2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
78 #include <sys/protosw.h>
80 #include <sys/kernel.h>
81 #include <kern/locks.h>
82 #include <kern/zalloc.h>
86 #include <net/route.h>
87 #include <net/ntstat.h>
88 #include <net/nwk_wq.h>
93 #include <netinet/in.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip6.h>
98 #include <netinet/in_arp.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/nd6.h>
106 #include <net/if_dl.h>
108 #include <libkern/OSAtomic.h>
109 #include <libkern/OSDebug.h>
111 #include <pexpert/pexpert.h>
114 #include <sys/kauth.h>
118 * Synchronization notes:
120 * Routing entries fall under two locking domains: the global routing table
121 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
122 * resides (statically defined) in the rtentry structure.
124 * The locking domains for routing are defined as follows:
126 * The global routing lock is used to serialize all accesses to the radix
127 * trees defined by rt_tables[], as well as the tree of masks. This includes
128 * lookups, insertions and removals of nodes to/from the respective tree.
129 * It is also used to protect certain fields in the route entry that aren't
130 * often modified and/or require global serialization (more details below.)
132 * The per-route entry lock is used to serialize accesses to several routing
133 * entry fields (more details below.) Acquiring and releasing this lock is
134 * done via RT_LOCK() and RT_UNLOCK() routines.
136 * In cases where both rnh_lock and rt_lock must be held, the former must be
137 * acquired first in order to maintain lock ordering. It is not a requirement
138 * that rnh_lock be acquired first before rt_lock, but in case both must be
139 * acquired in succession, the correct lock ordering must be followed.
141 * The fields of the rtentry structure are protected in the following way:
145 * - Routing table lock (rnh_lock).
147 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
149 * - Set once during creation and never changes; no locks to read.
151 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
153 * - Routing entry lock (rt_lock) for read/write access.
155 * - Some values of rt_flags are either set once at creation time,
156 * or aren't currently used, and thus checking against them can
157 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
158 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
159 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
160 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
162 * rt_key, rt_gateway, rt_ifp, rt_ifa
164 * - Always written/modified with both rnh_lock and rt_lock held.
166 * - May be read freely with rnh_lock held, else must hold rt_lock
167 * for read access; holding both locks for read is also okay.
169 * - In the event rnh_lock is not acquired, or is not possible to be
170 * acquired across the operation, setting RTF_CONDEMNED on a route
171 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
172 * from being modified. This is typically done on a route that
173 * has been chosen for a removal (from the tree) prior to dropping
174 * the rt_lock, so that those values will remain the same until
175 * the route is freed.
177 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
178 * single-threaded, thus exclusive. This flag will also prevent the
179 * route from being looked up via rt_lookup().
183 * - Assumes that 32-bit writes are atomic; no locks.
187 * - Currently unused; no locks.
189 * Operations on a route entry can be described as follows:
191 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
193 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
194 * for duplicates and then adds the entry. rtrequest returns the entry
195 * after bumping up the reference count to 1 (for the caller).
197 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
198 * before returning; it is valid to also bump up the reference count using
199 * RT_ADDREF after the lookup has returned an entry.
201 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
202 * entry but does not decrement the reference count. Removal happens when
203 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
204 * state and it expires. The route is said to be "down" when it is no
205 * longer present in the tree. Freeing the entry will happen on the last
206 * reference release of such a "down" route.
208 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
209 * decrements the reference count, rt_refcnt, atomically on the rtentry.
210 * rt_refcnt is modified only using this routine. The general rule is to
211 * do RT_ADDREF in the function that is passing the entry as an argument,
212 * in order to prevent the entry from being freed by the callee.
215 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
217 extern void kdp_set_gateway_mac(void *gatewaymac
);
219 __private_extern__
struct rtstat rtstat
= {
220 .rts_badredirect
= 0,
225 .rts_badrtgwroute
= 0
227 struct radix_node_head
*rt_tables
[AF_MAX
+1];
229 decl_lck_mtx_data(, rnh_lock_data
); /* global routing tables mutex */
230 lck_mtx_t
*rnh_lock
= &rnh_lock_data
;
231 static lck_attr_t
*rnh_lock_attr
;
232 static lck_grp_t
*rnh_lock_grp
;
233 static lck_grp_attr_t
*rnh_lock_grp_attr
;
235 /* Lock group and attribute for routing entry locks */
236 static lck_attr_t
*rte_mtx_attr
;
237 static lck_grp_t
*rte_mtx_grp
;
238 static lck_grp_attr_t
*rte_mtx_grp_attr
;
240 int rttrash
= 0; /* routes not in table but not freed */
242 boolean_t trigger_v6_defrtr_select
= FALSE
;
243 unsigned int rte_debug
= 0;
245 /* Possible flags for rte_debug */
246 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
247 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
248 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
250 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
252 static struct zone
*rte_zone
; /* special zone for rtentry */
253 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
254 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
256 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
257 #define RTD_FREED 0xDEADBEEF /* entry is freed */
259 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
262 __private_extern__
unsigned int ctrace_stack_size
= CTRACE_STACK_SIZE
;
263 __private_extern__
unsigned int ctrace_hist_size
= CTRACE_HIST_SIZE
;
266 * Debug variant of rtentry structure.
269 struct rtentry rtd_entry
; /* rtentry */
270 struct rtentry rtd_entry_saved
; /* saved rtentry */
271 uint32_t rtd_inuse
; /* in use pattern */
272 uint16_t rtd_refhold_cnt
; /* # of rtref */
273 uint16_t rtd_refrele_cnt
; /* # of rtunref */
274 uint32_t rtd_lock_cnt
; /* # of locks */
275 uint32_t rtd_unlock_cnt
; /* # of unlocks */
277 * Alloc and free callers.
282 * Circular lists of rtref and rtunref callers.
284 ctrace_t rtd_refhold
[CTRACE_HIST_SIZE
];
285 ctrace_t rtd_refrele
[CTRACE_HIST_SIZE
];
287 * Circular lists of locks and unlocks.
289 ctrace_t rtd_lock
[CTRACE_HIST_SIZE
];
290 ctrace_t rtd_unlock
[CTRACE_HIST_SIZE
];
294 TAILQ_ENTRY(rtentry_dbg
) rtd_trash_link
;
297 /* List of trash route entries protected by rnh_lock */
298 static TAILQ_HEAD(, rtentry_dbg
) rttrash_head
;
300 static void rte_lock_init(struct rtentry
*);
301 static void rte_lock_destroy(struct rtentry
*);
302 static inline struct rtentry
*rte_alloc_debug(void);
303 static inline void rte_free_debug(struct rtentry
*);
304 static inline void rte_lock_debug(struct rtentry_dbg
*);
305 static inline void rte_unlock_debug(struct rtentry_dbg
*);
306 static void rt_maskedcopy(const struct sockaddr
*,
307 struct sockaddr
*, const struct sockaddr
*);
308 static void rtable_init(void **);
309 static inline void rtref_audit(struct rtentry_dbg
*);
310 static inline void rtunref_audit(struct rtentry_dbg
*);
311 static struct rtentry
*rtalloc1_common_locked(struct sockaddr
*, int, uint32_t,
313 static int rtrequest_common_locked(int, struct sockaddr
*,
314 struct sockaddr
*, struct sockaddr
*, int, struct rtentry
**,
316 static struct rtentry
*rtalloc1_locked(struct sockaddr
*, int, uint32_t);
317 static void rtalloc_ign_common_locked(struct route
*, uint32_t, unsigned int);
318 static inline void sin6_set_ifscope(struct sockaddr
*, unsigned int);
319 static inline void sin6_set_embedded_ifscope(struct sockaddr
*, unsigned int);
320 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr
*);
321 static struct sockaddr
*ma_copy(int, struct sockaddr
*,
322 struct sockaddr_storage
*, unsigned int);
323 static struct sockaddr
*sa_trim(struct sockaddr
*, int);
324 static struct radix_node
*node_lookup(struct sockaddr
*, struct sockaddr
*,
326 static struct radix_node
*node_lookup_default(int);
327 static struct rtentry
*rt_lookup_common(boolean_t
, boolean_t
, struct sockaddr
*,
328 struct sockaddr
*, struct radix_node_head
*, unsigned int);
329 static int rn_match_ifscope(struct radix_node
*, void *);
330 static struct ifaddr
*ifa_ifwithroute_common_locked(int,
331 const struct sockaddr
*, const struct sockaddr
*, unsigned int);
332 static struct rtentry
*rte_alloc(void);
333 static void rte_free(struct rtentry
*);
334 static void rtfree_common(struct rtentry
*, boolean_t
);
335 static void rte_if_ref(struct ifnet
*, int);
336 static void rt_set_idleref(struct rtentry
*);
337 static void rt_clear_idleref(struct rtentry
*);
338 static void route_event_callback(void *);
339 static void rt_str4(struct rtentry
*, char *, uint32_t, char *, uint32_t);
341 static void rt_str6(struct rtentry
*, char *, uint32_t, char *, uint32_t);
344 uint32_t route_genid_inet
= 0;
346 uint32_t route_genid_inet6
= 0;
349 #define ASSERT_SINIFSCOPE(sa) { \
350 if ((sa)->sa_family != AF_INET || \
351 (sa)->sa_len < sizeof (struct sockaddr_in)) \
352 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
355 #define ASSERT_SIN6IFSCOPE(sa) { \
356 if ((sa)->sa_family != AF_INET6 || \
357 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
358 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
362 * Argument to leaf-matching routine; at present it is scoped routing
363 * specific but can be expanded in future to include other search filters.
365 struct matchleaf_arg
{
366 unsigned int ifscope
; /* interface scope */
370 * For looking up the non-scoped default route (sockaddr instead
371 * of sockaddr_in for convenience).
373 static struct sockaddr sin_def
= {
374 .sa_len
= sizeof (struct sockaddr_in
),
375 .sa_family
= AF_INET
,
379 static struct sockaddr_in6 sin6_def
= {
380 .sin6_len
= sizeof (struct sockaddr_in6
),
381 .sin6_family
= AF_INET6
,
384 .sin6_addr
= IN6ADDR_ANY_INIT
,
389 * Interface index (scope) of the primary interface; determined at
390 * the time when the default, non-scoped route gets added, changed
391 * or deleted. Protected by rnh_lock.
393 static unsigned int primary_ifscope
= IFSCOPE_NONE
;
394 static unsigned int primary6_ifscope
= IFSCOPE_NONE
;
396 #define INET_DEFAULT(sa) \
397 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
399 #define INET6_DEFAULT(sa) \
400 ((sa)->sa_family == AF_INET6 && \
401 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
403 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
404 #define RT(r) ((struct rtentry *)r)
405 #define RN(r) ((struct radix_node *)r)
406 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
408 unsigned int rt_verbose
= 0;
409 #if (DEVELOPMENT || DEBUG)
410 SYSCTL_DECL(_net_route
);
411 SYSCTL_UINT(_net_route
, OID_AUTO
, verbose
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
413 #endif /* (DEVELOPMENT || DEBUG) */
416 rtable_init(void **table
)
420 domain_proto_mtx_lock_assert_held();
422 TAILQ_FOREACH(dom
, &domains
, dom_entry
) {
423 if (dom
->dom_rtattach
!= NULL
)
424 dom
->dom_rtattach(&table
[dom
->dom_family
],
430 * Called by route_dinit().
438 _CASSERT(offsetof(struct route
, ro_rt
) ==
439 offsetof(struct route_in6
, ro_rt
));
440 _CASSERT(offsetof(struct route
, ro_lle
) ==
441 offsetof(struct route_in6
, ro_lle
));
442 _CASSERT(offsetof(struct route
, ro_srcia
) ==
443 offsetof(struct route_in6
, ro_srcia
));
444 _CASSERT(offsetof(struct route
, ro_flags
) ==
445 offsetof(struct route_in6
, ro_flags
));
446 _CASSERT(offsetof(struct route
, ro_dst
) ==
447 offsetof(struct route_in6
, ro_dst
));
450 PE_parse_boot_argn("rte_debug", &rte_debug
, sizeof (rte_debug
));
452 rte_debug
|= RTD_DEBUG
;
454 rnh_lock_grp_attr
= lck_grp_attr_alloc_init();
455 rnh_lock_grp
= lck_grp_alloc_init("route", rnh_lock_grp_attr
);
456 rnh_lock_attr
= lck_attr_alloc_init();
457 lck_mtx_init(rnh_lock
, rnh_lock_grp
, rnh_lock_attr
);
459 rte_mtx_grp_attr
= lck_grp_attr_alloc_init();
460 rte_mtx_grp
= lck_grp_alloc_init(RTE_NAME
, rte_mtx_grp_attr
);
461 rte_mtx_attr
= lck_attr_alloc_init();
463 lck_mtx_lock(rnh_lock
);
464 rn_init(); /* initialize all zeroes, all ones, mask table */
465 lck_mtx_unlock(rnh_lock
);
466 rtable_init((void **)rt_tables
);
468 if (rte_debug
& RTD_DEBUG
)
469 size
= sizeof (struct rtentry_dbg
);
471 size
= sizeof (struct rtentry
);
473 rte_zone
= zinit(size
, RTE_ZONE_MAX
* size
, 0, RTE_ZONE_NAME
);
474 if (rte_zone
== NULL
) {
475 panic("%s: failed allocating rte_zone", __func__
);
478 zone_change(rte_zone
, Z_EXPAND
, TRUE
);
479 zone_change(rte_zone
, Z_CALLERACCT
, FALSE
);
480 zone_change(rte_zone
, Z_NOENCRYPT
, TRUE
);
482 TAILQ_INIT(&rttrash_head
);
486 * Given a route, determine whether or not it is the non-scoped default
487 * route; dst typically comes from rt_key(rt) but may be coming from
488 * a separate place when rt is in the process of being created.
491 rt_primary_default(struct rtentry
*rt
, struct sockaddr
*dst
)
493 return (SA_DEFAULT(dst
) && !(rt
->rt_flags
& RTF_IFSCOPE
));
497 * Set the ifscope of the primary interface; caller holds rnh_lock.
500 set_primary_ifscope(int af
, unsigned int ifscope
)
503 primary_ifscope
= ifscope
;
505 primary6_ifscope
= ifscope
;
509 * Return the ifscope of the primary interface; caller holds rnh_lock.
512 get_primary_ifscope(int af
)
514 return (af
== AF_INET
? primary_ifscope
: primary6_ifscope
);
518 * Set the scope ID of a given a sockaddr_in.
521 sin_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
523 /* Caller must pass in sockaddr_in */
524 ASSERT_SINIFSCOPE(sa
);
526 SINIFSCOPE(sa
)->sin_scope_id
= ifscope
;
530 * Set the scope ID of given a sockaddr_in6.
533 sin6_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
535 /* Caller must pass in sockaddr_in6 */
536 ASSERT_SIN6IFSCOPE(sa
);
538 SIN6IFSCOPE(sa
)->sin6_scope_id
= ifscope
;
542 * Given a sockaddr_in, return the scope ID to the caller.
545 sin_get_ifscope(struct sockaddr
*sa
)
547 /* Caller must pass in sockaddr_in */
548 ASSERT_SINIFSCOPE(sa
);
550 return (SINIFSCOPE(sa
)->sin_scope_id
);
554 * Given a sockaddr_in6, return the scope ID to the caller.
557 sin6_get_ifscope(struct sockaddr
*sa
)
559 /* Caller must pass in sockaddr_in6 */
560 ASSERT_SIN6IFSCOPE(sa
);
562 return (SIN6IFSCOPE(sa
)->sin6_scope_id
);
566 sin6_set_embedded_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
568 /* Caller must pass in sockaddr_in6 */
569 ASSERT_SIN6IFSCOPE(sa
);
570 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa
)->sin6_addr
)));
572 SIN6(sa
)->sin6_addr
.s6_addr16
[1] = htons(ifscope
);
575 static inline unsigned int
576 sin6_get_embedded_ifscope(struct sockaddr
*sa
)
578 /* Caller must pass in sockaddr_in6 */
579 ASSERT_SIN6IFSCOPE(sa
);
581 return (ntohs(SIN6(sa
)->sin6_addr
.s6_addr16
[1]));
585 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
587 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
588 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
589 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
590 * In any case, the effective scope ID value is returned to the caller via
591 * pifscope, if it is non-NULL.
