]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
xnu-2050.24.15.tar.gz
[apple/xnu.git] / bsd / netinet / ip_dummynet.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
31 * All rights reserved
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
55 */
56
57 #define DUMMYNET_DEBUG
58
59 /*
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 * + variable declarations;
65 * + heap management functions;
66 * + scheduler and dummynet functions;
67 * + configuration and initialization.
68 *
69 * NOTA BENE: critical sections are protected by the "dummynet lock".
70 *
71 * Most important Changes:
72 *
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
77 * 980513: initial release
78 *
79 * include files marked with XXX are probably not needed
80 */
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/queue.h> /* XXX */
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/time.h>
91 #include <sys/sysctl.h>
92 #include <net/if.h>
93 #include <net/route.h>
94 #include <net/kpi_protocol.h>
95 #if DUMMYNET
96 #include <net/kpi_protocol.h>
97 #endif /* DUMMYNET */
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_fw.h>
103 #include <netinet/ip_dummynet.h>
104 #include <netinet/ip_var.h>
105
106 #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
107 #include <netinet6/ip6_var.h>
108
109 static struct ip_fw default_rule;
110
111 /*
112 * We keep a private variable for the simulation time, but we could
113 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
114 */
115 static dn_key curr_time = 0 ; /* current simulation time */
116
117 /* this is for the timer that fires to call dummynet() - we only enable the timer when
118 there are packets to process, otherwise it's disabled */
119 static int timer_enabled = 0;
120
121 static int dn_hash_size = 64 ; /* default hash size */
122
123 /* statistics on number of queue searches and search steps */
124 static int searches, search_steps ;
125 static int pipe_expire = 1 ; /* expire queue if empty */
126 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
127
128 static int red_lookup_depth = 256; /* RED - default lookup table depth */
129 static int red_avg_pkt_size = 512; /* RED - default medium packet size */
130 static int red_max_pkt_size = 1500; /* RED - default max packet size */
131
132 static int serialize = 0;
133
134 /*
135 * Three heaps contain queues and pipes that the scheduler handles:
136 *
137 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
138 *
139 * wfq_ready_heap contains the pipes associated with WF2Q flows
140 *
141 * extract_heap contains pipes associated with delay lines.
142 *
143 */
144 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
145
146 static int heap_init(struct dn_heap *h, int size) ;
147 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
148 static void heap_extract(struct dn_heap *h, void *obj);
149
150
151 static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
152 struct mbuf **tail);
153 static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
154 struct mbuf **tail);
155 static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
156 struct mbuf **tail);
157
158 /*
159 * Packets are retrieved from queues in Dummynet in chains instead of
160 * packet-by-packet. The entire list of packets is first dequeued and
161 * sent out by the following function.
162 */
163 static void dummynet_send(struct mbuf *m);
164
165 #define HASHSIZE 16
166 #define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
167 static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
168 static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
169
170
171 #ifdef SYSCTL_NODE
172 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
173 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
174 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
175 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
176 SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
177 CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
178 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
179 CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
180 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
181 CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
182 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
183 CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
184 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
185 CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
186 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
187 CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
188 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
189 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
190 "Max ratio between dynamic queues and buckets");
191 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
192 CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
193 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
194 CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
195 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
196 CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
197 #endif
198
199 #ifdef DUMMYNET_DEBUG
200 int dummynet_debug = 0;
201 #ifdef SYSCTL_NODE
202 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
203 0, "control debugging printfs");
204 #endif
205 #define DPRINTF(X) if (dummynet_debug) printf X
206 #else
207 #define DPRINTF(X)
208 #endif
209
210 /* contrary to the comment above random(), it does not actually
211 * return a value [0, 2^31 - 1], which breaks plr amongst other
212 * things. Masking it should work even if the behavior of
213 * the function is fixed.
214 */
215 #define MY_RANDOM (random() & 0x7FFFFFFF)
216
217 /* dummynet lock */
218 static lck_grp_t *dn_mutex_grp;
219 static lck_grp_attr_t *dn_mutex_grp_attr;
220 static lck_attr_t *dn_mutex_attr;
221 decl_lck_mtx_data(static, dn_mutex_data);
222 static lck_mtx_t *dn_mutex = &dn_mutex_data;
223
224 static int config_pipe(struct dn_pipe *p);
225 static int ip_dn_ctl(struct sockopt *sopt);
226
227 static void dummynet(void *);
228 static void dummynet_flush(void);
229 void dummynet_drain(void);
230 static ip_dn_io_t dummynet_io;
231
232 int if_tx_rdy(struct ifnet *ifp);
233
234 static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
235 static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
236 static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
237 static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
238 static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
239
240 static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
241 static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
242 static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
243 static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
244 static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
245
246
247 /*
248 * Heap management functions.
249 *
250 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
251 * Some macros help finding parent/children so we can optimize them.
252 *
253 * heap_init() is called to expand the heap when needed.
254 * Increment size in blocks of 16 entries.
255 * XXX failure to allocate a new element is a pretty bad failure
256 * as we basically stall a whole queue forever!!
257 * Returns 1 on error, 0 on success
258 */
259 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
260 #define HEAP_LEFT(x) ( 2*(x) + 1 )
261 #define HEAP_IS_LEFT(x) ( (x) & 1 )
262 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
263 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
264 #define HEAP_INCREMENT 15
265
266
267 int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
268 {
269 struct dn_pipe_32 user_pipe_32;
270 int error=0;
271
272 error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
273 if ( !error ){
274 p->pipe_nr = user_pipe_32.pipe_nr;
275 p->bandwidth = user_pipe_32.bandwidth;
276 p->delay = user_pipe_32.delay;
277 p->V = user_pipe_32.V;
278 p->sum = user_pipe_32.sum;
279 p->numbytes = user_pipe_32.numbytes;
280 p->sched_time = user_pipe_32.sched_time;
281 bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
282 p->ready = user_pipe_32.ready;
283
284 p->fs.fs_nr = user_pipe_32.fs.fs_nr;
285 p->fs.flags_fs = user_pipe_32.fs.flags_fs;
286 p->fs.parent_nr = user_pipe_32.fs.parent_nr;
287 p->fs.weight = user_pipe_32.fs.weight;
288 p->fs.qsize = user_pipe_32.fs.qsize;
289 p->fs.plr = user_pipe_32.fs.plr;
290 p->fs.flow_mask = user_pipe_32.fs.flow_mask;
291 p->fs.rq_size = user_pipe_32.fs.rq_size;
292 p->fs.rq_elements = user_pipe_32.fs.rq_elements;
293 p->fs.last_expired = user_pipe_32.fs.last_expired;
294 p->fs.backlogged = user_pipe_32.fs.backlogged;
295 p->fs.w_q = user_pipe_32.fs.w_q;
296 p->fs.max_th = user_pipe_32.fs.max_th;
297 p->fs.min_th = user_pipe_32.fs.min_th;
298 p->fs.max_p = user_pipe_32.fs.max_p;
299 p->fs.c_1 = user_pipe_32.fs.c_1;
300 p->fs.c_2 = user_pipe_32.fs.c_2;
301 p->fs.c_3 = user_pipe_32.fs.c_3;
302 p->fs.c_4 = user_pipe_32.fs.c_4;
303 p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
304 p->fs.lookup_step = user_pipe_32.fs.lookup_step;
305 p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
306 p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
307 p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
308 }
309 return error;
310 }
311
312
313 int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
314 {
315 struct dn_pipe_64 user_pipe_64;
316 int error=0;
317
318 error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
319 if ( !error ){
320 p->pipe_nr = user_pipe_64.pipe_nr;
321 p->bandwidth = user_pipe_64.bandwidth;
322 p->delay = user_pipe_64.delay;
323 p->V = user_pipe_64.V;
324 p->sum = user_pipe_64.sum;
325 p->numbytes = user_pipe_64.numbytes;
326 p->sched_time = user_pipe_64.sched_time;
327 bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
328 p->ready = user_pipe_64.ready;
329
330 p->fs.fs_nr = user_pipe_64.fs.fs_nr;
331 p->fs.flags_fs = user_pipe_64.fs.flags_fs;
332 p->fs.parent_nr = user_pipe_64.fs.parent_nr;
333 p->fs.weight = user_pipe_64.fs.weight;
334 p->fs.qsize = user_pipe_64.fs.qsize;
335 p->fs.plr = user_pipe_64.fs.plr;
336 p->fs.flow_mask = user_pipe_64.fs.flow_mask;
337 p->fs.rq_size = user_pipe_64.fs.rq_size;
338 p->fs.rq_elements = user_pipe_64.fs.rq_elements;
339 p->fs.last_expired = user_pipe_64.fs.last_expired;
340 p->fs.backlogged = user_pipe_64.fs.backlogged;
341 p->fs.w_q = user_pipe_64.fs.w_q;
342 p->fs.max_th = user_pipe_64.fs.max_th;
343 p->fs.min_th = user_pipe_64.fs.min_th;
344 p->fs.max_p = user_pipe_64.fs.max_p;
345 p->fs.c_1 = user_pipe_64.fs.c_1;
346 p->fs.c_2 = user_pipe_64.fs.c_2;
347 p->fs.c_3 = user_pipe_64.fs.c_3;
348 p->fs.c_4 = user_pipe_64.fs.c_4;
349 p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
350 p->fs.lookup_step = user_pipe_64.fs.lookup_step;
351 p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
