]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_page.h
xnu-2050.24.15.tar.gz
[apple/xnu.git] / osfmk / vm / vm_page.h
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_page.h
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * Resident memory system definitions.
64 */
65
66 #ifndef _VM_VM_PAGE_H_
67 #define _VM_VM_PAGE_H_
68
69 #include <debug.h>
70
71 #include <mach/boolean.h>
72 #include <mach/vm_prot.h>
73 #include <mach/vm_param.h>
74 #include <vm/vm_object.h>
75 #include <kern/queue.h>
76 #include <kern/lock.h>
77
78 #include <kern/macro_help.h>
79 #include <libkern/OSAtomic.h>
80
81
82 /*
83 * VM_PAGE_MIN_SPECULATIVE_AGE_Q through VM_PAGE_MAX_SPECULATIVE_AGE_Q
84 * represents a set of aging bins that are 'protected'...
85 *
86 * VM_PAGE_SPECULATIVE_AGED_Q is a list of the speculative pages that have
87 * not yet been 'claimed' but have been aged out of the protective bins
88 * this occurs in vm_page_speculate when it advances to the next bin
89 * and discovers that it is still occupied... at that point, all of the
90 * pages in that bin are moved to the VM_PAGE_SPECULATIVE_AGED_Q. the pages
91 * in that bin are all guaranteed to have reached at least the maximum age
92 * we allow for a protected page... they can be older if there is no
93 * memory pressure to pull them from the bin, or there are no new speculative pages
94 * being generated to push them out.
95 * this list is the one that vm_pageout_scan will prefer when looking
96 * for pages to move to the underweight free list
97 *
98 * VM_PAGE_MAX_SPECULATIVE_AGE_Q * VM_PAGE_SPECULATIVE_Q_AGE_MS
99 * defines the amount of time a speculative page is normally
100 * allowed to live in the 'protected' state (i.e. not available
101 * to be stolen if vm_pageout_scan is running and looking for
102 * pages)... however, if the total number of speculative pages
103 * in the protected state exceeds our limit (defined in vm_pageout.c)
104 * and there are none available in VM_PAGE_SPECULATIVE_AGED_Q, then
105 * vm_pageout_scan is allowed to steal pages from the protected
106 * bucket even if they are underage.
107 *
108 * vm_pageout_scan is also allowed to pull pages from a protected
109 * bin if the bin has reached the "age of consent" we've set
110 */
111 #define VM_PAGE_MAX_SPECULATIVE_AGE_Q 10
112 #define VM_PAGE_MIN_SPECULATIVE_AGE_Q 1
113 #define VM_PAGE_SPECULATIVE_AGED_Q 0
114
115 #define VM_PAGE_SPECULATIVE_Q_AGE_MS 500
116
117 struct vm_speculative_age_q {
118 /*
119 * memory queue for speculative pages via clustered pageins
120 */
121 queue_head_t age_q;
122 mach_timespec_t age_ts;
123 };
124
125
126
127 extern
128 struct vm_speculative_age_q vm_page_queue_speculative[];
129
130 extern int speculative_steal_index;
131 extern int speculative_age_index;
132 extern unsigned int vm_page_speculative_q_age_ms;
133
134
135 /*
136 * Management of resident (logical) pages.
137 *
138 * A small structure is kept for each resident
139 * page, indexed by page number. Each structure
140 * is an element of several lists:
141 *
142 * A hash table bucket used to quickly
143 * perform object/offset lookups
144 *
145 * A list of all pages for a given object,
146 * so they can be quickly deactivated at
147 * time of deallocation.
148 *
149 * An ordered list of pages due for pageout.
150 *
151 * In addition, the structure contains the object
152 * and offset to which this page belongs (for pageout),
153 * and sundry status bits.
154 *
155 * Fields in this structure are locked either by the lock on the
156 * object that the page belongs to (O) or by the lock on the page
157 * queues (P). [Some fields require that both locks be held to
158 * change that field; holding either lock is sufficient to read.]
159 */
160
161 struct vm_page {
162 queue_chain_t pageq; /* queue info for FIFO */
163 /* queue or free list (P) */
164
165 queue_chain_t listq; /* all pages in same object (O) */
166 struct vm_page *next; /* VP bucket link (O) */
167
168 vm_object_t object; /* which object am I in (O&P) */
169 vm_object_offset_t offset; /* offset into that object (O,P) */
170
171 /*
172 * The following word of flags is protected
173 * by the "page queues" lock.
