]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/nat464_utils.c
xnu-6153.61.1.tar.gz
[apple/xnu.git] / bsd / net / nat464_utils.c
1 /*
2 * Copyright (c) 2018 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (c) 2001 Daniel Hartmeier
31 * Copyright (c) 2002 - 2013 Henning Brauer
32 * NAT64 - Copyright (c) 2010 Viagenie Inc. (http://www.viagenie.ca)
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 *
39 * - Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * - Redistributions in binary form must reproduce the above
42 * copyright notice, this list of conditions and the following
43 * disclaimer in the documentation and/or other materials provided
44 * with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
47 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
48 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
49 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
50 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
51 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
52 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
54 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
56 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57 * POSSIBILITY OF SUCH DAMAGE.
58 *
59 * Effort sponsored in part by the Defense Advanced Research Projects
60 * Agency (DARPA) and Air Force Research Laboratory, Air Force
61 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
62 *
63 */
64 #include <sys/param.h>
65 #include <sys/types.h>
66 #include <sys/mbuf.h>
67
68 #include <net/if.h>
69 #include <net/if_types.h>
70 #include <net/dlil.h>
71 #include <net/nat464_utils.h>
72 #include <net/nwk_wq.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip6.h>
79 #include <netinet/ip_var.h>
80 #include <netinet/ip_icmp.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/icmp_var.h>
83 #include <netinet/icmp6.h>
84 #include <netinet/tcp.h>
85 #include <netinet/udp.h>
86 #include <netinet/udp_var.h>
87 #include <os/log.h>
88
89 int clat_debug = 0;
90
91 os_log_t nat_log_handle;
92
93 static void
94 nat464_addr_cksum_fixup(uint16_t *, struct nat464_addr *, struct nat464_addr *,
95 protocol_family_t, protocol_family_t, uint8_t, boolean_t);
96
97 /* Synthesize ipv6 from ipv4 */
98 int
99 nat464_synthesize_ipv6(ifnet_t ifp, const struct in_addr *addrv4, struct in6_addr *addr)
100 {
101 static const struct in6_addr well_known_prefix = {
102 .__u6_addr.__u6_addr8 = {0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
103 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
104 0x00, 0x00, 0x00, 0x00},
105 };
106
107 struct ipv6_prefix nat64prefixes[NAT64_MAX_NUM_PREFIXES];
108 int error = 0, i = 0;
109 /* Below call is not optimized as it creates a copy of prefixes */
110 if ((error = ifnet_get_nat64prefix(ifp, nat64prefixes)) != 0) {
111 return error;
112 }
113
114 for (i = 0; i < NAT64_MAX_NUM_PREFIXES; i++) {
115 if (nat64prefixes[i].prefix_len != 0) {
116 break;
117 }
118 }
119
120 VERIFY(i < NAT64_MAX_NUM_PREFIXES);
121
122 struct in6_addr prefix = nat64prefixes[i].ipv6_prefix;
123 int prefix_len = nat64prefixes[i].prefix_len;
124
125 char *ptrv4 = __DECONST(char *, addrv4);
126 char *ptr = __DECONST(char *, addr);
127
128 if (IN_ZERONET(ntohl(addrv4->s_addr)) || // 0.0.0.0/8 Source hosts on local network
129 IN_LOOPBACK(ntohl(addrv4->s_addr)) || // 127.0.0.0/8 Loopback
130 IN_LINKLOCAL(ntohl(addrv4->s_addr)) || // 169.254.0.0/16 Link Local
131 IN_DS_LITE(ntohl(addrv4->s_addr)) || // 192.0.0.0/29 DS-Lite
132 IN_6TO4_RELAY_ANYCAST(ntohl(addrv4->s_addr)) || // 192.88.99.0/24 6to4 Relay Anycast
133 IN_MULTICAST(ntohl(addrv4->s_addr)) || // 224.0.0.0/4 Multicast
134 INADDR_BROADCAST == addrv4->s_addr) { // 255.255.255.255/32 Limited Broadcast
135 return -1;
136 }
137
138 /* Check for the well-known prefix */
139 if (prefix_len == NAT64_PREFIX_LEN_96 &&
140 IN6_ARE_ADDR_EQUAL(&prefix, &well_known_prefix)) { // https://tools.ietf.org/html/rfc6052#section-3.1
141 if (IN_PRIVATE(ntohl(addrv4->s_addr)) || // 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 Private-Use
142 IN_SHARED_ADDRESS_SPACE(ntohl(addrv4->s_addr))) { // 100.64.0.0/10 Shared Address Space
143 return -1;
144 }
145 }
146
147 memcpy(ptr, (char *)&prefix, prefix_len);
148
149 switch (prefix_len) {
150 case NAT64_PREFIX_LEN_96:
151 memcpy(ptr + 12, ptrv4, 4);
152 break;
153 case NAT64_PREFIX_LEN_64:
154 memcpy(ptr + 9, ptrv4, 4);
155 break;
156 case NAT64_PREFIX_LEN_56:
157 memcpy(ptr + 7, ptrv4, 1);
158 memcpy(ptr + 9, ptrv4 + 1, 3);
159 break;
160 case NAT64_PREFIX_LEN_48:
161 memcpy(ptr + 6, ptrv4, 2);
162 memcpy(ptr + 9, ptrv4 + 2, 2);
163 break;
164 case NAT64_PREFIX_LEN_40:
165 memcpy(ptr + 5, ptrv4, 3);
166 memcpy(ptr + 9, ptrv4 + 3, 1);
167 break;
168 case NAT64_PREFIX_LEN_32:
169 memcpy(ptr + 4, ptrv4, 4);
170 break;
171 default:
172 panic("NAT64-prefix len is wrong: %u\n", prefix_len);
173 }
174
175 if (clat_debug) {
176 char buf[MAX_IPv6_STR_LEN];
177 clat_log2((LOG_DEBUG, "%s synthesized %s\n", __func__,
178 inet_ntop(AF_INET6, (void *)addr, buf, sizeof(buf))));
179 }
180
181 return error;
182 }
183
184 /* Synthesize ipv4 from ipv6 */
185 int
186 nat464_synthesize_ipv4(ifnet_t ifp, const struct in6_addr *addr, struct in_addr *addrv4)
187 {
188 struct ipv6_prefix nat64prefixes[NAT64_MAX_NUM_PREFIXES];
189 int error = 0, i = 0;
190
191 /* Below call is not optimized as it creates a copy of prefixes */
192 if ((error = ifnet_get_nat64prefix(ifp, nat64prefixes)) != 0) {
193 return error;
194 }
195
196 for (i = 0; i < NAT64_MAX_NUM_PREFIXES; i++) {
197 if (nat64prefixes[i].prefix_len != 0) {
198 break;
199 }
200 }
201
202 VERIFY(i < NAT64_MAX_NUM_PREFIXES);
203
204 struct in6_addr prefix = nat64prefixes[i].ipv6_prefix;
205 int prefix_len = nat64prefixes[i].prefix_len;
206
207 char *ptrv4 = __DECONST(void *, addrv4);
208 char *ptr = __DECONST(void *, addr);
209
210 if (memcmp(addr, &prefix, prefix_len) != 0) {
211 return -1;
212 }
213
214 switch (prefix_len) {
215 case NAT64_PREFIX_LEN_96:
216 memcpy(ptrv4, ptr + 12, 4);
217 break;
218 case NAT64_PREFIX_LEN_64:
219 memcpy(ptrv4, ptr + 9, 4);
220 break;
221 case NAT64_PREFIX_LEN_56:
222 memcpy(ptrv4, ptr + 7, 1);
223 memcpy(ptrv4 + 1, ptr + 9, 3);
224 break;
225 case NAT64_PREFIX_LEN_48:
226 memcpy(ptrv4, ptr + 6, 2);
227 memcpy(ptrv4 + 2, ptr + 9, 2);
228 break;
229 case NAT64_PREFIX_LEN_40:
230 memcpy(ptrv4, ptr + 5, 3);
231 memcpy(ptrv4 + 3, ptr + 9, 1);
232 break;
233 case NAT64_PREFIX_LEN_32:
234 memcpy(ptrv4, ptr + 4, 4);
235 break;
236 default:
237 panic("NAT64-prefix len is wrong: %u\n",
238 prefix_len);
239 }
240
241 if (clat_debug) {
242 char buf[MAX_IPv4_STR_LEN];
243 clat_log2((LOG_DEBUG, "%s desynthesized to %s\n", __func__,
244 inet_ntop(AF_INET, (void *)addrv4, buf, sizeof(buf))));
245 }
246 return error;
247 }
248
249 #define PTR_IP(field) ((int32_t)offsetof(struct ip, field))
250 #define PTR_IP6(field) ((int32_t)offsetof(struct ip6_hdr, field))
251
252 /*
253 * Translate the ICMP header
254 */
255 int
256 nat464_translate_icmp(int naf, void *arg)
257 {
258 struct icmp *icmp4;
259 struct icmp6_hdr *icmp6;
260 uint32_t mtu;
261 int32_t ptr = -1;
262 uint8_t type;
263 uint8_t code;
264
265 switch (naf) {
266 case AF_INET:
267 icmp6 = arg;
268 type = icmp6->icmp6_type;
269 code = icmp6->icmp6_code;
270 mtu = ntohl(icmp6->icmp6_mtu);
271
272 switch (type) {
273 case ICMP6_ECHO_REQUEST:
274 type = ICMP_ECHO;
275 break;
276 case ICMP6_ECHO_REPLY:
277 type = ICMP_ECHOREPLY;
278 break;
279 case ICMP6_DST_UNREACH:
280 type = ICMP_UNREACH;
281 switch (code) {
282 case ICMP6_DST_UNREACH_NOROUTE:
283 case ICMP6_DST_UNREACH_BEYONDSCOPE:
284 case ICMP6_DST_UNREACH_ADDR:
285 code = ICMP_UNREACH_HOST;
286 break;
287 case ICMP6_DST_UNREACH_ADMIN:
288 code = ICMP_UNREACH_HOST_PROHIB;
289 break;
290 case ICMP6_DST_UNREACH_NOPORT:
291 code = ICMP_UNREACH_PORT;
292 break;
293 default:
294 return -1;
295 }
296 break;
297 case ICMP6_PACKET_TOO_BIG:
298 type = ICMP_UNREACH;
299 code = ICMP_UNREACH_NEEDFRAG;
300 mtu -= 20;
301 break;
302 case ICMP6_TIME_EXCEEDED:
303 type = ICMP_TIMXCEED;
304 break;
305 case ICMP6_PARAM_PROB:
306 switch (code) {
307 case ICMP6_PARAMPROB_HEADER:
308 type = ICMP_PARAMPROB;
309 code = ICMP_PARAMPROB_ERRATPTR;
310 ptr = ntohl(icmp6->icmp6_pptr);
311
312 if (ptr == PTR_IP6(ip6_vfc)) {
313 ; /* preserve */
314 } else if (ptr == PTR_IP6(ip6_vfc) + 1) {
315 ptr = PTR_IP(ip_tos);
316 } else if (ptr == PTR_IP6(ip6_plen) ||
317 ptr == PTR_IP6(ip6_plen) + 1) {
318 ptr = PTR_IP(ip_len);
319 } else if (ptr == PTR_IP6(ip6_nxt)) {
320 ptr = PTR_IP(ip_p);
321 } else if (ptr == PTR_IP6(ip6_hlim)) {
322 ptr = PTR_IP(ip_ttl);
323 } else if (ptr >= PTR_IP6(ip6_src) &&
324 ptr < PTR_IP6(ip6_dst)) {
325 ptr = PTR_IP(ip_src);
