (%d) for CP entry %p\n", err
, tvp
);
6629 /* Drop the iocount on the new vnode to force reclamation/recycling */
6639 * Once we create this vnode, we need to initialize its quota data
6640 * structures, if necessary. We know that it is OK to just go ahead and
6641 * initialize because we've already validated earlier (through the hfs_quotacheck
6642 * function) to see if creating this cnode/vnode would cause us to go over quota.
6644 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
6646 /* cp could have been zeroed earlier */
6647 (void) hfs_getinoquota(cp
);
6653 cat_releasedesc(&out_desc
);
6657 * We may have jumped here in error-handling various situations above.
6658 * If we haven't already dumped the temporary CP used to initialize
6659 * the file atomically, then free it now. cp_entry_destroy should null
6660 * out the pointer if it was called already.
6663 cp_entry_destroy (hfsmp
, entry
);
6669 * Make sure we release cnode lock on dcp.
6672 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
6673 wakeup((caddr_t
)&dcp
->c_flag
);
6677 if (error
== 0 && cp
!= NULL
) {
6681 hfs_end_transaction(hfsmp
);
6690 * hfs_vgetrsrc acquires a resource fork vnode corresponding to the
6691 * cnode that is found in 'vp'. The cnode should be locked upon entry
6692 * and will be returned locked, but it may be dropped temporarily.
6694 * If the resource fork vnode does not exist, HFS will attempt to acquire an
6695 * empty (uninitialized) vnode from VFS so as to avoid deadlocks with
6696 * jetsam. If we let the normal getnewvnode code produce the vnode for us
6697 * we would be doing so while holding the cnode lock of our cnode.
6699 * On success, *rvpp wlll hold the resource fork vnode with an
6700 * iocount. *Don't* forget the vnode_put.
6703 hfs_vgetrsrc(struct hfsmount
*hfsmp
, struct vnode
*vp
, struct vnode
**rvpp
)
6705 struct vnode
*rvp
= NULLVP
;
6706 struct vnode
*empty_rvp
= NULLVP
;
6707 struct vnode
*dvp
= NULLVP
;
6708 struct cnode
*cp
= VTOC(vp
);
6712 if (vnode_vtype(vp
) == VDIR
) {
6717 /* Attempt to use existing vnode */
6718 if ((rvp
= cp
->c_rsrc_vp
)) {
6719 vid
= vnode_vid(rvp
);
6721 // vnode_getwithvid can block so we need to drop the cnode lock
6724 error
= vnode_getwithvid(rvp
, vid
);
6726 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
6729 * When our lock was relinquished, the resource fork
6730 * could have been recycled. Check for this and try
6733 if (error
== ENOENT
)
6737 const char * name
= (const char *)VTOC(vp
)->c_desc
.cd_nameptr
;
6740 printf("hfs_vgetrsrc: couldn't get resource"
6741 " fork for %s, vol=%s, err=%d\n", name
, hfsmp
->vcbVN
, error
);
6745 struct cat_fork rsrcfork
;
6746 struct componentname cn
;
6747 struct cat_desc
*descptr
= NULL
;
6748 struct cat_desc to_desc
;
6751 int newvnode_flags
= 0;
6754 * In this case, we don't currently see a resource fork vnode attached
6755 * to this cnode. In most cases, we were called from a read-only VNOP
6756 * like getattr, so it should be safe to drop the cnode lock and then
6759 * Here, we drop the lock so that we can acquire an empty/husk
6760 * vnode so that we don't deadlock against jetsam.
6762 * It does not currently appear possible to hold the truncate lock via
6763 * FS re-entrancy when we get to this point. (8/2014)
6767 error
= vnode_create_empty (&empty_rvp
);
6769 hfs_lock_always (cp
, HFS_EXCLUSIVE_LOCK
);
6772 /* If acquiring the 'empty' vnode failed, then nothing to clean up */
6777 * We could have raced with another thread here while we dropped our cnode
6778 * lock. See if the cnode now has a resource fork vnode and restart if appropriate.