174 *
175 * we use the 'wire_count' field to store the local
176 * queue id if local queues are enabled...
177 * see the comments at 'VM_PAGE_QUEUES_REMOVE' as to
178 * why this is safe to do
179 */
180 #define local_id wire_count
181 unsigned int wire_count:16, /* how many wired down maps use me? (O&P) */
182 /* boolean_t */ active:1, /* page is in active list (P) */
183 inactive:1, /* page is in inactive list (P) */
184 clean_queue:1, /* page is in pre-cleaned list (P) */
185 local:1, /* page is in one of the local queues (P) */
186 speculative:1, /* page is in speculative list (P) */
187 throttled:1, /* pager is not responding (P) */
188 free:1, /* page is on free list (P) */
189 pageout_queue:1,/* page is on queue for pageout (P) */
190 laundry:1, /* page is being cleaned now (P)*/
191 reference:1, /* page has been used (P) */
192 gobbled:1, /* page used internally (P) */
193 private:1, /* Page should not be returned to
194 * the free list (P) */
195 no_cache:1, /* page is not to be cached and should
196 * be reused ahead of other pages (P) */
197 __unused_pageq_bits:3; /* 3 bits available here */
198
199 ppnum_t phys_page; /* Physical address of page, passed
200 * to pmap_enter (read-only) */
201
202 /*
203 * The following word of flags is protected
204 * by the "VM object" lock.
205 */
206 unsigned int
207 /* boolean_t */ busy:1, /* page is in transit (O) */
208 wanted:1, /* someone is waiting for page (O) */
209 tabled:1, /* page is in VP table (O) */
210 fictitious:1, /* Physical page doesn't exist (O) */
211 /*
212 * IMPORTANT: the "pmapped" bit can be turned on while holding the
213 * VM object "shared" lock. See vm_fault_enter().
214 * This is OK as long as it's the only bit in this bit field that
215 * can be updated without holding the VM object "exclusive" lock.
216 */
217 pmapped:1, /* page has been entered at some
218 * point into a pmap (O **shared**) */
219 wpmapped:1, /* page has been entered at some
220 * point into a pmap for write (O) */
221 pageout:1, /* page wired & busy for pageout (O) */
222 absent:1, /* Data has been requested, but is
223 * not yet available (O) */
224 error:1, /* Data manager was unable to provide
225 * data due to error (O) */
226 dirty:1, /* Page must be cleaned (O) */
227 cleaning:1, /* Page clean has begun (O) */
228 precious:1, /* Page is precious; data must be
229 * returned even if clean (O) */
230 clustered:1, /* page is not the faulted page (O) */
231 overwriting:1, /* Request to unlock has been made
232 * without having data. (O)
233 * [See vm_fault_page_overwrite] */
234 restart:1, /* Page was pushed higher in shadow
235 chain by copy_call-related pagers;
236 start again at top of chain */
237 unusual:1, /* Page is absent, error, restart or
238 page locked */
239 encrypted:1, /* encrypted for secure swap (O) */
240 encrypted_cleaning:1, /* encrypting page */
241 cs_validated:1, /* code-signing: page was checked */
242 cs_tainted:1, /* code-signing: page is tainted */
243 reusable:1,
244 lopage:1,
245 slid:1,
246 was_dirty:1, /* was this page previously dirty? */
247 __unused_object_bits:8; /* 8 bits available here */
248
249 #if __LP64__
250 unsigned int __unused_padding; /* Pad structure explicitly
251 * to 8-byte multiple for LP64 */
252 #endif
253 };
254
255 #define DEBUG_ENCRYPTED_SWAP 1
256 #if DEBUG_ENCRYPTED_SWAP
257 #define ASSERT_PAGE_DECRYPTED(page) \
258 MACRO_BEGIN \
259 if ((page)->encrypted) { \
260 panic("VM page %p should not be encrypted here\n", \
261 (page)); \
262 } \
263 MACRO_END
264 #else /* DEBUG_ENCRYPTED_SWAP */
265 #define ASSERT_PAGE_DECRYPTED(page) assert(!(page)->encrypted)
266 #endif /* DEBUG_ENCRYPTED_SWAP */
267
268 typedef struct vm_page *vm_page_t;
269
270
271 typedef struct vm_locks_array {
272 char pad __attribute__ ((aligned (64)));
273 lck_mtx_t vm_page_queue_lock2 __attribute__ ((aligned (64)));
274 lck_mtx_t vm_page_queue_free_lock2 __attribute__ ((aligned (64)));
275 char pad2 __attribute__ ((aligned (64)));
276 } vm_locks_array_t;
277
278
279 #define VM_PAGE_WIRED(m) ((!(m)->local && (m)->wire_count))
280 #define VM_PAGE_NULL ((vm_page_t) 0)
281 #define NEXT_PAGE(m) ((vm_page_t) (m)->pageq.next)
282 #define NEXT_PAGE_PTR(m) ((vm_page_t *) &(m)->pageq.next)
283
284 /*
285 * XXX The unusual bit should not be necessary. Most of the bit
286 * XXX fields above really want to be masks.