352 p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
353 p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
354 }
355 return error;
356 }
357
358 static void
359 cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
360 {
361 fs_bp->fs_nr = set->fs_nr;
362 fs_bp->flags_fs = set->flags_fs ;
363 fs_bp->parent_nr = set->parent_nr ;
364 fs_bp->weight = set->weight ;
365 fs_bp->qsize = set->qsize ;
366 fs_bp->plr = set->plr ;
367 fs_bp->flow_mask = set->flow_mask ;
368 fs_bp->rq_size = set->rq_size ;
369 fs_bp->rq_elements = set->rq_elements ;
370 fs_bp->last_expired = set->last_expired ;
371 fs_bp->backlogged = set->backlogged ;
372 fs_bp->w_q = set->w_q ;
373 fs_bp->max_th = set->max_th ;
374 fs_bp->min_th = set->min_th ;
375 fs_bp->max_p = set->max_p ;
376 fs_bp->c_1 = set->c_1 ;
377 fs_bp->c_2 = set->c_2 ;
378 fs_bp->c_3 = set->c_3 ;
379 fs_bp->c_4 = set->c_4 ;
380 fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
381 fs_bp->lookup_depth = set->lookup_depth ;
382 fs_bp->lookup_step = set->lookup_step ;
383 fs_bp->lookup_weight = set->lookup_weight ;
384 fs_bp->avg_pkt_size = set->avg_pkt_size ;
385 fs_bp->max_pkt_size = set->max_pkt_size ;
386 }
387
388 static void
389 cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
390 {
391 fs_bp->fs_nr = set->fs_nr;
392 fs_bp->flags_fs = set->flags_fs ;
393 fs_bp->parent_nr = set->parent_nr ;
394 fs_bp->weight = set->weight ;
395 fs_bp->qsize = set->qsize ;
396 fs_bp->plr = set->plr ;
397 fs_bp->flow_mask = set->flow_mask ;
398 fs_bp->rq_size = set->rq_size ;
399 fs_bp->rq_elements = set->rq_elements ;
400 fs_bp->last_expired = set->last_expired ;
401 fs_bp->backlogged = set->backlogged ;
402 fs_bp->w_q = set->w_q ;
403 fs_bp->max_th = set->max_th ;
404 fs_bp->min_th = set->min_th ;
405 fs_bp->max_p = set->max_p ;
406 fs_bp->c_1 = set->c_1 ;
407 fs_bp->c_2 = set->c_2 ;
408 fs_bp->c_3 = set->c_3 ;
409 fs_bp->c_4 = set->c_4 ;
410 fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
411 fs_bp->lookup_depth = set->lookup_depth ;
412 fs_bp->lookup_step = set->lookup_step ;
413 fs_bp->lookup_weight = set->lookup_weight ;
414 fs_bp->avg_pkt_size = set->avg_pkt_size ;
415 fs_bp->max_pkt_size = set->max_pkt_size ;
416 }
417
418 static
419 void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
420 {
421 qp->id = q->id;
422 qp->len = q->len;
423 qp->len_bytes = q->len_bytes;
424 qp->numbytes = q->numbytes;
425 qp->tot_pkts = q->tot_pkts;
426 qp->tot_bytes = q->tot_bytes;
427 qp->drops = q->drops;
428 qp->hash_slot = q->hash_slot;
429 qp->avg = q->avg;
430 qp->count = q->count;
431 qp->random = q->random;
432 qp->q_time = q->q_time;
433 qp->heap_pos = q->heap_pos;
434 qp->sched_time = q->sched_time;
435 qp->S = q->S;
436 qp->F = q->F;
437 }
438
439 static
440 void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
441 {
442 qp->id = q->id;
443 qp->len = q->len;
444 qp->len_bytes = q->len_bytes;
445 qp->numbytes = q->numbytes;
446 qp->tot_pkts = q->tot_pkts;
447 qp->tot_bytes = q->tot_bytes;
448 qp->drops = q->drops;
449 qp->hash_slot = q->hash_slot;
450 qp->avg = q->avg;
451 qp->count = q->count;
452 qp->random = q->random;
453 qp->q_time = q->q_time;
454 qp->heap_pos = q->heap_pos;
455 qp->sched_time = q->sched_time;
456 qp->S = q->S;
457 qp->F = q->F;
458 }
459
460 static
461 char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
462 {
463 char *bp;
464
465 pipe_bp->pipe_nr = p->pipe_nr;
466 pipe_bp->bandwidth = p->bandwidth;
467 pipe_bp->delay = p->delay;
468 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
469 pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
470 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
471 pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
472 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
473 pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
474 pipe_bp->V = p->V;
475 pipe_bp->sum = p->sum;
476 pipe_bp->numbytes = p->numbytes;
477 pipe_bp->sched_time = p->sched_time;
478 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
479 pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
480 pipe_bp->ready = p->ready;
481
482 cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
483
484 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
485 /*
486 * XXX the following is a hack based on ->next being the
487 * first field in dn_pipe and dn_flow_set. The correct
488 * solution would be to move the dn_flow_set to the beginning
489 * of struct dn_pipe.
490 */
491 pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
492 /* clean pointers */
493 pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
494 pipe_bp->fs.next = (user32_addr_t)0 ;
495 pipe_bp->fs.pipe = (user32_addr_t)0 ;
496 pipe_bp->fs.rq = (user32_addr_t)0 ;
497 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
498 return( dn_copy_set_32( &(p->fs), bp) );
499 }
500
501 static
502 char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
503 {
504 char *bp;
505
506 pipe_bp->pipe_nr = p->pipe_nr;
507 pipe_bp->bandwidth = p->bandwidth;
508 pipe_bp->delay = p->delay;
509 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
510 pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
511 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
512 pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
513 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
514 pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
515 pipe_bp->V = p->V;
516 pipe_bp->sum = p->sum;
517 pipe_bp->numbytes = p->numbytes;
518 pipe_bp->sched_time = p->sched_time;
519 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
520 pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
521 pipe_bp->ready = p->ready;
522
523 cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
524
525 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
526 /*
527 * XXX the following is a hack based on ->next being the
528 * first field in dn_pipe and dn_flow_set. The correct
529 * solution would be to move the dn_flow_set to the beginning
530 * of struct dn_pipe.
531 */
532 pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
533 /* clean pointers */
534 pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
535 pipe_bp->fs.next = USER_ADDR_NULL ;
536 pipe_bp->fs.pipe = USER_ADDR_NULL ;
537 pipe_bp->fs.rq = USER_ADDR_NULL ;
538 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
539 return( dn_copy_set_64( &(p->fs), bp) );
540 }
541
542 static int
543 heap_init(struct dn_heap *h, int new_size)
544 {
545 struct dn_heap_entry *p;
546
547 if (h->size >= new_size ) {
548 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
549 h->size, new_size);
550 return 0 ;
551 }
552 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
553 p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
554 if (p == NULL) {
555 printf("dummynet: heap_init, resize %d failed\n", new_size );
556 return 1 ; /* error */
557 }
558 if (h->size > 0) {
559 bcopy(h->p, p, h->size * sizeof(*p) );
560 FREE(h->p, M_DUMMYNET);
561 }
562 h->p = p ;
563 h->size = new_size ;
564 return 0 ;
565 }
566
567 /*
568 * Insert element in heap. Normally, p != NULL, we insert p in
569 * a new position and bubble up. If p == NULL, then the element is
570 * already in place, and key is the position where to start the
571 * bubble-up.
572 * Returns 1 on failure (cannot allocate new heap entry)
573 *
574 * If offset > 0 the position (index, int) of the element in the heap is
575 * also stored in the element itself at the given offset in bytes.
576 */
577 #define SET_OFFSET(heap, node) \
578 if (heap->offset > 0) \
579 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
580 /*
581 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
582 */
583 #define RESET_OFFSET(heap, node) \
584 if (heap->offset > 0) \
585 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
586 static int
587 heap_insert(struct dn_heap *h, dn_key key1, void *p)
588 {
589 int son = h->elements ;
590
591 if (p == NULL) /* data already there, set starting point */
592 son = key1 ;
593 else { /* insert new element at the end, possibly resize */
594 son = h->elements ;
595 if (son == h->size) /* need resize... */
596 if (heap_init(h, h->elements+1) )
597 return 1 ; /* failure... */
598 h->p[son].object = p ;
599 h->p[son].key = key1 ;
600 h->elements++ ;
601 }
602 while (son > 0) { /* bubble up */
603 int father = HEAP_FATHER(son) ;
604 struct dn_heap_entry tmp ;
605
606 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
607 break ; /* found right position */
608 /* son smaller than father, swap and repeat */
609 HEAP_SWAP(h->p[son], h->p[father], tmp) ;
610 SET_OFFSET(h, son);
611 son = father ;
612 }
613 SET_OFFSET(h, son);
614 return 0 ;
615 }
616
617 /*
618 * remove top element from heap, or obj if obj != NULL
619 */
620 static void
621 heap_extract(struct dn_heap *h, void *obj)
622 {
623 int child, father, maxelt = h->elements - 1 ;
624
625 if (maxelt < 0) {
626 printf("dummynet: warning, extract from empty heap 0x%p\n", h);
627 return ;
628 }
629 father = 0 ; /* default: move up smallest child */
630 if (obj != NULL) { /* extract specific element, index is at offset */
631 if (h->offset <= 0)
632 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
633 father = *((int *)((char *)obj + h->offset)) ;
634 if (father < 0 || father >= h->elements) {
635 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
636 father, h->elements);
637 panic("dummynet: heap_extract");
638 }
639 }
640 RESET_OFFSET(h, father);
641 child = HEAP_LEFT(father) ; /* left child */
642 while (child <= maxelt) { /* valid entry */
643 if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
644 child = child+1 ; /* take right child, otherwise left */
645 h->p[father] = h->p[child] ;
646 SET_OFFSET(h, father);
647 father = child ;
648 child = HEAP_LEFT(child) ; /* left child for next loop */
649 }
650 h->elements-- ;
651 if (father != maxelt) {
652 /*
653 * Fill hole with last entry and bubble up, reusing the insert code
654 */
655 h->p[father] = h->p[maxelt] ;
656 heap_insert(h, father, NULL); /* this one cannot fail */
657 }
658 }
659
660 /*
661 * heapify() will reorganize data inside an array to maintain the
662 * heap property. It is needed when we delete a bunch of entries.
663 */
664 static void
665 heapify(struct dn_heap *h)
666 {
667 int i ;
668
669 for (i = 0 ; i < h->elements ; i++ )
670 heap_insert(h, i , NULL) ;
671 }
672
673 /*
674 * cleanup the heap and free data structure
675 */
676 static void
677 heap_free(struct dn_heap *h)
678 {
679 if (h->size >0 )
680 FREE(h->p, M_DUMMYNET);
681 bzero(h, sizeof(*h));
682 }
683
684 /*
685 * --- end of heap management functions ---
686 */
687
688 /*
689 * Return the mbuf tag holding the dummynet state. As an optimization
690 * this is assumed to be the first tag on the list. If this turns out
691 * wrong we'll need to search the list.