326 } else if (ptr >= PTR_IP6(ip6_dst) &&
327 ptr < (int32_t)sizeof(struct ip6_hdr)) {
328 ptr = PTR_IP(ip_dst);
329 } else {
330 return -1;
331 }
332 break;
333 case ICMP6_PARAMPROB_NEXTHEADER:
334 type = ICMP_UNREACH;
335 code = ICMP_UNREACH_PROTOCOL;
336 break;
337 default:
338 return -1;
339 }
340 break;
341 default:
342 return -1;
343 }
344 icmp6->icmp6_type = type;
345 icmp6->icmp6_code = code;
346 /* aligns well with a icmpv4 nextmtu */
347 icmp6->icmp6_mtu = htonl(mtu);
348 /* icmpv4 pptr is a one most significant byte */
349 if (ptr >= 0) {
350 icmp6->icmp6_pptr = htonl(ptr << 24);
351 }
352 break;
353
354 case AF_INET6:
355 icmp4 = arg;
356 type = icmp4->icmp_type;
357 code = icmp4->icmp_code;
358 mtu = ntohs(icmp4->icmp_nextmtu);
359
360 switch (type) {
361 case ICMP_ECHO:
362 type = ICMP6_ECHO_REQUEST;
363 break;
364 case ICMP_ECHOREPLY:
365 type = ICMP6_ECHO_REPLY;
366 break;
367 case ICMP_UNREACH:
368 type = ICMP6_DST_UNREACH;
369 switch (code) {
370 case ICMP_UNREACH_NET:
371 case ICMP_UNREACH_HOST:
372 case ICMP_UNREACH_NET_UNKNOWN:
373 case ICMP_UNREACH_HOST_UNKNOWN:
374 case ICMP_UNREACH_ISOLATED:
375 case ICMP_UNREACH_TOSNET:
376 case ICMP_UNREACH_TOSHOST:
377 code = ICMP6_DST_UNREACH_NOROUTE;
378 break;
379 case ICMP_UNREACH_PORT:
380 code = ICMP6_DST_UNREACH_NOPORT;
381 break;
382 case ICMP_UNREACH_NET_PROHIB:
383 case ICMP_UNREACH_HOST_PROHIB:
384 case ICMP_UNREACH_FILTER_PROHIB:
385 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
386 code = ICMP6_DST_UNREACH_ADMIN;
387 break;
388 case ICMP_UNREACH_PROTOCOL:
389 type = ICMP6_PARAM_PROB;
390 code = ICMP6_PARAMPROB_NEXTHEADER;
391 ptr = offsetof(struct ip6_hdr, ip6_nxt);
392 break;
393 case ICMP_UNREACH_NEEDFRAG:
394 type = ICMP6_PACKET_TOO_BIG;
395 code = 0;
396 mtu += 20;
397 break;
398 default:
399 return -1;
400 }
401 break;
402 case ICMP_TIMXCEED:
403 type = ICMP6_TIME_EXCEEDED;
404 break;
405 case ICMP_PARAMPROB:
406 type = ICMP6_PARAM_PROB;
407 switch (code) {
408 case ICMP_PARAMPROB_ERRATPTR:
409 code = ICMP6_PARAMPROB_HEADER;
410 break;
411 case ICMP_PARAMPROB_LENGTH:
412 code = ICMP6_PARAMPROB_HEADER;
413 break;
414 default:
415 return -1;
416 }
417
418 ptr = icmp4->icmp_pptr;
419 if (ptr == 0 || ptr == PTR_IP(ip_tos)) {
420 ; /* preserve */
421 } else if (ptr == PTR_IP(ip_len) ||
422 ptr == PTR_IP(ip_len) + 1) {
423 ptr = PTR_IP6(ip6_plen);
424 } else if (ptr == PTR_IP(ip_ttl)) {
425 ptr = PTR_IP6(ip6_hlim);
426 } else if (ptr == PTR_IP(ip_p)) {
427 ptr = PTR_IP6(ip6_nxt);
428 } else if (ptr >= PTR_IP(ip_src) &&
429 ptr < PTR_IP(ip_dst)) {
430 ptr = PTR_IP6(ip6_src);
431 } else if (ptr >= PTR_IP(ip_dst) &&
432 ptr < (int32_t)sizeof(struct ip)) {
433 ptr = PTR_IP6(ip6_dst);
434 } else {
435 return -1;
436 }
437 break;
438 default:
439 return -1;
440 }
441 icmp4->icmp_type = type;
442 icmp4->icmp_code = code;
443 icmp4->icmp_nextmtu = htons(mtu);
444 if (ptr >= 0) {
445 icmp4->icmp_void = htonl(ptr);
446 }
447 break;
448 }
449
450 return 0;
451 }
452
453 /*
454 * @brief This routine is called to perform address family translation on the
455 * inner IP header (that may come as payload) of an ICMP(v4/v6) error
456 * response.
457 *
458 * @param pbuf Pointer to packet buffer
459 * @param off Points to end of ICMP header
460 * @param tot_len Pointer to total length of the outer IP header
461 * @param off2 Points to end of inner IP header
462 * @param proto2 Inner IP proto field
463 * @param ttl2 Inner IP ttl field
464 * @param tot_len2 Inner IP total length
465 * @param src Pointer to the generic v4/v6 src address
466 * @param dst Pointer to the generic v4/v6 dst address
467 * @param af Old protocol family
468 * @param naf New protocol family
469 *
470 * @return -1 on error and 0 on success
471 */
472 int
473 nat464_translate_icmp_ip(pbuf_t *pbuf, uint32_t off, uint64_t *tot_len, uint32_t *off2,
474 uint8_t proto2, uint8_t ttl2, uint64_t tot_len2, struct nat464_addr *src,
475 struct nat464_addr *dst, protocol_family_t af, protocol_family_t naf)
476 {
477 struct ip *ip4 = NULL;
478 struct ip6_hdr *ip6 = NULL;
479 void *hdr = NULL;
480 int hlen = 0, olen = 0;
481
482 if (af == naf || (af != AF_INET && af != AF_INET6) ||
483 (naf != AF_INET && naf != AF_INET6)) {
484 return -1;
485 }
486
487 /* old header */
488 olen = *off2 - off;
489 /* new header */
490 hlen = naf == PF_INET ? sizeof(*ip4) : sizeof(*ip6);
