]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/mptcp.c
xnu-6153.61.1.tar.gz
[apple/xnu.git] / bsd / netinet / mptcp.c
1 /*
2 * Copyright (c) 2012-2018 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * A note on the MPTCP/NECP-interactions:
31 *
32 * MPTCP uses NECP-callbacks to get notified of interface/policy events.
33 * MPTCP registers to these events at the MPTCP-layer for interface-events
34 * through a call to necp_client_register_multipath_cb.
35 * To get per-flow events (aka per TCP-subflow), we register to it with
36 * necp_client_register_socket_flow. Both registrations happen by using the
37 * necp-client-uuid that comes from the app.
38 *
39 * The locking is rather tricky. In general, we expect the lock-ordering to
40 * happen from necp-fd -> necp->client -> mpp_lock.
41 *
42 * There are however some subtleties.
43 *
44 * 1. When registering the multipath_cb, we are holding the mpp_lock. This is
45 * safe, because it is the very first time this MPTCP-connection goes into NECP.
46 * As we go into NECP we take the NECP-locks and thus are guaranteed that no
47 * NECP-locks will deadlock us. Because these NECP-events will also first take
48 * the NECP-locks. Either they win the race and thus won't find our
49 * MPTCP-connection. Or, MPTCP wins the race and thus it will safely install
50 * the callbacks while holding the NECP lock.
51 *
52 * 2. When registering the subflow-callbacks we must unlock the mpp_lock. This,
53 * because we have already registered callbacks and we might race against an
54 * NECP-event that will match on our socket. So, we have to unlock to be safe.
55 *
56 * 3. When removing the multipath_cb, we do it in mp_pcbdispose(). The
57 * so_usecount has reached 0. We must be careful to not remove the mpp_socket
58 * pointers before we unregistered the callback. Because, again we might be
59 * racing against an NECP-event. Unregistering must happen with an unlocked
60 * mpp_lock, because of the lock-ordering constraint. It could be that
61 * before we had a chance to unregister an NECP-event triggers. That's why
62 * we need to check for the so_usecount in mptcp_session_necp_cb. If we get
63 * there while the socket is being garbage-collected, the use-count will go
64 * down to 0 and we exit. Removal of the multipath_cb again happens by taking
65 * the NECP-locks so any running NECP-events will finish first and exit cleanly.
66 *
67 * 4. When removing the subflow-callback, we do it in in_pcbdispose(). Again,
68 * the socket-lock must be unlocked for lock-ordering constraints. This gets a
69 * bit tricky here, as in tcp_garbage_collect we hold the mp_so and so lock.
70 * So, we drop the mp_so-lock as soon as the subflow is unlinked with
71 * mptcp_subflow_del. Then, in in_pcbdispose we drop the subflow-lock.
72 * If an NECP-event was waiting on the lock in mptcp_subflow_necp_cb, when it
73 * gets it, it will realize that the subflow became non-MPTCP and retry (see
74 * tcp_lock). Then it waits again on the subflow-lock. When we drop this lock
75 * in in_pcbdispose, and enter necp_inpcb_dispose, this one will have to wait
76 * for the NECP-lock (held by the other thread that is taking care of the NECP-
77 * event). So, the event now finally gets the subflow-lock and then hits an
78 * so_usecount that is 0 and exits. Eventually, we can remove the subflow from
79 * the NECP callback.
80 */
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/mbuf.h>
86 #include <sys/mcache.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/syslog.h>
90 #include <sys/protosw.h>
91
92 #include <kern/zalloc.h>
93 #include <kern/locks.h>
94
95 #include <mach/sdt.h>
96
97 #include <net/if.h>
98 #include <netinet/in.h>
99 #include <netinet/in_var.h>
100 #include <netinet/tcp.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/mptcp_var.h>
105 #include <netinet/mptcp.h>
106 #include <netinet/mptcp_seq.h>
107 #include <netinet/mptcp_opt.h>
108 #include <netinet/mptcp_timer.h>
109
110 int mptcp_enable = 1;
111 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED,
112 &mptcp_enable, 0, "Enable Multipath TCP Support");
113
114 /*
115 * Number of times to try negotiating MPTCP on SYN retransmissions.
116 * We haven't seen any reports of a middlebox that is dropping all SYN-segments
117 * that have an MPTCP-option. Thus, let's be generous and retransmit it 4 times.
118 */
119 int mptcp_mpcap_retries = 4;
120 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, mptcp_cap_retr,
121 CTLFLAG_RW | CTLFLAG_LOCKED,
122 &mptcp_mpcap_retries, 0, "Number of MP Capable SYN Retries");
123
124 /*
125 * By default, DSS checksum is turned off, revisit if we ever do
126 * MPTCP for non SSL Traffic.
127 */
128 int mptcp_dss_csum = 0;
129 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, dss_csum, CTLFLAG_RW | CTLFLAG_LOCKED,
130 &mptcp_dss_csum, 0, "Enable DSS checksum");
131
132 /*
133 * When mptcp_fail_thresh number of retransmissions are sent, subflow failover
134 * is attempted on a different path.
135 */
136 int mptcp_fail_thresh = 1;
137 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, fail, CTLFLAG_RW | CTLFLAG_LOCKED,
138 &mptcp_fail_thresh, 0, "Failover threshold");
139
140
141 /*
142 * MPTCP subflows have TCP keepalives set to ON. Set a conservative keeptime
143 * as carrier networks mostly have a 30 minute to 60 minute NAT Timeout.
144 * Some carrier networks have a timeout of 10 or 15 minutes.
145 */
146 int mptcp_subflow_keeptime = 60 * 14;
147 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, keepalive, CTLFLAG_RW | CTLFLAG_LOCKED,
148 &mptcp_subflow_keeptime, 0, "Keepalive in seconds");
149
150 int mptcp_rtthist_rtthresh = 600;
151 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, rtthist_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
152 &mptcp_rtthist_rtthresh, 0, "Rtt threshold");
153
154 /*
155 * Use RTO history for sending new data
156 */
157 int mptcp_use_rto = 1;
158 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, userto, CTLFLAG_RW | CTLFLAG_LOCKED,
159 &mptcp_use_rto, 0, "Disable RTO for subflow selection");
160
161 int mptcp_rtothresh = 1500;
162 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, rto_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
163 &mptcp_rtothresh, 0, "RTO threshold");
164
165 /*
166 * Probe the preferred path, when it is not in use
167 */
168 uint32_t mptcp_probeto = 1000;
169 SYSCTL_UINT(_net_inet_mptcp, OID_AUTO, probeto, CTLFLAG_RW | CTLFLAG_LOCKED,
170 &mptcp_probeto, 0, "Disable probing by setting to 0");
171
172 uint32_t mptcp_probecnt = 5;
173 SYSCTL_UINT(_net_inet_mptcp, OID_AUTO, probecnt, CTLFLAG_RW | CTLFLAG_LOCKED,
174 &mptcp_probecnt, 0, "Number of probe writes");
175
176 /*
177 * Static declarations
178 */
179 static uint16_t mptcp_input_csum(struct tcpcb *, struct mbuf *, uint64_t,
180 uint32_t, uint16_t, uint16_t, uint16_t);
181
182 static int
183 mptcp_reass_present(struct socket *mp_so)
184 {
185 struct mptses *mpte = mpsotompte(mp_so);
186 struct mptcb *mp_tp = mpte->mpte_mptcb;
187 struct tseg_qent *q;
188 int dowakeup = 0;
189 int flags = 0;
190
191 /*
192 * Present data to user, advancing rcv_nxt through
193 * completed sequence space.