6780 * Note: We just released the cnode lock, so there is a possibility that the
6781 * cnode that we just acquired has been deleted or even removed from disk
6782 * completely, though this is unlikely. If the file is open-unlinked, the
6783 * check below will resolve it for us. If it has been completely
6784 * removed (even from the catalog!), then when we examine the catalog
6785 * directly, below, while holding the catalog lock, we will not find the
6786 * item and we can fail out properly.
6788 if (cp
->c_rsrc_vp
) {
6789 /* Drop the empty vnode before restarting */
6790 vnode_put (empty_rvp
);
6797 * hfs_vgetsrc may be invoked for a cnode that has already been marked
6798 * C_DELETED. This is because we need to continue to provide rsrc
6799 * fork access to open-unlinked files. In this case, build a fake descriptor
6800 * like in hfs_removefile. If we don't do this, buildkey will fail in
6801 * cat_lookup because this cnode has no name in its descriptor.
6803 if ((cp
->c_flag
& C_DELETED
) && (cp
->c_desc
.cd_namelen
== 0)) {
6804 bzero (&to_desc
, sizeof(to_desc
));
6805 bzero (delname
, 32);
6806 MAKE_DELETED_NAME(delname
, sizeof(delname
), cp
->c_fileid
);
6807 to_desc
.cd_nameptr
= (const u_int8_t
*) delname
;
6808 to_desc
.cd_namelen
= strlen(delname
);
6809 to_desc
.cd_parentcnid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
6810 to_desc
.cd_flags
= 0;
6811 to_desc
.cd_cnid
= cp
->c_cnid
;
6816 descptr
= &cp
->c_desc
;
6820 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
6823 * We call cat_idlookup (instead of cat_lookup) below because we can't
6824 * trust the descriptor in the provided cnode for lookups at this point.
6825 * Between the time of the original lookup of this vnode and now, the
6826 * descriptor could have gotten swapped or replaced. If this occurred,
6827 * the parent/name combo originally desired may not necessarily be provided
6828 * if we use the descriptor. Even worse, if the vnode represents
6829 * a hardlink, we could have removed one of the links from the namespace
6830 * but left the descriptor alone, since hfs_unlink does not invalidate
6831 * the descriptor in the cnode if other links still point to the inode.
6833 * Consider the following (slightly contrived) scenario:
6834 * /tmp/a <--> /tmp/b (hardlinks).
6835 * 1. Thread A: open rsrc fork on /tmp/b.
6836 * 1a. Thread A: does lookup, goes out to lunch right before calling getnamedstream.
6837 * 2. Thread B does 'mv /foo/b /tmp/b'
6838 * 2. Thread B succeeds.
6839 * 3. Thread A comes back and wants rsrc fork info for /tmp/b.
6841 * Even though the hardlink backing /tmp/b is now eliminated, the descriptor
6842 * is not removed/updated during the unlink process. So, if you were to
6843 * do a lookup on /tmp/b, you'd acquire an entirely different record's resource
6846 * As a result, we use the fileid, which should be invariant for the lifetime
6847 * of the cnode (possibly barring calls to exchangedata).
6849 * Addendum: We can't do the above for HFS standard since we aren't guaranteed to
6850 * have thread records for files. They were only required for directories. So
6851 * we need to do the lookup with the catalog name. This is OK since hardlinks were
6852 * never allowed on HFS standard.