491
492 /* Modify the pbuf to accommodate the new header */
493 hdr = pbuf_resize_segment(pbuf, off, olen, hlen);
494 if (hdr == NULL) {
495 return -1;
496 }
497
498 /* translate inner ip/ip6 header */
499 switch (naf) {
500 case AF_INET:
501 ip4 = hdr;
502 bzero(ip4, sizeof(*ip4));
503 ip4->ip_v = IPVERSION;
504 ip4->ip_hl = sizeof(*ip4) >> 2;
505 ip4->ip_len = htons(sizeof(*ip4) + tot_len2 - olen);
506 ip4->ip_id = rfc6864 ? 0 : htons(ip_randomid());
507 ip4->ip_off = htons(IP_DF);
508 ip4->ip_ttl = ttl2;
509 if (proto2 == IPPROTO_ICMPV6) {
510 ip4->ip_p = IPPROTO_ICMP;
511 } else {
512 ip4->ip_p = proto2;
513 }
514 ip4->ip_src = src->natv4addr;
515 ip4->ip_dst = dst->natv4addr;
516 ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2);
517
518 if (clat_debug) {
519 char buf[MAX_IPv4_STR_LEN];
520 clat_log2((LOG_DEBUG, "%s translated to IPv4 (inner) "
521 "ip_len: %#x ip_p: %d ip_sum: %#x ip_src: %s ip_dst: %s \n",
522 __func__, ntohs(ip4->ip_len), ip4->ip_p, ntohs(ip4->ip_sum),
523 inet_ntop(AF_INET, (void *)&ip4->ip_src, buf, sizeof(buf)),
524 inet_ntop(AF_INET, (void *)&ip4->ip_dst, buf, sizeof(buf))));
525 }
526 break;
527 case AF_INET6:
528 ip6 = hdr;
529 bzero(ip6, sizeof(*ip6));
530 ip6->ip6_vfc = IPV6_VERSION;
531 ip6->ip6_plen = htons(tot_len2 - olen);
532 if (proto2 == IPPROTO_ICMP) {
533 ip6->ip6_nxt = IPPROTO_ICMPV6;
534 } else {
535 ip6->ip6_nxt = proto2;
536 }
537 if (!ttl2 || ttl2 > IPV6_DEFHLIM) {
538 ip6->ip6_hlim = IPV6_DEFHLIM;
539 } else {
540 ip6->ip6_hlim = ttl2;
541 }
542 ip6->ip6_src = src->natv6addr;
543 ip6->ip6_dst = dst->natv6addr;
544
545 if (clat_debug) {
546 char buf2[MAX_IPv6_STR_LEN];
547 clat_log2((LOG_DEBUG, "%s translated to IPv6 (inner) "
548 "ip6_plen: %#x ip6_nxt: %d ip6_src: %s ip6_dst: %s \n",
549 __func__, ntohs(ip6->ip6_plen), ip6->ip6_nxt,
550 inet_ntop(AF_INET6, (void *)&ip6->ip6_src, buf2, sizeof(buf2)),
551 inet_ntop(AF_INET6, (void *)&ip6->ip6_dst, buf2, sizeof(buf2))));
552 }
553 break;
554 }
555
556 /* adjust payload offset and total packet length */
557 *off2 += hlen - olen;
558 *tot_len += hlen - olen;
559
560 return 0;
561 }
562 /*
563 * @brief The function inserts IPv6 fragmentation header
564 * and populates it with the passed parameters.
565 *
566 * @param pbuf Pointer to the packet buffer
567 * @param ip_id IP identifier (in network byte order)
568 * @param frag_offset Fragment offset (in network byte order)
569 * @param is_last_frag Boolean indicating if the fragment header is for
570 * last fragment or not.
571 *
572 * @return -1 on error and 0 on success.
573 */
574 int
575 nat464_insert_frag46(pbuf_t *pbuf, uint16_t ip_id_val, uint16_t frag_offset,
576 boolean_t is_last_frag)
577 {
578 struct ip6_frag *p_ip6_frag = NULL;
579 struct ip6_hdr *p_ip6h = NULL;
580
581 /* Insert IPv6 fragmentation header */
582 if (pbuf_resize_segment(pbuf, sizeof(struct ip6_hdr), 0,
583 sizeof(struct ip6_frag)) == NULL) {
584 return -1;
585 }
586
587 p_ip6h = mtod(pbuf->pb_mbuf, struct ip6_hdr *);
588 p_ip6_frag = (struct ip6_frag *)pbuf_contig_segment(pbuf,
589 sizeof(struct ip6_hdr), sizeof(struct ip6_frag));
590
591 if (p_ip6_frag == NULL) {
592 return -1;
593 }
594
595 /* Populate IPv6 fragmentation header */
596 p_ip6_frag->ip6f_nxt = p_ip6h->ip6_nxt;
597 p_ip6_frag->ip6f_reserved = 0;
598 p_ip6_frag->ip6f_offlg = (frag_offset) << 3;
599 if (!is_last_frag) {
600 p_ip6_frag->ip6f_offlg |= 0x1;
601 }
602 p_ip6_frag->ip6f_offlg = htons(p_ip6_frag->ip6f_offlg);
603 p_ip6_frag->ip6f_ident = ip_id_val;
604
605 /* Update IPv6 header */
606 p_ip6h->ip6_nxt = IPPROTO_FRAGMENT;
607 p_ip6h->ip6_plen = htons(ntohs(p_ip6h->ip6_plen) +
608 sizeof(struct ip6_frag));
609
610 return 0;
611 }
612
613 int
614 nat464_translate_64(pbuf_t *pbuf, int off, uint8_t tos,
615 uint8_t *proto, uint8_t ttl, struct in_addr src_v4,
616 struct in_addr dst_v4, uint64_t tot_len, boolean_t *p_is_first_frag)
617 {
618 struct ip *ip4;
619 struct ip6_frag *p_frag6 = NULL;
620 struct ip6_frag frag6 = {};
621 boolean_t is_frag = FALSE;
622 uint16_t ip_frag_off = 0;
623
624 /*
625 * ip_input asserts for rcvif to be not NULL
626 * That may not be true for two corner cases
627 * 1. If for some reason a local app sends DNS
628 * AAAA query to local host
629 * 2. If IPv6 stack in kernel internally generates a
630 * message destined for a synthesized IPv6 end-point.