287 */
288
289 /*
290 * For debugging, this macro can be defined to perform
291 * some useful check on a page structure.
292 */
293
294 #define VM_PAGE_CHECK(mem) \
295 MACRO_BEGIN \
296 VM_PAGE_QUEUES_ASSERT(mem, 1); \
297 MACRO_END
298
299 /* Page coloring:
300 *
301 * The free page list is actually n lists, one per color,
302 * where the number of colors is a function of the machine's
303 * cache geometry set at system initialization. To disable
304 * coloring, set vm_colors to 1 and vm_color_mask to 0.
305 * The boot-arg "colors" may be used to override vm_colors.
306 * Note that there is little harm in having more colors than needed.
307 */
308
309 #define MAX_COLORS 128
310 #define DEFAULT_COLORS 32
311
312 extern
313 unsigned int vm_colors; /* must be in range 1..MAX_COLORS */
314 extern
315 unsigned int vm_color_mask; /* must be (vm_colors-1) */
316 extern
317 unsigned int vm_cache_geometry_colors; /* optimal #colors based on cache geometry */
318
319 /*
320 * Wired memory is a very limited resource and we can't let users exhaust it
321 * and deadlock the entire system. We enforce the following limits:
322 *
323 * vm_user_wire_limit (default: all memory minus vm_global_no_user_wire_amount)
324 * how much memory can be user-wired in one user task
325 *
326 * vm_global_user_wire_limit (default: same as vm_user_wire_limit)
327 * how much memory can be user-wired in all user tasks
328 *
329 * vm_global_no_user_wire_amount (default: VM_NOT_USER_WIREABLE)
330 * how much memory must remain user-unwired at any time
331 */
332 #define VM_NOT_USER_WIREABLE (64*1024*1024) /* 64MB */
333 extern
334 vm_map_size_t vm_user_wire_limit;
335 extern
336 vm_map_size_t vm_global_user_wire_limit;
337 extern
338 vm_map_size_t vm_global_no_user_wire_amount;
339
340 /*
341 * Each pageable resident page falls into one of three lists:
342 *
343 * free
344 * Available for allocation now. The free list is
345 * actually an array of lists, one per color.
346 * inactive
347 * Not referenced in any map, but still has an
348 * object/offset-page mapping, and may be dirty.
349 * This is the list of pages that should be
350 * paged out next. There are actually two
351 * inactive lists, one for pages brought in from
352 * disk or other backing store, and another
353 * for "zero-filled" pages. See vm_pageout_scan()
354 * for the distinction and usage.
355 * active
356 * A list of pages which have been placed in
357 * at least one physical map. This list is
358 * ordered, in LRU-like fashion.