6855 /* Get resource fork data */
6856 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
6857 error
= cat_idlookup (hfsmp
, cp
->c_fileid
, 0, 1, NULL
, NULL
, &rsrcfork
);
6862 * HFS standard only:
6864 * Get the resource fork for this item with a cat_lookup call, but do not
6865 * force a case lookup since HFS standard is case-insensitive only. We
6866 * don't want the descriptor; just the fork data here. If we tried to
6867 * do a ID lookup (via thread record -> catalog record), then we might fail
6868 * prematurely since, as noted above, thread records were not strictly required
6871 error
= cat_lookup (hfsmp
, descptr
, 1, 0, (struct cat_desc
*)NULL
,
6872 (struct cat_attr
*)NULL
, &rsrcfork
, NULL
);
6876 hfs_systemfile_unlock(hfsmp
, lockflags
);
6878 /* Drop our 'empty' vnode ! */
6879 vnode_put (empty_rvp
);
6883 * Supply hfs_getnewvnode with a component name.
6886 if (descptr
->cd_nameptr
) {
6887 MALLOC_ZONE(cn
.cn_pnbuf
, caddr_t
, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
6888 cn
.cn_nameiop
= LOOKUP
;
6889 cn
.cn_flags
= ISLASTCN
| HASBUF
;
6890 cn
.cn_context
= NULL
;
6891 cn
.cn_pnlen
= MAXPATHLEN
;
6892 cn
.cn_nameptr
= cn
.cn_pnbuf
;
6895 cn
.cn_namelen
= snprintf(cn
.cn_nameptr
, MAXPATHLEN
,
6896 "%s%s", descptr
->cd_nameptr
,
6897 _PATH_RSRCFORKSPEC
);
6898 // Should never happen because cn.cn_nameptr won't ever be long...
6899 if (cn
.cn_namelen
>= MAXPATHLEN
) {
6900 FREE_ZONE(cn
.cn_pnbuf
, cn
.cn_pnlen
, M_NAMEI
);
6901 /* Drop our 'empty' vnode ! */
6902 vnode_put (empty_rvp
);
6903 return ENAMETOOLONG
;
6907 dvp
= vnode_getparent(vp
);
6910 * We are about to call hfs_getnewvnode and pass in the vnode that we acquired
6911 * earlier when we were not holding any locks. The semantics of GNV_USE_VP require that
6912 * either hfs_getnewvnode consume the vnode and vend it back to us, properly initialized,
6913 * or it will consume/dispose of it properly if it errors out.
6917 error
= hfs_getnewvnode(hfsmp
, dvp
, cn
.cn_pnbuf
? &cn
: NULL
,
6918 descptr
, (GNV_WANTRSRC
| GNV_SKIPLOCK
| GNV_USE_VP
),
6919 &cp
->c_attr
, &rsrcfork
, &rvp
, &newvnode_flags
);
6924 FREE_ZONE(cn
.cn_pnbuf
, cn
.cn_pnlen
, M_NAMEI
);
6927 } /* End 'else' for rsrc fork not existing */
6934 * Wrapper for special device reads
6938 struct vnop_read_args
/* {
6942 vfs_context_t a_context;
6948 VTOC(ap
->a_vp
)->c_touch_acctime
= TRUE
;
6949 return (VOCALL (spec_vnodeop_p
, VOFFSET(vnop_read
), ap
));
6953 * Wrapper for special device writes
6957 struct vnop_write_args
/* {
6961 vfs_context_t a_context;
6965 * Set update and change flags.
6967 VTOC(ap
->a_vp
)->c_touch_chgtime
= TRUE
;
6968 VTOC(ap
->a_vp
)->c_touch_modtime
= TRUE
;
6969 return (VOCALL (spec_vnodeop_p
, VOFFSET(vnop_write
), ap
));
6973 * Wrapper for special device close
6975 * Update the times on the cnode then do device close.
6979 struct vnop_close_args
/* {
6982 vfs_context_t a_context;
6985 struct vnode
*vp
= ap
->a_vp
;
6988 if (vnode_isinuse(ap
->a_vp
, 0)) {
6989 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) == 0) {
6991 hfs_touchtimes(VTOHFS(vp
), cp
);
6995 return (VOCALL (spec_vnodeop_p
, VOFFSET(vnop_close
), ap
));
7000 * Wrapper for fifo reads
7004 struct vnop_read_args
/* {
7008 vfs_context_t a_context;
7014 VTOC(ap
->a_vp
)->c_touch_acctime
= TRUE
;
7015 return (VOCALL (fifo_vnodeop_p
, VOFFSET(vnop_read
), ap
));
7019 * Wrapper for fifo writes
7023 struct vnop_write_args
/* {
7027 vfs_context_t a_context;
7031 * Set update and change flags.