631 */
632 if (pbuf->pb_ifp == NULL) {
633 return NT_DROP;
634 }
635
636 if (*proto == IPPROTO_FRAGMENT) {
637 p_frag6 = (struct ip6_frag *)pbuf_contig_segment(pbuf,
638 sizeof(struct ip6_hdr), sizeof(struct ip6_frag));
639 if (p_frag6 == NULL) {
640 ip6stat.ip6s_clat464_in_64frag_transfail_drop++;
641 return NT_DROP;
642 }
643
644 frag6 = *p_frag6;
645 p_frag6 = NULL;
646 *proto = frag6.ip6f_nxt;
647 off += sizeof(struct ip6_frag);
648 is_frag = TRUE;
649 ip_frag_off = (ntohs(frag6.ip6f_offlg & IP6F_OFF_MASK)) >> 3;
650 if (ip_frag_off != 0) {
651 *p_is_first_frag = FALSE;
652 }
653 }
654
655 ip4 = (struct ip *)pbuf_resize_segment(pbuf, 0, off, sizeof(*ip4));
656 if (ip4 == NULL) {
657 return NT_DROP;
658 }
659 ip4->ip_v = 4;
660 ip4->ip_hl = 5;
661 ip4->ip_tos = tos;
662 ip4->ip_len = htons(sizeof(*ip4) + (tot_len - off));
663 ip4->ip_id = 0;
664 ip4->ip_off = 0;
665 ip4->ip_ttl = ttl;
666 ip4->ip_p = *proto;
667 ip4->ip_sum = 0;
668 ip4->ip_src = src_v4;
669 ip4->ip_dst = dst_v4;
670 if (is_frag) {
671 /*
672 * https://tools.ietf.org/html/rfc7915#section-5.1.1
673 * Identification: Copied from the low-order 16 bits in the
674 * Identification field in the Fragment Header.
675 */
676 ip4->ip_id = ntohl(frag6.ip6f_ident) & 0xffff;
677 ip4->ip_id = htons(ip4->ip_id);
678 if (frag6.ip6f_offlg & IP6F_MORE_FRAG) {
679 ip_frag_off |= IP_MF;
680 }
681 ip4->ip_off = htons(ip_frag_off);
682 } else {
683 ip4->ip_off |= htons(IP_DF);
684 }
685
686 /*
687 * Defer calculating ip_sum for ICMPv6 as we do it
688 * later in Protocol translation
689 */
690 if (*proto != IPPROTO_ICMPV6) {
691 ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2);
692 }
693
694 if (clat_debug) {
695 char buf1[MAX_IPv4_STR_LEN], buf2[MAX_IPv4_STR_LEN];
696 clat_log2((LOG_DEBUG, "%s translated to IPv4 ip_len: %#x "
697 "ip_p: %d ip_sum: %#x ip_src: %s ip_dst: %s \n", __func__,
698 ntohs(ip4->ip_len), ip4->ip_p, ntohs(ip4->ip_sum),
699 inet_ntop(AF_INET, (void *)&ip4->ip_src, buf1, sizeof(buf1)),
700 inet_ntop(AF_INET, (void *)&ip4->ip_dst, buf2, sizeof(buf2))));
701 }
702 return NT_NAT64;
703 }
704 /*
705 * @brief The routine translates the IPv4 header to IPv6 header.
706 *
707 * @param pbuf Pointer to the generic packet buffer
708 * @param off Offset to the end of IP header
709 * @param tos Type of service
710 * @param proto Protocol running over IP
711 * @param ttl Time to live
712 * @param src_v6 Source IPv6 address
713 * @param dst_v6 Destination IPv6 address
714 * @param tot_len Total payload length
715 *
716 * @return NT_NAT64 if IP header translation is successful, else error
717 */
718 int
719 nat464_translate_46(pbuf_t *pbuf, int off, uint8_t tos,
720 uint8_t proto, uint8_t ttl, struct in6_addr src_v6,
721 struct in6_addr dst_v6, uint64_t tot_len)
722 {
723 struct ip6_hdr *ip6;
724
725 if (pbuf->pb_ifp == NULL) {
726 return NT_DROP;
727 }
728
729 /*
730 * Trim the buffer from head of size equal to to off (which is equal to
731 * the size of IP header and prepend IPv6 header length to the buffer
732 */
733 ip6 = (struct ip6_hdr *)pbuf_resize_segment(pbuf, 0, off, sizeof(*ip6));
734 if (ip6 == NULL) {
735 return NT_DROP;
736 }
737 ip6->ip6_flow = htonl((6 << 28) | (tos << 20));
738 ip6->ip6_plen = htons(tot_len - off);
739 ip6->ip6_nxt = proto;
740 ip6->ip6_hlim = ttl;
741 ip6->ip6_src = src_v6;
742 ip6->ip6_dst = dst_v6;
743
744 if (clat_debug) {
745 char buf1[MAX_IPv6_STR_LEN], buf2[MAX_IPv6_STR_LEN];
746 clat_log2((LOG_DEBUG, "%s translated to IPv6 ip6_plen: %#x "
747 " ip6_nxt: %d ip6_src: %s ip6_dst: %s \n", __func__,
748 ntohs(ip6->ip6_plen), ip6->ip6_nxt,
749 inet_ntop(AF_INET6, (void *)&ip6->ip6_src, buf1, sizeof(buf1)),
750 inet_ntop(AF_INET6, (void *)&ip6->ip6_dst, buf2, sizeof(buf2))));
751 }
752 return NT_NAT64;
753 }
754
755 /* Handle the next protocol checksum */
756 /*
757 * @brief This routine translates the Proto running over IP and updates the checksum
758 * for IP header translation. It also updates pbuf checksum flags and related fields.
759 *
760 * @param pbuf Pointer to protocol buffer
761 * @param nsrc New source address
762 * @param ndst New destination address
763 * @param af Old family
764 * @param naf New family
765 *
766 * @return void
767 */
768 int
769 nat464_translate_proto(pbuf_t *pbuf, struct nat464_addr *osrc,
770 struct nat464_addr *odst, uint8_t oproto, protocol_family_t af,
771 protocol_family_t naf, int direction, boolean_t only_csum)
772 {
773 struct ip *iph = NULL;
774 struct ip6_hdr *ip6h = NULL;
775 uint32_t hlen = 0, plen = 0;
776 uint64_t tot_len = 0;
777 void *nsrc = NULL, *ndst = NULL;
778 uint8_t *proto = 0;
779 uint16_t *psum = NULL;
780 boolean_t do_ones_complement = FALSE;
781
782 /* For now these routines only support 464 translations */
783 VERIFY(af != naf);
784 VERIFY(af == PF_INET || af == PF_INET6);
785
786 /*
787 * For now out must be for v4 to v6 translation
788 * and in must be for v6 to v4 translation.