194 */
195 if (mp_tp->mpt_state < MPTCPS_ESTABLISHED) {
196 return flags;
197 }
198 q = LIST_FIRST(&mp_tp->mpt_segq);
199 if (!q || q->tqe_m->m_pkthdr.mp_dsn != mp_tp->mpt_rcvnxt) {
200 return flags;
201 }
202
203 /*
204 * If there is already another thread doing reassembly for this
205 * connection, it is better to let it finish the job --
206 * (radar 16316196)
207 */
208 if (mp_tp->mpt_flags & MPTCPF_REASS_INPROG) {
209 return flags;
210 }
211
212 mp_tp->mpt_flags |= MPTCPF_REASS_INPROG;
213
214 do {
215 mp_tp->mpt_rcvnxt += q->tqe_len;
216 LIST_REMOVE(q, tqe_q);
217 if (mp_so->so_state & SS_CANTRCVMORE) {
218 m_freem(q->tqe_m);
219 } else {
220 flags = !!(q->tqe_m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN);
221 if (sbappendstream_rcvdemux(mp_so, q->tqe_m, 0, 0)) {
222 dowakeup = 1;
223 }
224 }
225 zfree(tcp_reass_zone, q);
226 mp_tp->mpt_reassqlen--;
227 q = LIST_FIRST(&mp_tp->mpt_segq);
228 } while (q && q->tqe_m->m_pkthdr.mp_dsn == mp_tp->mpt_rcvnxt);
229 mp_tp->mpt_flags &= ~MPTCPF_REASS_INPROG;
230
231 if (dowakeup) {
232 sorwakeup(mp_so); /* done with socket lock held */
233 }
234 return flags;
235 }
236
237 static int
238 mptcp_reass(struct socket *mp_so, struct pkthdr *phdr, int *tlenp, struct mbuf *m)
239 {
240 struct mptcb *mp_tp = mpsotomppcb(mp_so)->mpp_pcbe->mpte_mptcb;
241 u_int64_t mb_dsn = phdr->mp_dsn;
242 struct tseg_qent *q;
243 struct tseg_qent *p = NULL;
244 struct tseg_qent *nq;
245 struct tseg_qent *te = NULL;
246 u_int16_t qlimit;
247
248 /*
249 * Limit the number of segments in the reassembly queue to prevent
250 * holding on to too many segments (and thus running out of mbufs).
251 * Make sure to let the missing segment through which caused this
252 * queue. Always keep one global queue entry spare to be able to
253 * process the missing segment.
254 */
255 qlimit = min(max(100, mp_so->so_rcv.sb_hiwat >> 10),
256 (tcp_autorcvbuf_max >> 10));
257 if (mb_dsn != mp_tp->mpt_rcvnxt &&
258 (mp_tp->mpt_reassqlen + 1) >= qlimit) {
259 tcpstat.tcps_mptcp_rcvmemdrop++;
260 m_freem(m);
261 *tlenp = 0;
262 return 0;
263 }
264
265 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
266 te = (struct tseg_qent *) zalloc(tcp_reass_zone);
267 if (te == NULL) {
268 tcpstat.tcps_mptcp_rcvmemdrop++;
269 m_freem(m);
270 return 0;
271 }
272
273 mp_tp->mpt_reassqlen++;
274
275 /*
276 * Find a segment which begins after this one does.
277 */
278 LIST_FOREACH(q, &mp_tp->mpt_segq, tqe_q) {
279 if (MPTCP_SEQ_GT(q->tqe_m->m_pkthdr.mp_dsn, mb_dsn)) {
280 break;
281 }
282 p = q;
283 }
284
285 /*
286 * If there is a preceding segment, it may provide some of
287 * our data already. If so, drop the data from the incoming
288 * segment. If it provides all of our data, drop us.
289 */
290 if (p != NULL) {
291 int64_t i;
292 /* conversion to int (in i) handles seq wraparound */
293 i = p->tqe_m->m_pkthdr.mp_dsn + p->tqe_len - mb_dsn;
294 if (i > 0) {
295 if (i >= *tlenp) {
296 tcpstat.tcps_mptcp_rcvduppack++;
297 m_freem(m);
298 zfree(tcp_reass_zone, te);
299 te = NULL;
300 mp_tp->mpt_reassqlen--;
301 /*
302 * Try to present any queued data
303 * at the left window edge to the user.
304 * This is needed after the 3-WHS
305 * completes.
306 */
307 goto out;
308 }
309 m_adj(m, i);
310 *tlenp -= i;
311 phdr->mp_dsn += i;
312 }
313 }
314
315 tcpstat.tcps_mp_oodata++;
316
317 /*
318 * While we overlap succeeding segments trim them or,
319 * if they are completely covered, dequeue them.
320 */
321 while (q) {
322 int64_t i = (mb_dsn + *tlenp) - q->tqe_m->m_pkthdr.mp_dsn;
323 if (i <= 0) {
324 break;
325 }
326
327 if (i < q->tqe_len) {
328 q->tqe_m->m_pkthdr.mp_dsn += i;
329 q->tqe_len -= i;
330 m_adj(q->tqe_m, i);
331 break;
332 }
333
334 nq = LIST_NEXT(q, tqe_q);
335 LIST_REMOVE(q, tqe_q);
336 m_freem(q->tqe_m);
337 zfree(tcp_reass_zone, q);
338 mp_tp->mpt_reassqlen--;
339 q = nq;
340 }
341
342 /* Insert the new segment queue entry into place. */
343 te->tqe_m = m;
344 te->tqe_th = NULL;
345 te->tqe_len = *tlenp;
346
347 if (p == NULL) {
348 LIST_INSERT_HEAD(&mp_tp->mpt_segq, te, tqe_q);
349 } else {
350 LIST_INSERT_AFTER(p, te, tqe_q);
351 }
352
353 out:
354 return mptcp_reass_present(mp_so);
355 }
356
357 /*
358 * MPTCP input, called when data has been read from a subflow socket.
359 */
360 void
361 mptcp_input(struct mptses *mpte, struct mbuf *m)
362 {
363 struct socket *mp_so;
364 struct mptcb *mp_tp = NULL;
365 int count = 0, wakeup = 0;
366 struct mbuf *save = NULL, *prev = NULL;
367 struct mbuf *freelist = NULL, *tail = NULL;
368
369 VERIFY(m->m_flags & M_PKTHDR);
370
371 mp_so = mptetoso(mpte);
372 mp_tp = mpte->mpte_mptcb;
373
374 socket_lock_assert_owned(mp_so);
375
376 DTRACE_MPTCP(input);
377
378 mp_tp->mpt_rcvwnd = mptcp_sbspace(mp_tp);
379
380 /*
381 * Each mbuf contains MPTCP Data Sequence Map
382 * Process the data for reassembly, delivery to MPTCP socket
383 * client, etc.
384 *
385 */
386 count = mp_so->so_rcv.sb_cc;
387
388 /*
389 * In the degraded fallback case, data is accepted without DSS map
390 */
391 if (mp_tp->mpt_flags & MPTCPF_FALLBACK_TO_TCP) {
392 struct mbuf *iter;
393 int mb_dfin = 0;
394 fallback:
395 mptcp_sbrcv_grow(mp_tp);
396
397 iter = m;
398 while (iter) {
399 if ((iter->m_flags & M_PKTHDR) &&
400 (iter->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN)) {
401 mb_dfin = 1;
402 }
403
404 if ((iter->m_flags & M_PKTHDR) && m_pktlen(iter) == 0) {
405 /* Don't add zero-length packets, so jump it! */
406 if (prev == NULL) {
407 m = iter->m_next;
408 m_free(iter);
409 iter = m;
410 } else {
411 prev->m_next = iter->m_next;
412 m_free(iter);
413 iter = prev->m_next;
414 }
415
416 /* It was a zero-length packet so next one must be a pkthdr */
417 VERIFY(iter == NULL || iter->m_flags & M_PKTHDR);
418 } else {
419 prev = iter;
420 iter = iter->m_next;
421 }
422 }
423
424 /*
425 * assume degraded flow as this may be the first packet
426 * without DSS, and the subflow state is not updated yet.