692 */
693 static struct dn_pkt_tag *
694 dn_tag_get(struct mbuf *m)
695 {
696 struct m_tag *mtag = m_tag_first(m);
697
698 if (!(mtag != NULL &&
699 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
700 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET))
701 panic("packet on dummynet queue w/o dummynet tag: %p", m);
702
703 return (struct dn_pkt_tag *)(mtag+1);
704 }
705
706 /*
707 * Scheduler functions:
708 *
709 * transmit_event() is called when the delay-line needs to enter
710 * the scheduler, either because of existing pkts getting ready,
711 * or new packets entering the queue. The event handled is the delivery
712 * time of the packet.
713 *
714 * ready_event() does something similar with fixed-rate queues, and the
715 * event handled is the finish time of the head pkt.
716 *
717 * wfq_ready_event() does something similar with WF2Q queues, and the
718 * event handled is the start time of the head pkt.
719 *
720 * In all cases, we make sure that the data structures are consistent
721 * before passing pkts out, because this might trigger recursive
722 * invocations of the procedures.
723 */
724 static void
725 transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
726 {
727 struct mbuf *m ;
728 struct dn_pkt_tag *pkt = NULL;
729 u_int64_t schedule_time;
730
731 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
732 ASSERT(serialize >= 0);
733 if (serialize == 0) {
734 while ((m = pipe->head) != NULL) {
735 pkt = dn_tag_get(m);
736 if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time))
737 break;
738
739 pipe->head = m->m_nextpkt;
740 if (*tail != NULL)
741 (*tail)->m_nextpkt = m;
742 else
743 *head = m;
744 *tail = m;
745 }
746
747 if (*tail != NULL)
748 (*tail)->m_nextpkt = NULL;
749 }
750
751 schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ?
752 curr_time + 1 : pkt->dn_output_time;
753
754 /* if there are leftover packets, put the pipe into the heap for next ready event */
755 if ((m = pipe->head) != NULL) {
756 pkt = dn_tag_get(m);
757 /* XXX should check errors on heap_insert, by draining the
758 * whole pipe p and hoping in the future we are more successful
759 */
760 heap_insert(&extract_heap, schedule_time, pipe);
761 }
762 }
763
764 /*
765 * the following macro computes how many ticks we have to wait
766 * before being able to transmit a packet. The credit is taken from
767 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
768 */
769
770 /* hz is 100, which gives a granularity of 10ms in the old timer.
771 * The timer has been changed to fire every 1ms, so the use of
772 * hz has been modified here. All instances of hz have been left
773 * in place but adjusted by a factor of 10 so that hz is functionally
774 * equal to 1000.
775 */
776 #define SET_TICKS(_m, q, p) \
777 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
778 p->bandwidth ;
779
780 /*
781 * extract pkt from queue, compute output time (could be now)
782 * and put into delay line (p_queue)
783 */
784 static void
785 move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
786 struct dn_pipe *p, int len)
787 {
788 struct dn_pkt_tag *dt = dn_tag_get(pkt);
789
790 q->head = pkt->m_nextpkt ;
791 q->len-- ;
792 q->len_bytes -= len ;
793
794 dt->dn_output_time = curr_time + p->delay ;
795
796 if (p->head == NULL)
797 p->head = pkt;
798 else
799 p->tail->m_nextpkt = pkt;
800 p->tail = pkt;
801 p->tail->m_nextpkt = NULL;
802 }
803
804 /*
805 * ready_event() is invoked every time the queue must enter the
806 * scheduler, either because the first packet arrives, or because
807 * a previously scheduled event fired.
808 * On invokation, drain as many pkts as possible (could be 0) and then
809 * if there are leftover packets reinsert the pkt in the scheduler.
810 */
811 static void
812 ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
813 {
814 struct mbuf *pkt;
815 struct dn_pipe *p = q->fs->pipe ;
816 int p_was_empty ;
817
818 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
819
820 if (p == NULL) {
821 printf("dummynet: ready_event pipe is gone\n");
822 return ;
823 }
824 p_was_empty = (p->head == NULL) ;
825
826 /*
827 * schedule fixed-rate queues linked to this pipe:
828 * Account for the bw accumulated since last scheduling, then
829 * drain as many pkts as allowed by q->numbytes and move to
830 * the delay line (in p) computing output time.
831 * bandwidth==0 (no limit) means we can drain the whole queue,
832 * setting len_scaled = 0 does the job.
833 */
834 q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
835 while ( (pkt = q->head) != NULL ) {
836 int len = pkt->m_pkthdr.len;
837 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
838 if (len_scaled > q->numbytes )
839 break ;
840 q->numbytes -= len_scaled ;
841 move_pkt(pkt, q, p, len);
842 }
843 /*
844 * If we have more packets queued, schedule next ready event
845 * (can only occur when bandwidth != 0, otherwise we would have
846 * flushed the whole queue in the previous loop).
847 * To this purpose we record the current time and compute how many
848 * ticks to go for the finish time of the packet.
849 */
850 if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
851 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
852 q->sched_time = curr_time ;
853 heap_insert(&ready_heap, curr_time + t, (void *)q );
854 /* XXX should check errors on heap_insert, and drain the whole
855 * queue on error hoping next time we are luckier.
856 */
857 } else { /* RED needs to know when the queue becomes empty */
858 q->q_time = curr_time;
859 q->numbytes = 0;
860 }
861 /*
862 * If the delay line was empty call transmit_event(p) now.
863 * Otherwise, the scheduler will take care of it.
864 */
865 if (p_was_empty)
866 transmit_event(p, head, tail);
867 }
868
869 /*
870 * Called when we can transmit packets on WF2Q queues. Take pkts out of
871 * the queues at their start time, and enqueue into the delay line.
872 * Packets are drained until p->numbytes < 0. As long as
873 * len_scaled >= p->numbytes, the packet goes into the delay line
874 * with a deadline p->delay. For the last packet, if p->numbytes<0,
875 * there is an additional delay.
876 */
877 static void
878 ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
879 {
880 int p_was_empty = (p->head == NULL) ;
881 struct dn_heap *sch = &(p->scheduler_heap);
882 struct dn_heap *neh = &(p->not_eligible_heap) ;
883 int64_t p_numbytes = p->numbytes;
884
885 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
886
887 if (p->if_name[0] == 0) /* tx clock is simulated */
888 p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
889 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
890 if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd))
891 return ;
892 else {
893 DPRINTF(("dummynet: pipe %d ready from %s --\n",
894 p->pipe_nr, p->if_name));
895 }
896 }
897
898 /*
899 * While we have backlogged traffic AND credit, we need to do
900 * something on the queue.
901 */
902 while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
903 if (sch->elements > 0) { /* have some eligible pkts to send out */
904 struct dn_flow_queue *q = sch->p[0].object ;
905 struct mbuf *pkt = q->head;
906 struct dn_flow_set *fs = q->fs;
907 u_int64_t len = pkt->m_pkthdr.len;
908 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
909
910 heap_extract(sch, NULL); /* remove queue from heap */
911 p_numbytes -= len_scaled ;
912 move_pkt(pkt, q, p, len);
913
914 p->V += (len<<MY_M) / p->sum ; /* update V */
915 q->S = q->F ; /* update start time */
916 if (q->len == 0) { /* Flow not backlogged any more */
917 fs->backlogged-- ;
918 heap_insert(&(p->idle_heap), q->F, q);
919 } else { /* still backlogged */
920 /*
921 * update F and position in backlogged queue, then
922 * put flow in not_eligible_heap (we will fix this later).
923 */
924 len = (q->head)->m_pkthdr.len;
925 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
926 if (DN_KEY_LEQ(q->S, p->V))
927 heap_insert(neh, q->S, q);
928 else
929 heap_insert(sch, q->F, q);
930 }
931 }
932 /*
933 * now compute V = max(V, min(S_i)). Remember that all elements in sch
934 * have by definition S_i <= V so if sch is not empty, V is surely
935 * the max and we must not update it. Conversely, if sch is empty
936 * we only need to look at neh.
937 */
938 if (sch->elements == 0 && neh->elements > 0)
939 p->V = MAX64 ( p->V, neh->p[0].key );
940 /* move from neh to sch any packets that have become eligible */
941 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
942 struct dn_flow_queue *q = neh->p[0].object ;
943 heap_extract(neh, NULL);
944 heap_insert(sch, q->F, q);
945 }
946
947 if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
948 p_numbytes = -1 ; /* mark not ready for I/O */
949 break ;
950 }
951 }
952 if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
953 && p->idle_heap.elements > 0) {
954 /*
955 * no traffic and no events scheduled. We can get rid of idle-heap.
956 */
957 int i ;
958
959 for (i = 0 ; i < p->idle_heap.elements ; i++) {
960 struct dn_flow_queue *q = p->idle_heap.p[i].object ;
961
962 q->F = 0 ;
963 q->S = q->F + 1 ;
964 }
965 p->sum = 0 ;
966 p->V = 0 ;
967 p->idle_heap.elements = 0 ;
968 }
969 /*
970 * If we are getting clocks from dummynet (not a real interface) and
971 * If we are under credit, schedule the next ready event.
972 * Also fix the delivery time of the last packet.
973 */
974 if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
975 dn_key t=0 ; /* number of ticks i have to wait */
976
977 if (p->bandwidth > 0)
978 t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
979 dn_tag_get(p->tail)->dn_output_time += t ;
980 p->sched_time = curr_time ;
981 heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
982 /* XXX should check errors on heap_insert, and drain the whole
983 * queue on error hoping next time we are luckier.
984 */
985 }
986
987 /* Fit (adjust if necessary) 64bit result into 32bit variable. */
988 if (p_numbytes > INT_MAX)
989 p->numbytes = INT_MAX;
990 else if (p_numbytes < INT_MIN)
991 p->numbytes = INT_MIN;
992 else
993 p->numbytes = p_numbytes;
994
995 /*
996 * If the delay line was empty call transmit_event(p) now.
997 * Otherwise, the scheduler will take care of it.
998 */
999 if (p_was_empty)
1000 transmit_event(p, head, tail);
1001
1002 }
1003
1004 /*
1005 * This is called every 1ms. It is used to
1006 * increment the current tick counter and schedule expired events.