789 */
790 switch (naf) {
791 case PF_INET: {
792 iph = pbuf->pb_data;
793 hlen = iph->ip_hl << 2;
794 plen = ntohs(iph->ip_len) - hlen;
795 tot_len = ntohs(iph->ip_len);
796 nsrc = &iph->ip_src;
797 ndst = &iph->ip_dst;
798 proto = &iph->ip_p;
799 break;
800 }
801 case PF_INET6: {
802 ip6h = pbuf->pb_data;
803 hlen = sizeof(*ip6h);
804 plen = ntohs(ip6h->ip6_plen);
805 tot_len = hlen + plen;
806 nsrc = &ip6h->ip6_src;
807 ndst = &ip6h->ip6_dst;
808 proto = &ip6h->ip6_nxt;
809 break;
810 }
811 default:
812 return NT_DROP; /* We should never come here */
813 }
814
815 if (*proto != oproto) {
816 return NT_DROP;
817 }
818
819 /*
820 * We may want to manipulate csum flags in some cases
821 * and not act on the protocol header as it may not
822 * carry protocol checksums.
823 * For example, fragments other than the first one would
824 * not carry protocol headers.
825 */
826 if (only_csum) {
827 /*
828 * Only translate ICMP proto in the header
829 * and adjust checksums
830 */
831 if (*proto == IPPROTO_ICMP) {
832 if (naf != PF_INET6) {
833 return NT_DROP;
834 }
835
836 *proto = IPPROTO_ICMPV6;
837 } else if (*proto == IPPROTO_ICMPV6) {
838 if (naf != PF_INET) {
839 return NT_DROP;
840 }
841
842 *proto = IPPROTO_ICMP;
843 /* Recalculate IP checksum as proto field has changed */
844 iph->ip_sum = 0;
845 iph->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, hlen);
846 }
847 goto done;
848 }
849
850 switch (*proto) {
851 case IPPROTO_UDP: {
852 struct udphdr *uh = (struct udphdr *)pbuf_contig_segment(pbuf, hlen,
853 sizeof(*uh));
854
855 if (uh == NULL) {
856 return NT_DROP;
857 }
858
859 if (!(*pbuf->pb_csum_flags & (CSUM_UDP | CSUM_PARTIAL)) &&
860 uh->uh_sum == 0 && af == PF_INET && naf == PF_INET6) {
861 uh->uh_sum = pbuf_inet6_cksum(pbuf, IPPROTO_UDP,
862 hlen, ntohs(ip6h->ip6_plen));
863 if (uh->uh_sum == 0) {
864 uh->uh_sum = 0xffff;
865 }
866 goto done;
867 }
868
869 psum = &uh->uh_sum;
870 break;
871 }
872 case IPPROTO_TCP: {
873 struct tcphdr *th = (struct tcphdr *)pbuf_contig_segment(pbuf, hlen,
874 sizeof(*th));
875
876 if (th == NULL) {
877 return NT_DROP;
878 }
879
880 psum = &th->th_sum;
881 break;
882 }
883 }
884
885 /*
886 * Translate the protocol header, update IP header if needed,
887 * calculate checksums and update the checksum flags.
888 */
889 switch (*proto) {
890 case IPPROTO_UDP:
891 /* Fall through */
892 case IPPROTO_TCP:
893 {
894 /*
895 * If it is a locally generated and has CSUM flags set
896 * for TCP and UDP it means we have pseudo header checksum
897 * that has not yet been one's complemented.
898 */
899 if (direction == NT_OUT &&
900 (*pbuf->pb_csum_flags & CSUM_DELAY_DATA)) {
901 do_ones_complement = TRUE;
902 }
903
904 nat464_addr_cksum_fixup(psum, osrc, (struct nat464_addr *)nsrc,
905 af, naf, (*proto == IPPROTO_UDP) ? 1 : 0, do_ones_complement);
906 nat464_addr_cksum_fixup(psum, odst, (struct nat464_addr *)ndst,
907 af, naf, (*proto == IPPROTO_UDP) ? 1 : 0, do_ones_complement);
908
909 break;
910 }
911 case IPPROTO_ICMP: {
912 if (naf != PF_INET6) { /* allow only v6 as naf for ICMP */
913 return NT_DROP;
914 }
915
916 struct icmp *icmph = NULL;
917 struct icmp6_hdr *icmp6h = NULL;
918 uint32_t ip2off = 0, hlen2 = 0, tot_len2 = 0;
919
920 icmph = (struct icmp*) pbuf_contig_segment(pbuf, hlen,
921 ICMP_MINLEN);
922 if (icmph == NULL) {
923 return NT_DROP;
924 }
925
926 /* Translate the ICMP header */
927 if (nat464_translate_icmp(PF_INET6, icmph) != 0) {
928 return NT_DROP;
929 }
930
931 *proto = IPPROTO_ICMPV6;
932 icmp6h = (struct icmp6_hdr *)(uintptr_t)icmph;
933 pbuf_copy_back(pbuf, hlen, sizeof(struct icmp6_hdr),
934 icmp6h);
935
936 /*Translate the inner IP header only for error messages */
937 if (ICMP6_ERRORTYPE(icmp6h->icmp6_type)) {
938 ip2off = hlen + sizeof(*icmp6h);
939 struct ip *iph2;
940 iph2 = (struct ip*) pbuf_contig_segment(pbuf, ip2off,
941 sizeof(*iph2));
942 if (iph2 == NULL) {
943 return NT_DROP;
944 }
945
946 hlen2 = ip2off + (iph2->ip_hl << 2);
947 tot_len2 = ntohs(iph2->ip_len);
948
949 /* Destination in outer IP should be Source in inner IP */
950 VERIFY(IN_ARE_ADDR_EQUAL(&odst->natv4addr, &iph2->ip_src));
951 if (nat464_translate_icmp_ip(pbuf, ip2off, &tot_len,
952 &hlen2, iph2->ip_p, iph2->ip_ttl, tot_len2,
953 (struct nat464_addr *)ndst, (struct nat464_addr *)nsrc,
954 PF_INET, PF_INET6) != 0) {
955 return NT_DROP;
956 }
957 /* Update total length/payload length for outer header */
958 switch (naf) {
959 case PF_INET:
960 iph->ip_len = htons(tot_len);
961 break;
962 case PF_INET6:
963 ip6h->ip6_plen = htons(tot_len - hlen);
964 break;
965 }
966 iph2 = NULL;
967 }
968
969 icmp6h->icmp6_cksum = 0;
970 icmp6h->icmp6_cksum = pbuf_inet6_cksum(pbuf, IPPROTO_ICMPV6, hlen,
971 ntohs(ip6h->ip6_plen));
972
973 clat_log2((LOG_DEBUG, "%s translated to ICMPV6 type: %d "
974 "code: %d checksum: %#x \n", __func__, icmp6h->icmp6_type,
975 icmp6h->icmp6_code, icmp6h->icmp6_cksum));
976
977 icmph = NULL;
978 icmp6h = NULL;
979 break;
980 }
981 case IPPROTO_ICMPV6:
982 { if (naf != PF_INET) { /* allow only v4 as naf for ICMPV6 */
983 return NT_DROP;
984 }
985
986 struct icmp6_hdr *icmp6h = NULL;
987 struct icmp *icmph = NULL;
988 uint32_t ip2off = 0, hlen2 = 0, tot_len2 = 0;
989