7033 VTOC(ap
->a_vp
)->c_touch_chgtime
= TRUE
;
7034 VTOC(ap
->a_vp
)->c_touch_modtime
= TRUE
;
7035 return (VOCALL (fifo_vnodeop_p
, VOFFSET(vnop_write
), ap
));
7039 * Wrapper for fifo close
7041 * Update the times on the cnode then do device close.
7045 struct vnop_close_args
/* {
7048 vfs_context_t a_context;
7051 struct vnode
*vp
= ap
->a_vp
;
7054 if (vnode_isinuse(ap
->a_vp
, 1)) {
7055 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) == 0) {
7057 hfs_touchtimes(VTOHFS(vp
), cp
);
7061 return (VOCALL (fifo_vnodeop_p
, VOFFSET(vnop_close
), ap
));
7068 * Getter for the document_id
7069 * the document_id is stored in FndrExtendedFileInfo/FndrExtendedDirInfo
7072 hfs_get_document_id_internal(const uint8_t *finderinfo
, mode_t mode
)
7074 const uint8_t *finfo
= NULL
;
7075 u_int32_t doc_id
= 0;
7077 /* overlay the FinderInfo to the correct pointer, and advance */
7078 finfo
= finderinfo
+ 16;
7080 if (S_ISDIR(mode
) || S_ISREG(mode
)) {
7081 const struct FndrExtendedFileInfo
*extinfo
= (const struct FndrExtendedFileInfo
*)finfo
;
7082 doc_id
= extinfo
->document_id
;
7083 } else if (S_ISDIR(mode
)) {
7084 const struct FndrExtendedDirInfo
*extinfo
= (const struct FndrExtendedDirInfo
*)finfo
;
7085 doc_id
= extinfo
->document_id
;
7092 /* getter(s) for document id */
7094 hfs_get_document_id(struct cnode
*cp
)
7096 return (hfs_get_document_id_internal((u_int8_t
*)cp
->c_finderinfo
,
7097 cp
->c_attr
.ca_mode
));
7100 /* If you have finderinfo and mode, you can use this */
7102 hfs_get_document_id_from_blob(const uint8_t *finderinfo
, mode_t mode
)
7104 return (hfs_get_document_id_internal(finderinfo
, mode
));
7108 * Synchronize a file's in-core state with that on disk.
7112 struct vnop_fsync_args
/* {
7115 vfs_context_t a_context;
7118 struct vnode
* vp
= ap
->a_vp
;
7121 /* Note: We check hfs flags instead of vfs mount flag because during
7122 * read-write update, hfs marks itself read-write much earlier than
7123 * the vfs, and hence won't result in skipping of certain writes like
7124 * zero'ing out of unused nodes, creation of hotfiles btree, etc.
7126 if (VTOHFS(vp
)->hfs_flags
& HFS_READ_ONLY
) {
7131 * No need to call cp_handle_vnop to resolve fsync(). Any dirty data
7132 * should have caused the keys to be unwrapped at the time the data was
7133 * put into the UBC, either at mmap/pagein/read-write. If we did manage
7134 * to let this by, then strategy will auto-resolve for us.
7136 * We also need to allow ENOENT lock errors since unlink
7137 * system call can call VNOP_FSYNC during vclean.