427 */
428 if (sbappendstream_rcvdemux(mp_so, m, 0, 0)) {
429 sorwakeup(mp_so);
430 }
431
432 DTRACE_MPTCP5(receive__degraded, struct mbuf *, m,
433 struct socket *, mp_so,
434 struct sockbuf *, &mp_so->so_rcv,
435 struct sockbuf *, &mp_so->so_snd,
436 struct mptses *, mpte);
437 count = mp_so->so_rcv.sb_cc - count;
438
439 mp_tp->mpt_rcvnxt += count;
440
441 if (mb_dfin) {
442 mptcp_close_fsm(mp_tp, MPCE_RECV_DATA_FIN);
443 socantrcvmore(mp_so);
444 }
445 return;
446 }
447
448 do {
449 u_int64_t mb_dsn;
450 int32_t mb_datalen;
451 int64_t todrop;
452 int mb_dfin = 0;
453
454 VERIFY(m->m_flags & M_PKTHDR);
455
456 /* If fallback occurs, mbufs will not have PKTF_MPTCP set */
457 if (!(m->m_pkthdr.pkt_flags & PKTF_MPTCP)) {
458 goto fallback;
459 }
460
461 save = m->m_next;
462 /*
463 * A single TCP packet formed of multiple mbufs
464 * holds DSS mapping in the first mbuf of the chain.
465 * Other mbufs in the chain may have M_PKTHDR set
466 * even though they belong to the same TCP packet
467 * and therefore use the DSS mapping stored in the
468 * first mbuf of the mbuf chain. mptcp_input() can
469 * get an mbuf chain with multiple TCP packets.
470 */
471 while (save && (!(save->m_flags & M_PKTHDR) ||
472 !(save->m_pkthdr.pkt_flags & PKTF_MPTCP))) {
473 prev = save;
474 save = save->m_next;
475 }
476 if (prev) {
477 prev->m_next = NULL;
478 } else {
479 m->m_next = NULL;
480 }
481
482 mb_dsn = m->m_pkthdr.mp_dsn;
483 mb_datalen = m->m_pkthdr.mp_rlen;
484
485 todrop = (mb_dsn + mb_datalen) - (mp_tp->mpt_rcvnxt + mp_tp->mpt_rcvwnd);
486 if (todrop > 0) {
487 tcpstat.tcps_mptcp_rcvpackafterwin++;
488
489 os_log_info(mptcp_log_handle, "%s - %lx: dropping dsn %u dlen %u rcvnxt %u rcvwnd %u todrop %lld\n",
490 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte),
491 (uint32_t)mb_dsn, mb_datalen, (uint32_t)mp_tp->mpt_rcvnxt,
492 mp_tp->mpt_rcvwnd, todrop);
493
494 if (todrop >= mb_datalen) {
495 if (freelist == NULL) {
496 freelist = m;
497 } else {
498 tail->m_next = m;
499 }
500
501 if (prev != NULL) {
502 tail = prev;
503 } else {
504 tail = m;
505 }
506
507 m = save;
508 prev = save = NULL;
509 continue;
510 } else {
511 m_adj(m, -todrop);
512 mb_datalen -= todrop;
513 m->m_pkthdr.mp_rlen -= todrop;
514 }
515
516 /*
517 * We drop from the right edge of the mbuf, thus the
518 * DATA_FIN is dropped as well
519 */
520 m->m_pkthdr.pkt_flags &= ~PKTF_MPTCP_DFIN;
521 }
522
523 if (MPTCP_SEQ_LT(mb_dsn, mp_tp->mpt_rcvnxt)) {
524 if (MPTCP_SEQ_LEQ((mb_dsn + mb_datalen),
525 mp_tp->mpt_rcvnxt)) {
526 if (freelist == NULL) {
527 freelist = m;
528 } else {
529 tail->m_next = m;
530 }
531
532 if (prev != NULL) {
533 tail = prev;
534 } else {
535 tail = m;
536 }
537
538 m = save;
539 prev = save = NULL;
540 continue;
541 } else {
542 m_adj(m, (mp_tp->mpt_rcvnxt - mb_dsn));
543 mb_datalen -= (mp_tp->mpt_rcvnxt - mb_dsn);
544 mb_dsn = mp_tp->mpt_rcvnxt;
545 m->m_pkthdr.mp_rlen = mb_datalen;
546 m->m_pkthdr.mp_dsn = mb_dsn;
547 }
548 }
549
550 if (MPTCP_SEQ_GT(mb_dsn, mp_tp->mpt_rcvnxt) ||
551 !LIST_EMPTY(&mp_tp->mpt_segq)) {
552 mb_dfin = mptcp_reass(mp_so, &m->m_pkthdr, &mb_datalen, m);
553
554 goto next;
555 }
556 mb_dfin = !!(m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN);
557
558 mptcp_sbrcv_grow(mp_tp);
559
560 if (sbappendstream_rcvdemux(mp_so, m, 0, 0)) {
561 wakeup = 1;
562 }
563
564 DTRACE_MPTCP6(receive, struct mbuf *, m, struct socket *, mp_so,
565 struct sockbuf *, &mp_so->so_rcv,
566 struct sockbuf *, &mp_so->so_snd,
567 struct mptses *, mpte,
568 struct mptcb *, mp_tp);
569 count = mp_so->so_rcv.sb_cc - count;
570 tcpstat.tcps_mp_rcvtotal++;
571 tcpstat.tcps_mp_rcvbytes += count;
572
573 mp_tp->mpt_rcvnxt += count;
574
575 next:
576 if (mb_dfin) {
577 mptcp_close_fsm(mp_tp, MPCE_RECV_DATA_FIN);
578 socantrcvmore(mp_so);
579 }
580 m = save;
581 prev = save = NULL;
582 count = mp_so->so_rcv.sb_cc;
583 } while (m);
584
585 if (freelist) {
586 m_freem(freelist);
587 }
588
589 if (wakeup) {
590 sorwakeup(mp_so);
591 }
592 }
593
594 boolean_t
595 mptcp_can_send_more(struct mptcb *mp_tp, boolean_t ignore_reinject)
596 {
597 struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
598
599 /*
600 * Always send if there is data in the reinject-queue.
601 */
602 if (!ignore_reinject && mp_tp->mpt_mpte->mpte_reinjectq) {
603 return TRUE;
604 }
605
606 /*
607 * Don't send, if:
608 *
609 * 1. snd_nxt >= snd_max : Means, basically everything has been sent.
610 * Except when using TFO, we might be doing a 0-byte write.
611 * 2. snd_una + snd_wnd <= snd_nxt: No space in the receiver's window
612 * 3. snd_nxt + 1 == snd_max and we are closing: A DATA_FIN is scheduled.
613 */
614
615 if (!(mp_so->so_flags1 & SOF1_PRECONNECT_DATA) && MPTCP_SEQ_GEQ(mp_tp->mpt_sndnxt, mp_tp->mpt_sndmax)) {
616 return FALSE;
617 }
618
619 if (MPTCP_SEQ_LEQ(mp_tp->mpt_snduna + mp_tp->mpt_sndwnd, mp_tp->mpt_sndnxt)) {
620 return FALSE;
621 }
622
623 if (mp_tp->mpt_sndnxt + 1 == mp_tp->mpt_sndmax && mp_tp->mpt_state > MPTCPS_CLOSE_WAIT) {
624 return FALSE;
625 }
626
627 if (mp_tp->mpt_state >= MPTCPS_FIN_WAIT_2) {
628 return FALSE;
629 }
630
631 return TRUE;
632 }
633
634 /*
635 * MPTCP output.