594 sa_copy(struct sockaddr
*src
, struct sockaddr_storage
*dst
,
595 unsigned int *pifscope
)
597 int af
= src
->sa_family
;
598 unsigned int ifscope
= (pifscope
!= NULL
) ? *pifscope
: IFSCOPE_NONE
;
600 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
602 bzero(dst
, sizeof (*dst
));
605 bcopy(src
, dst
, sizeof (struct sockaddr_in
));
606 dst
->ss_len
= sizeof(struct sockaddr_in
);
607 if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
)
608 sin_set_ifscope(SA(dst
), ifscope
);
610 bcopy(src
, dst
, sizeof (struct sockaddr_in6
));
611 dst
->ss_len
= sizeof(struct sockaddr_in6
);
612 if (pifscope
!= NULL
&&
613 IN6_IS_SCOPE_EMBED(&SIN6(dst
)->sin6_addr
)) {
614 unsigned int eifscope
;
616 * If the address contains the embedded scope ID,
617 * use that as the value for sin6_scope_id as long
618 * the caller doesn't insist on clearing it (by
619 * passing NULL) or setting it.
621 eifscope
= sin6_get_embedded_ifscope(SA(dst
));
622 if (eifscope
!= IFSCOPE_NONE
&& ifscope
== IFSCOPE_NONE
)
624 if (ifscope
!= IFSCOPE_NONE
) {
625 /* Set ifscope from pifscope or eifscope */
626 sin6_set_ifscope(SA(dst
), ifscope
);
628 /* If sin6_scope_id has a value, use that one */
629 ifscope
= sin6_get_ifscope(SA(dst
));
632 * If sin6_scope_id is set but the address doesn't
633 * contain the equivalent embedded value, set it.
635 if (ifscope
!= IFSCOPE_NONE
&& eifscope
!= ifscope
)
636 sin6_set_embedded_ifscope(SA(dst
), ifscope
);
637 } else if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
) {
638 sin6_set_ifscope(SA(dst
), ifscope
);
642 if (pifscope
!= NULL
) {
643 *pifscope
= (af
== AF_INET
) ? sin_get_ifscope(SA(dst
)) :
644 sin6_get_ifscope(SA(dst
));
651 * Copy a mask from src to a dst storage and set scope ID into dst.
653 static struct sockaddr
*
654 ma_copy(int af
, struct sockaddr
*src
, struct sockaddr_storage
*dst
,
655 unsigned int ifscope
)
657 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
659 bzero(dst
, sizeof (*dst
));
660 rt_maskedcopy(src
, SA(dst
), src
);
663 * The length of the mask sockaddr would need to be adjusted
664 * to cover the additional {sin,sin6}_ifscope field; when ifscope
665 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
666 * the destination mask in addition to extending the length
667 * of the sockaddr, as a side effect. This is okay, as any
668 * trailing zeroes would be skipped by rn_addmask prior to
669 * inserting or looking up the mask in the mask tree.
672 SINIFSCOPE(dst
)->sin_scope_id
= ifscope
;
673 SINIFSCOPE(dst
)->sin_len
=
674 offsetof(struct sockaddr_inifscope
, sin_scope_id
) +
675 sizeof (SINIFSCOPE(dst
)->sin_scope_id
);
677 SIN6IFSCOPE(dst
)->sin6_scope_id
= ifscope
;
678 SIN6IFSCOPE(dst
)->sin6_len
=
679 offsetof(struct sockaddr_in6
, sin6_scope_id
) +
680 sizeof (SIN6IFSCOPE(dst
)->sin6_scope_id
);
687 * Trim trailing zeroes on a sockaddr and update its length.
689 static struct sockaddr
*
690 sa_trim(struct sockaddr
*sa
, int skip
)
692 caddr_t cp
, base
= (caddr_t
)sa
+ skip
;
694 if (sa
->sa_len
<= skip
)
697 for (cp
= base
+ (sa
->sa_len
- skip
); cp
> base
&& cp
[-1] == 0; )
700 sa
->sa_len
= (cp
- base
) + skip
;
701 if (sa
->sa_len
< skip
) {
702 /* Must not happen, and if so, panic */
703 panic("%s: broken logic (sa_len %d < skip %d )", __func__
,
706 } else if (sa
->sa_len
== skip
) {
707 /* If we end up with all zeroes, then there's no mask */
715 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
716 * kernel private information, so that clients of the routing socket will
717 * not be confused by the presence of the information, or the side effect of
718 * the increased length due to that. The source sockaddr is not modified;
719 * instead, the scrubbing happens on the destination sockaddr storage that
720 * is passed in by the caller.
723 * - removing embedded scope identifiers from network mask and destination
724 * IPv4 and IPv6 socket addresses
725 * - optionally removing global scope interface hardware addresses from
726 * link-layer interface addresses when the MAC framework check fails.
729 rtm_scrub(int type
, int idx
, struct sockaddr
*hint
, struct sockaddr
*sa
,
730 void *buf
, uint32_t buflen
, kauth_cred_t
*credp
)
732 struct sockaddr_storage
*ss
= (struct sockaddr_storage
*)buf
;
733 struct sockaddr
*ret
= sa
;
735 VERIFY(buf
!= NULL
&& buflen
>= sizeof (*ss
));
741 * If this is for an AF_INET/AF_INET6 destination address,
742 * call sa_copy() to clear the scope ID field.
744 if (sa
->sa_family
== AF_INET
&&
745 SINIFSCOPE(sa
)->sin_scope_id
!= IFSCOPE_NONE
) {
746 ret
= sa_copy(sa
, ss
, NULL
);
747 } else if (sa
->sa_family
== AF_INET6
&&
748 SIN6IFSCOPE(sa
)->sin6_scope_id
!= IFSCOPE_NONE
) {
749 ret
= sa_copy(sa
, ss
, NULL
);
756 * If this is for a mask, we can't tell whether or not there
757 * is an valid scope ID value, as the span of bytes between
758 * sa_len and the beginning of the mask (offset of sin_addr in
759 * the case of AF_INET, or sin6_addr for AF_INET6) may be
760 * filled with all-ones by rn_addmask(), and hence we cannot
761 * rely on sa_family. Because of this, we use the sa_family
762 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
763 * whether or not the mask is to be treated as one for AF_INET
764 * or AF_INET6. Clearing the scope ID field involves setting
765 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
766 * trailing zeroes from the storage sockaddr, which reverses
767 * what was done earlier by ma_copy() on the source sockaddr.
770 ((af
= hint
->sa_family
) != AF_INET
&& af
!= AF_INET6
))
771 break; /* nothing to do */
773 skip
= (af
== AF_INET
) ?
774 offsetof(struct sockaddr_in
, sin_addr
) :
775 offsetof(struct sockaddr_in6
, sin6_addr
);
777 if (sa
->sa_len
> skip
&& sa
->sa_len
<= sizeof (*ss
)) {
778 bcopy(sa
, ss
, sa
->sa_len
);
780 * Don't use {sin,sin6}_set_ifscope() as sa_family
781 * and sa_len for the netmask might not be set to
782 * the corresponding expected values of the hint.
784 if (hint
->sa_family
== AF_INET
)
785 SINIFSCOPE(ss
)->sin_scope_id
= IFSCOPE_NONE
;
787 SIN6IFSCOPE(ss
)->sin6_scope_id
= IFSCOPE_NONE
;
788 ret
= sa_trim(SA(ss
), skip
);
791 * For AF_INET6 mask, set sa_len appropriately unless
792 * this is requested via systl_dumpentry(), in which
793 * case we return the raw value.
795 if (hint
->sa_family
== AF_INET6
&&
796 type
!= RTM_GET
&& type
!= RTM_GET2
)
797 SA(ret
)->sa_len
= sizeof (struct sockaddr_in6
);
803 * Break if the gateway is not AF_LINK type (indirect routes)
805 * Else, if is, check if it is resolved. If not yet resolved
806 * simply break else scrub the link layer address.
808 if ((sa
->sa_family
!= AF_LINK
) || (SDL(sa
)->sdl_alen
== 0))
813 if (sa
->sa_family
== AF_LINK
&& credp
) {
814 struct sockaddr_dl
*sdl
= SDL(buf
);
818 /* caller should handle worst case: SOCK_MAXADDRLEN */
819 VERIFY(buflen
>= sa
->sa_len
);
821 bcopy(sa
, sdl
, sa
->sa_len
);
822 bytes
= dlil_ifaddr_bytes(sdl
, &size
, credp
);
823 if (bytes
!= CONST_LLADDR(sdl
)) {
824 VERIFY(sdl
->sdl_alen
== size
);
825 bcopy(bytes
, LLADDR(sdl
), size
);
827 ret
= (struct sockaddr
*)sdl
;
839 * Callback leaf-matching routine for rn_matchaddr_args used
840 * for looking up an exact match for a scoped route entry.
843 rn_match_ifscope(struct radix_node
*rn
, void *arg
)
845 struct rtentry
*rt
= (struct rtentry
*)rn
;
846 struct matchleaf_arg
*ma
= arg
;
847 int af
= rt_key(rt
)->sa_family
;
849 if (!(rt
->rt_flags
& RTF_IFSCOPE
) || (af
!= AF_INET
&& af
!= AF_INET6
))
852 return (af
== AF_INET
?
853 (SINIFSCOPE(rt_key(rt
))->sin_scope_id
== ma
->ifscope
) :
854 (SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
== ma
->ifscope
));
858 * Atomically increment route generation counter
861 routegenid_update(void)
863 routegenid_inet_update();
865 routegenid_inet6_update();
870 routegenid_inet_update(void)
872 atomic_add_32(&route_genid_inet
, 1);
877 routegenid_inet6_update(void)
879 atomic_add_32(&route_genid_inet6
, 1);
884 * Packet routing routines.
887 rtalloc(struct route
*ro
)
893 rtalloc_scoped(struct route
*ro
, unsigned int ifscope
)
895 rtalloc_scoped_ign(ro
, 0, ifscope
);
899 rtalloc_ign_common_locked(struct route
*ro
, uint32_t ignore
,
900 unsigned int ifscope
)
904 if ((rt
= ro
->ro_rt
) != NULL
) {
906 if (rt
->rt_ifp
!= NULL
&& !ROUTE_UNUSABLE(ro
)) {
911 ROUTE_RELEASE_LOCKED(ro
); /* rnh_lock already held */
913 ro
->ro_rt
= rtalloc1_common_locked(&ro
->ro_dst
, 1, ignore
, ifscope
);
914 if (ro
->ro_rt
!= NULL
) {
915 RT_GENID_SYNC(ro
->ro_rt
);
916 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
921 rtalloc_ign(struct route
*ro
, uint32_t ignore
)
923 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
924 lck_mtx_lock(rnh_lock
);
925 rtalloc_ign_common_locked(ro
, ignore
, IFSCOPE_NONE
);
926 lck_mtx_unlock(rnh_lock
);
930 rtalloc_scoped_ign(struct route
*ro
, uint32_t ignore
, unsigned int ifscope
)
932 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
933 lck_mtx_lock(rnh_lock
);
934 rtalloc_ign_common_locked(ro
, ignore
, ifscope
);
935 lck_mtx_unlock(rnh_lock
);
938 static struct rtentry
*
939 rtalloc1_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
941 return (rtalloc1_common_locked(dst
, report
, ignflags
, IFSCOPE_NONE
));
945 rtalloc1_scoped_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
946 unsigned int ifscope
)
948 return (rtalloc1_common_locked(dst
, report
, ignflags
, ifscope
));
952 rtalloc1_common_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
953 unsigned int ifscope
)
955 struct radix_node_head
*rnh
= rt_tables
[dst
->sa_family
];
956 struct rtentry
*rt
, *newrt
= NULL
;
957 struct rt_addrinfo info
;
959 int err
= 0, msgtype
= RTM_MISS
;
965 * Find the longest prefix or exact (in the scoped case) address match;
966 * callee adds a reference to entry and checks for root node as well
968 rt
= rt_lookup(FALSE
, dst
, NULL
, rnh
, ifscope
);
974 nflags
= rt
->rt_flags
& ~ignflags
;
976 if (report
&& (nflags
& (RTF_CLONING
| RTF_PRCLONING
))) {
978 * We are apparently adding (report = 0 in delete).
979 * If it requires that it be cloned, do so.
980 * (This implies it wasn't a HOST route.)
982 err
= rtrequest_locked(RTM_RESOLVE
, dst
, NULL
, NULL
, 0, &newrt
);
985 * If the cloning didn't succeed, maybe what we
986 * have from lookup above will do. Return that;
987 * no need to hold another reference since it's
995 * We cloned it; drop the original route found during lookup.
996 * The resulted cloned route (newrt) would now have an extra
997 * reference held during rtrequest.
1002 * If the newly created cloned route is a direct host route
1003 * then also check if it is to a router or not.
1004 * If it is, then set the RTF_ROUTER flag on the host route
1007 * XXX It is possible for the default route to be created post
1008 * cloned route creation of router's IP.
1009 * We can handle that corner case by special handing for RTM_ADD
1012 if ((newrt
->rt_flags
& (RTF_HOST
| RTF_LLINFO
)) ==
1013 (RTF_HOST
| RTF_LLINFO
)) {
1014 struct rtentry
*defrt
= NULL
;
1015 struct sockaddr_storage def_key
;
1017 bzero(&def_key
, sizeof(def_key
));
1018 def_key
.ss_len
= rt_key(newrt
)->sa_len
;
1019 def_key
.ss_family
= rt_key(newrt
)->sa_family
;
1021 defrt
= rtalloc1_scoped_locked((struct sockaddr
*)&def_key
,
1022 0, 0, newrt
->rt_ifp
->if_index
);
1025 if (equal(rt_key(newrt
), defrt
->rt_gateway
)) {
1026 newrt
->rt_flags
|= RTF_ROUTER
;
1028 rtfree_locked(defrt
);
1032 if ((rt
= newrt
) && (rt
->rt_flags
& RTF_XRESOLVE
)) {
1034 * If the new route specifies it be
1035 * externally resolved, then go do that.
1037 msgtype
= RTM_RESOLVE
;
1045 * Either we hit the root or couldn't find any match,
1046 * Which basically means "cant get there from here"
1048 rtstat
.rts_unreach
++;
1053 * If required, report the failure to the supervising
1055 * For a delete, this is not an error. (report == 0)
1057 bzero((caddr_t
)&info
, sizeof(info
));
1058 info
.rti_info
[RTAX_DST
] = dst
;
1059 rt_missmsg(msgtype
, &info
, 0, err
);
1066 rtalloc1(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
1068 struct rtentry
*entry
;
1069 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1070 lck_mtx_lock(rnh_lock
);
1071 entry
= rtalloc1_locked(dst
, report
, ignflags
);
1072 lck_mtx_unlock(rnh_lock
);
1077 rtalloc1_scoped(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
1078 unsigned int ifscope
)
1080 struct rtentry
*entry
;
1081 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1082 lck_mtx_lock(rnh_lock
);
1083 entry
= rtalloc1_scoped_locked(dst
, report
, ignflags
, ifscope
);
1084 lck_mtx_unlock(rnh_lock
);
1089 * Remove a reference count from an rtentry.
1090 * If the count gets low enough, take it out of the routing table
1093 rtfree_locked(struct rtentry
*rt
)
1095 rtfree_common(rt
, TRUE
);
1099 rtfree_common(struct rtentry
*rt
, boolean_t locked
)
1101 struct radix_node_head
*rnh
;
1103 LCK_MTX_ASSERT(rnh_lock
, locked
?
1104 LCK_MTX_ASSERT_OWNED
: LCK_MTX_ASSERT_NOTOWNED
);
1107 * Atomically decrement the reference count and if it reaches 0,
1108 * and there is a close function defined, call the close function.
1111 if (rtunref(rt
) > 0) {
1117 * To avoid violating lock ordering, we must drop rt_lock before
1118 * trying to acquire the global rnh_lock. If we are called with
1119 * rnh_lock held, then we already have exclusive access; otherwise
1120 * we do the lock dance.
1124 * Note that we check it again below after grabbing rnh_lock,
1125 * since it is possible that another thread doing a lookup wins
1126 * the race, grabs the rnh_lock first, and bumps up reference
1127 * count in which case the route should be left alone as it is
1128 * still in use. It's also possible that another thread frees
1129 * the route after we drop rt_lock; to prevent the route from
1130 * being freed, we hold an extra reference.
1132 RT_ADDREF_LOCKED(rt
);
1134 lck_mtx_lock(rnh_lock
);
1136 if (rtunref(rt
) > 0) {
1137 /* We've lost the race, so abort */
1144 * We may be blocked on other lock(s) as part of freeing
1145 * the entry below, so convert from spin to full mutex.