7139 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
7143 error
= hfs_fsync(vp
, ap
->a_waitfor
, 0, vfs_context_proc(ap
->a_context
));
7145 hfs_unlock(VTOC(vp
));
7149 int (**hfs_vnodeop_p
)(void *);
7151 #define VOPFUNC int (*)(void *)
7155 int (**hfs_std_vnodeop_p
) (void *);
7156 static int hfs_readonly_op (__unused
void* ap
) { return (EROFS
); }
7159 * In 10.6 and forward, HFS Standard is read-only and deprecated. The vnop table below
7160 * is for use with HFS standard to block out operations that would modify the file system
7163 struct vnodeopv_entry_desc hfs_standard_vnodeop_entries
[] = {
7164 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7165 { &vnop_lookup_desc
, (VOPFUNC
)hfs_vnop_lookup
}, /* lookup */
7166 { &vnop_create_desc
, (VOPFUNC
)hfs_readonly_op
}, /* create (READONLY) */
7167 { &vnop_mknod_desc
, (VOPFUNC
)hfs_readonly_op
}, /* mknod (READONLY) */
7168 { &vnop_open_desc
, (VOPFUNC
)hfs_vnop_open
}, /* open */
7169 { &vnop_close_desc
, (VOPFUNC
)hfs_vnop_close
}, /* close */
7170 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7171 { &vnop_setattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* setattr */
7172 { &vnop_read_desc
, (VOPFUNC
)hfs_vnop_read
}, /* read */
7173 { &vnop_write_desc
, (VOPFUNC
)hfs_readonly_op
}, /* write (READONLY) */
7174 { &vnop_ioctl_desc
, (VOPFUNC
)hfs_vnop_ioctl
}, /* ioctl */
7175 { &vnop_select_desc
, (VOPFUNC
)hfs_vnop_select
}, /* select */
7176 { &vnop_revoke_desc
, (VOPFUNC
)nop_revoke
}, /* revoke */
7177 { &vnop_exchange_desc
, (VOPFUNC
)hfs_readonly_op
}, /* exchange (READONLY)*/
7178 { &vnop_mmap_desc
, (VOPFUNC
)err_mmap
}, /* mmap */
7179 { &vnop_fsync_desc
, (VOPFUNC
)hfs_readonly_op
}, /* fsync (READONLY) */
7180 { &vnop_remove_desc
, (VOPFUNC
)hfs_readonly_op
}, /* remove (READONLY) */
7181 { &vnop_link_desc
, (VOPFUNC
)hfs_readonly_op
}, /* link ( READONLLY) */
7182 { &vnop_rename_desc
, (VOPFUNC
)hfs_readonly_op
}, /* rename (READONLY)*/
7183 { &vnop_mkdir_desc
, (VOPFUNC
)hfs_readonly_op
}, /* mkdir (READONLY) */
7184 { &vnop_rmdir_desc
, (VOPFUNC
)hfs_readonly_op
}, /* rmdir (READONLY) */
7185 { &vnop_symlink_desc
, (VOPFUNC
)hfs_readonly_op
}, /* symlink (READONLY) */
7186 { &vnop_readdir_desc
, (VOPFUNC
)hfs_vnop_readdir
}, /* readdir */
7187 { &vnop_readdirattr_desc
, (VOPFUNC
)hfs_vnop_readdirattr
}, /* readdirattr */
7188 { &vnop_readlink_desc
, (VOPFUNC
)hfs_vnop_readlink
}, /* readlink */
7189 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7190 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7191 { &vnop_strategy_desc
, (VOPFUNC
)hfs_vnop_strategy
}, /* strategy */
7192 { &vnop_pathconf_desc
, (VOPFUNC
)hfs_vnop_pathconf
}, /* pathconf */
7193 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7194 { &vnop_allocate_desc
, (VOPFUNC
)hfs_readonly_op
}, /* allocate (READONLY) */
7196 { &vnop_searchfs_desc
, (VOPFUNC
)hfs_vnop_search
}, /* search fs */
7198 { &vnop_searchfs_desc
, (VOPFUNC
)err_searchfs
}, /* search fs */
7200 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_readonly_op
}, /* bwrite (READONLY) */
7201 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* pagein */
7202 { &vnop_pageout_desc
,(VOPFUNC
) hfs_readonly_op
}, /* pageout (READONLY) */
7203 { &vnop_copyfile_desc
, (VOPFUNC
)hfs_readonly_op