636 */
637 int
638 mptcp_output(struct mptses *mpte)
639 {
640 struct mptcb *mp_tp;
641 struct mptsub *mpts;
642 struct mptsub *mpts_tried = NULL;
643 struct socket *mp_so;
644 struct mptsub *preferred_mpts = NULL;
645 uint64_t old_snd_nxt;
646 int error = 0;
647
648 mp_so = mptetoso(mpte);
649 mp_tp = mpte->mpte_mptcb;
650
651 socket_lock_assert_owned(mp_so);
652
653 if (mp_so->so_flags & SOF_DEFUNCT) {
654 return 0;
655 }
656
657 VERIFY(!(mpte->mpte_mppcb->mpp_flags & MPP_WUPCALL));
658 mpte->mpte_mppcb->mpp_flags |= MPP_WUPCALL;
659
660 old_snd_nxt = mp_tp->mpt_sndnxt;
661 while (mptcp_can_send_more(mp_tp, FALSE)) {
662 /* get the "best" subflow to be used for transmission */
663 mpts = mptcp_get_subflow(mpte, &preferred_mpts);
664 if (mpts == NULL) {
665 mptcplog((LOG_INFO, "%s: no subflow\n", __func__),
666 MPTCP_SENDER_DBG, MPTCP_LOGLVL_LOG);
667 break;
668 }
669
670 /* In case there's just one flow, we reattempt later */
671 if (mpts_tried != NULL &&
672 (mpts == mpts_tried || (mpts->mpts_flags & MPTSF_FAILINGOVER))) {
673 mpts_tried->mpts_flags &= ~MPTSF_FAILINGOVER;
674 mpts_tried->mpts_flags |= MPTSF_ACTIVE;
675 mptcp_start_timer(mpte, MPTT_REXMT);
676 break;
677 }
678
679 /*
680 * Automatic sizing of send socket buffer. Increase the send
681 * socket buffer size if all of the following criteria are met
682 * 1. the receiver has enough buffer space for this data
683 * 2. send buffer is filled to 7/8th with data (so we actually
684 * have data to make use of it);
685 */
686 if (tcp_do_autosendbuf == 1 &&
687 (mp_so->so_snd.sb_flags & (SB_AUTOSIZE | SB_TRIM)) == SB_AUTOSIZE &&
688 tcp_cansbgrow(&mp_so->so_snd)) {
689 if ((mp_tp->mpt_sndwnd / 4 * 5) >= mp_so->so_snd.sb_hiwat &&
690 mp_so->so_snd.sb_cc >= (mp_so->so_snd.sb_hiwat / 8 * 7)) {
691 if (sbreserve(&mp_so->so_snd,
692 min(mp_so->so_snd.sb_hiwat + tcp_autosndbuf_inc,
693 tcp_autosndbuf_max)) == 1) {
694 mp_so->so_snd.sb_idealsize = mp_so->so_snd.sb_hiwat;
695 }
696 }
697 }
698
699 DTRACE_MPTCP3(output, struct mptses *, mpte, struct mptsub *, mpts,
700 struct socket *, mp_so);
701 error = mptcp_subflow_output(mpte, mpts, 0);
702 if (error) {
703 /* can be a temporary loss of source address or other error */
704 mpts->mpts_flags |= MPTSF_FAILINGOVER;
705 mpts->mpts_flags &= ~MPTSF_ACTIVE;
706 mpts_tried = mpts;
707 if (error != ECANCELED) {
708 os_log_error(mptcp_log_handle, "%s - %lx: Error = %d mpts_flags %#x\n",
709 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte),
710 error, mpts->mpts_flags);
711 }
712 break;
713 }
714 /* The model is to have only one active flow at a time */
715 mpts->mpts_flags |= MPTSF_ACTIVE;
716 mpts->mpts_probesoon = mpts->mpts_probecnt = 0;
717
718 /* Allows us to update the smoothed rtt */
719 if (mptcp_probeto && mpts != preferred_mpts && preferred_mpts != NULL) {
720 if (preferred_mpts->mpts_probesoon) {
721 if ((tcp_now - preferred_mpts->mpts_probesoon) > mptcp_probeto) {
722 mptcp_subflow_output(mpte, preferred_mpts, MPTCP_SUBOUT_PROBING);
723 if (preferred_mpts->mpts_probecnt >= mptcp_probecnt) {
724 preferred_mpts->mpts_probesoon = 0;
725 preferred_mpts->mpts_probecnt = 0;
726 }
727 }
728 } else {
729 preferred_mpts->mpts_probesoon = tcp_now;
730 preferred_mpts->mpts_probecnt = 0;
731 }
732 }
733
734 if (mpte->mpte_active_sub == NULL) {
735 mpte->mpte_active_sub = mpts;
736 } else if (mpte->mpte_active_sub != mpts) {
737 mpte->mpte_active_sub->mpts_flags &= ~MPTSF_ACTIVE;
738 mpte->mpte_active_sub = mpts;
739
740 mptcpstats_inc_switch(mpte, mpts);
741 }
742 }
743
744 if (mp_tp->mpt_state > MPTCPS_CLOSE_WAIT) {
745 if (mp_tp->mpt_sndnxt + 1 == mp_tp->mpt_sndmax &&
746 mp_tp->mpt_snduna == mp_tp->mpt_sndnxt) {
747 mptcp_finish_usrclosed(mpte);
748 }
749 }
750
751 mptcp_handle_deferred_upcalls(mpte->mpte_mppcb, MPP_WUPCALL);
752
753 /* subflow errors should not be percolated back up */
754 return 0;
755 }
756
757
758 static struct mptsub *
759 mptcp_choose_subflow(struct mptsub *mpts, struct mptsub *curbest, int *currtt)
760 {
761 struct tcpcb *tp = sototcpcb(mpts->mpts_socket);
762
763 /*
764 * Lower RTT? Take it, if it's our first one, or
765 * it doesn't has any loss, or the current one has
766 * loss as well.
767 */
768 if (tp->t_srtt && *currtt > tp->t_srtt &&
769 (curbest == NULL || tp->t_rxtshift == 0 ||
770 sototcpcb(curbest->mpts_socket)->t_rxtshift)) {
771 *currtt = tp->t_srtt;
772 return mpts;
773 }
774
775 /*
776 * If we find a subflow without loss, take it always!
777 */
778 if (curbest &&
779 sototcpcb(curbest->mpts_socket)->t_rxtshift &&
780 tp->t_rxtshift == 0) {
781 *currtt = tp->t_srtt;
782 return mpts;
783 }
784
785 return curbest != NULL ? curbest : mpts;
786 }
787
788 static struct mptsub *
789 mptcp_return_subflow(struct mptsub *mpts)
790 {
791 if (mpts && mptcp_subflow_cwnd_space(mpts->mpts_socket) <= 0) {
792 return NULL;
793 }
794
795 return mpts;
796 }
797
798 static boolean_t
799 mptcp_subflow_is_slow(struct mptses *mpte, struct mptsub *mpts)
800 {
801 struct tcpcb *tp = sototcpcb(mpts->mpts_socket);
802 int fail_thresh = mptcp_fail_thresh;
803
804 if (mpte->mpte_svctype == MPTCP_SVCTYPE_HANDOVER) {
805 fail_thresh *= 2;
806 }
807
808 return tp->t_rxtshift >= fail_thresh &&
809 (mptetoso(mpte)->so_snd.sb_cc || mpte->mpte_reinjectq);
810 }
811
812 /*
813 * Return the most eligible subflow to be used for sending data.
814 */
815 struct mptsub *
816 mptcp_get_subflow(struct mptses *mpte, struct mptsub **preferred)
817 {
818 struct tcpcb *besttp, *secondtp;
819 struct inpcb *bestinp, *secondinp;
820 struct mptsub *mpts;
821 struct mptsub *best = NULL;
822 struct mptsub *second_best = NULL;
823 int exp_rtt = INT_MAX, cheap_rtt = INT_MAX;
824
825 /*
826 * First Step:
827 * Choose the best subflow for cellular and non-cellular interfaces.