359 */
360
361
362 #define VPL_LOCK_SPIN 1
363
364 struct vpl {
365 unsigned int vpl_count;
366 queue_head_t vpl_queue;
367 #ifdef VPL_LOCK_SPIN
368 lck_spin_t vpl_lock;
369 #else
370 lck_mtx_t vpl_lock;
371 lck_mtx_ext_t vpl_lock_ext;
372 #endif
373 };
374
375 struct vplq {
376 union {
377 char cache_line_pad[128];
378 struct vpl vpl;
379 } vpl_un;
380 };
381 extern
382 unsigned int vm_page_local_q_count;
383 extern
384 struct vplq *vm_page_local_q;
385 extern
386 unsigned int vm_page_local_q_soft_limit;
387 extern
388 unsigned int vm_page_local_q_hard_limit;
389 extern
390 vm_locks_array_t vm_page_locks;
391
392 extern
393 queue_head_t vm_page_queue_free[MAX_COLORS]; /* memory free queue */
394 extern
395 queue_head_t vm_lopage_queue_free; /* low memory free queue */
396 extern
397 queue_head_t vm_page_queue_active; /* active memory queue */
398 extern
399 queue_head_t vm_page_queue_inactive; /* inactive memory queue for normal pages */
400 extern
401 queue_head_t vm_page_queue_cleaned; /* clean-queue inactive memory */
402 extern
403 queue_head_t vm_page_queue_anonymous; /* inactive memory queue for anonymous pages */
404 extern
405 queue_head_t vm_page_queue_throttled; /* memory queue for throttled pageout pages */
406
407 extern
408 vm_offset_t first_phys_addr; /* physical address for first_page */
409 extern
410 vm_offset_t last_phys_addr; /* physical address for last_page */
411
412 extern
413 unsigned int vm_page_free_count; /* How many pages are free? (sum of all colors) */
414 extern
415 unsigned int vm_page_fictitious_count;/* How many fictitious pages are free? */
416 extern
417 unsigned int vm_page_active_count; /* How many pages are active? */
418 extern
419 unsigned int vm_page_inactive_count; /* How many pages are inactive? */
420 extern
421 unsigned int vm_page_cleaned_count; /* How many pages are in the clean queue? */
422 extern
423 unsigned int vm_page_throttled_count;/* How many inactives are throttled */
424 extern
425 unsigned int vm_page_speculative_count; /* How many speculative pages are unclaimed? */
426 extern
427 unsigned int vm_page_wire_count; /* How many pages are wired? */
428 extern
429 unsigned int vm_page_wire_count_initial; /* How many pages wired at startup */
430 extern
431 unsigned int vm_page_free_target; /* How many do we want free? */
432 extern
433 unsigned int vm_page_free_min; /* When to wakeup pageout */
434 extern
435 unsigned int vm_page_throttle_limit; /* When to throttle new page creation */
436 extern
437 uint32_t vm_page_creation_throttle; /* When to throttle new page creation */
438 extern
439 unsigned int vm_page_inactive_target;/* How many do we want inactive? */
440 extern
441 unsigned int vm_page_anonymous_min; /* When it's ok to pre-clean */
442 extern
443 unsigned int vm_page_inactive_min; /* When do wakeup pageout */
444 extern
445 unsigned int vm_page_free_reserved; /* How many pages reserved to do pageout */
446 extern
447 unsigned int vm_page_throttle_count; /* Count of page allocations throttled */
448 extern
449 unsigned int vm_page_gobble_count;
450
451 #if DEVELOPMENT || DEBUG
452 extern
453 unsigned int vm_page_speculative_used;
454 #endif
455
456 extern
457 unsigned int vm_page_purgeable_count;/* How many pages are purgeable now ? */
458 extern
459 unsigned int vm_page_purgeable_wired_count;/* How many purgeable pages are wired now ? */
460 extern
461 uint64_t vm_page_purged_count; /* How many pages got purged so far ? */
462
463 extern unsigned int vm_page_free_wanted;
464 /* how many threads are waiting for memory */
465
466 extern unsigned int vm_page_free_wanted_privileged;
467 /* how many VM privileged threads are waiting for memory */
468
469 extern ppnum_t vm_page_fictitious_addr;
470 /* (fake) phys_addr of fictitious pages */
471
472 extern ppnum_t vm_page_guard_addr;
473 /* (fake) phys_addr of guard pages */
474
475
476 extern boolean_t vm_page_deactivate_hint;
477
478 /*
479 0 = all pages avail ( default. )
480 1 = disable high mem ( cap max pages to 4G)
481 2 = prefer himem
482 */
483 extern int vm_himemory_mode;
484
485 extern boolean_t vm_lopage_needed;
486 extern uint32_t vm_lopage_free_count;
487 extern uint32_t vm_lopage_free_limit;
488 extern uint32_t vm_lopage_lowater;
489 extern boolean_t vm_lopage_refill;
490 extern uint64_t max_valid_dma_address;
491 extern ppnum_t max_valid_low_ppnum;
492
493 /*
494 * Prototypes for functions exported by this module.