}, /* copyfile (READONLY)*/
7204 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7205 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7206 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
7207 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7208 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* set xattr (READONLY) */
7209 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* remove xattr (READONLY) */
7210 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7212 { &vnop_getnamedstream_desc
, (VOPFUNC
)hfs_vnop_getnamedstream
},
7213 { &vnop_makenamedstream_desc
, (VOPFUNC
)hfs_readonly_op
},
7214 { &vnop_removenamedstream_desc
, (VOPFUNC
)hfs_readonly_op
},
7216 { &vnop_getattrlistbulk_desc
, (VOPFUNC
)hfs_vnop_getattrlistbulk
}, /* getattrlistbulk */
7217 { NULL
, (VOPFUNC
)NULL
}
7220 struct vnodeopv_desc hfs_std_vnodeop_opv_desc
=
7221 { &hfs_std_vnodeop_p
, hfs_standard_vnodeop_entries
};
7224 /* VNOP table for HFS+ */
7225 struct vnodeopv_entry_desc hfs_vnodeop_entries
[] = {
7226 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7227 { &vnop_lookup_desc
, (VOPFUNC
)hfs_vnop_lookup
}, /* lookup */
7228 { &vnop_create_desc
, (VOPFUNC
)hfs_vnop_create
}, /* create */
7229 { &vnop_mknod_desc
, (VOPFUNC
)hfs_vnop_mknod
}, /* mknod */
7230 { &vnop_open_desc
, (VOPFUNC
)hfs_vnop_open
}, /* open */
7231 { &vnop_close_desc
, (VOPFUNC
)hfs_vnop_close
}, /* close */
7232 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7233 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
7234 { &vnop_read_desc
, (VOPFUNC
)hfs_vnop_read
}, /* read */
7235 { &vnop_write_desc
, (VOPFUNC
)hfs_vnop_write
}, /* write */
7236 { &vnop_ioctl_desc
, (VOPFUNC
)hfs_vnop_ioctl
}, /* ioctl */
7237 { &vnop_select_desc
, (VOPFUNC
)hfs_vnop_select
}, /* select */
7238 { &vnop_revoke_desc
, (VOPFUNC
)nop_revoke
}, /* revoke */
7239 { &vnop_exchange_desc
, (VOPFUNC
)hfs_vnop_exchange
}, /* exchange */
7240 { &vnop_mmap_desc
, (VOPFUNC
)hfs_vnop_mmap
}, /* mmap */
7241 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
7242 { &vnop_remove_desc
, (VOPFUNC
)hfs_vnop_remove
}, /* remove */
7243 { &vnop_link_desc
, (VOPFUNC
)hfs_vnop_link
}, /* link */
7244 { &vnop_rename_desc
, (VOPFUNC
)hfs_vnop_rename
}, /* rename */
7245 { &vnop_mkdir_desc
, (VOPFUNC
)hfs_vnop_mkdir
}, /* mkdir */
7246 { &vnop_rmdir_desc
, (VOPFUNC
)hfs_vnop_rmdir
}, /* rmdir */
7247 { &vnop_symlink_desc
, (VOPFUNC
)hfs_vnop_symlink
}, /* symlink */
7248 { &vnop_readdir_desc
, (VOPFUNC
)hfs_vnop_readdir
}, /* readdir */
7249 { &vnop_readdirattr_desc
, (VOPFUNC
)hfs_vnop_readdirattr
}, /* readdirattr */
7250 { &vnop_readlink_desc
, (VOPFUNC
)hfs_vnop_readlink
}, /* readlink */
7251 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7252 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7253 { &vnop_strategy_desc
, (VOPFUNC
)hfs_vnop_strategy
}, /* strategy */
7254 { &vnop_pathconf_desc
, (VOPFUNC
)hfs_vnop_pathconf
}, /* pathconf */
7255 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7256 { &vnop_allocate_desc
, (VOPFUNC
)hfs_vnop_allocate
}, /* allocate */
7258 { &vnop_searchfs_desc
, (VOPFUNC
)hfs_vnop_search
}, /* search fs */
7260 { &vnop_searchfs_desc
, (VOPFUNC
)err_searchfs
}, /* search fs */
7262 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