828 */
829
830 TAILQ_FOREACH(mpts, &mpte->mpte_subflows, mpts_entry) {
831 struct socket *so = mpts->mpts_socket;
832 struct tcpcb *tp = sototcpcb(so);
833 struct inpcb *inp = sotoinpcb(so);
834
835 mptcplog((LOG_DEBUG, "%s mpts %u mpts_flags %#x, suspended %u sostate %#x tpstate %u cellular %d rtt %u rxtshift %u cheap %u exp %u cwnd %d\n",
836 __func__, mpts->mpts_connid, mpts->mpts_flags,
837 INP_WAIT_FOR_IF_FEEDBACK(inp), so->so_state, tp->t_state,
838 inp->inp_last_outifp ? IFNET_IS_CELLULAR(inp->inp_last_outifp) : -1,
839 tp->t_srtt, tp->t_rxtshift, cheap_rtt, exp_rtt,
840 mptcp_subflow_cwnd_space(so)),
841 MPTCP_SOCKET_DBG, MPTCP_LOGLVL_VERBOSE);
842
843 /*
844 * First, the hard conditions to reject subflows
845 * (e.g., not connected,...)
846 */
847 if (inp->inp_last_outifp == NULL) {
848 continue;
849 }
850
851 if (INP_WAIT_FOR_IF_FEEDBACK(inp)) {
852 continue;
853 }
854
855 /* There can only be one subflow in degraded state */
856 if (mpts->mpts_flags & MPTSF_MP_DEGRADED) {
857 best = mpts;
858 break;
859 }
860
861 /*
862 * If this subflow is waiting to finally send, do it!
863 */
864 if (so->so_flags1 & SOF1_PRECONNECT_DATA) {
865 return mptcp_return_subflow(mpts);
866 }
867
868 /*
869 * Only send if the subflow is MP_CAPABLE. The exceptions to
870 * this rule (degraded or TFO) have been taken care of above.
871 */
872 if (!(mpts->mpts_flags & MPTSF_MP_CAPABLE)) {
873 continue;
874 }
875
876 if ((so->so_state & SS_ISDISCONNECTED) ||
877 !(so->so_state & SS_ISCONNECTED) ||
878 !TCPS_HAVEESTABLISHED(tp->t_state) ||
879 tp->t_state > TCPS_CLOSE_WAIT) {
880 continue;
881 }
882
883 /*
884 * Second, the soft conditions to find the subflow with best
885 * conditions for each set (aka cellular vs non-cellular)
886 */
887 if (IFNET_IS_CELLULAR(inp->inp_last_outifp)) {
888 second_best = mptcp_choose_subflow(mpts, second_best,
889 &exp_rtt);
890 } else {
891 best = mptcp_choose_subflow(mpts, best, &cheap_rtt);
892 }
893 }
894
895 /*
896 * If there is no preferred or backup subflow, and there is no active
897 * subflow use the last usable subflow.
898 */
899 if (best == NULL) {
900 return mptcp_return_subflow(second_best);
901 }
902
903 if (second_best == NULL) {
904 return mptcp_return_subflow(best);
905 }
906
907 besttp = sototcpcb(best->mpts_socket);
908 bestinp = sotoinpcb(best->mpts_socket);
909 secondtp = sototcpcb(second_best->mpts_socket);
910 secondinp = sotoinpcb(second_best->mpts_socket);
911
912 if (preferred != NULL) {
913 *preferred = mptcp_return_subflow(best);
914 }
915
916 /*
917 * Second Step: Among best and second_best. Choose the one that is
918 * most appropriate for this particular service-type.
919 */
920 if (mpte->mpte_svctype == MPTCP_SVCTYPE_HANDOVER) {
921 /*
922 * Only handover if Symptoms tells us to do so.
923 */
924 if (!IFNET_IS_CELLULAR(bestinp->inp_last_outifp) &&
925 mptcp_is_wifi_unusable_for_session(mpte) != 0 && mptcp_subflow_is_slow(mpte, best)) {
926 return mptcp_return_subflow(second_best);
927 }
928
929 return mptcp_return_subflow(best);
930 } else if (mpte->mpte_svctype == MPTCP_SVCTYPE_INTERACTIVE) {
931 int rtt_thresh = mptcp_rtthist_rtthresh << TCP_RTT_SHIFT;
932 int rto_thresh = mptcp_rtothresh;
933
934 /* Adjust with symptoms information */
935 if (!IFNET_IS_CELLULAR(bestinp->inp_last_outifp) &&
936 mptcp_is_wifi_unusable_for_session(mpte) != 0) {
937 rtt_thresh /= 2;
938 rto_thresh /= 2;
939 }
940
941 if (besttp->t_srtt && secondtp->t_srtt &&
942 besttp->t_srtt >= rtt_thresh &&
943 secondtp->t_srtt < rtt_thresh) {
944 tcpstat.tcps_mp_sel_rtt++;
945 mptcplog((LOG_DEBUG, "%s: best cid %d at rtt %d, second cid %d at rtt %d\n", __func__,
946 best->mpts_connid, besttp->t_srtt >> TCP_RTT_SHIFT,
947 second_best->mpts_connid,
948 secondtp->t_srtt >> TCP_RTT_SHIFT),
949 MPTCP_SENDER_DBG, MPTCP_LOGLVL_LOG);
950 return mptcp_return_subflow(second_best);
951 }
952
953 if (mptcp_subflow_is_slow(mpte, best) &&
954 secondtp->t_rxtshift == 0) {
955 return mptcp_return_subflow(second_best);
956 }
957
958 /* Compare RTOs, select second_best if best's rto exceeds rtothresh */
959 if (besttp->t_rxtcur && secondtp->t_rxtcur &&
960 besttp->t_rxtcur >= rto_thresh &&
961 secondtp->t_rxtcur < rto_thresh) {
962 tcpstat.tcps_mp_sel_rto++;
963 mptcplog((LOG_DEBUG, "%s: best cid %d at rto %d, second cid %d at rto %d\n", __func__,
964 best->mpts_connid, besttp->t_rxtcur,
965 second_best->mpts_connid, secondtp->t_rxtcur),
966 MPTCP_SENDER_DBG, MPTCP_LOGLVL_LOG);
967
968 return mptcp_return_subflow(second_best);
969 }
970
971 /*
972 * None of the above conditions for sending on the secondary
973 * were true. So, let's schedule on the best one, if he still
974 * has some space in the congestion-window.