495 */
496 extern void vm_page_bootstrap(
497 vm_offset_t *startp,
498 vm_offset_t *endp) __attribute__((section("__TEXT, initcode")));
499
500 extern void vm_page_module_init(void) __attribute__((section("__TEXT, initcode")));
501
502 extern void vm_page_init_local_q(void);
503
504 extern void vm_page_create(
505 ppnum_t start,
506 ppnum_t end);
507
508 extern vm_page_t vm_page_lookup(
509 vm_object_t object,
510 vm_object_offset_t offset);
511
512 extern vm_page_t vm_page_grab_fictitious(void);
513
514 extern vm_page_t vm_page_grab_guard(void);
515
516 extern void vm_page_release_fictitious(
517 vm_page_t page);
518
519 extern void vm_page_more_fictitious(void);
520
521 extern int vm_pool_low(void);
522
523 extern vm_page_t vm_page_grab(void);
524
525 extern vm_page_t vm_page_grablo(void);
526
527 extern void vm_page_release(
528 vm_page_t page);
529
530 extern boolean_t vm_page_wait(
531 int interruptible );
532
533 extern vm_page_t vm_page_alloc(
534 vm_object_t object,
535 vm_object_offset_t offset);
536
537 extern vm_page_t vm_page_alloclo(
538 vm_object_t object,
539 vm_object_offset_t offset);
540
541 extern vm_page_t vm_page_alloc_guard(
542 vm_object_t object,
543 vm_object_offset_t offset);
544
545 extern void vm_page_init(
546 vm_page_t page,
547 ppnum_t phys_page,
548 boolean_t lopage);
549
550 extern void vm_page_free(
551 vm_page_t page);
552
553 extern void vm_page_free_unlocked(
554 vm_page_t page,
555 boolean_t remove_from_hash);
556
557 extern void vm_page_activate(
558 vm_page_t page);
559
560 extern void vm_page_deactivate(
561 vm_page_t page);
562
563 extern void vm_page_deactivate_internal(
564 vm_page_t page,
565 boolean_t clear_hw_reference);
566
567 extern void vm_page_enqueue_cleaned(vm_page_t page);
568
569 extern void vm_page_lru(
570 vm_page_t page);
571
572 extern void vm_page_speculate(
573 vm_page_t page,
574 boolean_t new);
575
576 extern void vm_page_speculate_ageit(
577 struct vm_speculative_age_q *aq);
578
579 extern void vm_page_reactivate_all_throttled(void);
580
581 extern void vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks);
582
583 extern void vm_page_rename(
584 vm_page_t page,
585 vm_object_t new_object,
586 vm_object_offset_t new_offset,
587 boolean_t encrypted_ok);
588
589 extern void vm_page_insert(
590 vm_page_t page,
591 vm_object_t object,
592 vm_object_offset_t offset);
593
594 extern void vm_page_insert_internal(
595 vm_page_t page,
596 vm_object_t object,
597 vm_object_offset_t offset,
598 boolean_t queues_lock_held,
599 boolean_t insert_in_hash,
600 boolean_t batch_pmap_op);
601
602 extern void vm_page_replace(
603 vm_page_t mem,
604 vm_object_t object,
605 vm_object_offset_t offset);
606
607 extern void vm_page_remove(
608 vm_page_t page,
609 boolean_t remove_from_hash);
610
611 extern void vm_page_zero_fill(
612 vm_page_t page);
613
614 extern void vm_page_part_zero_fill(
615 vm_page_t m,
616 vm_offset_t m_pa,
617 vm_size_t len);
618
619 extern void vm_page_copy(
620 vm_page_t src_page,
621 vm_page_t dest_page);
622
623 extern void vm_page_part_copy(
624 vm_page_t src_m,
625 vm_offset_t src_pa,
626 vm_page_t dst_m,
627 vm_offset_t dst_pa,
628 vm_size_t len);
629
630 extern void vm_page_wire(
631 vm_page_t page);
632
633 extern void vm_page_unwire(
634 vm_page_t page,
635 boolean_t queueit);
636
637 extern void vm_set_page_size(void);
638
639 extern void vm_page_gobble(
640 vm_page_t page);
641
642 extern void vm_page_validate_cs(vm_page_t page);
643 extern void vm_page_validate_cs_mapped(
644 vm_page_t page,
645 const void *kaddr);
646
647 extern void vm_page_free_prepare_queues(
648 vm_page_t page);
649
650 extern void vm_page_free_prepare_object(
651 vm_page_t page,
652 boolean_t remove_from_hash);
653
654 #if CONFIG_JETSAM
655 extern void memorystatus_update(unsigned int pages_avail);
656
657 #define VM_CHECK_MEMORYSTATUS do { \
658 memorystatus_update( \
659 vm_page_active_count + \
660 vm_page_inactive_count + \
661 vm_page_speculative_count + \
662 vm_page_free_count + \
663 (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) ? 0 : vm_page_purgeable_count) \
664 ); \
665 } while(0)
666 #else
667 #define VM_CHECK_MEMORYSTATUS do {} while(0)
668 #endif
669
670 /*
671 * Functions implemented as macros. m->wanted and m->busy are
672 * protected by the object lock.