1007 */
1008 static void
1009 dummynet(__unused void * unused)
1010 {
1011 void *p ; /* generic parameter to handler */
1012 struct dn_heap *h ;
1013 struct dn_heap *heaps[3];
1014 struct mbuf *head = NULL, *tail = NULL;
1015 int i;
1016 struct dn_pipe *pe ;
1017 struct timespec ts;
1018 struct timeval tv;
1019
1020 heaps[0] = &ready_heap ; /* fixed-rate queues */
1021 heaps[1] = &wfq_ready_heap ; /* wfq queues */
1022 heaps[2] = &extract_heap ; /* delay line */
1023
1024 lck_mtx_lock(dn_mutex);
1025
1026 /* make all time measurements in milliseconds (ms) -
1027 * here we convert secs and usecs to msecs (just divide the
1028 * usecs and take the closest whole number).
1029 */
1030 microuptime(&tv);
1031 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1032
1033 for (i=0; i < 3 ; i++) {
1034 h = heaps[i];
1035 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
1036 if (h->p[0].key > curr_time)
1037 printf("dummynet: warning, heap %d is %d ticks late\n",
1038 i, (int)(curr_time - h->p[0].key));
1039 p = h->p[0].object ; /* store a copy before heap_extract */
1040 heap_extract(h, NULL); /* need to extract before processing */
1041 if (i == 0)
1042 ready_event(p, &head, &tail) ;
1043 else if (i == 1) {
1044 struct dn_pipe *pipe = p;
1045 if (pipe->if_name[0] != '\0')
1046 printf("dummynet: bad ready_event_wfq for pipe %s\n",
1047 pipe->if_name);
1048 else
1049 ready_event_wfq(p, &head, &tail) ;
1050 } else {
1051 transmit_event(p, &head, &tail);
1052 }
1053 }
1054 }
1055 /* sweep pipes trying to expire idle flow_queues */
1056 for (i = 0; i < HASHSIZE; i++)
1057 SLIST_FOREACH(pe, &pipehash[i], next)
1058 if (pe->idle_heap.elements > 0 &&
1059 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
1060 struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
1061
1062 heap_extract(&(pe->idle_heap), NULL);
1063 q->S = q->F + 1 ; /* mark timestamp as invalid */
1064 pe->sum -= q->fs->weight ;
1065 }
1066
1067 /* check the heaps to see if there's still stuff in there, and
1068 * only set the timer if there are packets to process
1069 */
1070 timer_enabled = 0;
1071 for (i=0; i < 3 ; i++) {
1072 h = heaps[i];
1073 if (h->elements > 0) { // set the timer
1074 ts.tv_sec = 0;
1075 ts.tv_nsec = 1 * 1000000; // 1ms
1076 timer_enabled = 1;
1077 bsd_timeout(dummynet, NULL, &ts);
1078 break;
1079 }
1080 }
1081
1082 if (head != NULL)
1083 serialize++;
1084
1085 lck_mtx_unlock(dn_mutex);
1086
1087 /* Send out the de-queued list of ready-to-send packets */
1088 if (head != NULL) {
1089 dummynet_send(head);
1090 lck_mtx_lock(dn_mutex);
1091 serialize--;
1092 lck_mtx_unlock(dn_mutex);
1093 }
1094 }
1095
1096
1097 static void
1098 dummynet_send(struct mbuf *m)
1099 {
1100 struct dn_pkt_tag *pkt;
1101 struct mbuf *n;
1102
1103 for (; m != NULL; m = n) {
1104 n = m->m_nextpkt;
1105 m->m_nextpkt = NULL;
1106 pkt = dn_tag_get(m);
1107
1108 DPRINTF(("dummynet_send m: %p dn_dir: %d dn_flags: 0x%x\n",
1109 m, pkt->dn_dir, pkt->dn_flags));
1110
1111 switch (pkt->dn_dir) {
1112 case DN_TO_IP_OUT: {
1113 struct route tmp_rt = pkt->dn_ro;
1114 /* Force IP_RAWOUTPUT as the IP header is fully formed */
1115 pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING;
1116 (void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL);
1117 if (tmp_rt.ro_rt) {
1118 rtfree(tmp_rt.ro_rt);
1119 tmp_rt.ro_rt = NULL;
1120 }
1121 break ;
1122 }
1123 case DN_TO_IP_IN :
1124 proto_inject(PF_INET, m);
1125 break ;
1126 #ifdef INET6
1127 case DN_TO_IP6_OUT: {
1128 struct route_in6 ro6;
1129
1130 ro6 = pkt->dn_ro6;
1131
1132 ip6_output(m, NULL, &ro6, IPV6_FORWARDING, NULL, NULL, NULL);
1133
1134 if (ro6.ro_rt)
1135 rtfree(ro6.ro_rt);
1136 break;
1137 }
1138 case DN_TO_IP6_IN:
1139 proto_inject(PF_INET6, m);
1140 break;
1141 #endif /* INET6 */
1142 default:
1143 printf("dummynet: bad switch %d!\n", pkt->dn_dir);
1144 m_freem(m);
1145 break ;
1146 }
1147 }
1148 }
1149
1150
1151
1152 /*
1153 * called by an interface when tx_rdy occurs.
1154 */
1155 int
1156 if_tx_rdy(struct ifnet *ifp)
1157 {
1158 struct dn_pipe *p;
1159 struct mbuf *head = NULL, *tail = NULL;
1160 int i;
1161
1162 lck_mtx_lock(dn_mutex);
1163
1164 for (i = 0; i < HASHSIZE; i++)
1165 SLIST_FOREACH(p, &pipehash[i], next)
1166 if (p->ifp == ifp)
1167 break ;
1168 if (p == NULL) {
1169 char buf[32];
1170 snprintf(buf, sizeof(buf), "%s%d",ifp->if_name, ifp->if_unit);
1171 for (i = 0; i < HASHSIZE; i++)
1172 SLIST_FOREACH(p, &pipehash[i], next)
1173 if (!strcmp(p->if_name, buf) ) {
1174 p->ifp = ifp ;
1175 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
1176 break ;
1177 }
1178 }
1179 if (p != NULL) {
1180 DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
1181 ifp->if_unit, IFCQ_LEN(&ifp->if_snd)));
1182 p->numbytes = 0 ; /* mark ready for I/O */
1183 ready_event_wfq(p, &head, &tail);
1184 }
1185
1186 if (head != NULL) {
1187 serialize++;
1188 }
1189
1190 lck_mtx_unlock(dn_mutex);
1191
1192 /* Send out the de-queued list of ready-to-send packets */
1193 if (head != NULL) {
1194 dummynet_send(head);
1195 lck_mtx_lock(dn_mutex);
1196 serialize--;
1197 lck_mtx_unlock(dn_mutex);
1198 }
1199 return 0;
1200 }
1201
1202 /*
1203 * Unconditionally expire empty queues in case of shortage.
1204 * Returns the number of queues freed.
1205 */
1206 static int
1207 expire_queues(struct dn_flow_set *fs)
1208 {
1209 struct dn_flow_queue *q, *prev ;
1210 int i, initial_elements = fs->rq_elements ;
1211 struct timeval timenow;
1212
1213 /* reviewed for getmicrotime usage */
1214 getmicrotime(&timenow);
1215
1216 if (fs->last_expired == timenow.tv_sec)
1217 return 0 ;
1218 fs->last_expired = timenow.tv_sec ;
1219 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
1220 for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
1221 if (q->head != NULL || q->S != q->F+1) {
1222 prev = q ;
1223 q = q->next ;
1224 } else { /* entry is idle, expire it */
1225 struct dn_flow_queue *old_q = q ;
1226
1227 if (prev != NULL)
1228 prev->next = q = q->next ;
1229 else
1230 fs->rq[i] = q = q->next ;
1231 fs->rq_elements-- ;
1232 FREE(old_q, M_DUMMYNET);
1233 }
1234 return initial_elements - fs->rq_elements ;
1235 }
1236
1237 /*
1238 * If room, create a new queue and put at head of slot i;
1239 * otherwise, create or use the default queue.
1240 */
1241 static struct dn_flow_queue *
1242 create_queue(struct dn_flow_set *fs, int i)
1243 {
1244 struct dn_flow_queue *q ;
1245
1246 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
1247 expire_queues(fs) == 0) {
1248 /*
1249 * No way to get room, use or create overflow queue.
1250 */
1251 i = fs->rq_size ;
1252 if ( fs->rq[i] != NULL )
1253 return fs->rq[i] ;
1254 }
1255 q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
1256 if (q == NULL) {
1257 printf("dummynet: sorry, cannot allocate queue for new flow\n");
1258 return NULL ;
1259 }
1260 q->fs = fs ;
1261 q->hash_slot = i ;
1262 q->next = fs->rq[i] ;
1263 q->S = q->F + 1; /* hack - mark timestamp as invalid */
1264 fs->rq[i] = q ;
1265 fs->rq_elements++ ;
1266 return q ;
1267 }
1268
1269 /*
1270 * Given a flow_set and a pkt in last_pkt, find a matching queue
1271 * after appropriate masking. The queue is moved to front
1272 * so that further searches take less time.