1147 RT_CONVERT_LOCK(rt
);
1149 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1151 /* Negative refcnt must never happen */
1152 if (rt
->rt_refcnt
!= 0) {
1153 panic("rt %p invalid refcnt %d", rt
, rt
->rt_refcnt
);
1156 /* Idle refcnt must have been dropped during rtunref() */
1157 VERIFY(!(rt
->rt_flags
& RTF_IFREF
));
1160 * find the tree for that address family
1161 * Note: in the case of igmp packets, there might not be an rnh
1163 rnh
= rt_tables
[rt_key(rt
)->sa_family
];
1166 * On last reference give the "close method" a chance to cleanup
1167 * private state. This also permits (for IPv4 and IPv6) a chance
1168 * to decide if the routing table entry should be purged immediately
1169 * or at a later time. When an immediate purge is to happen the
1170 * close routine typically issues RTM_DELETE which clears the RTF_UP
1171 * flag on the entry so that the code below reclaims the storage.
1173 if (rnh
!= NULL
&& rnh
->rnh_close
!= NULL
)
1174 rnh
->rnh_close((struct radix_node
*)rt
, rnh
);
1177 * If we are no longer "up" (and ref == 0) then we can free the
1178 * resources associated with the route.
1180 if (!(rt
->rt_flags
& RTF_UP
)) {
1181 struct rtentry
*rt_parent
;
1182 struct ifaddr
*rt_ifa
;
1184 rt
->rt_flags
|= RTF_DEAD
;
1185 if (rt
->rt_nodes
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1186 panic("rt %p freed while in radix tree\n", rt
);
1190 * the rtentry must have been removed from the routing table
1191 * so it is represented in rttrash; remove that now.
1193 (void) OSDecrementAtomic(&rttrash
);
1194 if (rte_debug
& RTD_DEBUG
) {
1195 TAILQ_REMOVE(&rttrash_head
, (struct rtentry_dbg
*)rt
,
1200 * release references on items we hold them on..
1201 * e.g other routes and ifaddrs.
1203 if ((rt_parent
= rt
->rt_parent
) != NULL
)
1204 rt
->rt_parent
= NULL
;
1206 if ((rt_ifa
= rt
->rt_ifa
) != NULL
)
1210 * Now free any attached link-layer info.
1212 if (rt
->rt_llinfo
!= NULL
) {
1213 if (rt
->rt_llinfo_free
!= NULL
)
1214 (*rt
->rt_llinfo_free
)(rt
->rt_llinfo
);
1216 R_Free(rt
->rt_llinfo
);
1217 rt
->rt_llinfo
= NULL
;
1220 /* Destroy eventhandler lists context */
1221 eventhandler_lists_ctxt_destroy(&rt
->rt_evhdlr_ctxt
);
1224 * Route is no longer in the tree and refcnt is 0;
1225 * we have exclusive access, so destroy it.
1228 rte_lock_destroy(rt
);
1230 if (rt_parent
!= NULL
)
1231 rtfree_locked(rt_parent
);
1237 * The key is separately alloc'd so free it (see rt_setgate()).
1238 * This also frees the gateway, as they are always malloc'd
1244 * Free any statistics that may have been allocated
1246 nstat_route_detach(rt
);
1249 * and the rtentry itself of course
1254 * The "close method" has been called, but the route is
1255 * still in the radix tree with zero refcnt, i.e. "up"
1256 * and in the cached state.
1262 lck_mtx_unlock(rnh_lock
);
1266 rtfree(struct rtentry
*rt
)
1268 rtfree_common(rt
, FALSE
);
1272 * Decrements the refcount but does not free the route when
1273 * the refcount reaches zero. Unless you have really good reason,
1274 * use rtfree not rtunref.
1277 rtunref(struct rtentry
*p
)
1279 RT_LOCK_ASSERT_HELD(p
);
1281 if (p
->rt_refcnt
== 0) {
1282 panic("%s(%p) bad refcnt\n", __func__
, p
);
1284 } else if (--p
->rt_refcnt
== 0) {
1286 * Release any idle reference count held on the interface;
1287 * if the route is eligible, still UP and the refcnt becomes
1288 * non-zero at some point in future before it is purged from
1289 * the routing table, rt_set_idleref() will undo this.
1291 rt_clear_idleref(p
);
1294 if (rte_debug
& RTD_DEBUG
)
1295 rtunref_audit((struct rtentry_dbg
*)p
);
1297 /* Return new value */
1298 return (p
->rt_refcnt
);
1302 rtunref_audit(struct rtentry_dbg
*rte
)
1306 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1307 panic("rtunref: on freed rte=%p\n", rte
);
1310 idx
= atomic_add_16_ov(&rte
->rtd_refrele_cnt
, 1) % CTRACE_HIST_SIZE
;
1311 if (rte_debug
& RTD_TRACE
)
1312 ctrace_record(&rte
->rtd_refrele
[idx
]);
1316 * Add a reference count from an rtentry.
1319 rtref(struct rtentry
*p
)
1321 RT_LOCK_ASSERT_HELD(p
);
1323 VERIFY((p
->rt_flags
& RTF_DEAD
) == 0);
1324 if (++p
->rt_refcnt
== 0) {
1325 panic("%s(%p) bad refcnt\n", __func__
, p
);
1327 } else if (p
->rt_refcnt
== 1) {
1329 * Hold an idle reference count on the interface,
1330 * if the route is eligible for it.
1335 if (rte_debug
& RTD_DEBUG
)
1336 rtref_audit((struct rtentry_dbg
*)p
);
1340 rtref_audit(struct rtentry_dbg
*rte
)
1344 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1345 panic("rtref_audit: on freed rte=%p\n", rte
);
1348 idx
= atomic_add_16_ov(&rte
->rtd_refhold_cnt
, 1) % CTRACE_HIST_SIZE
;
1349 if (rte_debug
& RTD_TRACE
)
1350 ctrace_record(&rte
->rtd_refhold
[idx
]);
1354 rtsetifa(struct rtentry
*rt
, struct ifaddr
*ifa
)
1356 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1358 RT_LOCK_ASSERT_HELD(rt
);
1360 if (rt
->rt_ifa
== ifa
)
1363 /* Become a regular mutex, just in case */
1364 RT_CONVERT_LOCK(rt
);
1366 /* Release the old ifa */
1368 IFA_REMREF(rt
->rt_ifa
);
1373 /* Take a reference to the ifa */
1375 IFA_ADDREF(rt
->rt_ifa
);
1379 * Force a routing table entry to the specified
1380 * destination to go through the given gateway.
1381 * Normally called as a result of a routing redirect
1382 * message from the network layer.
1385 rtredirect(struct ifnet
*ifp
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1386 struct sockaddr
*netmask
, int flags
, struct sockaddr
*src
,
1387 struct rtentry
**rtp
)
1389 struct rtentry
*rt
= NULL
;
1392 struct rt_addrinfo info
;
1393 struct ifaddr
*ifa
= NULL
;
1394 unsigned int ifscope
= (ifp
!= NULL
) ? ifp
->if_index
: IFSCOPE_NONE
;
1395 struct sockaddr_storage ss
;
1396 int af
= src
->sa_family
;
1398 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1399 lck_mtx_lock(rnh_lock
);
1402 * Transform src into the internal routing table form for
1403 * comparison against rt_gateway below.
1406 if ((af
== AF_INET
) || (af
== AF_INET6
)) {
1408 if (af
== AF_INET
) {
1410 src
= sa_copy(src
, &ss
, &ifscope
);
1414 * Verify the gateway is directly reachable; if scoped routing
1415 * is enabled, verify that it is reachable from the interface
1416 * where the ICMP redirect arrived on.
1418 if ((ifa
= ifa_ifwithnet_scoped(gateway
, ifscope
)) == NULL
) {
1419 error
= ENETUNREACH
;
1423 /* Lookup route to the destination (from the original IP header) */
1424 rt
= rtalloc1_scoped_locked(dst
, 0, RTF_CLONING
|RTF_PRCLONING
, ifscope
);
1429 * If the redirect isn't from our current router for this dst,
1430 * it's either old or wrong. If it redirects us to ourselves,
1431 * we have a routing loop, perhaps as a result of an interface
1432 * going down recently. Holding rnh_lock here prevents the
1433 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1434 * in_ifinit), so okay to access ifa_addr without locking.
1436 if (!(flags
& RTF_DONE
) && rt
!= NULL
&&
1437 (!equal(src
, rt
->rt_gateway
) || !equal(rt
->rt_ifa
->ifa_addr
,
1442 if ((ifa
= ifa_ifwithaddr(gateway
))) {
1445 error
= EHOSTUNREACH
;
1461 * Create a new entry if we just got back a wildcard entry
1462 * or the the lookup failed. This is necessary for hosts
1463 * which use routing redirects generated by smart gateways
1464 * to dynamically build the routing tables.
1466 if ((rt
== NULL
) || (rt_mask(rt
) != NULL
&& rt_mask(rt
)->sa_len
< 2))
1469 * Don't listen to the redirect if it's
1470 * for a route to an interface.
1472 RT_LOCK_ASSERT_HELD(rt
);
1473 if (rt
->rt_flags
& RTF_GATEWAY
) {
1474 if (((rt
->rt_flags
& RTF_HOST
) == 0) && (flags
& RTF_HOST
)) {
1476 * Changing from route to net => route to host.
1477 * Create new route, rather than smashing route
1478 * to net; similar to cloned routes, the newly
1479 * created host route is scoped as well.
1484 flags
|= RTF_GATEWAY
| RTF_DYNAMIC
;
1485 error
= rtrequest_scoped_locked(RTM_ADD
, dst
,
1486 gateway
, netmask
, flags
, NULL
, ifscope
);
1487 stat
= &rtstat
.rts_dynamic
;
1490 * Smash the current notion of the gateway to
1491 * this destination. Should check about netmask!!!
1493 rt
->rt_flags
|= RTF_MODIFIED
;
1494 flags
|= RTF_MODIFIED
;
1495 stat
= &rtstat
.rts_newgateway
;
1497 * add the key and gateway (in one malloc'd chunk).
1499 error
= rt_setgate(rt
, rt_key(rt
), gateway
);
1504 error
= EHOSTUNREACH
;
1508 RT_LOCK_ASSERT_NOTHELD(rt
);
1510 /* Enqueue event to refresh flow route entries */
1511 route_event_enqueue_nwk_wq_entry(rt
, NULL
, ROUTE_ENTRY_REFRESH
, NULL
, FALSE
);
1522 rtstat
.rts_badredirect
++;
1528 routegenid_inet_update();
1530 else if (af
== AF_INET6
)
1531 routegenid_inet6_update();
1534 lck_mtx_unlock(rnh_lock
);
1535 bzero((caddr_t
)&info
, sizeof(info
));
1536 info
.rti_info
[RTAX_DST
] = dst
;
1537 info
.rti_info
[RTAX_GATEWAY
] = gateway
;
1538 info
.rti_info
[RTAX_NETMASK
] = netmask
;
1539 info
.rti_info
[RTAX_AUTHOR
] = src
;
1540 rt_missmsg(RTM_REDIRECT
, &info
, flags
, error
);
1544 * Routing table ioctl interface.
1547 rtioctl(unsigned long req
, caddr_t data
, struct proc
*p
)
1549 #pragma unused(p, req, data)
1556 const struct sockaddr
*dst
,
1557 const struct sockaddr
*gateway
)
1561 lck_mtx_lock(rnh_lock
);
1562 ifa
= ifa_ifwithroute_locked(flags
, dst
, gateway
);
1563 lck_mtx_unlock(rnh_lock
);
1569 ifa_ifwithroute_locked(int flags
, const struct sockaddr
*dst
,
1570 const struct sockaddr
*gateway
)
1572 return (ifa_ifwithroute_common_locked((flags
& ~RTF_IFSCOPE
), dst
,
1573 gateway
, IFSCOPE_NONE
));
1577 ifa_ifwithroute_scoped_locked(int flags
, const struct sockaddr
*dst
,
1578 const struct sockaddr
*gateway
, unsigned int ifscope
)
1580 if (ifscope
!= IFSCOPE_NONE
)
1581 flags
|= RTF_IFSCOPE
;
1583 flags
&= ~RTF_IFSCOPE
;
1585 return (ifa_ifwithroute_common_locked(flags
, dst
, gateway
, ifscope
));
1588 static struct ifaddr
*
1589 ifa_ifwithroute_common_locked(int flags
, const struct sockaddr
*dst
,
1590 const struct sockaddr
*gw
, unsigned int ifscope
)
1592 struct ifaddr
*ifa
= NULL
;
1593 struct rtentry
*rt
= NULL
;
1594 struct sockaddr_storage dst_ss
, gw_ss
;
1596 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1599 * Just in case the sockaddr passed in by the caller
1600 * contains a scope ID, make sure to clear it since
1601 * interface addresses aren't scoped.
1605 ((dst
->sa_family
== AF_INET
) ||
1606 (dst
->sa_family
== AF_INET6
)))
1608 if (dst
!= NULL
&& dst
->sa_family
== AF_INET
)
1610 dst
= sa_copy(SA((uintptr_t)dst
), &dst_ss
, NULL
);
1614 ((gw
->sa_family
== AF_INET
) ||
1615 (gw
->sa_family
== AF_INET6
)))
1617 if (gw
!= NULL
&& gw
->sa_family
== AF_INET
)
1619 gw
= sa_copy(SA((uintptr_t)gw
), &gw_ss
, NULL
);
1621 if (!(flags
& RTF_GATEWAY
)) {
1623 * If we are adding a route to an interface,
1624 * and the interface is a pt to pt link
1625 * we should search for the destination
1626 * as our clue to the interface. Otherwise
1627 * we can use the local address.
1629 if (flags
& RTF_HOST
) {
1630 ifa
= ifa_ifwithdstaddr(dst
);
1633 ifa
= ifa_ifwithaddr_scoped(gw
, ifscope
);
1636 * If we are adding a route to a remote net
1637 * or host, the gateway may still be on the
1638 * other end of a pt to pt link.
1640 ifa
= ifa_ifwithdstaddr(gw
);
1643 ifa
= ifa_ifwithnet_scoped(gw
, ifscope
);
1645 /* Workaround to avoid gcc warning regarding const variable */
1646 rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)dst
,
1652 /* Become a regular mutex */
1653 RT_CONVERT_LOCK(rt
);
1656 RT_REMREF_LOCKED(rt
);
1662 * Holding rnh_lock here prevents the possibility of ifa from
1663 * changing (e.g. in_ifinit), so it is safe to access its
1664 * ifa_addr (here and down below) without locking.
1666 if (ifa
!= NULL
&& ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1667 struct ifaddr
*newifa
;
1668 /* Callee adds reference to newifa upon success */
1669 newifa
= ifaof_ifpforaddr(dst
, ifa
->ifa_ifp
);
1670 if (newifa
!= NULL
) {
1676 * If we are adding a gateway, it is quite possible that the
1677 * routing table has a static entry in place for the gateway,
1678 * that may not agree with info garnered from the interfaces.
1679 * The routing table should carry more precedence than the
1680 * interfaces in this matter. Must be careful not to stomp
1681 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1684 !equal(ifa
->ifa_addr
, (struct sockaddr
*)(size_t)gw
)) &&
1685 (rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)gw
,
1686 0, 0, ifscope
)) != NULL
) {
1692 /* Become a regular mutex */
1693 RT_CONVERT_LOCK(rt
);
1696 RT_REMREF_LOCKED(rt
);
1700 * If an interface scope was specified, the interface index of
1701 * the found ifaddr must be equivalent to that of the scope;
1702 * otherwise there is no match.
1704 if ((flags
& RTF_IFSCOPE
) &&
1705 ifa
!= NULL
&& ifa
->ifa_ifp
->if_index
!= ifscope
) {
1711 * ifa's address family must match destination's address family
1712 * after all is said and done.