}, /* bwrite */
7263 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* pagein */
7264 { &vnop_pageout_desc
,(VOPFUNC
) hfs_vnop_pageout
}, /* pageout */
7265 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
7266 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7267 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7268 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
7269 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7270 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_vnop_setxattr
},
7271 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_vnop_removexattr
},
7272 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7274 { &vnop_getnamedstream_desc
, (VOPFUNC
)hfs_vnop_getnamedstream
},
7275 { &vnop_makenamedstream_desc
, (VOPFUNC
)hfs_vnop_makenamedstream
},
7276 { &vnop_removenamedstream_desc
, (VOPFUNC
)hfs_vnop_removenamedstream
},
7278 { &vnop_getattrlistbulk_desc
, (VOPFUNC
)hfs_vnop_getattrlistbulk
}, /* getattrlistbulk */
7279 { &vnop_mnomap_desc
, (VOPFUNC
)hfs_vnop_mnomap
},
7280 { NULL
, (VOPFUNC
)NULL
}
7283 struct vnodeopv_desc hfs_vnodeop_opv_desc
=
7284 { &hfs_vnodeop_p
, hfs_vnodeop_entries
};
7287 /* Spec Op vnop table for HFS+ */
7288 int (**hfs_specop_p
)(void *);
7289 struct vnodeopv_entry_desc hfs_specop_entries
[] = {
7290 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7291 { &vnop_lookup_desc
, (VOPFUNC
)spec_lookup
}, /* lookup */
7292 { &vnop_create_desc
, (VOPFUNC
)spec_create
}, /* create */
7293 { &vnop_mknod_desc
, (VOPFUNC
)spec_mknod
}, /* mknod */
7294 { &vnop_open_desc
, (VOPFUNC
)spec_open
}, /* open */
7295 { &vnop_close_desc
, (VOPFUNC
)hfsspec_close
}, /* close */
7296 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7297 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
7298 { &vnop_read_desc
, (VOPFUNC
)hfsspec_read
}, /* read */
7299 { &vnop_write_desc
, (VOPFUNC
)hfsspec_write
}, /* write */
7300 { &vnop_ioctl_desc
, (VOPFUNC
)spec_ioctl
}, /* ioctl */
7301 { &vnop_select_desc
, (VOPFUNC
)spec_select
}, /* select */
7302 { &vnop_revoke_desc
, (VOPFUNC
)spec_revoke
}, /* revoke */
7303 { &vnop_mmap_desc
, (VOPFUNC
)spec_mmap
}, /* mmap */
7304 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
7305 { &vnop_remove_desc
, (VOPFUNC
)spec_remove
}, /* remove */
7306 { &vnop_link_desc
, (VOPFUNC
)spec_link
}, /* link */
7307 { &vnop_rename_desc
, (VOPFUNC
)spec_rename
}, /* rename */
7308 { &vnop_mkdir_desc
, (VOPFUNC
)spec_mkdir
}, /* mkdir */
7309 { &vnop_rmdir_desc
, (VOPFUNC
)spec_rmdir
}, /* rmdir */
7310 { &vnop_symlink_desc
, (VOPFUNC
)spec_symlink
}, /* symlink */
7311 { &vnop_readdir_desc
, (VOPFUNC
)spec_readdir
}, /* readdir */
7312 { &vnop_readlink_desc
, (VOPFUNC
)spec_readlink
}, /* readlink */
7313 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7314 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7315 { &vnop_strategy_desc
, (VOPFUNC
)spec_strategy
}, /* strategy */
7316 { &vnop_pathconf_desc
, (VOPFUNC
)spec_pathconf
}, /* pathconf */
7317 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7318 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
},
7319 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* Pagein */
7320 { &vnop_pageout_desc
, (VOPFUNC
)hfs_vnop_pageout
}, /* Pageout */
7321 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