975 */
976 return mptcp_return_subflow(best);
977 } else if (mpte->mpte_svctype >= MPTCP_SVCTYPE_AGGREGATE) {
978 struct mptsub *tmp;
979
980 /*
981 * We only care about RTT when aggregating
982 */
983 if (besttp->t_srtt > secondtp->t_srtt) {
984 tmp = best;
985 best = second_best;
986 besttp = secondtp;
987 bestinp = secondinp;
988
989 second_best = tmp;
990 secondtp = sototcpcb(second_best->mpts_socket);
991 secondinp = sotoinpcb(second_best->mpts_socket);
992 }
993
994 /* Is there still space in the congestion window? */
995 if (mptcp_subflow_cwnd_space(bestinp->inp_socket) <= 0) {
996 return mptcp_return_subflow(second_best);
997 }
998
999 return mptcp_return_subflow(best);
1000 } else {
1001 panic("Unknown service-type configured for MPTCP");
1002 }
1003
1004 return NULL;
1005 }
1006
1007 static const char *
1008 mptcp_event_to_str(uint32_t event)
1009 {
1010 const char *c = "UNDEFINED";
1011 switch (event) {
1012 case MPCE_CLOSE:
1013 c = "MPCE_CLOSE";
1014 break;
1015 case MPCE_RECV_DATA_ACK:
1016 c = "MPCE_RECV_DATA_ACK";
1017 break;
1018 case MPCE_RECV_DATA_FIN:
1019 c = "MPCE_RECV_DATA_FIN";
1020 break;
1021 }
1022 return c;
1023 }
1024
1025 static const char *
1026 mptcp_state_to_str(mptcp_state_t state)
1027 {
1028 const char *c = "UNDEFINED";
1029 switch (state) {
1030 case MPTCPS_CLOSED:
1031 c = "MPTCPS_CLOSED";
1032 break;
1033 case MPTCPS_LISTEN:
1034 c = "MPTCPS_LISTEN";
1035 break;
1036 case MPTCPS_ESTABLISHED:
1037 c = "MPTCPS_ESTABLISHED";
1038 break;
1039 case MPTCPS_CLOSE_WAIT:
1040 c = "MPTCPS_CLOSE_WAIT";
1041 break;
1042 case MPTCPS_FIN_WAIT_1:
1043 c = "MPTCPS_FIN_WAIT_1";
1044 break;
1045 case MPTCPS_CLOSING:
1046 c = "MPTCPS_CLOSING";
1047 break;
1048 case MPTCPS_LAST_ACK:
1049 c = "MPTCPS_LAST_ACK";
1050 break;
1051 case MPTCPS_FIN_WAIT_2:
1052 c = "MPTCPS_FIN_WAIT_2";
1053 break;
1054 case MPTCPS_TIME_WAIT:
1055 c = "MPTCPS_TIME_WAIT";
1056 break;
1057 case MPTCPS_TERMINATE:
1058 c = "MPTCPS_TERMINATE";
1059 break;
1060 }
1061 return c;
1062 }
1063
1064 void
1065 mptcp_close_fsm(struct mptcb *mp_tp, uint32_t event)
1066 {
1067 struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
1068
1069 socket_lock_assert_owned(mp_so);
1070
1071 mptcp_state_t old_state = mp_tp->mpt_state;
1072
1073 DTRACE_MPTCP2(state__change, struct mptcb *, mp_tp,
1074 uint32_t, event);
1075
1076 switch (mp_tp->mpt_state) {
1077 case MPTCPS_CLOSED:
1078 case MPTCPS_LISTEN:
1079 mp_tp->mpt_state = MPTCPS_TERMINATE;
1080 break;
1081
1082 case MPTCPS_ESTABLISHED:
1083 if (event == MPCE_CLOSE) {
1084 mp_tp->mpt_state = MPTCPS_FIN_WAIT_1;
1085 mp_tp->mpt_sndmax += 1; /* adjust for Data FIN */
1086 } else if (event == MPCE_RECV_DATA_FIN) {
1087 mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
1088 mp_tp->mpt_state = MPTCPS_CLOSE_WAIT;
1089 }
1090 break;
1091
1092 case MPTCPS_CLOSE_WAIT:
1093 if (event == MPCE_CLOSE) {
1094 mp_tp->mpt_state = MPTCPS_LAST_ACK;
1095 mp_tp->mpt_sndmax += 1; /* adjust for Data FIN */
1096 }
1097 break;
1098
1099 case MPTCPS_FIN_WAIT_1:
1100 if (event == MPCE_RECV_DATA_ACK) {
1101 mp_tp->mpt_state = MPTCPS_FIN_WAIT_2;
1102 } else if (event == MPCE_RECV_DATA_FIN) {
1103 mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
1104 mp_tp->mpt_state = MPTCPS_CLOSING;
1105 }
1106 break;
1107
1108 case MPTCPS_CLOSING:
1109 if (event == MPCE_RECV_DATA_ACK) {
1110 mp_tp->mpt_state = MPTCPS_TIME_WAIT;
1111 }
1112 break;
1113
1114 case MPTCPS_LAST_ACK:
1115 if (event == MPCE_RECV_DATA_ACK) {
1116 mptcp_close(mp_tp->mpt_mpte, mp_tp);
1117 }
1118 break;
1119
1120 case MPTCPS_FIN_WAIT_2:
1121 if (event == MPCE_RECV_DATA_FIN) {
1122 mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
1123 mp_tp->mpt_state = MPTCPS_TIME_WAIT;
1124 }
1125 break;
1126
1127 case MPTCPS_TIME_WAIT:
1128 case MPTCPS_TERMINATE:
1129 break;
1130
1131 default:
1132 VERIFY(0);
1133 /* NOTREACHED */
1134 }
1135 DTRACE_MPTCP2(state__change, struct mptcb *, mp_tp,
1136 uint32_t, event);
1137 mptcplog((LOG_INFO, "%s: %s to %s on event %s\n", __func__,
1138 mptcp_state_to_str(old_state),
1139 mptcp_state_to_str(mp_tp->mpt_state),
1140 mptcp_event_to_str(event)),
1141 MPTCP_STATE_DBG, MPTCP_LOGLVL_LOG);
1142 }
1143
1144 /* If you change this function, match up mptcp_update_rcv_state_f */
1145 void
1146 mptcp_update_dss_rcv_state(struct mptcp_dsn_opt *dss_info, struct tcpcb *tp,
1147 uint16_t csum)
1148 {
1149 struct mptcb *mp_tp = tptomptp(tp);
1150 u_int64_t full_dsn = 0;
1151
1152 NTOHL(dss_info->mdss_dsn);
1153 NTOHL(dss_info->mdss_subflow_seqn);
1154 NTOHS(dss_info->mdss_data_len);
1155
1156 /* XXX for autosndbuf grow sb here */
1157 MPTCP_EXTEND_DSN(mp_tp->mpt_rcvnxt, dss_info->mdss_dsn, full_dsn);
1158 mptcp_update_rcv_state_meat(mp_tp, tp,
1159 full_dsn, dss_info->mdss_subflow_seqn, dss_info->mdss_data_len,
1160 csum);
1161 }
1162
1163 void
1164 mptcp_update_rcv_state_meat(struct mptcb *mp_tp, struct tcpcb *tp,
1165 u_int64_t full_dsn, u_int32_t seqn, u_int16_t mdss_data_len,
1166 uint16_t csum)
1167 {
1168 if (mdss_data_len == 0) {
1169 os_log_error(mptcp_log_handle, "%s - %lx: Infinite Mapping.\n",
1170 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mp_tp->mpt_mpte));
1171
1172 if ((mp_tp->mpt_flags & MPTCPF_CHECKSUM) && (csum != 0)) {
1173 os_log_error(mptcp_log_handle, "%s - %lx: Bad checksum %x \n",
1174 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mp_tp->mpt_mpte), csum);
1175 }
1176 mptcp_notify_mpfail(tp->t_inpcb->inp_socket);
1177 return;
1178 }
1179
1180 mptcp_notify_mpready(tp->t_inpcb->inp_socket);
1181
1182 tp->t_rcv_map.mpt_dsn = full_dsn;
1183 tp->t_rcv_map.mpt_sseq = seqn;
1184 tp->t_rcv_map.mpt_len = mdss_data_len;
1185 tp->t_rcv_map.mpt_csum = csum;
1186 tp->t_mpflags |= TMPF_EMBED_DSN;
1187 }
1188
1189
1190 static int
1191 mptcp_validate_dss_map(struct socket *so, struct tcpcb *tp, struct mbuf *m,
1192 int hdrlen)
1193 {
1194 u_int32_t datalen;
1195
1196 if (!(m->m_pkthdr.pkt_flags & PKTF_MPTCP)) {
1197 return 0;
1198 }
1199
1200 datalen = m->m_pkthdr.mp_rlen;
1201
1202 /* unacceptable DSS option, fallback to TCP */
1203 if (m->m_pkthdr.len > ((int) datalen + hdrlen)) {
1204 os_log_error(mptcp_log_handle, "%s - %lx: mbuf len %d, MPTCP expected %d",
1205 __func__, (unsigned long)VM_KERNEL_ADDRPERM(tptomptp(tp)->mpt_mpte), m->m_pkthdr.len, datalen);
1206 } else {
1207 return 0;
1208 }
1209 tp->t_mpflags |= TMPF_SND_MPFAIL;
1210 mptcp_notify_mpfail(so);
1211 m_freem(m);
1212 return -1;
1213 }
1214
1215 int
1216 mptcp_input_preproc(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
1217 int drop_hdrlen)
1218 {
1219 mptcp_insert_rmap(tp, m, th);
1220 if (mptcp_validate_dss_map(tp->t_inpcb->inp_socket, tp, m,
1221 drop_hdrlen) != 0) {
1222 return -1;
1223 }
1224 return 0;
1225 }
1226
1227 /*
1228 * MPTCP Checksum support
1229 * The checksum is calculated whenever the MPTCP DSS option is included
1230 * in the TCP packet. The checksum includes the sum of the MPTCP psuedo
1231 * header and the actual data indicated by the length specified in the
1232 * DSS option.