1715 ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1723 static int rt_fixdelete(struct radix_node
*, void *);
1724 static int rt_fixchange(struct radix_node
*, void *);
1727 struct rtentry
*rt0
;
1728 struct radix_node_head
*rnh
;
1732 rtrequest_locked(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1733 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
1735 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1736 (flags
& ~RTF_IFSCOPE
), ret_nrt
, IFSCOPE_NONE
));
1740 rtrequest_scoped_locked(int req
, struct sockaddr
*dst
,
1741 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1742 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1744 if (ifscope
!= IFSCOPE_NONE
)
1745 flags
|= RTF_IFSCOPE
;
1747 flags
&= ~RTF_IFSCOPE
;
1749 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1750 flags
, ret_nrt
, ifscope
));
1754 * Do appropriate manipulations of a routing tree given all the bits of
1757 * Storing the scope ID in the radix key is an internal job that should be
1758 * left to routines in this module. Callers should specify the scope value
1759 * to the "scoped" variants of route routines instead of manipulating the
1760 * key itself. This is typically done when creating a scoped route, e.g.
1761 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1762 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1763 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1764 * during certain routing socket operations where the search key might be
1765 * derived from the routing message itself, in which case the caller must
1766 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1769 rtrequest_common_locked(int req
, struct sockaddr
*dst0
,
1770 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1771 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1775 struct radix_node
*rn
;
1776 struct radix_node_head
*rnh
;
1777 struct ifaddr
*ifa
= NULL
;
1778 struct sockaddr
*ndst
, *dst
= dst0
;
1779 struct sockaddr_storage ss
, mask
;
1780 struct timeval caltime
;
1781 int af
= dst
->sa_family
;
1782 void (*ifa_rtrequest
)(int, struct rtentry
*, struct sockaddr
*);
1784 #define senderr(x) { error = x; goto bad; }
1786 DTRACE_ROUTE6(rtrequest
, int, req
, struct sockaddr
*, dst0
,
1787 struct sockaddr
*, gateway
, struct sockaddr
*, netmask
,
1788 int, flags
, unsigned int, ifscope
);
1790 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1792 * Find the correct routing tree to use for this Address Family
1794 if ((rnh
= rt_tables
[af
]) == NULL
)
1797 * If we are adding a host route then we don't want to put
1798 * a netmask in the tree
1800 if (flags
& RTF_HOST
)
1804 * If Scoped Routing is enabled, use a local copy of the destination
1805 * address to store the scope ID into. This logic is repeated below
1806 * in the RTM_RESOLVE handler since the caller does not normally
1807 * specify such a flag during a resolve, as well as for the handling
1808 * of IPv4 link-local address; instead, it passes in the route used for
1809 * cloning for which the scope info is derived from. Note also that
1810 * in the case of RTM_DELETE, the address passed in by the caller
1811 * might already contain the scope ID info when it is the key itself,
1812 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1813 * explicitly set is inside route_output() as part of handling a
1814 * routing socket request.
1817 if (req
!= RTM_RESOLVE
&& ((af
== AF_INET
) || (af
== AF_INET6
))) {
1819 if (req
!= RTM_RESOLVE
&& af
== AF_INET
) {
1821 /* Transform dst into the internal routing table form */
1822 dst
= sa_copy(dst
, &ss
, &ifscope
);
1824 /* Transform netmask into the internal routing table form */
1825 if (netmask
!= NULL
)
1826 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
1828 if (ifscope
!= IFSCOPE_NONE
)
1829 flags
|= RTF_IFSCOPE
;
1830 } else if ((flags
& RTF_IFSCOPE
) &&
1831 (af
!= AF_INET
&& af
!= AF_INET6
)) {
1835 if (ifscope
== IFSCOPE_NONE
)
1836 flags
&= ~RTF_IFSCOPE
;
1840 struct rtentry
*gwrt
= NULL
;
1841 boolean_t was_router
= FALSE
;
1842 uint32_t old_rt_refcnt
= 0;
1844 * Remove the item from the tree and return it.
1845 * Complain if it is not there and do no more processing.
1847 if ((rn
= rnh
->rnh_deladdr(dst
, netmask
, rnh
)) == NULL
)
1849 if (rn
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1850 panic("rtrequest delete");
1853 rt
= (struct rtentry
*)rn
;
1856 old_rt_refcnt
= rt
->rt_refcnt
;
1857 rt
->rt_flags
&= ~RTF_UP
;
1859 * Release any idle reference count held on the interface
1860 * as this route is no longer externally visible.
1862 rt_clear_idleref(rt
);
1864 * Take an extra reference to handle the deletion of a route
1865 * entry whose reference count is already 0; e.g. an expiring
1866 * cloned route entry or an entry that was added to the table
1867 * with 0 reference. If the caller is interested in this route,
1868 * we will return it with the reference intact. Otherwise we
1869 * will decrement the reference via rtfree_locked() and then
1870 * possibly deallocate it.
1872 RT_ADDREF_LOCKED(rt
);
1875 * For consistency, in case the caller didn't set the flag.
1877 rt
->rt_flags
|= RTF_CONDEMNED
;
1880 * Clear RTF_ROUTER if it's set.
1882 if (rt
->rt_flags
& RTF_ROUTER
) {
1884 VERIFY(rt
->rt_flags
& RTF_HOST
);
1885 rt
->rt_flags
&= ~RTF_ROUTER
;
1889 * Enqueue work item to invoke callback for this route entry
1891 * If the old count is 0, it implies that last reference is being
1892 * removed and there's no one listening for this route event.
1894 if (old_rt_refcnt
!= 0)
1895 route_event_enqueue_nwk_wq_entry(rt
, NULL
,
1896 ROUTE_ENTRY_DELETED
, NULL
, TRUE
);
1899 * Now search what's left of the subtree for any cloned
1900 * routes which might have been formed from this node.
1902 if ((rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) &&
1905 rnh
->rnh_walktree_from(rnh
, dst
, rt_mask(rt
),
1911 struct route_event rt_ev
;
1912 route_event_init(&rt_ev
, rt
, NULL
, ROUTE_LLENTRY_DELETED
);
1914 (void) rnh
->rnh_walktree(rnh
,
1915 route_event_walktree
, (void *)&rt_ev
);
1920 * Remove any external references we may have.
1922 if ((gwrt
= rt
->rt_gwroute
) != NULL
)
1923 rt
->rt_gwroute
= NULL
;
1926 * give the protocol a chance to keep things in sync.
1928 if ((ifa
= rt
->rt_ifa
) != NULL
) {
1930 ifa_rtrequest
= ifa
->ifa_rtrequest
;
1932 if (ifa_rtrequest
!= NULL
)
1933 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
1934 /* keep reference on rt_ifa */
1939 * one more rtentry floating around that is not
1940 * linked to the routing table.
1942 (void) OSIncrementAtomic(&rttrash
);
1943 if (rte_debug
& RTD_DEBUG
) {
1944 TAILQ_INSERT_TAIL(&rttrash_head
,
1945 (struct rtentry_dbg
*)rt
, rtd_trash_link
);
1949 * If this is the (non-scoped) default route, clear
1950 * the interface index used for the primary ifscope.
1952 if (rt_primary_default(rt
, rt_key(rt
))) {
1953 set_primary_ifscope(rt_key(rt
)->sa_family
,
1955 if ((rt
->rt_flags
& RTF_STATIC
) &&
1956 rt_key(rt
)->sa_family
== PF_INET6
) {
1957 trigger_v6_defrtr_select
= TRUE
;
1963 * If this is a change in a default route, update
1964 * necp client watchers to re-evaluate
1966 if (SA_DEFAULT(rt_key(rt
))) {
1967 if (rt
->rt_ifp
!= NULL
) {
1968 ifnet_touch_lastupdown(rt
->rt_ifp
);
1970 necp_update_all_clients();
1977 * This might result in another rtentry being freed if
1978 * we held its last reference. Do this after the rtentry
1979 * lock is dropped above, as it could lead to the same
1980 * lock being acquired if gwrt is a clone of rt.
1983 rtfree_locked(gwrt
);
1986 * If the caller wants it, then it can have it,
1987 * but it's up to it to free the rtentry as we won't be
1990 if (ret_nrt
!= NULL
) {
1991 /* Return the route to caller with reference intact */
1994 /* Dereference or deallocate the route */
1998 routegenid_inet_update();
2000 else if (af
== AF_INET6
)
2001 routegenid_inet6_update();
2006 if (ret_nrt
== NULL
|| (rt
= *ret_nrt
) == NULL
)
2009 * According to the UNIX conformance tests, we need to return
2010 * ENETUNREACH when the parent route is RTF_REJECT.
2011 * However, there isn't any point in cloning RTF_REJECT
2012 * routes, so we immediately return an error.
2014 if (rt
->rt_flags
& RTF_REJECT
) {
2015 if (rt
->rt_flags
& RTF_HOST
) {
2016 senderr(EHOSTUNREACH
);
2018 senderr(ENETUNREACH
);
2022 * If cloning, we have the parent route given by the caller
2023 * and will use its rt_gateway, rt_rmx as part of the cloning
2024 * process below. Since rnh_lock is held at this point, the
2025 * parent's rt_ifa and rt_gateway will not change, and its
2026 * relevant rt_flags will not change as well. The only thing
2027 * that could change are the metrics, and thus we hold the
2028 * parent route's rt_lock later on during the actual copying
2033 flags
= rt
->rt_flags
&
2034 ~(RTF_CLONING
| RTF_PRCLONING
| RTF_STATIC
);
2035 flags
|= RTF_WASCLONED
;
2036 gateway
= rt
->rt_gateway
;
2037 if ((netmask
= rt
->rt_genmask
) == NULL
)
2041 if (af
!= AF_INET
&& af
!= AF_INET6
)
2048 * When scoped routing is enabled, cloned entries are
2049 * always scoped according to the interface portion of
2050 * the parent route. The exception to this are IPv4
2051 * link local addresses, or those routes that are cloned
2052 * from a RTF_PROXY route. For the latter, the clone
2053 * gets to keep the RTF_PROXY flag.
2055 if ((af
== AF_INET
&&
2056 IN_LINKLOCAL(ntohl(SIN(dst
)->sin_addr
.s_addr
))) ||
2057 (rt
->rt_flags
& RTF_PROXY
)) {
2058 ifscope
= IFSCOPE_NONE
;
2059 flags
&= ~RTF_IFSCOPE
;
2061 * These types of cloned routes aren't currently
2062 * eligible for idle interface reference counting.
2064 flags
|= RTF_NOIFREF
;
2066 if (flags
& RTF_IFSCOPE
) {
2067 ifscope
= (af
== AF_INET
) ?
2068 sin_get_ifscope(rt_key(rt
)) :
2069 sin6_get_ifscope(rt_key(rt
));
2071 ifscope
= rt
->rt_ifp
->if_index
;
2072 flags
|= RTF_IFSCOPE
;
2074 VERIFY(ifscope
!= IFSCOPE_NONE
);
2078 * Transform dst into the internal routing table form,
2079 * clearing out the scope ID field if ifscope isn't set.
2081 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ?
2084 /* Transform netmask into the internal routing table form */
2085 if (netmask
!= NULL
)
2086 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2091 if ((flags
& RTF_GATEWAY
) && !gateway
) {
2092 panic("rtrequest: RTF_GATEWAY but no gateway");
2095 if (flags
& RTF_IFSCOPE
) {
2096 ifa
= ifa_ifwithroute_scoped_locked(flags
, dst0
,
2099 ifa
= ifa_ifwithroute_locked(flags
, dst0
, gateway
);
2102 senderr(ENETUNREACH
);
2105 * We land up here for both RTM_RESOLVE and RTM_ADD
2106 * when we decide to create a route.
2108 if ((rt
= rte_alloc()) == NULL
)
2110 Bzero(rt
, sizeof(*rt
));
2112 eventhandler_lists_ctxt_init(&rt
->rt_evhdlr_ctxt
);
2113 getmicrotime(&caltime
);
2114 rt
->base_calendartime
= caltime
.tv_sec
;
2115 rt
->base_uptime
= net_uptime();
2117 rt
->rt_flags
= RTF_UP
| flags
;
2120 * Point the generation ID to the tree's.
2124 rt
->rt_tree_genid
= &route_genid_inet
;
2128 rt
->rt_tree_genid
= &route_genid_inet6
;
2136 * Add the gateway. Possibly re-malloc-ing the storage for it
2137 * also add the rt_gwroute if possible.
2139 if ((error
= rt_setgate(rt
, dst
, gateway
)) != 0) {
2142 nstat_route_detach(rt
);
2143 rte_lock_destroy(rt
);
2149 * point to the (possibly newly malloc'd) dest address.
2154 * make sure it contains the value we want (masked if needed).
2157 rt_maskedcopy(dst
, ndst
, netmask
);
2159 Bcopy(dst
, ndst
, dst
->sa_len
);
2162 * Note that we now have a reference to the ifa.
2163 * This moved from below so that rnh->rnh_addaddr() can
2164 * examine the ifa and ifa->ifa_ifp if it so desires.
2167 rt
->rt_ifp
= rt
->rt_ifa
->ifa_ifp
;
2169 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2171 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
, (caddr_t
)netmask
,
2174 struct rtentry
*rt2
;
2176 * Uh-oh, we already have one of these in the tree.
2177 * We do a special hack: if the route that's already
2178 * there was generated by the protocol-cloning
2179 * mechanism, then we just blow it away and retry
2180 * the insertion of the new one.
2182 if (flags
& RTF_IFSCOPE
) {
2183 rt2
= rtalloc1_scoped_locked(dst0
, 0,
2184 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2186 rt2
= rtalloc1_locked(dst
, 0,
2187 RTF_CLONING
| RTF_PRCLONING
);
2189 if (rt2
&& rt2
->rt_parent
) {
2191 * rnh_lock is held here, so rt_key and
2192 * rt_gateway of rt2 will not change.
2194 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt2
),
2195 rt2
->rt_gateway
, rt_mask(rt2
),
2198 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
,
2199 (caddr_t
)netmask
, rnh
, rt
->rt_nodes
);
2201 /* undo the extra ref we got */
2207 * If it still failed to go into the tree,
2208 * then un-make it (this should be a function)
2211 /* Clear gateway route */
2212 rt_set_gwroute(rt
, rt_key(rt
), NULL
);
2214 IFA_REMREF(rt
->rt_ifa
);
2219 nstat_route_detach(rt
);
2220 rte_lock_destroy(rt
);
2225 rt
->rt_parent
= NULL
;
2228 * If we got here from RESOLVE, then we are cloning so clone
2229 * the rest, and note that we are a clone (and increment the
2230 * parent's references). rnh_lock is still held, which prevents
2231 * a lookup from returning the newly-created route. Hence
2232 * holding and releasing the parent's rt_lock while still
2233 * holding the route's rt_lock is safe since the new route
2234 * is not yet externally visible.
2236 if (req
== RTM_RESOLVE
) {
2237 RT_LOCK_SPIN(*ret_nrt
);
2238 VERIFY((*ret_nrt
)->rt_expire
== 0 ||
2239 (*ret_nrt
)->rt_rmx
.rmx_expire
!= 0);
2240 VERIFY((*ret_nrt
)->rt_expire
!= 0 ||
2241 (*ret_nrt
)->rt_rmx
.rmx_expire
== 0);
2242 rt
->rt_rmx
= (*ret_nrt
)->rt_rmx
;
2243 rt_setexpire(rt
, (*ret_nrt
)->rt_expire
);
2244 if ((*ret_nrt
)->rt_flags
&
2245 (RTF_CLONING
| RTF_PRCLONING
)) {
2246 rt
->rt_parent
= (*ret_nrt
);
2247 RT_ADDREF_LOCKED(*ret_nrt
);
2249 RT_UNLOCK(*ret_nrt
);
2253 * if this protocol has something to add to this then
2254 * allow it to do that as well.
2257 ifa_rtrequest
= ifa
->ifa_rtrequest
;
2259 if (ifa_rtrequest
!= NULL
)
2260 ifa_rtrequest(req
, rt
, SA(ret_nrt
? *ret_nrt
: NULL
));
2265 * If this is the (non-scoped) default route, record
2266 * the interface index used for the primary ifscope.
2268 if (rt_primary_default(rt
, rt_key(rt
))) {
2269 set_primary_ifscope(rt_key(rt
)->sa_family
,
2270 rt
->rt_ifp
->if_index
);
2275 * If this is a change in a default route, update
2276 * necp client watchers to re-evaluate
2278 if (SA_DEFAULT(rt_key(rt
))) {
2279 if (rt
->rt_ifp
!= NULL
) {
2280 ifnet_touch_lastupdown(rt
->rt_ifp
);
2282 necp_update_all_clients();
2287 * actually return a resultant rtentry and
2288 * give the caller a single reference.
2292 RT_ADDREF_LOCKED(rt
);
2296 routegenid_inet_update();
2298 else if (af
== AF_INET6
)
2299 routegenid_inet6_update();
2305 * We repeat the same procedures from rt_setgate() here
2306 * because they weren't completed when we called it earlier,
2307 * since the node was embryonic.