7322 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7323 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7324 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7325 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_vnop_setxattr
},
7326 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_vnop_removexattr
},
7327 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7328 { (struct vnodeop_desc
*)NULL
, (VOPFUNC
)NULL
}
7330 struct vnodeopv_desc hfs_specop_opv_desc
=
7331 { &hfs_specop_p
, hfs_specop_entries
};
7334 /* HFS+ FIFO VNOP table */
7335 int (**hfs_fifoop_p
)(void *);
7336 struct vnodeopv_entry_desc hfs_fifoop_entries
[] = {
7337 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7338 { &vnop_lookup_desc
, (VOPFUNC
)fifo_lookup
}, /* lookup */
7339 { &vnop_create_desc
, (VOPFUNC
)fifo_create
}, /* create */
7340 { &vnop_mknod_desc
, (VOPFUNC
)fifo_mknod
}, /* mknod */
7341 { &vnop_open_desc
, (VOPFUNC
)fifo_open
}, /* open */
7342 { &vnop_close_desc
, (VOPFUNC
)hfsfifo_close
}, /* close */
7343 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7344 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
7345 { &vnop_read_desc
, (VOPFUNC
)hfsfifo_read
}, /* read */
7346 { &vnop_write_desc
, (VOPFUNC
)hfsfifo_write
}, /* write */
7347 { &vnop_ioctl_desc
, (VOPFUNC
)fifo_ioctl
}, /* ioctl */
7348 { &vnop_select_desc
, (VOPFUNC
)fifo_select
}, /* select */
7349 { &vnop_revoke_desc
, (VOPFUNC
)fifo_revoke
}, /* revoke */
7350 { &vnop_mmap_desc
, (VOPFUNC
)fifo_mmap
}, /* mmap */
7351 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
7352 { &vnop_remove_desc
, (VOPFUNC
)fifo_remove
}, /* remove */
7353 { &vnop_link_desc
, (VOPFUNC
)fifo_link
}, /* link */
7354 { &vnop_rename_desc
, (VOPFUNC
)fifo_rename
}, /* rename */
7355 { &vnop_mkdir_desc
, (VOPFUNC
)fifo_mkdir
}, /* mkdir */
7356 { &vnop_rmdir_desc
, (VOPFUNC
)fifo_rmdir
}, /* rmdir */
7357 { &vnop_symlink_desc
, (VOPFUNC
)fifo_symlink
}, /* symlink */
7358 { &vnop_readdir_desc
, (VOPFUNC
)fifo_readdir
}, /* readdir */
7359 { &vnop_readlink_desc
, (VOPFUNC
)fifo_readlink
}, /* readlink */
7360 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7361 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7362 { &vnop_strategy_desc
, (VOPFUNC
)fifo_strategy
}, /* strategy */
7363 { &vnop_pathconf_desc
, (VOPFUNC
)fifo_pathconf
}, /* pathconf */
7364 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7365 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
},
7366 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* Pagein */
7367 { &vnop_pageout_desc
, (VOPFUNC
)hfs_vnop_pageout
}, /* Pageout */
7368 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
7369 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7370 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7371 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
7372 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7373 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_vnop_setxattr
},
7374 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_vnop_removexattr
},
7375 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7376 { (struct vnodeop_desc
*)NULL
, (VOPFUNC
)NULL
}
7378 struct vnodeopv_desc hfs_fifoop_opv_desc
=
7379 { &hfs_fifoop_p
, hfs_fifoop_entries
};