1233 */
1234
1235 int
1236 mptcp_validate_csum(struct tcpcb *tp, struct mbuf *m, uint64_t dsn,
1237 uint32_t sseq, uint16_t dlen, uint16_t csum, uint16_t dfin)
1238 {
1239 uint16_t mptcp_csum;
1240
1241 mptcp_csum = mptcp_input_csum(tp, m, dsn, sseq, dlen, csum, dfin);
1242 if (mptcp_csum) {
1243 tp->t_mpflags |= TMPF_SND_MPFAIL;
1244 mptcp_notify_mpfail(tp->t_inpcb->inp_socket);
1245 m_freem(m);
1246 tcpstat.tcps_mp_badcsum++;
1247 return -1;
1248 }
1249 return 0;
1250 }
1251
1252 static uint16_t
1253 mptcp_input_csum(struct tcpcb *tp, struct mbuf *m, uint64_t dsn, uint32_t sseq,
1254 uint16_t dlen, uint16_t csum, uint16_t dfin)
1255 {
1256 struct mptcb *mp_tp = tptomptp(tp);
1257 uint16_t real_len = dlen - dfin;
1258 uint32_t sum = 0;
1259
1260 if (mp_tp == NULL) {
1261 return 0;
1262 }
1263
1264 if (!(mp_tp->mpt_flags & MPTCPF_CHECKSUM)) {
1265 return 0;
1266 }
1267
1268 if (tp->t_mpflags & TMPF_TCP_FALLBACK) {
1269 return 0;
1270 }
1271
1272 /*
1273 * The remote side may send a packet with fewer bytes than the
1274 * claimed DSS checksum length.
1275 */
1276 if ((int)m_length2(m, NULL) < real_len) {
1277 return 0xffff;
1278 }
1279
1280 if (real_len != 0) {
1281 sum = m_sum16(m, 0, real_len);
1282 }
1283
1284 sum += in_pseudo64(htonll(dsn), htonl(sseq), htons(dlen) + csum);
1285 ADDCARRY(sum);
1286 DTRACE_MPTCP3(checksum__result, struct tcpcb *, tp, struct mbuf *, m,
1287 uint32_t, sum);
1288
1289 mptcplog((LOG_DEBUG, "%s: sum = %x \n", __func__, sum),
1290 MPTCP_RECEIVER_DBG, MPTCP_LOGLVL_VERBOSE);
1291 return ~sum & 0xffff;
1292 }
1293
1294 uint32_t
1295 mptcp_output_csum(struct mbuf *m, uint64_t dss_val, uint32_t sseq, uint16_t dlen)
1296 {
1297 uint32_t sum = 0;
1298
1299 if (dlen) {
1300 sum = m_sum16(m, 0, dlen);
1301 }
1302
1303 dss_val = mptcp_hton64(dss_val);
1304 sseq = htonl(sseq);
1305 dlen = htons(dlen);
1306 sum += in_pseudo64(dss_val, sseq, dlen);
1307
1308 ADDCARRY(sum);
1309 sum = ~sum & 0xffff;
1310 DTRACE_MPTCP2(checksum__result, struct mbuf *, m, uint32_t, sum);
1311 mptcplog((LOG_DEBUG, "%s: sum = %x \n", __func__, sum),
1312 MPTCP_SENDER_DBG, MPTCP_LOGLVL_VERBOSE);
1313
1314 return sum;
1315 }
1316
1317 /*
1318 * When WiFi signal starts fading, there's more loss and RTT spikes.
1319 * Check if there has been a large spike by comparing against
1320 * a tolerable RTT spike threshold.
1321 */
1322 boolean_t
1323 mptcp_no_rto_spike(struct socket *so)
1324 {
1325 struct tcpcb *tp = intotcpcb(sotoinpcb(so));
1326 int32_t spike = 0;
1327
1328 if (tp->t_rxtcur > mptcp_rtothresh) {
1329 spike = tp->t_rxtcur - mptcp_rtothresh;
1330
1331 mptcplog((LOG_DEBUG, "%s: spike = %d rto = %d best = %d cur = %d\n",
1332 __func__, spike,
1333 tp->t_rxtcur, tp->t_rttbest >> TCP_RTT_SHIFT,
1334 tp->t_rttcur),
1335 (MPTCP_SOCKET_DBG | MPTCP_SENDER_DBG), MPTCP_LOGLVL_LOG);
1336 }
1337
1338 if (spike > 0) {
1339 return FALSE;
1340 } else {
1341 return TRUE;
1342 }
1343 }
1344
1345 void
1346 mptcp_handle_deferred_upcalls(struct mppcb *mpp, uint32_t flag)
1347 {
1348 VERIFY(mpp->mpp_flags & flag);
1349 mpp->mpp_flags &= ~flag;
1350
1351 if (mptcp_should_defer_upcall(mpp)) {
1352 return;
1353 }
1354
1355 if (mpp->mpp_flags & MPP_SHOULD_WORKLOOP) {
1356 mpp->mpp_flags &= ~MPP_SHOULD_WORKLOOP;
1357
1358 mptcp_subflow_workloop(mpp->mpp_pcbe);
1359 }
1360
1361 if (mpp->mpp_flags & MPP_SHOULD_RWAKEUP) {
1362 mpp->mpp_flags &= ~MPP_SHOULD_RWAKEUP;
1363
1364 sorwakeup(mpp->mpp_socket);
1365 }
1366
1367 if (mpp->mpp_flags & MPP_SHOULD_WWAKEUP) {
1368 mpp->mpp_flags &= ~MPP_SHOULD_WWAKEUP;
1369
1370 sowwakeup(mpp->mpp_socket);
1371 }
1372 }
1373
1374 void
1375 mptcp_ask_for_nat64(struct ifnet *ifp)
1376 {
1377 in6_post_msg(ifp, KEV_INET6_REQUEST_NAT64_PREFIX, NULL, NULL);
1378
1379 os_log_info(mptcp_log_handle,
1380 "%s: asked for NAT64-prefix on %s\n", __func__,
1381 ifp->if_name);
1382 }
1383
1384 static void
1385 mptcp_reset_itfinfo(struct mpt_itf_info *info)
1386 {
1387 memset(info, 0, sizeof(*info));
1388 }
1389
1390 void
1391 mptcp_session_necp_cb(void *handle, int action, uint32_t interface_index,
1392 uint32_t necp_flags, __unused bool *viable)
1393 {
1394 boolean_t has_v4 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_IPV4);
1395 boolean_t has_v6 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_IPV6);
1396 boolean_t has_nat64 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_NAT64);
1397 boolean_t low_power = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_INTERFACE_LOW_POWER);
1398 struct mppcb *mp = (struct mppcb *)handle;
1399 struct mptses *mpte = mptompte(mp);
1400 struct socket *mp_so;
1401 struct mptcb *mp_tp;
1402 int locked = 0;
1403 uint32_t i, ifindex;
1404
1405 ifindex = interface_index;
1406 VERIFY(ifindex != IFSCOPE_NONE);
1407
1408 /* About to be garbage-collected (see note about MPTCP/NECP interactions) */
1409 if (mp->mpp_socket->so_usecount == 0) {
1410 return;
1411 }
1412
1413 mp_so = mptetoso(mpte);
1414
1415 if (action != NECP_CLIENT_CBACTION_INITIAL) {
1416 socket_lock(mp_so, 1);
1417 locked = 1;
1418
1419 /* Check again, because it might have changed while waiting */
1420 if (mp->mpp_socket->so_usecount == 0) {
1421 goto out;
1422 }
1423 }
1424
1425 socket_lock_assert_owned(mp_so);
1426
1427 mp_tp = mpte->mpte_mptcb;
1428
1429 os_log_info(mptcp_log_handle, "%s - %lx: action: %u ifindex %u usecount %u mpt_flags %#x state %u v4 %u v6 %u nat64 %u power %u\n",
1430 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte), action, ifindex,
1431 mp->mpp_socket->so_usecount, mp_tp->mpt_flags, mp_tp->mpt_state,
1432 has_v4, has_v6, has_nat64, low_power);
1433
1434 /* No need on fallen back sockets */
1435 if (mp_tp->mpt_flags & MPTCPF_FALLBACK_TO_TCP) {
1436 goto out;
1437 }
1438
1439 /*
1440 * When the interface goes in low-power mode we don't want to establish
1441 * new subflows on it. Thus, mark it internally as non-viable.