673 */
674
675 #if CONFIG_EMBEDDED
676 #define SET_PAGE_DIRTY(m, set_pmap_modified) \
677 MACRO_BEGIN \
678 vm_page_t __page__ = (m); \
679 if (__page__->dirty == FALSE && (set_pmap_modified)) { \
680 pmap_set_modify(__page__->phys_page); \
681 } \
682 __page__->dirty = TRUE; \
683 MACRO_END
684 #else /* CONFIG_EMBEDDED */
685 #define SET_PAGE_DIRTY(m, set_pmap_modified) \
686 MACRO_BEGIN \
687 vm_page_t __page__ = (m); \
688 __page__->dirty = TRUE; \
689 MACRO_END
690 #endif /* CONFIG_EMBEDDED */
691
692 #define PAGE_ASSERT_WAIT(m, interruptible) \
693 (((m)->wanted = TRUE), \
694 assert_wait((event_t) (m), (interruptible)))
695
696 #define PAGE_SLEEP(o, m, interruptible) \
697 (((m)->wanted = TRUE), \
698 thread_sleep_vm_object((o), (m), (interruptible)))
699
700 #define PAGE_WAKEUP_DONE(m) \
701 MACRO_BEGIN \
702 (m)->busy = FALSE; \
703 if ((m)->wanted) { \
704 (m)->wanted = FALSE; \
705 thread_wakeup((event_t) (m)); \
706 } \
707 MACRO_END
708
709 #define PAGE_WAKEUP(m) \
710 MACRO_BEGIN \
711 if ((m)->wanted) { \
712 (m)->wanted = FALSE; \
713 thread_wakeup((event_t) (m)); \
714 } \
715 MACRO_END
716
717 #define VM_PAGE_FREE(p) \
718 MACRO_BEGIN \
719 vm_page_free_unlocked(p, TRUE); \
720 MACRO_END
721
722 #define VM_PAGE_GRAB_FICTITIOUS(M) \
723 MACRO_BEGIN \
724 while ((M = vm_page_grab_fictitious()) == VM_PAGE_NULL) \
725 vm_page_more_fictitious(); \
726 MACRO_END
727
728 #define VM_PAGE_WAIT() ((void)vm_page_wait(THREAD_UNINT))
729
730 #define vm_page_queue_lock (vm_page_locks.vm_page_queue_lock2)
731 #define vm_page_queue_free_lock (vm_page_locks.vm_page_queue_free_lock2)
732
733 #define vm_page_lock_queues() lck_mtx_lock(&vm_page_queue_lock)
734 #define vm_page_unlock_queues() lck_mtx_unlock(&vm_page_queue_lock)
735
736 #define vm_page_lockspin_queues() lck_mtx_lock_spin(&vm_page_queue_lock)
737 #define vm_page_trylockspin_queues() lck_mtx_try_lock_spin(&vm_page_queue_lock)
738 #define vm_page_lockconvert_queues() lck_mtx_convert_spin(&vm_page_queue_lock)
739
740 #ifdef VPL_LOCK_SPIN
741 #define VPL_LOCK_INIT(vlq, vpl_grp, vpl_attr) lck_spin_init(&vlq->vpl_lock, vpl_grp, vpl_attr)
742 #define VPL_LOCK(vpl) lck_spin_lock(vpl)
743 #define VPL_UNLOCK(vpl) lck_spin_unlock(vpl)
744 #else
745 #define VPL_LOCK_INIT(vlq, vpl_grp, vpl_attr) lck_mtx_init_ext(&vlq->vpl_lock, &vlq->vpl_lock_ext, vpl_grp, vpl_attr)
746 #define VPL_LOCK(vpl) lck_mtx_lock_spin(vpl)
747 #define VPL_UNLOCK(vpl) lck_mtx_unlock(vpl)
748 #endif
749
750 #if MACH_ASSERT
751 extern void vm_page_queues_assert(vm_page_t mem, int val);
752 #define VM_PAGE_QUEUES_ASSERT(mem, val) vm_page_queues_assert((mem), (val))
753 #else
754 #define VM_PAGE_QUEUES_ASSERT(mem, val)
755 #endif
756
757
758 /*
759 * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the
760 * local queues if they exist... its the only spot in the system where we add pages
761 * to those queues... once on those queues, those pages can only move to one of the
762 * global page queues or the free queues... they NEVER move from local q to local q.