1273 */
1274 static struct dn_flow_queue *
1275 find_queue(struct dn_flow_set *fs, struct ip_flow_id *id)
1276 {
1277 int i = 0 ; /* we need i and q for new allocations */
1278 struct dn_flow_queue *q, *prev;
1279 int is_v6 = IS_IP6_FLOW_ID(id);
1280
1281 if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
1282 q = fs->rq[0] ;
1283 else {
1284 /* first, do the masking, then hash */
1285 id->dst_port &= fs->flow_mask.dst_port ;
1286 id->src_port &= fs->flow_mask.src_port ;
1287 id->proto &= fs->flow_mask.proto ;
1288 id->flags = 0 ; /* we don't care about this one */
1289 if (is_v6) {
1290 APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
1291 APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
1292 id->flow_id6 &= fs->flow_mask.flow_id6;
1293
1294 i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
1295 ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
1296 ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
1297 ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
1298
1299 ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
1300 ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
1301 ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
1302 ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
1303
1304 ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
1305 ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
1306 ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
1307 ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
1308
1309 ((id->src_ip6.__u6_addr.__u6_addr32[0] << 16) & 0xffff)^
1310 ((id->src_ip6.__u6_addr.__u6_addr32[1] << 16) & 0xffff)^
1311 ((id->src_ip6.__u6_addr.__u6_addr32[2] << 16) & 0xffff)^
1312 ((id->src_ip6.__u6_addr.__u6_addr32[3] << 16) & 0xffff)^
1313
1314 (id->dst_port << 1) ^ (id->src_port) ^
1315 (id->proto ) ^
1316 (id->flow_id6);
1317 } else {
1318 id->dst_ip &= fs->flow_mask.dst_ip ;
1319 id->src_ip &= fs->flow_mask.src_ip ;
1320
1321 i = ( (id->dst_ip) & 0xffff ) ^
1322 ( (id->dst_ip >> 15) & 0xffff ) ^
1323 ( (id->src_ip << 1) & 0xffff ) ^
1324 ( (id->src_ip >> 16 ) & 0xffff ) ^
1325 (id->dst_port << 1) ^ (id->src_port) ^
1326 (id->proto );
1327 }
1328 i = i % fs->rq_size ;
1329 /* finally, scan the current list for a match */
1330 searches++ ;
1331 for (prev=NULL, q = fs->rq[i] ; q ; ) {
1332 search_steps++;
1333 if (is_v6 &&
1334 IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&
1335 IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&
1336 id->dst_port == q->id.dst_port &&
1337 id->src_port == q->id.src_port &&
1338 id->proto == q->id.proto &&
1339 id->flags == q->id.flags &&
1340 id->flow_id6 == q->id.flow_id6)
1341 break ; /* found */
1342
1343 if (!is_v6 && id->dst_ip == q->id.dst_ip &&
1344 id->src_ip == q->id.src_ip &&
1345 id->dst_port == q->id.dst_port &&
1346 id->src_port == q->id.src_port &&
1347 id->proto == q->id.proto &&
1348 id->flags == q->id.flags)
1349 break ; /* found */
1350
1351 /* No match. Check if we can expire the entry */
1352 if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
1353 /* entry is idle and not in any heap, expire it */
1354 struct dn_flow_queue *old_q = q ;
1355
1356 if (prev != NULL)
1357 prev->next = q = q->next ;
1358 else
1359 fs->rq[i] = q = q->next ;
1360 fs->rq_elements-- ;
1361 FREE(old_q, M_DUMMYNET);
1362 continue ;
1363 }
1364 prev = q ;
1365 q = q->next ;
1366 }
1367 if (q && prev != NULL) { /* found and not in front */
1368 prev->next = q->next ;
1369 q->next = fs->rq[i] ;
1370 fs->rq[i] = q ;
1371 }
1372 }
1373 if (q == NULL) { /* no match, need to allocate a new entry */
1374 q = create_queue(fs, i);
1375 if (q != NULL)
1376 q->id = *id ;
1377 }
1378 return q ;
1379 }
1380
1381 static int
1382 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
1383 {
1384 /*
1385 * RED algorithm
1386 *
1387 * RED calculates the average queue size (avg) using a low-pass filter
1388 * with an exponential weighted (w_q) moving average:
1389 * avg <- (1-w_q) * avg + w_q * q_size
1390 * where q_size is the queue length (measured in bytes or * packets).
1391 *
1392 * If q_size == 0, we compute the idle time for the link, and set
1393 * avg = (1 - w_q)^(idle/s)
1394 * where s is the time needed for transmitting a medium-sized packet.
1395 *
1396 * Now, if avg < min_th the packet is enqueued.
1397 * If avg > max_th the packet is dropped. Otherwise, the packet is
1398 * dropped with probability P function of avg.
1399 *
1400 */
1401
1402 int64_t p_b = 0;
1403 /* queue in bytes or packets ? */
1404 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
1405
1406 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
1407
1408 /* average queue size estimation */
1409 if (q_size != 0) {
1410 /*
1411 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1412 */
1413 int diff = SCALE(q_size) - q->avg;
1414 int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
1415
1416 q->avg += (int) v;
1417 } else {
1418 /*
1419 * queue is empty, find for how long the queue has been
1420 * empty and use a lookup table for computing
1421 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1422 * (small) packet.
1423 * XXX check wraps...
1424 */
1425 if (q->avg) {
1426 u_int t = (curr_time - q->q_time) / fs->lookup_step;
1427
1428 q->avg = (t < fs->lookup_depth) ?
1429 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
1430 }
1431 }
1432 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
1433
1434 /* should i drop ? */
1435
1436 if (q->avg < fs->min_th) {
1437 q->count = -1;
1438 return 0; /* accept packet ; */
1439 }
1440 if (q->avg >= fs->max_th) { /* average queue >= max threshold */
1441 if (fs->flags_fs & DN_IS_GENTLE_RED) {
1442 /*
1443 * According to Gentle-RED, if avg is greater than max_th the
1444 * packet is dropped with a probability
1445 * p_b = c_3 * avg - c_4
1446 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1447 */
1448 p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
1449 } else {
1450 q->count = -1;
1451 DPRINTF(("dummynet: - drop"));
1452 return 1 ;
1453 }
1454 } else if (q->avg > fs->min_th) {
1455 /*
1456 * we compute p_b using the linear dropping function p_b = c_1 *
1457 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1458 * max_p * min_th / (max_th - min_th)
1459 */
1460 p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1461 }
1462 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1463 p_b = (p_b * len) / fs->max_pkt_size;
1464 if (++q->count == 0)
1465 q->random = MY_RANDOM & 0xffff;
1466 else {
1467 /*
1468 * q->count counts packets arrived since last drop, so a greater
1469 * value of q->count means a greater packet drop probability.
1470 */
1471 if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1472 q->count = 0;
1473 DPRINTF(("dummynet: - red drop"));
1474 /* after a drop we calculate a new random value */
1475 q->random = MY_RANDOM & 0xffff;
1476 return 1; /* drop */
1477 }
1478 }
1479 /* end of RED algorithm */
1480 return 0 ; /* accept */
1481 }
1482
1483 static __inline
1484 struct dn_flow_set *
1485 locate_flowset(int fs_nr)
1486 {
1487 struct dn_flow_set *fs;
1488 SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
1489 if (fs->fs_nr == fs_nr)
1490 return fs ;
1491
1492 return (NULL);
1493 }
1494
1495 static __inline struct dn_pipe *
1496 locate_pipe(int pipe_nr)
1497 {
1498 struct dn_pipe *pipe;
1499
1500 SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
1501 if (pipe->pipe_nr == pipe_nr)
1502 return (pipe);
1503
1504 return (NULL);
1505 }
1506
1507
1508
1509 /*
1510 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1511 * depending on whether WF2Q or fixed bw is used.
1512 *
1513 * pipe_nr pipe or queue the packet is destined for.
1514 * dir where shall we send the packet after dummynet.
1515 * m the mbuf with the packet
1516 * ifp the 'ifp' parameter from the caller.
1517 * NULL in ip_input, destination interface in ip_output,
1518 * real_dst in bdg_forward
1519 * ro route parameter (only used in ip_output, NULL otherwise)
1520 * dst destination address, only used by ip_output
1521 * rule matching rule, in case of multiple passes
1522 * flags flags from the caller, only used in ip_output
1523 *
1524 */
1525 static int
1526 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa, int client)
1527 {
1528 struct mbuf *head = NULL, *tail = NULL;
1529 struct dn_pkt_tag *pkt;
1530 struct m_tag *mtag;
1531 struct dn_flow_set *fs = NULL;
1532 struct dn_pipe *pipe ;
1533 u_int64_t len = m->m_pkthdr.len ;
1534 struct dn_flow_queue *q = NULL ;
1535 int is_pipe;
1536 struct timespec ts;
1537 struct timeval tv;
1538
1539 DPRINTF(("dummynet_io m: %p pipe: %d dir: %d client: %d\n",
1540 m, pipe_nr, dir, client));
1541
1542 #if IPFIREWALL
1543 #if IPFW2
1544 if (client == DN_CLIENT_IPFW) {
1545 ipfw_insn *cmd = fwa->fwa_ipfw_rule->cmd + fwa->fwa_ipfw_rule->act_ofs;
1546
1547 if (cmd->opcode == O_LOG)
1548 cmd += F_LEN(cmd);
1549 is_pipe = (cmd->opcode == O_PIPE);
1550 }
1551 #else
1552 if (client == DN_CLIENT_IPFW)
1553 is_pipe = (fwa->fwa_ipfw_rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1554 #endif
1555 #endif /* IPFIREWALL */
1556
1557 #if DUMMYNET
1558 if (client == DN_CLIENT_PF)
1559 is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
1560 #endif /* DUMMYNET */
1561
1562 pipe_nr &= 0xffff ;
1563
1564 lck_mtx_lock(dn_mutex);
1565
1566 /* make all time measurements in milliseconds (ms) -
1567 * here we convert secs and usecs to msecs (just divide the
1568 * usecs and take the closest whole number).