2309 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
)
2310 rt_set_gwroute(rt
, rt_key(rt
), rt
->rt_gwroute
);
2312 if (req
== RTM_ADD
&&
2313 !(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != NULL
) {
2314 struct rtfc_arg arg
;
2318 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2319 rt_fixchange
, &arg
);
2324 nstat_route_new_entry(rt
);
2335 rtrequest(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2336 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
2339 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2340 lck_mtx_lock(rnh_lock
);
2341 error
= rtrequest_locked(req
, dst
, gateway
, netmask
, flags
, ret_nrt
);
2342 lck_mtx_unlock(rnh_lock
);
2347 rtrequest_scoped(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2348 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
,
2349 unsigned int ifscope
)
2352 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2353 lck_mtx_lock(rnh_lock
);
2354 error
= rtrequest_scoped_locked(req
, dst
, gateway
, netmask
, flags
,
2356 lck_mtx_unlock(rnh_lock
);
2361 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2362 * (i.e., the routes related to it by the operation of cloning). This
2363 * routine is iterated over all potential former-child-routes by way of
2364 * rnh->rnh_walktree_from() above, and those that actually are children of
2365 * the late parent (passed in as VP here) are themselves deleted.
2368 rt_fixdelete(struct radix_node
*rn
, void *vp
)
2370 struct rtentry
*rt
= (struct rtentry
*)rn
;
2371 struct rtentry
*rt0
= vp
;
2373 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2376 if (rt
->rt_parent
== rt0
&&
2377 !(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2379 * Safe to drop rt_lock and use rt_key, since holding
2380 * rnh_lock here prevents another thread from calling
2381 * rt_setgate() on this route.
2384 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2385 rt_mask(rt
), rt
->rt_flags
, NULL
));
2392 * This routine is called from rt_setgate() to do the analogous thing for
2393 * adds and changes. There is the added complication in this case of a
2394 * middle insert; i.e., insertion of a new network route between an older
2395 * network route and (cloned) host routes. For this reason, a simple check
2396 * of rt->rt_parent is insufficient; each candidate route must be tested
2397 * against the (mask, value) of the new route (passed as before in vp)
2398 * to see if the new route matches it.
2400 * XXX - it may be possible to do fixdelete() for changes and reserve this
2401 * routine just for adds. I'm not sure why I thought it was necessary to do
2405 rt_fixchange(struct radix_node
*rn
, void *vp
)
2407 struct rtentry
*rt
= (struct rtentry
*)rn
;
2408 struct rtfc_arg
*ap
= vp
;
2409 struct rtentry
*rt0
= ap
->rt0
;
2410 struct radix_node_head
*rnh
= ap
->rnh
;
2411 u_char
*xk1
, *xm1
, *xk2
, *xmp
;
2414 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2418 if (!rt
->rt_parent
||
2419 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2424 if (rt
->rt_parent
== rt0
)
2428 * There probably is a function somewhere which does this...
2429 * if not, there should be.
2431 len
= imin(rt_key(rt0
)->sa_len
, rt_key(rt
)->sa_len
);
2433 xk1
= (u_char
*)rt_key(rt0
);
2434 xm1
= (u_char
*)rt_mask(rt0
);
2435 xk2
= (u_char
*)rt_key(rt
);
2438 * Avoid applying a less specific route; do this only if the parent
2439 * route (rt->rt_parent) is a network route, since otherwise its mask
2440 * will be NULL if it is a cloning host route.
2442 if ((xmp
= (u_char
*)rt_mask(rt
->rt_parent
)) != NULL
) {
2443 int mlen
= rt_mask(rt
->rt_parent
)->sa_len
;
2444 if (mlen
> rt_mask(rt0
)->sa_len
) {
2449 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< mlen
; i
++) {
2450 if ((xmp
[i
] & ~(xmp
[i
] ^ xm1
[i
])) != xmp
[i
]) {
2457 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< len
; i
++) {
2458 if ((xk2
[i
] & xm1
[i
]) != xk1
[i
]) {
2465 * OK, this node is a clone, and matches the node currently being
2466 * changed/added under the node's mask. So, get rid of it.
2470 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2471 * prevents another thread from calling rt_setgate() on this route.
2474 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2475 rt_mask(rt
), rt
->rt_flags
, NULL
));
2479 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2480 * or even eliminate the need to re-allocate the chunk of memory used
2481 * for rt_key and rt_gateway in the event the gateway portion changes.
2482 * Certain code paths (e.g. IPsec) are notorious for caching the address
2483 * of rt_gateway; this rounding-up would help ensure that the gateway
2484 * portion never gets deallocated (though it may change contents) and
2485 * thus greatly simplifies things.
2487 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2490 * Sets the gateway and/or gateway route portion of a route; may be
2491 * called on an existing route to modify the gateway portion. Both
2492 * rt_key and rt_gateway are allocated out of the same memory chunk.
2493 * Route entry lock must be held by caller; this routine will return
2494 * with the lock held.
2497 rt_setgate(struct rtentry
*rt
, struct sockaddr
*dst
, struct sockaddr
*gate
)
2499 int dlen
= SA_SIZE(dst
->sa_len
), glen
= SA_SIZE(gate
->sa_len
);
2500 struct radix_node_head
*rnh
= NULL
;
2501 boolean_t loop
= FALSE
;
2503 if (dst
->sa_family
!= AF_INET
&& dst
->sa_family
!= AF_INET6
) {
2507 rnh
= rt_tables
[dst
->sa_family
];
2508 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2509 RT_LOCK_ASSERT_HELD(rt
);
2512 * If this is for a route that is on its way of being removed,
2513 * or is temporarily frozen, reject the modification request.
2515 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2519 /* Add an extra ref for ourselves */
2520 RT_ADDREF_LOCKED(rt
);
2522 if (rt
->rt_flags
& RTF_GATEWAY
) {
2523 if ((dst
->sa_len
== gate
->sa_len
) &&
2524 (dst
->sa_family
== AF_INET
|| dst
->sa_family
== AF_INET6
)) {
2525 struct sockaddr_storage dst_ss
, gate_ss
;
2527 (void) sa_copy(dst
, &dst_ss
, NULL
);
2528 (void) sa_copy(gate
, &gate_ss
, NULL
);
2530 loop
= equal(SA(&dst_ss
), SA(&gate_ss
));
2532 loop
= (dst
->sa_len
== gate
->sa_len
&&
2538 * A (cloning) network route with the destination equal to the gateway
2539 * will create an endless loop (see notes below), so disallow it.
2541 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2542 RTF_GATEWAY
) && loop
) {
2543 /* Release extra ref */
2544 RT_REMREF_LOCKED(rt
);
2545 return (EADDRNOTAVAIL
);
2549 * A host route with the destination equal to the gateway
2550 * will interfere with keeping LLINFO in the routing
2551 * table, so disallow it.
2553 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2554 (RTF_HOST
|RTF_GATEWAY
)) && loop
) {
2556 * The route might already exist if this is an RTM_CHANGE
2557 * or a routing redirect, so try to delete it.
2559 if (rt_key(rt
) != NULL
) {
2561 * Safe to drop rt_lock and use rt_key, rt_gateway,
2562 * since holding rnh_lock here prevents another thread
2563 * from calling rt_setgate() on this route.
2566 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt
),
2567 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
2570 /* Release extra ref */
2571 RT_REMREF_LOCKED(rt
);
2572 return (EADDRNOTAVAIL
);
2576 * The destination is not directly reachable. Get a route
2577 * to the next-hop gateway and store it in rt_gwroute.
2579 if (rt
->rt_flags
& RTF_GATEWAY
) {
2580 struct rtentry
*gwrt
;
2581 unsigned int ifscope
;
2583 if (dst
->sa_family
== AF_INET
)
2584 ifscope
= sin_get_ifscope(dst
);
2585 else if (dst
->sa_family
== AF_INET6
)
2586 ifscope
= sin6_get_ifscope(dst
);
2588 ifscope
= IFSCOPE_NONE
;
2592 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2593 * points to a clone rather than a cloning route; see above
2594 * check for cloning loop avoidance (dst == gate).
2596 gwrt
= rtalloc1_scoped_locked(gate
, 1, RTF_PRCLONING
, ifscope
);
2598 RT_LOCK_ASSERT_NOTHELD(gwrt
);
2602 * Cloning loop avoidance:
2604 * In the presence of protocol-cloning and bad configuration,
2605 * it is possible to get stuck in bottomless mutual recursion
2606 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2607 * allowing protocol-cloning to operate for gateways (which
2608 * is probably the correct choice anyway), and avoid the
2609 * resulting reference loops by disallowing any route to run
2610 * through itself as a gateway. This is obviously mandatory
2611 * when we get rt->rt_output(). It implies that a route to
2612 * the gateway must already be present in the system in order
2613 * for the gateway to be referred to by another route.
2616 RT_REMREF_LOCKED(gwrt
);
2617 /* Release extra ref */
2618 RT_REMREF_LOCKED(rt
);
2619 return (EADDRINUSE
); /* failure */
2623 * If scoped, the gateway route must use the same interface;
2624 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2625 * should not change and are freely accessible.
2627 if (ifscope
!= IFSCOPE_NONE
&& (rt
->rt_flags
& RTF_IFSCOPE
) &&
2628 gwrt
!= NULL
&& gwrt
->rt_ifp
!= NULL
&&
2629 gwrt
->rt_ifp
->if_index
!= ifscope
) {
2630 rtfree_locked(gwrt
); /* rt != gwrt, no deadlock */
2631 /* Release extra ref */
2632 RT_REMREF_LOCKED(rt
);
2633 return ((rt
->rt_flags
& RTF_HOST
) ?
2634 EHOSTUNREACH
: ENETUNREACH
);
2637 /* Check again since we dropped the lock above */
2638 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2640 rtfree_locked(gwrt
);
2641 /* Release extra ref */
2642 RT_REMREF_LOCKED(rt
);
2646 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2647 rt_set_gwroute(rt
, dst
, gwrt
);
2650 * In case the (non-scoped) default route gets modified via
2651 * an ICMP redirect, record the interface index used for the
2652 * primary ifscope. Also done in rt_setif() to take care
2653 * of the non-redirect cases.
2655 if (rt_primary_default(rt
, dst
) && rt
->rt_ifp
!= NULL
) {
2656 set_primary_ifscope(dst
->sa_family
,
2657 rt
->rt_ifp
->if_index
);
2662 * If this is a change in a default route, update
2663 * necp client watchers to re-evaluate
2665 if (SA_DEFAULT(dst
)) {
2666 necp_update_all_clients();
2671 * Tell the kernel debugger about the new default gateway
2672 * if the gateway route uses the primary interface, or
2673 * if we are in a transient state before the non-scoped
2674 * default gateway is installed (similar to how the system
2675 * was behaving in the past). In future, it would be good
2676 * to do all this only when KDP is enabled.
2678 if ((dst
->sa_family
== AF_INET
) &&
2679 gwrt
!= NULL
&& gwrt
->rt_gateway
->sa_family
== AF_LINK
&&
2680 (gwrt
->rt_ifp
->if_index
== get_primary_ifscope(AF_INET
) ||
2681 get_primary_ifscope(AF_INET
) == IFSCOPE_NONE
)) {
2682 kdp_set_gateway_mac(SDL((void *)gwrt
->rt_gateway
)->
2686 /* Release extra ref from rtalloc1() */
2692 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2693 * are stored one after the other in the same malloc'd chunk. If we
2694 * have room, reuse the old buffer since rt_gateway already points
2695 * to the right place. Otherwise, malloc a new block and update
2696 * the 'dst' address and point rt_gateway to the right place.
2698 if (rt
->rt_gateway
== NULL
|| glen
> SA_SIZE(rt
->rt_gateway
->sa_len
)) {
2701 /* The underlying allocation is done with M_WAITOK set */
2702 R_Malloc(new, caddr_t
, dlen
+ glen
);
2704 /* Clear gateway route */
2705 rt_set_gwroute(rt
, dst
, NULL
);
2706 /* Release extra ref */
2707 RT_REMREF_LOCKED(rt
);
2712 * Copy from 'dst' and not rt_key(rt) because we can get
2713 * here to initialize a newly allocated route entry, in
2714 * which case rt_key(rt) is NULL (and so does rt_gateway).
2716 bzero(new, dlen
+ glen
);
2717 Bcopy(dst
, new, dst
->sa_len
);
2718 R_Free(rt_key(rt
)); /* free old block; NULL is okay */
2719 rt
->rt_nodes
->rn_key
= new;
2720 rt
->rt_gateway
= (struct sockaddr
*)(new + dlen
);
2724 * Copy the new gateway value into the memory chunk.
2726 Bcopy(gate
, rt
->rt_gateway
, gate
->sa_len
);
2729 * For consistency between rt_gateway and rt_key(gwrt).
2731 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
&&
2732 (rt
->rt_gwroute
->rt_flags
& RTF_IFSCOPE
)) {
2733 if (rt
->rt_gateway
->sa_family
== AF_INET
&&
2734 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET
) {
2735 sin_set_ifscope(rt
->rt_gateway
,
2736 sin_get_ifscope(rt_key(rt
->rt_gwroute
)));
2737 } else if (rt
->rt_gateway
->sa_family
== AF_INET6
&&
2738 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET6
) {
2739 sin6_set_ifscope(rt
->rt_gateway
,
2740 sin6_get_ifscope(rt_key(rt
->rt_gwroute
)));
2745 * This isn't going to do anything useful for host routes, so
2746 * don't bother. Also make sure we have a reasonable mask
2747 * (we don't yet have one during adds).
2749 if (!(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != 0) {
2750 struct rtfc_arg arg
;
2754 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2755 rt_fixchange
, &arg
);
2759 /* Release extra ref */
2760 RT_REMREF_LOCKED(rt
);
2767 rt_set_gwroute(struct rtentry
*rt
, struct sockaddr
*dst
, struct rtentry
*gwrt
)
2769 boolean_t gwrt_isrouter
;
2771 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2772 RT_LOCK_ASSERT_HELD(rt
);
2775 RT_ADDREF(gwrt
); /* for this routine */
2778 * Get rid of existing gateway route; if rt_gwroute is already
2779 * set to gwrt, this is slightly redundant (though safe since
2780 * we held an extra ref above) but makes the code simpler.
2782 if (rt
->rt_gwroute
!= NULL
) {
2783 struct rtentry
*ogwrt
= rt
->rt_gwroute
;
2785 VERIFY(rt
!= ogwrt
); /* sanity check */
2786 rt
->rt_gwroute
= NULL
;
2788 rtfree_locked(ogwrt
);
2790 VERIFY(rt
->rt_gwroute
== NULL
);
2794 * And associate the new gateway route.
2796 if ((rt
->rt_gwroute
= gwrt
) != NULL
) {
2797 RT_ADDREF(gwrt
); /* for rt */
2799 if (rt
->rt_flags
& RTF_WASCLONED
) {
2800 /* rt_parent might be NULL if rt is embryonic */
2801 gwrt_isrouter
= (rt
->rt_parent
!= NULL
&&
2802 SA_DEFAULT(rt_key(rt
->rt_parent
)) &&
2803 !RT_HOST(rt
->rt_parent
));
2805 gwrt_isrouter
= (SA_DEFAULT(dst
) && !RT_HOST(rt
));
2808 /* If gwrt points to a default router, mark it accordingly */
2809 if (gwrt_isrouter
&& RT_HOST(gwrt
) &&
2810 !(gwrt
->rt_flags
& RTF_ROUTER
)) {
2812 gwrt
->rt_flags
|= RTF_ROUTER
;
2816 RT_REMREF(gwrt
); /* for this routine */
2821 rt_maskedcopy(const struct sockaddr
*src
, struct sockaddr
*dst
,
2822 const struct sockaddr
*netmask
)
2824 const char *netmaskp
= &netmask
->sa_data
[0];
2825 const char *srcp
= &src
->sa_data
[0];
2826 char *dstp
= &dst
->sa_data
[0];
2827 const char *maskend
= (char *)dst
2828 + MIN(netmask
->sa_len
, src
->sa_len
);
2829 const char *srcend
= (char *)dst
+ src
->sa_len
;
2831 dst
->sa_len
= src
->sa_len
;
2832 dst
->sa_family
= src
->sa_family
;
2834 while (dstp
< maskend
)
2835 *dstp
++ = *srcp
++ & *netmaskp
++;
2837 memset(dstp
, 0, (size_t)(srcend
- dstp
));
2841 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2842 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2844 static struct radix_node
*
2845 node_lookup(struct sockaddr
*dst
, struct sockaddr
*netmask
,
2846 unsigned int ifscope
)
2848 struct radix_node_head
*rnh
;
2849 struct radix_node
*rn
;
2850 struct sockaddr_storage ss
, mask
;
2851 int af
= dst
->sa_family
;
2852 struct matchleaf_arg ma
= { .ifscope
= ifscope
};
2853 rn_matchf_t
*f
= rn_match_ifscope
;
2856 if (af
!= AF_INET
&& af
!= AF_INET6
)
2859 rnh
= rt_tables
[af
];
2862 * Transform dst into the internal routing table form,
2863 * clearing out the scope ID field if ifscope isn't set.