763 * the 'local' state is stable when VM_PAGE_QUEUES_REMOVE is called since we're behind
764 * the global vm_page_queue_lock at this point... we still need to take the local lock
765 * in case this operation is being run on a different CPU then the local queue's identity,
766 * but we don't have to worry about the page moving to a global queue or becoming wired
767 * while we're grabbing the local lock since those operations would require the global
768 * vm_page_queue_lock to be held, and we already own it.
769 *
770 * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id...
771 * 'wired' and local are ALWAYS mutually exclusive conditions.
772 */
773
774 #define VM_PAGE_QUEUES_REMOVE(mem) \
775 MACRO_BEGIN \
776 VM_PAGE_QUEUES_ASSERT(mem, 1); \
777 assert(!mem->laundry); \
778 /* \
779 * if (mem->pageout_queue) \
780 * NOTE: VM_PAGE_QUEUES_REMOVE does not deal with removing pages from the pageout queue... \
781 * the caller is responsible for determing if the page is on that queue, and if so, must \
782 * either first remove it (it needs both the page queues lock and the object lock to do \
783 * this via vm_pageout_steal_laundry), or avoid the call to VM_PAGE_QUEUES_REMOVE \
784 */ \
785 if (mem->local) { \
786 struct vpl *lq; \
787 assert(mem->object != kernel_object); \
788 assert(!mem->inactive && !mem->speculative); \
789 assert(!mem->active && !mem->throttled); \
790 assert(!mem->clean_queue); \
791 assert(!mem->fictitious); \
792 lq = &vm_page_local_q[mem->local_id].vpl_un.vpl; \
793 VPL_LOCK(&lq->vpl_lock); \
794 queue_remove(&lq->vpl_queue, \
795 mem, vm_page_t, pageq); \
796 mem->local = FALSE; \
797 mem->local_id = 0; \
798 lq->vpl_count--; \
799 VPL_UNLOCK(&lq->vpl_lock); \
800 } \
801 \
802 else if (mem->active) { \
803 assert(mem->object != kernel_object); \
804 assert(!mem->inactive && !mem->speculative); \
805 assert(!mem->clean_queue); \
806 assert(!mem->throttled); \
807 assert(!mem->fictitious); \
808 queue_remove(&vm_page_queue_active, \
809 mem, vm_page_t, pageq); \
810 mem->active = FALSE; \
811 vm_page_active_count--; \
812 } \
813 \
814 else if (mem->inactive) { \
815 assert(mem->object != kernel_object); \
816 assert(!mem->active && !mem->speculative); \
817 assert(!mem->throttled); \
818 assert(!mem->fictitious); \
819 vm_page_inactive_count--; \
820 if (mem->clean_queue) { \
821 queue_remove(&vm_page_queue_cleaned, \
822 mem, vm_page_t, pageq); \
823 mem->clean_queue = FALSE; \
824 vm_page_cleaned_count--; \
825 } else { \
826 if (mem->object->internal) { \
827 queue_remove(&vm_page_queue_anonymous, \
828 mem, vm_page_t, pageq); \
829 vm_page_anonymous_count--; \
830 } else { \
831 queue_remove(&vm_page_queue_inactive, \
832 mem, vm_page_t, pageq); \
833 } \
834 vm_purgeable_q_advance_all(); \
835 } \
836 mem->inactive = FALSE; \
837 } \
838 \
839 else if (mem->throttled) { \
840 assert(!mem->active && !mem->inactive); \
841 assert(!mem->speculative); \
842 assert(!mem->fictitious); \
843 queue_remove(&vm_page_queue_throttled, \
844 mem, vm_page_t, pageq); \
845 mem->throttled = FALSE; \
846 vm_page_throttled_count--; \
847 } \
848 \
849 else if (mem->speculative) { \
850 assert(!mem->active && !mem->inactive); \
851 assert(!mem->throttled); \
852 assert(!mem->fictitious); \
853 remque(&mem->pageq); \