990 icmp6h = (struct icmp6_hdr*) pbuf_contig_segment(pbuf, hlen,
991 sizeof(*icmp6h));
992 if (icmp6h == NULL) {
993 return NT_DROP;
994 }
995
996 /* Translate the ICMP header */
997 if (nat464_translate_icmp(PF_INET, icmp6h) != 0) {
998 return NT_DROP;
999 }
1000
1001 *proto = IPPROTO_ICMP;
1002 icmph = (struct icmp *)(uintptr_t)icmp6h;
1003 pbuf_copy_back(pbuf, hlen, ICMP_MINLEN,
1004 icmph);
1005
1006 /*Translate the inner IP header only for error messages */
1007 if (ICMP_ERRORTYPE(icmph->icmp_type)) {
1008 ip2off = hlen + ICMP_MINLEN;
1009 struct ip6_hdr *iph2;
1010 iph2 = (struct ip6_hdr*) pbuf_contig_segment(pbuf, ip2off,
1011 sizeof(*iph2));
1012 if (iph2 == NULL) {
1013 return NT_DROP;
1014 }
1015
1016 /* hlen2 points to end of inner IP header from the beginning */
1017 hlen2 = ip2off + sizeof(struct ip6_hdr);
1018 tot_len2 = ntohs(iph2->ip6_plen) + sizeof(struct ip6_hdr);
1019
1020 if (nat464_translate_icmp_ip(pbuf, ip2off, &tot_len,
1021 &hlen2, iph2->ip6_nxt, iph2->ip6_hlim, tot_len2,
1022 (struct nat464_addr *)ndst, (struct nat464_addr *)nsrc,
1023 PF_INET6, PF_INET) != 0) {
1024 return NT_DROP;
1025 }
1026
1027 /* Update total length for outer header */
1028 switch (naf) {
1029 case PF_INET:
1030 iph->ip_len = htons(tot_len);
1031 break;
1032 case PF_INET6:
1033 ip6h->ip6_plen = htons(tot_len - hlen);
1034 break;
1035 }
1036 iph2 = NULL;
1037 }
1038 /* Recalculate IP checksum as some IP fields might have changed */
1039 iph->ip_sum = 0;
1040 iph->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, iph->ip_hl << 2);
1041 icmph->icmp_cksum = 0;
1042 icmph->icmp_cksum = pbuf_inet_cksum(pbuf, 0, hlen,
1043 ntohs(iph->ip_len) - hlen);
1044
1045 clat_log2((LOG_DEBUG, "%s translated to ICMP type: %d "
1046 "code: %d checksum: %#x \n", __func__, icmph->icmp_type,
1047 icmph->icmp_code, icmph->icmp_cksum));
1048
1049 icmp6h = NULL;
1050 icmph = NULL;
1051 break;}
1052
1053 /*
1054 * https://tools.ietf.org/html/rfc7915#section-5.1.1
1055 * If the Next Header field of the Fragment Header is an
1056 * extension header (except ESP, but including the Authentication
1057 * Header (AH)), then the packet SHOULD be dropped and logged.
1058 */
1059 case IPPROTO_HOPOPTS:
1060 case IPPROTO_ROUTING:
1061 case IPPROTO_DSTOPTS:
1062 case IPPROTO_AH:
1063 return NT_DROP;
1064
1065 case IPPROTO_FRAGMENT:
1066 /*
1067 * The fragment header is appended after or removed before
1068 * calling into this routine.
1069 */
1070 VERIFY(FALSE);
1071 case IPPROTO_ESP:
1072 break;
1073
1074 default:
1075 return NT_DROP;
1076 }
1077
1078 done:
1079 /* Update checksum flags and offsets based on direction */
1080 if (direction == NT_OUT) {
1081 if ((*pbuf->pb_csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) ==
1082 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
1083 (pbuf->pb_mbuf)->m_pkthdr.csum_tx_start += CLAT46_HDR_EXPANSION_OVERHD;
1084 (pbuf->pb_mbuf)->m_pkthdr.csum_tx_stuff += CLAT46_HDR_EXPANSION_OVERHD;
1085 }
1086
1087 if (*pbuf->pb_csum_flags & CSUM_TCP) {
1088 *pbuf->pb_csum_flags |= CSUM_TCPIPV6;
1089 }
1090 if (*pbuf->pb_csum_flags & CSUM_UDP) {
1091 *pbuf->pb_csum_flags |= CSUM_UDPIPV6;
1092 }
1093 if (*pbuf->pb_csum_flags & CSUM_FRAGMENT) {
1094 *pbuf->pb_csum_flags |= CSUM_FRAGMENT_IPV6;
1095 }
1096
1097 /* Clear IPv4 checksum flags */
1098 *pbuf->pb_csum_flags &= ~(CSUM_IP | CSUM_IP_FRAGS | CSUM_DELAY_DATA | CSUM_FRAGMENT);
1099 } else if (direction == NT_IN) {
1100 /* XXX On input just reset csum flags */
1101 *pbuf->pb_csum_flags = 0; /* Reset all flags for now */
1102 #if 0
1103 /* Update csum flags and offsets for rx */
1104 if (*pbuf->pb_csum_flags & CSUM_PARTIAL) {
1105 (pbuf->pb_mbuf)->m_pkthdr.csum_rx_start -= CLAT46_HDR_EXPANSION_OVERHD;
1106 }
1107 #endif
1108 }
1109 return NT_NAT64;
1110 }
1111
1112 /* Fix the proto checksum for address change */
1113 static void
1114 nat464_addr_cksum_fixup(uint16_t *pc, struct nat464_addr *ao, struct nat464_addr *an,
1115 protocol_family_t af, protocol_family_t naf, uint8_t u, boolean_t do_ones_complement)
1116 {
1117 /* Currently we only support v4 to v6 and vice versa */
1118 VERIFY(af != naf);
1119
1120 switch (af) {
1121 case PF_INET:
1122 switch (naf) {
1123 case PF_INET6:
1124 if (do_ones_complement) {
1125 *pc = ~nat464_cksum_fixup(nat464_cksum_fixup(
1126 nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(
1127 nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(~*pc,
1128 ao->nataddr16[0], an->nataddr16[0], u),
1129 ao->nataddr16[1], an->nataddr16[1], u),
1130 0, an->nataddr16[2], u),
1131 0, an->nataddr16[3], u),
1132 0, an->nataddr16[4], u),
1133 0, an->nataddr16[5], u),
1134 0, an->nataddr16[6], u),
1135 0, an->nataddr16[7], u);
1136 } else {
1137 *pc = nat464_cksum_fixup(nat464_cksum_fixup(
1138 nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(
1139 nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(*pc,
1140 ao->nataddr16[0], an->nataddr16[0], u),
1141 ao->nataddr16[1], an->nataddr16[1], u),
1142 0, an->nataddr16[2], u),
1143 0, an->nataddr16[3], u),
1144 0, an->nataddr16[4], u),
1145 0, an->nataddr16[5], u),
1146 0, an->nataddr16[6], u),
1147 0, an->nataddr16[7], u);
1148 }
1149 break;
1150 }
1151 break;
1152 case PF_INET6:
1153 /*
1154 * XXX For NAT464 this only applies to the incoming path.