2865 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ? NULL
: &ifscope
);
2867 /* Transform netmask into the internal routing table form */
2868 if (netmask
!= NULL
)
2869 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2871 if (ifscope
== IFSCOPE_NONE
)
2874 rn
= rnh
->rnh_lookup_args(dst
, netmask
, rnh
, f
, w
);
2875 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2882 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2884 static struct radix_node
*
2885 node_lookup_default(int af
)
2887 struct radix_node_head
*rnh
;
2889 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
2890 rnh
= rt_tables
[af
];
2892 return (af
== AF_INET
? rnh
->rnh_lookup(&sin_def
, NULL
, rnh
) :
2893 rnh
->rnh_lookup(&sin6_def
, NULL
, rnh
));
2897 rt_ifa_is_dst(struct sockaddr
*dst
, struct ifaddr
*ifa
)
2899 boolean_t result
= FALSE
;
2901 if (ifa
== NULL
|| ifa
->ifa_addr
== NULL
)
2906 if (dst
->sa_family
== ifa
->ifa_addr
->sa_family
&&
2907 ((dst
->sa_family
== AF_INET
&&
2908 SIN(dst
)->sin_addr
.s_addr
==
2909 SIN(ifa
->ifa_addr
)->sin_addr
.s_addr
) ||
2910 (dst
->sa_family
== AF_INET6
&&
2911 SA6_ARE_ADDR_EQUAL(SIN6(dst
), SIN6(ifa
->ifa_addr
)))))
2920 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2921 * callback which could be address family-specific. The main difference
2922 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2923 * not alter the expiring state of a route, whereas a match would unexpire
2924 * or revalidate the route.
2926 * The optional scope or interface index property of a route allows for a
2927 * per-interface route instance. This permits multiple route entries having
2928 * the same destination (but not necessarily the same gateway) to exist in
2929 * the routing table; each of these entries is specific to the corresponding
2930 * interface. This is made possible by storing the scope ID value into the
2931 * radix key, thus making each route entry unique. These scoped entries
2932 * exist along with the regular, non-scoped entries in the same radix tree
2933 * for a given address family (AF_INET/AF_INET6); the scope logically
2934 * partitions it into multiple per-interface sub-trees.
2936 * When a scoped route lookup is performed, the routing table is searched for
2937 * the best match that would result in a route using the same interface as the
2938 * one associated with the scope (the exception to this are routes that point
2939 * to the loopback interface). The search rule follows the longest matching
2940 * prefix with the additional interface constraint.
2942 static struct rtentry
*
2943 rt_lookup_common(boolean_t lookup_only
, boolean_t coarse
, struct sockaddr
*dst
,
2944 struct sockaddr
*netmask
, struct radix_node_head
*rnh
, unsigned int ifscope
)
2946 struct radix_node
*rn0
, *rn
= NULL
;
2947 int af
= dst
->sa_family
;
2948 struct sockaddr_storage dst_ss
;
2949 struct sockaddr_storage mask_ss
;
2951 #if (DEVELOPMENT || DEBUG)
2952 char dbuf
[MAX_SCOPE_ADDR_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
2953 char s_dst
[MAX_IPv6_STR_LEN
], s_netmask
[MAX_IPv6_STR_LEN
];
2955 VERIFY(!coarse
|| ifscope
== IFSCOPE_NONE
);
2957 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2960 * While we have rnh_lock held, see if we need to schedule the timer.
2962 if (nd6_sched_timeout_want
)
2963 nd6_sched_timeout(NULL
, NULL
);
2970 * Non-scoped route lookup.
2973 if (af
!= AF_INET
&& af
!= AF_INET6
) {
2975 if (af
!= AF_INET
) {
2977 rn
= rnh
->rnh_matchaddr(dst
, rnh
);
2980 * Don't return a root node; also, rnh_matchaddr callback
2981 * would have done the necessary work to clear RTPRF_OURS
2982 * for certain protocol families.
2984 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2987 RT_LOCK_SPIN(RT(rn
));
2988 if (!(RT(rn
)->rt_flags
& RTF_CONDEMNED
)) {
2989 RT_ADDREF_LOCKED(RT(rn
));
2999 /* Transform dst/netmask into the internal routing table form */
3000 dst
= sa_copy(dst
, &dst_ss
, &ifscope
);
3001 if (netmask
!= NULL
)
3002 netmask
= ma_copy(af
, netmask
, &mask_ss
, ifscope
);
3003 dontcare
= (ifscope
== IFSCOPE_NONE
);
3005 #if (DEVELOPMENT || DEBUG)
3008 (void) inet_ntop(af
, &SIN(dst
)->sin_addr
.s_addr
,
3009 s_dst
, sizeof (s_dst
));
3011 (void) inet_ntop(af
, &SIN6(dst
)->sin6_addr
,
3012 s_dst
, sizeof (s_dst
));
3014 if (netmask
!= NULL
&& af
== AF_INET
)
3015 (void) inet_ntop(af
, &SIN(netmask
)->sin_addr
.s_addr
,
3016 s_netmask
, sizeof (s_netmask
));
3017 if (netmask
!= NULL
&& af
== AF_INET6
)
3018 (void) inet_ntop(af
, &SIN6(netmask
)->sin6_addr
,
3019 s_netmask
, sizeof (s_netmask
));
3022 printf("%s (%d, %d, %s, %s, %u)\n",
3023 __func__
, lookup_only
, coarse
, s_dst
, s_netmask
, ifscope
);
3028 * Scoped route lookup:
3030 * We first perform a non-scoped lookup for the original result.
3031 * Afterwards, depending on whether or not the caller has specified
3032 * a scope, we perform a more specific scoped search and fallback
3033 * to this original result upon failure.
3035 rn0
= rn
= node_lookup(dst
, netmask
, IFSCOPE_NONE
);
3038 * If the caller did not specify a scope, use the primary scope
3039 * derived from the system's non-scoped default route. If, for
3040 * any reason, there is no primary interface, ifscope will be
3041 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
3042 * we'll do a more-specific search below, scoped to the interface
3046 ifscope
= get_primary_ifscope(af
);
3049 * Keep the original result if either of the following is true:
3051 * 1) The interface portion of the route has the same interface
3052 * index as the scope value and it is marked with RTF_IFSCOPE.
3053 * 2) The route uses the loopback interface, in which case the
3054 * destination (host/net) is local/loopback.
3056 * Otherwise, do a more specified search using the scope;
3057 * we're holding rnh_lock now, so rt_ifp should not change.
3060 struct rtentry
*rt
= RT(rn
);
3061 #if (DEVELOPMENT || DEBUG)
3063 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3064 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
3067 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3068 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3069 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3072 if (!(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) ||
3073 (rt
->rt_flags
& RTF_GATEWAY
)) {
3074 if (rt
->rt_ifp
->if_index
!= ifscope
) {
3076 * Wrong interface; keep the original result
3077 * only if the caller did not specify a scope,
3078 * and do a more specific scoped search using
3079 * the scope of the found route. Otherwise,
3080 * start again from scratch.
3082 * For loopback scope we keep the unscoped
3083 * route for local addresses
3087 ifscope
= rt
->rt_ifp
->if_index
;
3088 else if (ifscope
!= lo_ifp
->if_index
||
3089 rt_ifa_is_dst(dst
, rt
->rt_ifa
) == FALSE
)
3091 } else if (!(rt
->rt_flags
& RTF_IFSCOPE
)) {
3093 * Right interface, except that this route
3094 * isn't marked with RTF_IFSCOPE. Do a more
3095 * specific scoped search. Keep the original
3096 * result and return it it in case the scoped
3105 * Scoped search. Find the most specific entry having the same
3106 * interface scope as the one requested. The following will result
3107 * in searching for the longest prefix scoped match.
3110 rn
= node_lookup(dst
, netmask
, ifscope
);
3111 #if (DEVELOPMENT || DEBUG)
3112 if (rt_verbose
&& rn
!= NULL
) {
3113 struct rtentry
*rt
= RT(rn
);
3115 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3116 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
3119 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3120 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3121 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3126 * Use the original result if either of the following is true:
3128 * 1) The scoped search did not yield any result.
3129 * 2) The caller insists on performing a coarse-grained lookup.
3130 * 3) The result from the scoped search is a scoped default route,
3131 * and the original (non-scoped) result is not a default route,
3132 * i.e. the original result is a more specific host/net route.
3133 * 4) The scoped search yielded a net route but the original
3134 * result is a host route, i.e. the original result is treated
3135 * as a more specific route.
3137 if (rn
== NULL
|| coarse
|| (rn0
!= NULL
&&
3138 ((SA_DEFAULT(rt_key(RT(rn
))) && !SA_DEFAULT(rt_key(RT(rn0
)))) ||
3139 (!RT_HOST(rn
) && RT_HOST(rn0
)))))
3143 * If we still don't have a route, use the non-scoped default
3144 * route as long as the interface portion satistifes the scope.
3146 if (rn
== NULL
&& (rn
= node_lookup_default(af
)) != NULL
&&
3147 RT(rn
)->rt_ifp
->if_index
!= ifscope
) {
3153 * Manually clear RTPRF_OURS using rt_validate() and
3154 * bump up the reference count after, and not before;
3155 * we only get here for AF_INET/AF_INET6. node_lookup()
3156 * has done the check against RNF_ROOT, so we can be sure
3157 * that we're not returning a root node here.
3159 RT_LOCK_SPIN(RT(rn
));
3160 if (rt_validate(RT(rn
))) {
3161 RT_ADDREF_LOCKED(RT(rn
));
3168 #if (DEVELOPMENT || DEBUG)
3171 printf("%s %u return NULL\n", __func__
, ifscope
);
3173 struct rtentry
*rt
= RT(rn
);
3175 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3177 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3178 __func__
, ifscope
, rt
,
3180 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3181 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3182 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3190 rt_lookup(boolean_t lookup_only
, struct sockaddr
*dst
, struct sockaddr
*netmask
,
3191 struct radix_node_head
*rnh
, unsigned int ifscope
)
3193 return (rt_lookup_common(lookup_only
, FALSE
, dst
, netmask
,
3198 rt_lookup_coarse(boolean_t lookup_only
, struct sockaddr
*dst
,
3199 struct sockaddr
*netmask
, struct radix_node_head
*rnh
)
3201 return (rt_lookup_common(lookup_only
, TRUE
, dst
, netmask
,
3202 rnh
, IFSCOPE_NONE
));
3206 rt_validate(struct rtentry
*rt
)
3208 RT_LOCK_ASSERT_HELD(rt
);
3210 if ((rt
->rt_flags
& (RTF_UP
| RTF_CONDEMNED
)) == RTF_UP
) {
3211 int af
= rt_key(rt
)->sa_family
;
3214 (void) in_validate(RN(rt
));
3215 else if (af
== AF_INET6
)
3216 (void) in6_validate(RN(rt
));
3221 return (rt
!= NULL
);
3225 * Set up a routing table entry, normally
3229 rtinit(struct ifaddr
*ifa
, int cmd
, int flags
)
3233 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
3235 lck_mtx_lock(rnh_lock
);
3236 error
= rtinit_locked(ifa
, cmd
, flags
);
3237 lck_mtx_unlock(rnh_lock
);
3243 rtinit_locked(struct ifaddr
*ifa
, int cmd
, int flags
)
3245 struct radix_node_head
*rnh
;
3246 uint8_t nbuf
[128]; /* long enough for IPv6 */
3247 #if (DEVELOPMENT || DEBUG)
3248 char dbuf
[MAX_IPv6_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
3249 char abuf
[MAX_IPv6_STR_LEN
];
3251 struct rtentry
*rt
= NULL
;
3252 struct sockaddr
*dst
;
3253 struct sockaddr
*netmask
;
3257 * Holding rnh_lock here prevents the possibility of ifa from
3258 * changing (e.g. in_ifinit), so it is safe to access its
3259 * ifa_{dst}addr (here and down below) without locking.
3261 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
3263 if (flags
& RTF_HOST
) {
3264 dst
= ifa
->ifa_dstaddr
;
3267 dst
= ifa
->ifa_addr
;
3268 netmask
= ifa
->ifa_netmask
;
3271 if (dst
->sa_len
== 0) {
3272 log(LOG_ERR
, "%s: %s failed, invalid dst sa_len %d\n",
3273 __func__
, rtm2str(cmd
), dst
->sa_len
);
3277 if (netmask
!= NULL
&& netmask
->sa_len
> sizeof (nbuf
)) {
3278 log(LOG_ERR
, "%s: %s failed, mask sa_len %d too large\n",
3279 __func__
, rtm2str(cmd
), dst
->sa_len
);
3284 #if (DEVELOPMENT || DEBUG)
3285 if (dst
->sa_family
== AF_INET
) {
3286 (void) inet_ntop(AF_INET
, &SIN(dst
)->sin_addr
.s_addr
,
3287 abuf
, sizeof (abuf
));
3290 else if (dst
->sa_family
== AF_INET6
) {
3291 (void) inet_ntop(AF_INET6
, &SIN6(dst
)->sin6_addr
,
3292 abuf
, sizeof (abuf
));
3295 #endif /* (DEVELOPMENT || DEBUG) */
3297 if ((rnh
= rt_tables
[dst
->sa_family
]) == NULL
) {
3303 * If it's a delete, check that if it exists, it's on the correct
3304 * interface or we might scrub a route to another ifa which would
3305 * be confusing at best and possibly worse.
3307 if (cmd
== RTM_DELETE
) {
3309 * It's a delete, so it should already exist..
3310 * If it's a net, mask off the host bits
3311 * (Assuming we have a mask)
3313 if (netmask
!= NULL
) {
3314 rt_maskedcopy(dst
, SA(nbuf
), netmask
);
3318 * Get an rtentry that is in the routing tree and contains
3319 * the correct info. Note that we perform a coarse-grained
3320 * lookup here, in case there is a scoped variant of the
3321 * subnet/prefix route which we should ignore, as we never
3322 * add a scoped subnet/prefix route as part of adding an
3323 * interface address.
3325 rt
= rt_lookup_coarse(TRUE
, dst
, NULL
, rnh
);
3327 #if (DEVELOPMENT || DEBUG)
3328 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3331 * Ok so we found the rtentry. it has an extra reference
3332 * for us at this stage. we won't need that so
3336 if (rt
->rt_ifa
!= ifa
) {
3338 * If the interface address in the rtentry
3339 * doesn't match the interface we are using,
3340 * then we don't want to delete it, so return
3341 * an error. This seems to be the only point
3342 * of this whole RTM_DELETE clause.
3344 #if (DEVELOPMENT || DEBUG)
3346 log(LOG_DEBUG
, "%s: not removing "
3347 "route to %s->%s->%s, flags %b, "
3348 "ifaddr %s, rt_ifa 0x%llx != "
3349 "ifa 0x%llx\n", __func__
, dbuf
,
3350 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3351 rt
->rt_ifp
->if_xname
: ""),
3352 rt
->rt_flags
, RTF_BITS
, abuf
,
3353 (uint64_t)VM_KERNEL_ADDRPERM(
3355 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3357 #endif /* (DEVELOPMENT || DEBUG) */
3358 RT_REMREF_LOCKED(rt
);
3361 error
= ((flags
& RTF_HOST
) ?
3362 EHOSTUNREACH
: ENETUNREACH
);
3364 } else if (rt
->rt_flags
& RTF_STATIC
) {
3366 * Don't remove the subnet/prefix route if
3367 * this was manually added from above.