1569 */
1570 microuptime(&tv);
1571 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1572
1573 /*
1574 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1575 */
1576 if (is_pipe) {
1577 pipe = locate_pipe(pipe_nr);
1578 if (pipe != NULL)
1579 fs = &(pipe->fs);
1580 } else
1581 fs = locate_flowset(pipe_nr);
1582
1583
1584 if (fs == NULL){
1585 goto dropit ; /* this queue/pipe does not exist! */
1586 }
1587 pipe = fs->pipe ;
1588 if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1589 pipe = locate_pipe(fs->parent_nr);
1590
1591 if (pipe != NULL)
1592 fs->pipe = pipe ;
1593 else {
1594 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1595 fs->parent_nr, fs->fs_nr);
1596 goto dropit ;
1597 }
1598 }
1599 q = find_queue(fs, &(fwa->fwa_id));
1600 if ( q == NULL )
1601 goto dropit ; /* cannot allocate queue */
1602 /*
1603 * update statistics, then check reasons to drop pkt
1604 */
1605 q->tot_bytes += len ;
1606 q->tot_pkts++ ;
1607 if ( fs->plr && (MY_RANDOM < fs->plr) )
1608 goto dropit ; /* random pkt drop */
1609 if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1610 if (q->len_bytes > fs->qsize)
1611 goto dropit ; /* queue size overflow */
1612 } else {
1613 if (q->len >= fs->qsize)
1614 goto dropit ; /* queue count overflow */
1615 }
1616 if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1617 goto dropit ;
1618
1619 /* XXX expensive to zero, see if we can remove it*/
1620 mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
1621 sizeof(struct dn_pkt_tag), M_NOWAIT, m);
1622 if ( mtag == NULL )
1623 goto dropit ; /* cannot allocate packet header */
1624 m_tag_prepend(m, mtag); /* attach to mbuf chain */
1625
1626 pkt = (struct dn_pkt_tag *)(mtag+1);
1627 bzero(pkt, sizeof(struct dn_pkt_tag));
1628 /* ok, i can handle the pkt now... */
1629 /* build and enqueue packet + parameters */
1630 /*
1631 * PF is checked before ipfw so remember ipfw rule only when
1632 * the caller is ipfw. When the caller is PF, fwa_ipfw_rule
1633 * is a fake rule just used for convenience
1634 */
1635 if (client == DN_CLIENT_IPFW)
1636 pkt->dn_ipfw_rule = fwa->fwa_ipfw_rule;
1637 pkt->dn_pf_rule = fwa->fwa_pf_rule;
1638 pkt->dn_dir = dir ;
1639 pkt->dn_client = client;
1640
1641 pkt->dn_ifp = fwa->fwa_oif;
1642 if (dir == DN_TO_IP_OUT) {
1643 /*
1644 * We need to copy *ro because for ICMP pkts (and maybe others)
1645 * the caller passed a pointer into the stack; dst might also be
1646 * a pointer into *ro so it needs to be updated.
1647 */
1648 if (fwa->fwa_ro) {
1649 pkt->dn_ro = *(fwa->fwa_ro);
1650 if (fwa->fwa_ro->ro_rt)
1651 RT_ADDREF(fwa->fwa_ro->ro_rt);
1652 }
1653 if (fwa->fwa_dst) {
1654 if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) /* dst points into ro */
1655 fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst) ;
1656
1657 bcopy (fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
1658 }
1659 } else if (dir == DN_TO_IP6_OUT) {
1660 if (fwa->fwa_ro6) {
1661 pkt->dn_ro6 = *(fwa->fwa_ro6);
1662 if (fwa->fwa_ro6->ro_rt)
1663 RT_ADDREF(fwa->fwa_ro6->ro_rt);
1664 }
1665 if (fwa->fwa_ro6_pmtu) {
1666 pkt->dn_ro6_pmtu = *(fwa->fwa_ro6_pmtu);
1667 if (fwa->fwa_ro6_pmtu->ro_rt)
1668 RT_ADDREF(fwa->fwa_ro6_pmtu->ro_rt);
1669 }
1670 if (fwa->fwa_dst6) {
1671 if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) /* dst points into ro */
1672 fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst) ;
1673
1674 bcopy (fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
1675 }
1676 pkt->dn_origifp = fwa->fwa_origifp;
1677 pkt->dn_mtu = fwa->fwa_mtu;
1678 pkt->dn_alwaysfrag = fwa->fwa_alwaysfrag;
1679 pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen;
1680 if (fwa->fwa_exthdrs) {
1681 bcopy (fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
1682 /*
1683 * Need to zero out the source structure so the mbufs
1684 * won't be freed by ip6_output()
1685 */
1686 bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs));
1687 }
1688 }
1689 if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
1690 pkt->dn_flags = fwa->fwa_oflags;
1691 if (fwa->fwa_ipoa != NULL)
1692 pkt->dn_ipoa = *(fwa->fwa_ipoa);
1693 }
1694 if (q->head == NULL)
1695 q->head = m;
1696 else
1697 q->tail->m_nextpkt = m;
1698 q->tail = m;
1699 q->len++;
1700 q->len_bytes += len ;
1701
1702 if ( q->head != m ) /* flow was not idle, we are done */
1703 goto done;
1704 /*
1705 * If we reach this point the flow was previously idle, so we need
1706 * to schedule it. This involves different actions for fixed-rate or
1707 * WF2Q queues.
1708 */
1709 if (is_pipe) {
1710 /*
1711 * Fixed-rate queue: just insert into the ready_heap.
1712 */
1713 dn_key t = 0 ;
1714 if (pipe->bandwidth)
1715 t = SET_TICKS(m, q, pipe);
1716 q->sched_time = curr_time ;
1717 if (t == 0) /* must process it now */
1718 ready_event( q , &head, &tail );
1719 else
1720 heap_insert(&ready_heap, curr_time + t , q );
1721 } else {
1722 /*
1723 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1724 * set S to the virtual time V for the controlling pipe, and update
1725 * the sum of weights for the pipe; otherwise, remove flow from
1726 * idle_heap and set S to max(F,V).
1727 * Second, compute finish time F = S + len/weight.
1728 * Third, if pipe was idle, update V=max(S, V).
1729 * Fourth, count one more backlogged flow.
1730 */
1731 if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1732 q->S = pipe->V ;
1733 pipe->sum += fs->weight ; /* add weight of new queue */
1734 } else {
1735 heap_extract(&(pipe->idle_heap), q);
1736 q->S = MAX64(q->F, pipe->V ) ;
1737 }
1738 q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1739
1740 if (pipe->not_eligible_heap.elements == 0 &&
1741 pipe->scheduler_heap.elements == 0)
1742 pipe->V = MAX64 ( q->S, pipe->V );
1743 fs->backlogged++ ;
1744 /*
1745 * Look at eligibility. A flow is not eligibile if S>V (when
1746 * this happens, it means that there is some other flow already
1747 * scheduled for the same pipe, so the scheduler_heap cannot be
1748 * empty). If the flow is not eligible we just store it in the
1749 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1750 * and possibly invoke ready_event_wfq() right now if there is
1751 * leftover credit.
1752 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1753 * and for all flows in not_eligible_heap (NEH), S_i > V .
1754 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1755 * we only need to look into NEH.
1756 */
1757 if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1758 if (pipe->scheduler_heap.elements == 0)
1759 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1760 heap_insert(&(pipe->not_eligible_heap), q->S, q);
1761 } else {
1762 heap_insert(&(pipe->scheduler_heap), q->F, q);
1763 if (pipe->numbytes >= 0) { /* pipe is idle */
1764 if (pipe->scheduler_heap.elements != 1)
1765 printf("dummynet: OUCH! pipe should have been idle!\n");
1766 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1767 pipe->pipe_nr, (int)(q->F >> MY_M)));
1768 pipe->sched_time = curr_time ;
1769 ready_event_wfq(pipe, &head, &tail);
1770 }
1771 }
1772 }
1773 done:
1774 /* start the timer and set global if not already set */
1775 if (!timer_enabled) {
1776 ts.tv_sec = 0;
1777 ts.tv_nsec = 1 * 1000000; // 1ms
1778 timer_enabled = 1;
1779 bsd_timeout(dummynet, NULL, &ts);
1780 }
1781
1782 lck_mtx_unlock(dn_mutex);
1783
1784 if (head != NULL) {
1785 dummynet_send(head);
1786 }
1787
1788 return 0;
1789
1790 dropit:
1791 if (q)
1792 q->drops++ ;
1793 lck_mtx_unlock(dn_mutex);
1794 m_freem(m);
1795 return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1796 }
1797
1798 /*
1799 * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1800 * Doing this would probably save us the initial bzero of dn_pkt
1801 */
1802 #define DN_FREE_PKT(_m) do { \
1803 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1804 if (tag) { \
1805 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1806 if (n->dn_ro.ro_rt != NULL) { \
1807 rtfree(n->dn_ro.ro_rt); \
1808 n->dn_ro.ro_rt = NULL; \
1809 } \
1810 } \
1811 m_tag_delete(_m, tag); \
1812 m_freem(_m); \
1813 } while (0)
1814
1815 /*
1816 * Dispose all packets and flow_queues on a flow_set.
1817 * If all=1, also remove red lookup table and other storage,
1818 * including the descriptor itself.
1819 * For the one in dn_pipe MUST also cleanup ready_heap...
1820 */
1821 static void
1822 purge_flow_set(struct dn_flow_set *fs, int all)
1823 {
1824 struct dn_flow_queue *q, *qn ;
1825 int i ;
1826
1827 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1828
1829 for (i = 0 ; i <= fs->rq_size ; i++ ) {
1830 for (q = fs->rq[i] ; q ; q = qn ) {
1831 struct mbuf *m, *mnext;
1832
1833 mnext = q->head;
1834 while ((m = mnext) != NULL) {
1835 mnext = m->m_nextpkt;
1836 DN_FREE_PKT(m);
1837 }
1838 qn = q->next ;
1839 FREE(q, M_DUMMYNET);
1840 }
1841 fs->rq[i] = NULL ;
1842 }
1843 fs->rq_elements = 0 ;
1844 if (all) {
1845 /* RED - free lookup table */
1846 if (fs->w_q_lookup)
1847 FREE(fs->w_q_lookup, M_DUMMYNET);
1848 if (fs->rq)
1849 FREE(fs->rq, M_DUMMYNET);
1850 /* if this fs is not part of a pipe, free it */
1851 if (fs->pipe && fs != &(fs->pipe->fs) )
1852 FREE(fs, M_DUMMYNET);
1853 }
1854 }
1855
1856 /*
1857 * Dispose all packets queued on a pipe (not a flow_set).
1858 * Also free all resources associated to a pipe, which is about
1859 * to be deleted.
1860 */
1861 static void
1862 purge_pipe(struct dn_pipe *pipe)
1863 {
1864 struct mbuf *m, *mnext;
1865
1866 purge_flow_set( &(pipe->fs), 1 );
1867
1868 mnext = pipe->head;
1869 while ((m = mnext) != NULL) {
1870 mnext = m->m_nextpkt;
1871 DN_FREE_PKT(m);
1872 }
1873
1874 heap_free( &(pipe->scheduler_heap) );
1875 heap_free( &(pipe->not_eligible_heap) );
1876 heap_free( &(pipe->idle_heap) );
1877 }
1878
1879 /*
1880 * Delete all pipes and heaps returning memory. Must also
1881 * remove references from all ipfw rules to all pipes.