1442 */
1443 if (low_power) {
1444 action = NECP_CLIENT_CBACTION_NONVIABLE;
1445 }
1446
1447 if (action == NECP_CLIENT_CBACTION_NONVIABLE) {
1448 for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
1449 if (mpte->mpte_itfinfo[i].ifindex == IFSCOPE_NONE) {
1450 continue;
1451 }
1452
1453 if (mpte->mpte_itfinfo[i].ifindex == ifindex) {
1454 mptcp_reset_itfinfo(&mpte->mpte_itfinfo[i]);
1455 }
1456 }
1457
1458 mptcp_sched_create_subflows(mpte);
1459 } else if (action == NECP_CLIENT_CBACTION_VIABLE ||
1460 action == NECP_CLIENT_CBACTION_INITIAL) {
1461 int found_slot = 0, slot_index = -1;
1462 struct sockaddr *dst;
1463 struct ifnet *ifp;
1464
1465 ifnet_head_lock_shared();
1466 ifp = ifindex2ifnet[ifindex];
1467 ifnet_head_done();
1468
1469 if (ifp == NULL) {
1470 goto out;
1471 }
1472
1473 if (IFNET_IS_COMPANION_LINK(ifp)) {
1474 goto out;
1475 }
1476
1477 if (IFNET_IS_EXPENSIVE(ifp) &&
1478 (mp_so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE)) {
1479 goto out;
1480 }
1481
1482 if (IFNET_IS_CONSTRAINED(ifp) &&
1483 (mp_so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) {
1484 goto out;
1485 }
1486
1487 if (IFNET_IS_CELLULAR(ifp) &&
1488 (mp_so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
1489 goto out;
1490 }
1491
1492 if (IS_INTF_CLAT46(ifp)) {
1493 has_v4 = FALSE;
1494 }
1495
1496 /* Look for the slot on where to store/update the interface-info. */
1497 for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
1498 /* Found a potential empty slot where we can put it */
1499 if (mpte->mpte_itfinfo[i].ifindex == 0) {
1500 found_slot = 1;
1501 slot_index = i;
1502 }
1503
1504 /*
1505 * The interface is already in our array. Check if we
1506 * need to update it.
1507 */
1508 if (mpte->mpte_itfinfo[i].ifindex == ifindex &&
1509 (mpte->mpte_itfinfo[i].has_v4_conn != has_v4 ||
1510 mpte->mpte_itfinfo[i].has_v6_conn != has_v6 ||
1511 mpte->mpte_itfinfo[i].has_nat64_conn != has_nat64)) {
1512 found_slot = 1;
1513 slot_index = i;
1514 break;
1515 }
1516
1517 if (mpte->mpte_itfinfo[i].ifindex == ifindex) {
1518 /*
1519 * Ok, it's already there and we don't need
1520 * to update it
1521 */
1522 goto out;
1523 }
1524 }
1525
1526 dst = mptcp_get_session_dst(mpte, has_v6, has_v4);
1527 if (dst && (dst->sa_family == AF_INET || dst->sa_family == 0) &&
1528 has_v6 && !has_nat64 && !has_v4) {
1529 if (found_slot) {
1530 mpte->mpte_itfinfo[slot_index].has_v4_conn = has_v4;
1531 mpte->mpte_itfinfo[slot_index].has_v6_conn = has_v6;
1532 mpte->mpte_itfinfo[slot_index].has_nat64_conn = has_nat64;
1533 }
1534 mptcp_ask_for_nat64(ifp);
1535 goto out;
1536 }
1537
1538 if (found_slot == 0) {
1539 int new_size = mpte->mpte_itfinfo_size * 2;
1540 struct mpt_itf_info *info = _MALLOC(sizeof(*info) * new_size, M_TEMP, M_ZERO);
1541
1542 if (info == NULL) {
1543 os_log_error(mptcp_log_handle, "%s - %lx: malloc failed for %u\n",
1544 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte), new_size);
1545 goto out;
1546 }
1547
1548 memcpy(info, mpte->mpte_itfinfo, mpte->mpte_itfinfo_size * sizeof(*info));
1549
1550 if (mpte->mpte_itfinfo_size > MPTE_ITFINFO_SIZE) {
1551 _FREE(mpte->mpte_itfinfo, M_TEMP);
1552 }
1553
1554 /* We allocated a new one, thus the first must be empty */
1555 slot_index = mpte->mpte_itfinfo_size;
1556
1557 mpte->mpte_itfinfo = info;
1558 mpte->mpte_itfinfo_size = new_size;
1559 }
1560
1561 VERIFY(slot_index >= 0 && slot_index < (int)mpte->mpte_itfinfo_size);
1562 mpte->mpte_itfinfo[slot_index].ifindex = ifindex;
1563 mpte->mpte_itfinfo[slot_index].has_v4_conn = has_v4;
1564 mpte->mpte_itfinfo[slot_index].has_v6_conn = has_v6;
1565 mpte->mpte_itfinfo[slot_index].has_nat64_conn = has_nat64;
1566
1567 mptcp_sched_create_subflows(mpte);
1568 }
1569
1570 out:
1571 if (locked) {
1572 socket_unlock(mp_so, 1);
1573 }
1574 }
1575
1576 void
1577 mptcp_set_restrictions(struct socket *mp_so)
1578 {
1579 struct mptses *mpte = mpsotompte(mp_so);
1580 uint32_t i;
1581
1582 socket_lock_assert_owned(mp_so);
1583
1584 ifnet_head_lock_shared();
1585
1586 for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
1587 struct mpt_itf_info *info = &mpte->mpte_itfinfo[i];
1588 uint32_t ifindex = info->ifindex;
1589 struct ifnet *ifp;
1590
1591 if (ifindex == IFSCOPE_NONE) {
1592 continue;
1593 }
1594
1595 ifp = ifindex2ifnet[ifindex];
1596 if (ifp == NULL) {
1597 continue;
1598 }
1599
1600 if (IFNET_IS_EXPENSIVE(ifp) &&
1601 (mp_so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE)) {
1602 info->ifindex = IFSCOPE_NONE;
1603 }
1604
1605 if (IFNET_IS_CONSTRAINED(ifp) &&
1606 (mp_so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) {
1607 info->ifindex = IFSCOPE_NONE;
1608 }
1609
1610 if (IFNET_IS_CELLULAR(ifp) &&
1611 (mp_so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
1612 info->ifindex = IFSCOPE_NONE;
1613 }
1614 }
1615
1616 ifnet_head_done();
1617 }