1155 * The checksum therefore is already ones complemented.
1156 * Therefore we just perform normal fixup.
1157 */
1158 switch (naf) {
1159 case PF_INET:
1160 *pc = nat464_cksum_fixup(nat464_cksum_fixup(
1161 nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(
1162 nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(*pc,
1163 ao->nataddr16[0], an->nataddr16[0], u),
1164 ao->nataddr16[1], an->nataddr16[1], u),
1165 ao->nataddr16[2], 0, u),
1166 ao->nataddr16[3], 0, u),
1167 ao->nataddr16[4], 0, u),
1168 ao->nataddr16[5], 0, u),
1169 ao->nataddr16[6], 0, u),
1170 ao->nataddr16[7], 0, u);
1171 break;
1172 }
1173 break;
1174 }
1175 }
1176
1177 uint16_t
1178 nat464_cksum_fixup(uint16_t cksum, uint16_t old, uint16_t new, uint8_t udp)
1179 {
1180 uint32_t l;
1181
1182 if (udp && !cksum) {
1183 return 0;
1184 }
1185 l = cksum + old - new;
1186 l = (l >> 16) + (l & 0xffff);
1187 l = l & 0xffff;
1188 if (udp && !l) {
1189 return 0xffff;
1190 }
1191 return l;
1192 }
1193
1194 /* CLAT46 event handlers */
1195 void
1196 in6_clat46_eventhdlr_callback(struct eventhandler_entry_arg arg0 __unused,
1197 in6_clat46_evhdlr_code_t in6_clat46_ev_code, pid_t epid, uuid_t euuid)
1198 {
1199 struct kev_msg ev_msg;
1200 struct kev_netevent_clat46_data clat46_event_data;
1201
1202 bzero(&ev_msg, sizeof(ev_msg));
1203 bzero(&clat46_event_data, sizeof(clat46_event_data));
1204
1205 ev_msg.vendor_code = KEV_VENDOR_APPLE;
1206 ev_msg.kev_class = KEV_NETWORK_CLASS;
1207 ev_msg.kev_subclass = KEV_NETEVENT_SUBCLASS;
1208 ev_msg.event_code = KEV_NETEVENT_CLAT46_EVENT;
1209
1210 bzero(&clat46_event_data, sizeof(clat46_event_data));
1211 clat46_event_data.clat46_event_code = in6_clat46_ev_code;
1212 clat46_event_data.epid = epid;
1213 uuid_copy(clat46_event_data.euuid, euuid);
1214
1215 ev_msg.dv[0].data_ptr = &clat46_event_data;
1216 ev_msg.dv[0].data_length = sizeof(clat46_event_data);
1217
1218 kev_post_msg(&ev_msg);
1219 }
1220
1221 static void
1222 in6_clat46_event_callback(void *arg)
1223 {
1224 struct kev_netevent_clat46_data *p_in6_clat46_ev =
1225 (struct kev_netevent_clat46_data *)arg;
1226
1227 EVENTHANDLER_INVOKE(&in6_clat46_evhdlr_ctxt, in6_clat46_event,
1228 p_in6_clat46_ev->clat46_event_code, p_in6_clat46_ev->epid,
1229 p_in6_clat46_ev->euuid);
1230 }
1231
1232 struct in6_clat46_event_nwk_wq_entry {
1233 struct nwk_wq_entry nwk_wqe;
1234 struct kev_netevent_clat46_data in6_clat46_ev_arg;
1235 };
1236
1237 void
1238 in6_clat46_event_enqueue_nwk_wq_entry(in6_clat46_evhdlr_code_t in6_clat46_event_code,
1239 pid_t epid, uuid_t euuid)
1240 {
1241 struct in6_clat46_event_nwk_wq_entry *p_ev = NULL;
1242
1243 MALLOC(p_ev, struct in6_clat46_event_nwk_wq_entry *,
1244 sizeof(struct in6_clat46_event_nwk_wq_entry),
1245 M_NWKWQ, M_WAITOK | M_ZERO);
1246
1247 p_ev->nwk_wqe.func = in6_clat46_event_callback;
1248 p_ev->nwk_wqe.is_arg_managed = TRUE;
1249 p_ev->nwk_wqe.arg = &p_ev->in6_clat46_ev_arg;
1250
1251 p_ev->in6_clat46_ev_arg.clat46_event_code = in6_clat46_event_code;
1252 p_ev->in6_clat46_ev_arg.epid = epid;
1253 uuid_copy(p_ev->in6_clat46_ev_arg.euuid, euuid);
1254
1255 nwk_wq_enqueue((struct nwk_wq_entry*)p_ev);
1256 }