1882 */
1883 static void
1884 dummynet_flush(void)
1885 {
1886 struct dn_pipe *pipe, *pipe1;
1887 struct dn_flow_set *fs, *fs1;
1888 int i;
1889
1890 lck_mtx_lock(dn_mutex);
1891
1892 #if IPFW2
1893 /* remove all references to pipes ...*/
1894 flush_pipe_ptrs(NULL);
1895 #endif /* IPFW2 */
1896
1897 /* Free heaps so we don't have unwanted events. */
1898 heap_free(&ready_heap);
1899 heap_free(&wfq_ready_heap);
1900 heap_free(&extract_heap);
1901
1902 /*
1903 * Now purge all queued pkts and delete all pipes.
1904 *
1905 * XXXGL: can we merge the for(;;) cycles into one or not?
1906 */
1907 for (i = 0; i < HASHSIZE; i++)
1908 SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
1909 SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
1910 purge_flow_set(fs, 1);
1911 }
1912 for (i = 0; i < HASHSIZE; i++)
1913 SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
1914 SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
1915 purge_pipe(pipe);
1916 FREE(pipe, M_DUMMYNET);
1917 }
1918 lck_mtx_unlock(dn_mutex);
1919 }
1920
1921
1922 static void
1923 dn_ipfw_rule_delete_fs(struct dn_flow_set *fs, void *r)
1924 {
1925 int i ;
1926 struct dn_flow_queue *q ;
1927 struct mbuf *m ;
1928
1929 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1930 for (q = fs->rq[i] ; q ; q = q->next )
1931 for (m = q->head ; m ; m = m->m_nextpkt ) {
1932 struct dn_pkt_tag *pkt = dn_tag_get(m) ;
1933 if (pkt->dn_ipfw_rule == r)
1934 pkt->dn_ipfw_rule = &default_rule ;
1935 }
1936 }
1937 /*
1938 * when a firewall rule is deleted, scan all queues and remove the flow-id
1939 * from packets matching this rule.
1940 */
1941 void
1942 dn_ipfw_rule_delete(void *r)
1943 {
1944 struct dn_pipe *p ;
1945 struct dn_flow_set *fs ;
1946 struct dn_pkt_tag *pkt ;
1947 struct mbuf *m ;
1948 int i;
1949
1950 lck_mtx_lock(dn_mutex);
1951
1952 /*
1953 * If the rule references a queue (dn_flow_set), then scan
1954 * the flow set, otherwise scan pipes. Should do either, but doing
1955 * both does not harm.
1956 */
1957 for (i = 0; i < HASHSIZE; i++)
1958 SLIST_FOREACH(fs, &flowsethash[i], next)
1959 dn_ipfw_rule_delete_fs(fs, r);
1960
1961 for (i = 0; i < HASHSIZE; i++)
1962 SLIST_FOREACH(p, &pipehash[i], next) {
1963 fs = &(p->fs);
1964 dn_ipfw_rule_delete_fs(fs, r);
1965 for (m = p->head ; m ; m = m->m_nextpkt ) {
1966 pkt = dn_tag_get(m);
1967 if (pkt->dn_ipfw_rule == r)
1968 pkt->dn_ipfw_rule = &default_rule;
1969 }
1970 }
1971 lck_mtx_unlock(dn_mutex);
1972 }
1973
1974 /*
1975 * setup RED parameters
1976 */
1977 static int
1978 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1979 {
1980 int i;
1981
1982 x->w_q = p->w_q;
1983 x->min_th = SCALE(p->min_th);
1984 x->max_th = SCALE(p->max_th);
1985 x->max_p = p->max_p;
1986
1987 x->c_1 = p->max_p / (p->max_th - p->min_th);
1988 x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1989 if (x->flags_fs & DN_IS_GENTLE_RED) {
1990 x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1991 x->c_4 = (SCALE(1) - 2 * p->max_p);
1992 }
1993
1994 /* if the lookup table already exist, free and create it again */
1995 if (x->w_q_lookup) {
1996 FREE(x->w_q_lookup, M_DUMMYNET);
1997 x->w_q_lookup = NULL ;
1998 }
1999 if (red_lookup_depth == 0) {
2000 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
2001 FREE(x, M_DUMMYNET);
2002 return EINVAL;
2003 }
2004 x->lookup_depth = red_lookup_depth;
2005 x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
2006 M_DUMMYNET, M_DONTWAIT);
2007 if (x->w_q_lookup == NULL) {
2008 printf("dummynet: sorry, cannot allocate red lookup table\n");
2009 FREE(x, M_DUMMYNET);
2010 return ENOSPC;
2011 }
2012
2013 /* fill the lookup table with (1 - w_q)^x */
2014 x->lookup_step = p->lookup_step ;
2015 x->lookup_weight = p->lookup_weight ;
2016 x->w_q_lookup[0] = SCALE(1) - x->w_q;
2017 for (i = 1; i < x->lookup_depth; i++)
2018 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
2019 if (red_avg_pkt_size < 1)
2020 red_avg_pkt_size = 512 ;
2021 x->avg_pkt_size = red_avg_pkt_size ;
2022 if (red_max_pkt_size < 1)
2023 red_max_pkt_size = 1500 ;
2024 x->max_pkt_size = red_max_pkt_size ;
2025 return 0 ;
2026 }
2027
2028 static int
2029 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
2030 {
2031 if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
2032 int l = pfs->rq_size;
2033
2034 if (l == 0)
2035 l = dn_hash_size;
2036 if (l < 4)
2037 l = 4;
2038 else if (l > DN_MAX_HASH_SIZE)
2039 l = DN_MAX_HASH_SIZE;
2040 x->rq_size = l;
2041 } else /* one is enough for null mask */
2042 x->rq_size = 1;
2043 x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
2044 M_DUMMYNET, M_DONTWAIT | M_ZERO);
2045 if (x->rq == NULL) {
2046 printf("dummynet: sorry, cannot allocate queue\n");
2047 return ENOSPC;
2048 }
2049 x->rq_elements = 0;
2050 return 0 ;
2051 }
2052
2053 static void
2054 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
2055 {
2056 x->flags_fs = src->flags_fs;
2057 x->qsize = src->qsize;
2058 x->plr = src->plr;
2059 x->flow_mask = src->flow_mask;
2060 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
2061 if (x->qsize > 1024*1024)
2062 x->qsize = 1024*1024 ;
2063 } else {
2064 if (x->qsize == 0)
2065 x->qsize = 50 ;
2066 if (x->qsize > 100)
2067 x->qsize = 50 ;
2068 }
2069 /* configuring RED */
2070 if ( x->flags_fs & DN_IS_RED )
2071 config_red(src, x) ; /* XXX should check errors */
2072 }
2073
2074 /*
2075 * setup pipe or queue parameters.
2076 */
2077
2078 static int
2079 config_pipe(struct dn_pipe *p)
2080 {
2081 int i, r;
2082 struct dn_flow_set *pfs = &(p->fs);
2083 struct dn_flow_queue *q;
2084
2085 /*
2086 * The config program passes parameters as follows:
2087 * bw = bits/second (0 means no limits),
2088 * delay = ms, must be translated into ticks.
2089 * qsize = slots/bytes
2090 */
2091 p->delay = ( p->delay * (hz*10) ) / 1000 ;
2092 /* We need either a pipe number or a flow_set number */
2093 if (p->pipe_nr == 0 && pfs->fs_nr == 0)
2094 return EINVAL ;
2095 if (p->pipe_nr != 0 && pfs->fs_nr != 0)
2096 return EINVAL ;
2097 if (p->pipe_nr != 0) { /* this is a pipe */
2098 struct dn_pipe *x, *b;
2099
2100 lck_mtx_lock(dn_mutex);
2101
2102 /* locate pipe */
2103 b = locate_pipe(p->pipe_nr);
2104
2105 if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
2106 x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
2107 if (x == NULL) {
2108 lck_mtx_unlock(dn_mutex);
2109 printf("dummynet: no memory for new pipe\n");
2110 return ENOSPC;
2111 }
2112 x->pipe_nr = p->pipe_nr;
2113 x->fs.pipe = x ;
2114 /* idle_heap is the only one from which we extract from the middle.
2115 */
2116 x->idle_heap.size = x->idle_heap.elements = 0 ;
2117 x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
2118 } else {
2119 x = b;
2120 /* Flush accumulated credit for all queues */
2121 for (i = 0; i <= x->fs.rq_size; i++)
2122 for (q = x->fs.rq[i]; q; q = q->next)
2123 q->numbytes = 0;
2124 }
2125
2126 x->bandwidth = p->bandwidth ;
2127 x->numbytes = 0; /* just in case... */
2128 bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
2129 x->ifp = NULL ; /* reset interface ptr */
2130 x->delay = p->delay ;
2131 set_fs_parms(&(x->fs), pfs);
2132
2133
2134 if ( x->fs.rq == NULL ) { /* a new pipe */
2135 r = alloc_hash(&(x->fs), pfs) ;
2136 if (r) {
2137 lck_mtx_unlock(dn_mutex);
2138 FREE(x, M_DUMMYNET);
2139 return r ;
2140 }
2141 SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
2142 x, next);
2143 }
2144 lck_mtx_unlock(dn_mutex);
2145 } else { /* config queue */
2146 struct dn_flow_set *x, *b ;
2147
2148 lck_mtx_lock(dn_mutex);
2149 /* locate flow_set */
2150 b = locate_flowset(pfs->fs_nr);
2151
2152 if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
2153 if (pfs->parent_nr == 0) { /* need link to a pipe */
2154 lck_mtx_unlock(dn_mutex);
2155 return EINVAL ;
2156 }
2157 x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
2158 if (x == NULL) {
2159 lck_mtx_unlock(dn_mutex);
2160 printf("dummynet: no memory for new flow_set\n");
2161 return ENOSPC;
2162 }
2163 x->fs_nr = pfs->fs_nr;
2164 x->parent_nr = pfs->parent_nr;
2165 x->weight = pfs->weight ;
2166 if (x->weight == 0)
2167 x->weight = 1 ;
2168 else if (x->weight > 100)
2169 x->weight = 100 ;
2170 } else {
2171 /* Change parent pipe not allowed; must delete and recreate */
2172 if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
2173 lck_mtx_unlock(dn_mutex);
2174 return EINVAL ;
2175 }
2176 x = b;
2177 }
2178 set_fs_parms(x, pfs);
2179
2180 if ( x->rq == NULL ) { /* a new flow_set */
2181 r = alloc_hash(x, pfs) ;
2182 if (r) {
2183 lck_mtx_unlock(dn_mutex);
2184 FREE(x, M_DUMMYNET);
2185 return r ;
2186 }
2187 SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
2188 x, next);
2189 }
2190 lck_mtx_unlock(dn_mutex);
2191 }
2192 return 0 ;
2193 }
2194
2195 /*
2196 * Helper function to remove from a heap queues which are linked to
2197 * a flow_set about to be deleted.