3369 #if (DEVELOPMENT || DEBUG)
3371 log(LOG_DEBUG
, "%s: not removing "
3372 "static route to %s->%s->%s, "
3373 "flags %b, ifaddr %s\n", __func__
,
3374 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3375 rt
->rt_ifp
->if_xname
: ""),
3376 rt
->rt_flags
, RTF_BITS
, abuf
);
3378 #endif /* (DEVELOPMENT || DEBUG) */
3379 RT_REMREF_LOCKED(rt
);
3385 #if (DEVELOPMENT || DEBUG)
3387 log(LOG_DEBUG
, "%s: removing route to "
3388 "%s->%s->%s, flags %b, ifaddr %s\n",
3389 __func__
, dbuf
, gbuf
,
3390 ((rt
->rt_ifp
!= NULL
) ?
3391 rt
->rt_ifp
->if_xname
: ""),
3392 rt
->rt_flags
, RTF_BITS
, abuf
);
3394 #endif /* (DEVELOPMENT || DEBUG) */
3395 RT_REMREF_LOCKED(rt
);
3401 * Do the actual request
3403 if ((error
= rtrequest_locked(cmd
, dst
, ifa
->ifa_addr
, netmask
,
3404 flags
| ifa
->ifa_flags
, &rt
)) != 0)
3408 #if (DEVELOPMENT || DEBUG)
3409 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3410 #endif /* (DEVELOPMENT || DEBUG) */
3414 * If we are deleting, and we found an entry, then it's
3415 * been removed from the tree. Notify any listening
3416 * routing agents of the change and throw it away.
3419 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3421 #if (DEVELOPMENT || DEBUG)
3423 log(LOG_DEBUG
, "%s: removed route to %s->%s->%s, "
3424 "flags %b, ifaddr %s\n", __func__
, dbuf
, gbuf
,
3425 ((rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: ""),
3426 rt
->rt_flags
, RTF_BITS
, abuf
);
3428 #endif /* (DEVELOPMENT || DEBUG) */
3434 * We are adding, and we have a returned routing entry.
3435 * We need to sanity check the result. If it came back
3436 * with an unexpected interface, then it must have already
3437 * existed or something.
3440 if (rt
->rt_ifa
!= ifa
) {
3441 void (*ifa_rtrequest
)
3442 (int, struct rtentry
*, struct sockaddr
*);
3443 #if (DEVELOPMENT || DEBUG)
3445 if (!(rt
->rt_ifa
->ifa_ifp
->if_flags
&
3446 (IFF_POINTOPOINT
|IFF_LOOPBACK
))) {
3447 log(LOG_ERR
, "%s: %s route to %s->%s->%s, "
3448 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3449 "ifa 0x%llx\n", __func__
, rtm2str(cmd
),
3450 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3451 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3453 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3454 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3457 log(LOG_DEBUG
, "%s: %s route to %s->%s->%s, "
3458 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3459 "now 0x%llx\n", __func__
, rtm2str(cmd
),
3460 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3461 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3463 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3464 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3466 #endif /* (DEVELOPMENT || DEBUG) */
3469 * Ask that the protocol in question
3470 * remove anything it has associated with
3471 * this route and ifaddr.
3473 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
3474 if (ifa_rtrequest
!= NULL
)
3475 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
3477 * Set the route's ifa.
3481 if (rt
->rt_ifp
!= ifa
->ifa_ifp
) {
3483 * Purge any link-layer info caching.
3485 if (rt
->rt_llinfo_purge
!= NULL
)
3486 rt
->rt_llinfo_purge(rt
);
3488 * Adjust route ref count for the interfaces.
3490 if (rt
->rt_if_ref_fn
!= NULL
) {
3491 rt
->rt_if_ref_fn(ifa
->ifa_ifp
, 1);
3492 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3497 * And substitute in references to the ifaddr
3500 rt
->rt_ifp
= ifa
->ifa_ifp
;
3502 * If rmx_mtu is not locked, update it
3503 * to the MTU used by the new interface.
3505 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
3506 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
3507 if (dst
->sa_family
== AF_INET
&&
3508 INTF_ADJUST_MTU_FOR_CLAT46(rt
->rt_ifp
)) {
3509 rt
->rt_rmx
.rmx_mtu
= IN6_LINKMTU(rt
->rt_ifp
);
3510 /* Further adjust the size for CLAT46 expansion */
3511 rt
->rt_rmx
.rmx_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
3516 * Now ask the protocol to check if it needs
3517 * any special processing in its new form.
3519 ifa_rtrequest
= ifa
->ifa_rtrequest
;
3520 if (ifa_rtrequest
!= NULL
)
3521 ifa_rtrequest(RTM_ADD
, rt
, NULL
);
3523 #if (DEVELOPMENT || DEBUG)
3525 log(LOG_DEBUG
, "%s: added route to %s->%s->%s, "
3526 "flags %b, ifaddr %s\n", __func__
, dbuf
,
3527 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3528 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3531 #endif /* (DEVELOPMENT || DEBUG) */
3534 * notify any listenning routing agents of the change
3536 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3538 * We just wanted to add it; we don't actually need a
3539 * reference. This will result in a route that's added
3540 * to the routing table without a reference count. The
3541 * RTM_DELETE code will do the necessary step to adjust
3542 * the reference count at deletion time.
3544 RT_REMREF_LOCKED(rt
);
3557 rt_set_idleref(struct rtentry
*rt
)
3559 RT_LOCK_ASSERT_HELD(rt
);
3562 * We currently keep idle refcnt only on unicast cloned routes
3563 * that aren't marked with RTF_NOIFREF.
3565 if (rt
->rt_parent
!= NULL
&& !(rt
->rt_flags
&
3566 (RTF_NOIFREF
|RTF_BROADCAST
| RTF_MULTICAST
)) &&
3567 (rt
->rt_flags
& (RTF_UP
|RTF_WASCLONED
|RTF_IFREF
)) ==
3568 (RTF_UP
|RTF_WASCLONED
)) {
3569 rt_clear_idleref(rt
); /* drop existing refcnt if any */
3570 rt
->rt_if_ref_fn
= rte_if_ref
;
3571 /* Become a regular mutex, just in case */
3572 RT_CONVERT_LOCK(rt
);
3573 rt
->rt_if_ref_fn(rt
->rt_ifp
, 1);
3574 rt
->rt_flags
|= RTF_IFREF
;
3579 rt_clear_idleref(struct rtentry
*rt
)
3581 RT_LOCK_ASSERT_HELD(rt
);
3583 if (rt
->rt_if_ref_fn
!= NULL
) {
3584 VERIFY((rt
->rt_flags
& (RTF_NOIFREF
| RTF_IFREF
)) == RTF_IFREF
);
3585 /* Become a regular mutex, just in case */
3586 RT_CONVERT_LOCK(rt
);
3587 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3588 rt
->rt_flags
&= ~RTF_IFREF
;
3589 rt
->rt_if_ref_fn
= NULL
;
3594 rt_set_proxy(struct rtentry
*rt
, boolean_t set
)
3596 lck_mtx_lock(rnh_lock
);
3599 * Search for any cloned routes which might have
3600 * been formed from this node, and delete them.
3602 if (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) {
3603 struct radix_node_head
*rnh
= rt_tables
[rt_key(rt
)->sa_family
];
3606 rt
->rt_flags
|= RTF_PROXY
;
3608 rt
->rt_flags
&= ~RTF_PROXY
;
3611 if (rnh
!= NULL
&& rt_mask(rt
)) {
3612 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
3618 lck_mtx_unlock(rnh_lock
);
3622 rte_lock_init(struct rtentry
*rt
)
3624 lck_mtx_init(&rt
->rt_lock
, rte_mtx_grp
, rte_mtx_attr
);
3628 rte_lock_destroy(struct rtentry
*rt
)
3630 RT_LOCK_ASSERT_NOTHELD(rt
);
3631 lck_mtx_destroy(&rt
->rt_lock
, rte_mtx_grp
);
3635 rt_lock(struct rtentry
*rt
, boolean_t spin
)
3637 RT_LOCK_ASSERT_NOTHELD(rt
);
3639 lck_mtx_lock_spin(&rt
->rt_lock
);
3641 lck_mtx_lock(&rt
->rt_lock
);
3642 if (rte_debug
& RTD_DEBUG
)
3643 rte_lock_debug((struct rtentry_dbg
*)rt
);
3647 rt_unlock(struct rtentry
*rt
)
3649 if (rte_debug
& RTD_DEBUG
)
3650 rte_unlock_debug((struct rtentry_dbg
*)rt
);
3651 lck_mtx_unlock(&rt
->rt_lock
);
3656 rte_lock_debug(struct rtentry_dbg
*rte
)
3660 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3661 idx
= atomic_add_32_ov(&rte
->rtd_lock_cnt
, 1) % CTRACE_HIST_SIZE
;
3662 if (rte_debug
& RTD_TRACE
)
3663 ctrace_record(&rte
->rtd_lock
[idx
]);
3667 rte_unlock_debug(struct rtentry_dbg
*rte
)
3671 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3672 idx
= atomic_add_32_ov(&rte
->rtd_unlock_cnt
, 1) % CTRACE_HIST_SIZE
;
3673 if (rte_debug
& RTD_TRACE
)
3674 ctrace_record(&rte
->rtd_unlock
[idx
]);
3677 static struct rtentry
*
3680 if (rte_debug
& RTD_DEBUG
)
3681 return (rte_alloc_debug());
3683 return ((struct rtentry
*)zalloc(rte_zone
));
3687 rte_free(struct rtentry
*p
)
3689 if (rte_debug
& RTD_DEBUG
) {
3694 if (p
->rt_refcnt
!= 0) {
3695 panic("rte_free: rte=%p refcnt=%d non-zero\n", p
, p
->rt_refcnt
);
3703 rte_if_ref(struct ifnet
*ifp
, int cnt
)
3705 struct kev_msg ev_msg
;
3706 struct net_event_data ev_data
;
3709 /* Force cnt to 1 increment/decrement */
3710 if (cnt
< -1 || cnt
> 1) {
3711 panic("%s: invalid count argument (%d)", __func__
, cnt
);
3714 old
= atomic_add_32_ov(&ifp
->if_route_refcnt
, cnt
);
3715 if (cnt
< 0 && old
== 0) {
3716 panic("%s: ifp=%p negative route refcnt!", __func__
, ifp
);
3720 * The following is done without first holding the ifnet lock,
3721 * for performance reasons. The relevant ifnet fields, with
3722 * the exception of the if_idle_flags, are never changed
3723 * during the lifetime of the ifnet. The if_idle_flags
3724 * may possibly be modified, so in the event that the value
3725 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3726 * sending the event anyway. This is harmless as it is just
3727 * a notification to the monitoring agent in user space, and
3728 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3730 if ((ifp
->if_idle_flags
& IFRF_IDLE_NOTIFY
) && cnt
< 0 && old
== 1) {
3731 bzero(&ev_msg
, sizeof (ev_msg
));
3732 bzero(&ev_data
, sizeof (ev_data
));
3734 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3735 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
3736 ev_msg
.kev_subclass
= KEV_DL_SUBCLASS
;
3737 ev_msg
.event_code
= KEV_DL_IF_IDLE_ROUTE_REFCNT
;
3739 strlcpy(&ev_data
.if_name
[0], ifp
->if_name
, IFNAMSIZ
);
3741 ev_data
.if_family
= ifp
->if_family
;
3742 ev_data
.if_unit
= ifp
->if_unit
;
3743 ev_msg
.dv
[0].data_length
= sizeof (struct net_event_data
);
3744 ev_msg
.dv
[0].data_ptr
= &ev_data
;
3746 dlil_post_complete_msg(NULL
, &ev_msg
);
3750 static inline struct rtentry
*
3751 rte_alloc_debug(void)
3753 struct rtentry_dbg
*rte
;
3755 rte
= ((struct rtentry_dbg
*)zalloc(rte_zone
));
3757 bzero(rte
, sizeof (*rte
));
3758 if (rte_debug
& RTD_TRACE
)
3759 ctrace_record(&rte
->rtd_alloc
);
3760 rte
->rtd_inuse
= RTD_INUSE
;
3762 return ((struct rtentry
*)rte
);
3766 rte_free_debug(struct rtentry
*p
)
3768 struct rtentry_dbg
*rte
= (struct rtentry_dbg
*)p
;
3770 if (p
->rt_refcnt
!= 0) {
3771 panic("rte_free: rte=%p refcnt=%d\n", p
, p
->rt_refcnt
);
3774 if (rte
->rtd_inuse
== RTD_FREED
) {
3775 panic("rte_free: double free rte=%p\n", rte
);
3777 } else if (rte
->rtd_inuse
!= RTD_INUSE
) {
3778 panic("rte_free: corrupted rte=%p\n", rte
);
3781 bcopy((caddr_t
)p
, (caddr_t
)&rte
->rtd_entry_saved
, sizeof (*p
));
3782 /* Preserve rt_lock to help catch use-after-free cases */
3783 bzero((caddr_t
)p
, offsetof(struct rtentry
, rt_lock
));
3785 rte
->rtd_inuse
= RTD_FREED
;
3787 if (rte_debug
& RTD_TRACE
)
3788 ctrace_record(&rte
->rtd_free
);
3790 if (!(rte_debug
& RTD_NO_FREE
))
3795 ctrace_record(ctrace_t
*tr
)
3797 tr
->th
= current_thread();
3798 bzero(tr
->pc
, sizeof (tr
->pc
));
3799 (void) OSBacktrace(tr
->pc
, CTRACE_STACK_SIZE
);
3803 route_copyout(struct route
*dst
, const struct route
*src
, size_t length
)
3805 /* Copy everything (rt, srcif, flags, dst) from src */
3806 bcopy(src
, dst
, length
);
3808 /* Hold one reference for the local copy of struct route */
3809 if (dst
->ro_rt
!= NULL
)
3810 RT_ADDREF(dst
->ro_rt
);
3812 /* Hold one reference for the local copy of struct lle */
3813 if (dst
->ro_lle
!= NULL
)
3814 LLE_ADDREF(dst
->ro_lle
);
3816 /* Hold one reference for the local copy of struct ifaddr */
3817 if (dst
->ro_srcia
!= NULL
)
3818 IFA_ADDREF(dst
->ro_srcia
);
3822 route_copyin(struct route
*src
, struct route
*dst
, size_t length
)
3825 * No cached route at the destination?
3826 * If none, then remove old references if present
3827 * and copy entire src route.
3829 if (dst
->ro_rt
== NULL
) {
3831 * Ditch the cached link layer reference (dst)
3832 * since we're about to take everything there is in src
3834 if (dst
->ro_lle
!= NULL
)
3835 LLE_REMREF(dst
->ro_lle
);
3837 * Ditch the address in the cached copy (dst) since
3838 * we're about to take everything there is in src.
3840 if (dst
->ro_srcia
!= NULL
)
3841 IFA_REMREF(dst
->ro_srcia
);
3843 * Copy everything (rt, ro_lle, srcia, flags, dst) from src; the
3844 * references to rt and/or srcia were held at the time
3845 * of storage and are kept intact.
3847 bcopy(src
, dst
, length
);
3852 * We know dst->ro_rt is not NULL here.
3853 * If the src->ro_rt is the same, update ro_lle, srcia and flags
3854 * and ditch the route in the local copy.
3856 if (dst
->ro_rt
== src
->ro_rt
) {
3857 dst
->ro_flags
= src
->ro_flags
;
3859 if (dst
->ro_lle
!= src
->ro_lle
) {
3860 if (dst
->ro_lle
!= NULL
)
3861 LLE_REMREF(dst
->ro_lle
);
3862 dst
->ro_lle
= src
->ro_lle
;
3863 } else if (src
->ro_lle
!= NULL
) {
3864 LLE_REMREF(src
->ro_lle
);
3867 if (dst
->ro_srcia
!= src
->ro_srcia
) {
3868 if (dst
->ro_srcia
!= NULL
)
3869 IFA_REMREF(dst
->ro_srcia
);
3870 dst
->ro_srcia
= src
->ro_srcia
;
3871 } else if (src
->ro_srcia
!= NULL
) {
3872 IFA_REMREF(src
->ro_srcia
);
3879 * If they are dst's ro_rt is not equal to src's,
3880 * and src'd rt is not NULL, then remove old references
3881 * if present and copy entire src route.
3883 if (src
->ro_rt
!= NULL
) {
3886 if (dst
->ro_lle
!= NULL
)
3887 LLE_REMREF(dst
->ro_lle
);
3888 if (dst
->ro_srcia
!= NULL
)
3889 IFA_REMREF(dst
->ro_srcia
);
3890 bcopy(src
, dst
, length
);
3895 * Here, dst's cached route is not NULL but source's is.