854 mem->speculative = FALSE; \
855 vm_page_speculative_count--; \
856 } \
857 \
858 else if (mem->pageq.next || mem->pageq.prev) \
859 panic("VM_PAGE_QUEUES_REMOVE: unmarked page on Q"); \
860 mem->pageq.next = NULL; \
861 mem->pageq.prev = NULL; \
862 VM_PAGE_QUEUES_ASSERT(mem, 0); \
863 MACRO_END
864
865
866 #define VM_PAGE_ENQUEUE_INACTIVE(mem, first) \
867 MACRO_BEGIN \
868 VM_PAGE_QUEUES_ASSERT(mem, 0); \
869 assert(!mem->fictitious); \
870 assert(!mem->laundry); \
871 assert(!mem->pageout_queue); \
872 if (mem->object->internal) { \
873 if (first == TRUE) \
874 queue_enter_first(&vm_page_queue_anonymous, mem, vm_page_t, pageq); \
875 else \
876 queue_enter(&vm_page_queue_anonymous, mem, vm_page_t, pageq); \
877 vm_page_anonymous_count++; \
878 } else { \
879 if (first == TRUE) \
880 queue_enter_first(&vm_page_queue_inactive, mem, vm_page_t, pageq); \
881 else \
882 queue_enter(&vm_page_queue_inactive, mem, vm_page_t, pageq); \
883 } \
884 mem->inactive = TRUE; \
885 vm_page_inactive_count++; \
886 token_new_pagecount++; \
887 MACRO_END
888
889
890 #if DEVELOPMENT || DEBUG
891 #define VM_PAGE_SPECULATIVE_USED_ADD() \
892 MACRO_BEGIN \
893 OSAddAtomic(1, &vm_page_speculative_used); \
894 MACRO_END
895 #else
896 #define VM_PAGE_SPECULATIVE_USED_ADD()
897 #endif
898
899
900 #define VM_PAGE_CONSUME_CLUSTERED(mem) \
901 MACRO_BEGIN \
902 if (mem->clustered) { \
903 assert(mem->object); \
904 mem->object->pages_used++; \
905 mem->clustered = FALSE; \
906 VM_PAGE_SPECULATIVE_USED_ADD(); \
907 } \
908 MACRO_END
909
910
911
912 #define DW_vm_page_unwire 0x01
913 #define DW_vm_page_wire 0x02
914 #define DW_vm_page_free 0x04
915 #define DW_vm_page_activate 0x08
916 #define DW_vm_page_deactivate_internal 0x10
917 #define DW_vm_page_speculate 0x20
918 #define DW_vm_page_lru 0x40
919 #define DW_vm_pageout_throttle_up 0x80
920 #define DW_PAGE_WAKEUP 0x100
921 #define DW_clear_busy 0x200
922 #define DW_clear_reference 0x400
923 #define DW_set_reference 0x800
924 #define DW_move_page 0x1000
925 #define DW_VM_PAGE_QUEUES_REMOVE 0x2000
926 #define DW_enqueue_cleaned 0x4000
927
928 struct vm_page_delayed_work {
929 vm_page_t dw_m;
930 int dw_mask;
931 };
932
933 void vm_page_do_delayed_work(vm_object_t object, struct vm_page_delayed_work *dwp, int dw_count);
934
935 extern unsigned int vm_max_delayed_work_limit;
936
937 #define DEFAULT_DELAYED_WORK_LIMIT 32
938
939 #define DELAYED_WORK_LIMIT(max) ((vm_max_delayed_work_limit >= max ? max : vm_max_delayed_work_limit))
940
941 /*
942 * vm_page_do_delayed_work may need to drop the object lock...
943 * if it does, we need the pages it's looking at to
944 * be held stable via the busy bit, so if busy isn't already
945 * set, we need to set it and ask vm_page_do_delayed_work
946 * to clear it and wakeup anyone that might have blocked on
947 * it once we're done processing the page.
948 */
949
950 #define VM_PAGE_ADD_DELAYED_WORK(dwp, mem, dw_cnt) \
951 MACRO_BEGIN \
952 if (mem->busy == FALSE) { \
953 mem->busy = TRUE; \
954 if ( !(dwp->dw_mask & DW_vm_page_free)) \
955 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); \
956 } \
957 dwp->dw_m = mem; \
958 dwp++; \
959 dw_cnt++; \
960 MACRO_END
961
962 extern vm_page_t vm_object_page_grab(vm_object_t);
963
964
965 #endif /* _VM_VM_PAGE_H_ */