3896 * Just get rid of all the other cached reference in src.
3898 if (src
->ro_srcia
!= NULL
) {
3900 * Ditch src address in the local copy (src) since we're
3901 * not caching the route entry anyway (ro_rt is NULL).
3903 IFA_REMREF(src
->ro_srcia
);
3905 if (src
->ro_lle
!= NULL
) {
3907 * Ditch cache lle in the local copy (src) since we're
3908 * not caching the route anyway (ro_rt is NULL).
3910 LLE_REMREF(src
->ro_lle
);
3913 /* This function consumes the references on src */
3916 src
->ro_srcia
= NULL
;
3920 * route_to_gwroute will find the gateway route for a given route.
3922 * If the route is down, look the route up again.
3923 * If the route goes through a gateway, get the route to the gateway.
3924 * If the gateway route is down, look it up again.
3925 * If the route is set to reject, verify it hasn't expired.
3927 * If the returned route is non-NULL, the caller is responsible for
3928 * releasing the reference and unlocking the route.
3930 #define senderr(e) { error = (e); goto bad; }
3932 route_to_gwroute(const struct sockaddr
*net_dest
, struct rtentry
*hint0
,
3933 struct rtentry
**out_route
)
3936 struct rtentry
*rt
= hint0
, *hint
= hint0
;
3938 unsigned int ifindex
;
3947 * Next hop determination. Because we may involve the gateway route
3948 * in addition to the original route, locking is rather complicated.
3949 * The general concept is that regardless of whether the route points
3950 * to the original route or to the gateway route, this routine takes
3951 * an extra reference on such a route. This extra reference will be
3952 * released at the end.
3954 * Care must be taken to ensure that the "hint0" route never gets freed
3955 * via rtfree(), since the caller may have stored it inside a struct
3956 * route with a reference held for that placeholder.
3959 ifindex
= rt
->rt_ifp
->if_index
;
3960 RT_ADDREF_LOCKED(rt
);
3961 if (!(rt
->rt_flags
& RTF_UP
)) {
3962 RT_REMREF_LOCKED(rt
);
3964 /* route is down, find a new one */
3965 hint
= rt
= rtalloc1_scoped((struct sockaddr
*)
3966 (size_t)net_dest
, 1, 0, ifindex
);
3969 ifindex
= rt
->rt_ifp
->if_index
;
3971 senderr(EHOSTUNREACH
);
3976 * We have a reference to "rt" by now; it will either
3977 * be released or freed at the end of this routine.
3979 RT_LOCK_ASSERT_HELD(rt
);
3980 if ((gwroute
= (rt
->rt_flags
& RTF_GATEWAY
))) {
3981 struct rtentry
*gwrt
= rt
->rt_gwroute
;
3982 struct sockaddr_storage ss
;
3983 struct sockaddr
*gw
= (struct sockaddr
*)&ss
;
3986 RT_ADDREF_LOCKED(hint
);
3988 /* If there's no gateway rt, look it up */
3990 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3991 rt
->rt_gateway
->sa_len
));
3995 /* Become a regular mutex */
3996 RT_CONVERT_LOCK(rt
);
3999 * Take gwrt's lock while holding route's lock;
4000 * this is okay since gwrt never points back
4001 * to "rt", so no lock ordering issues.
4004 if (!(gwrt
->rt_flags
& RTF_UP
)) {
4005 rt
->rt_gwroute
= NULL
;
4007 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
4008 rt
->rt_gateway
->sa_len
));
4012 lck_mtx_lock(rnh_lock
);
4013 gwrt
= rtalloc1_scoped_locked(gw
, 1, 0, ifindex
);
4017 * Bail out if the route is down, no route
4018 * to gateway, circular route, or if the
4019 * gateway portion of "rt" has changed.
4021 if (!(rt
->rt_flags
& RTF_UP
) || gwrt
== NULL
||
4022 gwrt
== rt
|| !equal(gw
, rt
->rt_gateway
)) {
4024 RT_REMREF_LOCKED(gwrt
);
4028 RT_REMREF_LOCKED(hint
);
4032 rtfree_locked(gwrt
);
4033 lck_mtx_unlock(rnh_lock
);
4034 senderr(EHOSTUNREACH
);
4036 VERIFY(gwrt
!= NULL
);
4038 * Set gateway route; callee adds ref to gwrt;
4039 * gwrt has an extra ref from rtalloc1() for
4042 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4044 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4046 lck_mtx_unlock(rnh_lock
);
4049 RT_ADDREF_LOCKED(gwrt
);
4052 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4056 VERIFY(rt
== gwrt
&& rt
!= hint
);
4059 * This is an opportunity to revalidate the parent route's
4060 * rt_gwroute, in case it now points to a dead route entry.
4061 * Parent route won't go away since the clone (hint) holds
4062 * a reference to it. rt == gwrt.
4065 if ((hint
->rt_flags
& (RTF_WASCLONED
| RTF_UP
)) ==
4066 (RTF_WASCLONED
| RTF_UP
)) {
4067 struct rtentry
*prt
= hint
->rt_parent
;
4068 VERIFY(prt
!= NULL
);
4070 RT_CONVERT_LOCK(hint
);
4073 rt_revalidate_gwroute(prt
, rt
);
4079 /* Clean up "hint" now; see notes above regarding hint0 */
4086 /* rt == gwrt; if it is now down, give up */
4088 if (!(rt
->rt_flags
& RTF_UP
)) {
4090 senderr(EHOSTUNREACH
);
4094 if (rt
->rt_flags
& RTF_REJECT
) {
4095 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
4096 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
4097 timenow
= net_uptime();
4098 if (rt
->rt_expire
== 0 || timenow
< rt
->rt_expire
) {
4100 senderr(!gwroute
? EHOSTDOWN
: EHOSTUNREACH
);
4104 /* Become a regular mutex */
4105 RT_CONVERT_LOCK(rt
);
4107 /* Caller is responsible for cleaning up "rt" */
4112 /* Clean up route (either it is "rt" or "gwrt") */
4116 RT_REMREF_LOCKED(rt
);
4128 rt_revalidate_gwroute(struct rtentry
*rt
, struct rtentry
*gwrt
)
4130 VERIFY(gwrt
!= NULL
);
4133 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_UP
)) == (RTF_GATEWAY
| RTF_UP
) &&
4134 rt
->rt_ifp
== gwrt
->rt_ifp
&& rt
->rt_gateway
->sa_family
==
4135 rt_key(gwrt
)->sa_family
&& (rt
->rt_gwroute
== NULL
||
4136 !(rt
->rt_gwroute
->rt_flags
& RTF_UP
))) {
4138 VERIFY(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
));
4140 if (rt
->rt_gateway
->sa_family
== AF_INET
||
4141 rt
->rt_gateway
->sa_family
== AF_INET6
) {
4142 struct sockaddr_storage key_ss
, gw_ss
;
4144 * We need to compare rt_key and rt_gateway; create
4145 * local copies to get rid of any ifscope association.
4147 (void) sa_copy(rt_key(gwrt
), &key_ss
, NULL
);
4148 (void) sa_copy(rt
->rt_gateway
, &gw_ss
, NULL
);
4150 isequal
= equal(SA(&key_ss
), SA(&gw_ss
));
4152 isequal
= equal(rt_key(gwrt
), rt
->rt_gateway
);
4155 /* If they are the same, update gwrt */
4158 lck_mtx_lock(rnh_lock
);
4160 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4162 lck_mtx_unlock(rnh_lock
);
4172 rt_str4(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4174 VERIFY(rt_key(rt
)->sa_family
== AF_INET
);
4177 (void) inet_ntop(AF_INET
,
4178 &SIN(rt_key(rt
))->sin_addr
.s_addr
, ds
, dslen
);
4179 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4180 SINIFSCOPE(rt_key(rt
))->sin_scope_id
!= IFSCOPE_NONE
) {
4183 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4184 SINIFSCOPE(rt_key(rt
))->sin_scope_id
);
4186 strlcat(ds
, scpstr
, dslen
);
4191 if (rt
->rt_flags
& RTF_GATEWAY
) {
4192 (void) inet_ntop(AF_INET
,
4193 &SIN(rt
->rt_gateway
)->sin_addr
.s_addr
, gs
, gslen
);
4194 } else if (rt
->rt_ifp
!= NULL
) {
4195 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4197 snprintf(gs
, gslen
, "%s", "link");
4204 rt_str6(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4206 VERIFY(rt_key(rt
)->sa_family
== AF_INET6
);
4209 (void) inet_ntop(AF_INET6
,
4210 &SIN6(rt_key(rt
))->sin6_addr
, ds
, dslen
);
4211 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4212 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
!= IFSCOPE_NONE
) {
4215 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4216 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
);
4218 strlcat(ds
, scpstr
, dslen
);
4223 if (rt
->rt_flags
& RTF_GATEWAY
) {
4224 (void) inet_ntop(AF_INET6
,
4225 &SIN6(rt
->rt_gateway
)->sin6_addr
, gs
, gslen
);
4226 } else if (rt
->rt_ifp
!= NULL
) {
4227 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4229 snprintf(gs
, gslen
, "%s", "link");
4237 rt_str(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4239 switch (rt_key(rt
)->sa_family
) {
4241 rt_str4(rt
, ds
, dslen
, gs
, gslen
);
4245 rt_str6(rt
, ds
, dslen
, gs
, gslen
);
4257 void route_event_init(struct route_event
*p_route_ev
, struct rtentry
*rt
,
4258 struct rtentry
*gwrt
, int route_ev_code
)
4260 VERIFY(p_route_ev
!= NULL
);
4261 bzero(p_route_ev
, sizeof(*p_route_ev
));
4263 p_route_ev
->rt
= rt
;
4264 p_route_ev
->gwrt
= gwrt
;
4265 p_route_ev
->route_event_code
= route_ev_code
;
4269 route_event_callback(void *arg
)
4271 struct route_event
*p_rt_ev
= (struct route_event
*)arg
;
4272 struct rtentry
*rt
= p_rt_ev
->rt
;
4273 eventhandler_tag evtag
= p_rt_ev
->evtag
;
4274 int route_ev_code
= p_rt_ev
->route_event_code
;
4276 if (route_ev_code
== ROUTE_EVHDLR_DEREGISTER
) {
4277 VERIFY(evtag
!= NULL
);
4278 EVENTHANDLER_DEREGISTER(&rt
->rt_evhdlr_ctxt
, route_event
,
4284 EVENTHANDLER_INVOKE(&rt
->rt_evhdlr_ctxt
, route_event
, rt_key(rt
),
4285 route_ev_code
, (struct sockaddr
*)&p_rt_ev
->rt_addr
,
4288 /* The code enqueuing the route event held a reference */
4290 /* XXX No reference is taken on gwrt */
4294 route_event_walktree(struct radix_node
*rn
, void *arg
)
4296 struct route_event
*p_route_ev
= (struct route_event
*)arg
;
4297 struct rtentry
*rt
= (struct rtentry
*)rn
;
4298 struct rtentry
*gwrt
= p_route_ev
->rt
;
4300 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
4304 /* Return if the entry is pending cleanup */
4305 if (rt
->rt_flags
& RTPRF_OURS
) {
4310 /* Return if it is not an indirect route */
4311 if (!(rt
->rt_flags
& RTF_GATEWAY
)) {
4316 if (rt
->rt_gwroute
!= gwrt
) {
4321 route_event_enqueue_nwk_wq_entry(rt
, gwrt
, p_route_ev
->route_event_code
,
4328 struct route_event_nwk_wq_entry
4330 struct nwk_wq_entry nwk_wqe
;
4331 struct route_event rt_ev_arg
;
4335 route_event_enqueue_nwk_wq_entry(struct rtentry
*rt
, struct rtentry
*gwrt
,
4336 uint32_t route_event_code
, eventhandler_tag evtag
, boolean_t rt_locked
)
4338 struct route_event_nwk_wq_entry
*p_rt_ev
= NULL
;
4339 struct sockaddr
*p_gw_saddr
= NULL
;
4341 MALLOC(p_rt_ev
, struct route_event_nwk_wq_entry
*,
4342 sizeof(struct route_event_nwk_wq_entry
),
4343 M_NWKWQ
, M_WAITOK
| M_ZERO
);
4346 * If the intent is to de-register, don't take
4347 * reference, route event registration already takes
4348 * a reference on route.
4350 if (route_event_code
!= ROUTE_EVHDLR_DEREGISTER
) {
4351 /* The reference is released by route_event_callback */
4353 RT_ADDREF_LOCKED(rt
);
4358 p_rt_ev
->rt_ev_arg
.rt
= rt
;
4359 p_rt_ev
->rt_ev_arg
.gwrt
= gwrt
;
4360 p_rt_ev
->rt_ev_arg
.evtag
= evtag
;
4363 p_gw_saddr
= gwrt
->rt_gateway
;
4365 p_gw_saddr
= rt
->rt_gateway
;
4367 VERIFY(p_gw_saddr
->sa_len
<= sizeof(p_rt_ev
->rt_ev_arg
.rt_addr
));
4368 bcopy(p_gw_saddr
, &(p_rt_ev
->rt_ev_arg
.rt_addr
), p_gw_saddr
->sa_len
);
4370 p_rt_ev
->rt_ev_arg
.route_event_code
= route_event_code
;
4371 p_rt_ev
->nwk_wqe
.func
= route_event_callback
;
4372 p_rt_ev
->nwk_wqe
.is_arg_managed
= TRUE
;
4373 p_rt_ev
->nwk_wqe
.arg
= &p_rt_ev
->rt_ev_arg
;
4374 nwk_wq_enqueue((struct nwk_wq_entry
*)p_rt_ev
);
4378 route_event2str(int route_event
)
4380 const char *route_event_str
= "ROUTE_EVENT_UNKNOWN";
4381 switch (route_event
) {
4382 case ROUTE_STATUS_UPDATE
:
4383 route_event_str
= "ROUTE_STATUS_UPDATE";
4385 case ROUTE_ENTRY_REFRESH
:
4386 route_event_str
= "ROUTE_ENTRY_REFRESH";
4388 case ROUTE_ENTRY_DELETED
:
4389 route_event_str
= "ROUTE_ENTRY_DELETED";
4391 case ROUTE_LLENTRY_RESOLVED
:
4392 route_event_str
= "ROUTE_LLENTRY_RESOLVED";
4394 case ROUTE_LLENTRY_UNREACH
:
4395 route_event_str
= "ROUTE_LLENTRY_UNREACH";
4397 case ROUTE_LLENTRY_CHANGED
:
4398 route_event_str
= "ROUTE_LLENTRY_CHANGED";
4400 case ROUTE_LLENTRY_STALE
:
4401 route_event_str
= "ROUTE_LLENTRY_STALE";
4403 case ROUTE_LLENTRY_TIMEDOUT
:
4404 route_event_str
= "ROUTE_LLENTRY_TIMEDOUT";
4406 case ROUTE_LLENTRY_DELETED
:
4407 route_event_str
= "ROUTE_LLENTRY_DELETED";
4409 case ROUTE_LLENTRY_EXPIRED
:
4410 route_event_str
= "ROUTE_LLENTRY_EXPIRED";
4412 case ROUTE_LLENTRY_PROBED
:
4413 route_event_str
= "ROUTE_LLENTRY_PROBED";
4415 case ROUTE_EVHDLR_DEREGISTER
:
4416 route_event_str
= "ROUTE_EVHDLR_DEREGISTER";
4419 /* Init'd to ROUTE_EVENT_UNKNOWN */
4422 return route_event_str
;
4426 route_op_entitlement_check(struct socket
*so
,
4429 boolean_t allow_root
)
4432 if (route_op_type
== ROUTE_OP_READ
) {
4434 * If needed we can later extend this for more
4435 * granular entitlements and return a bit set of
4438 if (soopt_cred_check(so
, PRIV_NET_RESTRICTED_ROUTE_NC_READ
,
4439 allow_root
, false) == 0)
4444 } else if (cred
!= NULL
) {
4445 uid_t uid
= kauth_cred_getuid(cred
);
4447 /* uid is 0 for root */
4448 if (uid
!= 0 || !allow_root
) {
4449 if (route_op_type
== ROUTE_OP_READ
) {
4450 if (priv_check_cred(cred
,
4451 PRIV_NET_RESTRICTED_ROUTE_NC_READ
, 0) == 0)