2198 */
2199 static void
2200 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
2201 {
2202 int i = 0, found = 0 ;
2203 for (; i < h->elements ;)
2204 if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
2205 h->elements-- ;
2206 h->p[i] = h->p[h->elements] ;
2207 found++ ;
2208 } else
2209 i++ ;
2210 if (found)
2211 heapify(h);
2212 }
2213
2214 /*
2215 * helper function to remove a pipe from a heap (can be there at most once)
2216 */
2217 static void
2218 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
2219 {
2220 if (h->elements > 0) {
2221 int i = 0 ;
2222 for (i=0; i < h->elements ; i++ ) {
2223 if (h->p[i].object == p) { /* found it */
2224 h->elements-- ;
2225 h->p[i] = h->p[h->elements] ;
2226 heapify(h);
2227 break ;
2228 }
2229 }
2230 }
2231 }
2232
2233 /*
2234 * drain all queues. Called in case of severe mbuf shortage.
2235 */
2236 void
2237 dummynet_drain(void)
2238 {
2239 struct dn_flow_set *fs;
2240 struct dn_pipe *p;
2241 struct mbuf *m, *mnext;
2242 int i;
2243
2244 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2245
2246 heap_free(&ready_heap);
2247 heap_free(&wfq_ready_heap);
2248 heap_free(&extract_heap);
2249 /* remove all references to this pipe from flow_sets */
2250 for (i = 0; i < HASHSIZE; i++)
2251 SLIST_FOREACH(fs, &flowsethash[i], next)
2252 purge_flow_set(fs, 0);
2253
2254 for (i = 0; i < HASHSIZE; i++)
2255 SLIST_FOREACH(p, &pipehash[i], next) {
2256 purge_flow_set(&(p->fs), 0);
2257
2258 mnext = p->head;
2259 while ((m = mnext) != NULL) {
2260 mnext = m->m_nextpkt;
2261 DN_FREE_PKT(m);
2262 }
2263 p->head = p->tail = NULL ;
2264 }
2265 }
2266
2267 /*
2268 * Fully delete a pipe or a queue, cleaning up associated info.
2269 */
2270 static int
2271 delete_pipe(struct dn_pipe *p)
2272 {
2273 if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
2274 return EINVAL ;
2275 if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
2276 return EINVAL ;
2277 if (p->pipe_nr != 0) { /* this is an old-style pipe */
2278 struct dn_pipe *b;
2279 struct dn_flow_set *fs;
2280 int i;
2281
2282 lck_mtx_lock(dn_mutex);
2283 /* locate pipe */
2284 b = locate_pipe(p->pipe_nr);
2285 if(b == NULL){
2286 lck_mtx_unlock(dn_mutex);
2287 return EINVAL ; /* not found */
2288 }
2289
2290 /* Unlink from list of pipes. */
2291 SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
2292
2293 #if IPFW2
2294 /* remove references to this pipe from the ip_fw rules. */
2295 flush_pipe_ptrs(&(b->fs));
2296 #endif /* IPFW2 */
2297
2298 /* Remove all references to this pipe from flow_sets. */
2299 for (i = 0; i < HASHSIZE; i++)
2300 SLIST_FOREACH(fs, &flowsethash[i], next)
2301 if (fs->pipe == b) {
2302 printf("dummynet: ++ ref to pipe %d from fs %d\n",
2303 p->pipe_nr, fs->fs_nr);
2304 fs->pipe = NULL ;
2305 purge_flow_set(fs, 0);
2306 }
2307 fs_remove_from_heap(&ready_heap, &(b->fs));
2308
2309 purge_pipe(b); /* remove all data associated to this pipe */
2310 /* remove reference to here from extract_heap and wfq_ready_heap */
2311 pipe_remove_from_heap(&extract_heap, b);
2312 pipe_remove_from_heap(&wfq_ready_heap, b);
2313 lck_mtx_unlock(dn_mutex);
2314
2315 FREE(b, M_DUMMYNET);
2316 } else { /* this is a WF2Q queue (dn_flow_set) */
2317 struct dn_flow_set *b;
2318
2319 lck_mtx_lock(dn_mutex);
2320 /* locate set */
2321 b = locate_flowset(p->fs.fs_nr);
2322 if (b == NULL) {
2323 lck_mtx_unlock(dn_mutex);
2324 return EINVAL ; /* not found */
2325 }
2326
2327 #if IPFW2
2328 /* remove references to this flow_set from the ip_fw rules. */
2329 flush_pipe_ptrs(b);
2330 #endif /* IPFW2 */
2331
2332 /* Unlink from list of flowsets. */
2333 SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
2334
2335 if (b->pipe != NULL) {
2336 /* Update total weight on parent pipe and cleanup parent heaps */
2337 b->pipe->sum -= b->weight * b->backlogged ;
2338 fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
2339 fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
2340 #if 1 /* XXX should i remove from idle_heap as well ? */
2341 fs_remove_from_heap(&(b->pipe->idle_heap), b);
2342 #endif
2343 }
2344 purge_flow_set(b, 1);
2345 lck_mtx_unlock(dn_mutex);
2346 }
2347 return 0 ;
2348 }
2349
2350 /*
2351 * helper function used to copy data from kernel in DUMMYNET_GET
2352 */
2353 static
2354 char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
2355 {
2356 int i, copied = 0 ;
2357 struct dn_flow_queue *q;
2358 struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
2359
2360 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2361
2362 for (i = 0 ; i <= set->rq_size ; i++)
2363 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2364 if (q->hash_slot != i)
2365 printf("dummynet: ++ at %d: wrong slot (have %d, "
2366 "should be %d)\n", copied, q->hash_slot, i);
2367 if (q->fs != set)
2368 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
2369 i, q->fs, set);
2370 copied++ ;
2371 cp_queue_to_32_user( q, qp );
2372 /* cleanup pointers */
2373 qp->next = (user32_addr_t)0 ;
2374 qp->head = qp->tail = (user32_addr_t)0 ;
2375 qp->fs = (user32_addr_t)0 ;
2376 }
2377 if (copied != set->rq_elements)
2378 printf("dummynet: ++ wrong count, have %d should be %d\n",
2379 copied, set->rq_elements);
2380 return (char *)qp ;
2381 }
2382
2383 static
2384 char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
2385 {
2386 int i, copied = 0 ;
2387 struct dn_flow_queue *q;
2388 struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
2389
2390 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2391
2392 for (i = 0 ; i <= set->rq_size ; i++)
2393 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2394 if (q->hash_slot != i)
2395 printf("dummynet: ++ at %d: wrong slot (have %d, "
2396 "should be %d)\n", copied, q->hash_slot, i);
2397 if (q->fs != set)
2398 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
2399 i, q->fs, set);
2400 copied++ ;
2401 //bcopy(q, qp, sizeof(*q));
2402 cp_queue_to_64_user( q, qp );
2403 /* cleanup pointers */
2404 qp->next = USER_ADDR_NULL ;
2405 qp->head = qp->tail = USER_ADDR_NULL ;
2406 qp->fs = USER_ADDR_NULL ;
2407 }
2408 if (copied != set->rq_elements)
2409 printf("dummynet: ++ wrong count, have %d should be %d\n",
2410 copied, set->rq_elements);
2411 return (char *)qp ;
2412 }
2413
2414 static size_t
2415 dn_calc_size(int is64user)
2416 {
2417 struct dn_flow_set *set ;
2418 struct dn_pipe *p ;
2419 size_t size = 0 ;
2420 size_t pipesize;
2421 size_t queuesize;
2422 size_t setsize;
2423 int i;
2424
2425 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2426 if ( is64user ){
2427 pipesize = sizeof(struct dn_pipe_64);
2428 queuesize = sizeof(struct dn_flow_queue_64);
2429 setsize = sizeof(struct dn_flow_set_64);
2430 }
2431 else {
2432 pipesize = sizeof(struct dn_pipe_32);
2433 queuesize = sizeof( struct dn_flow_queue_32 );
2434 setsize = sizeof(struct dn_flow_set_32);
2435 }
2436 /*
2437 * compute size of data structures: list of pipes and flow_sets.
2438 */
2439 for (i = 0; i < HASHSIZE; i++) {
2440 SLIST_FOREACH(p, &pipehash[i], next)
2441 size += sizeof(*p) +
2442 p->fs.rq_elements * sizeof(struct dn_flow_queue);
2443 SLIST_FOREACH(set, &flowsethash[i], next)
2444 size += sizeof (*set) +
2445 set->rq_elements * sizeof(struct dn_flow_queue);
2446 }
2447 return size;
2448 }
2449
2450 static int
2451 dummynet_get(struct sockopt *sopt)
2452 {
2453 char *buf, *bp=NULL; /* bp is the "copy-pointer" */
2454 size_t size ;
2455 struct dn_flow_set *set ;
2456 struct dn_pipe *p ;
2457 int error=0, i ;
2458 int is64user = 0;
2459
2460 /* XXX lock held too long */
2461 lck_mtx_lock(dn_mutex);
2462 /*
2463 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
2464 * cannot use this flag while holding a mutex.
2465 */
2466 if (proc_is64bit(sopt->sopt_p))
2467 is64user = 1;
2468 for (i = 0; i < 10; i++) {
2469 size = dn_calc_size(is64user);
2470 lck_mtx_unlock(dn_mutex);
2471 buf = _MALLOC(size, M_TEMP, M_WAITOK);
2472 if (buf == NULL)
2473 return ENOBUFS;
2474 lck_mtx_lock(dn_mutex);
2475 if (size == dn_calc_size(is64user))
2476 break;
2477 FREE(buf, M_TEMP);
2478 buf = NULL;
2479 }
2480 if (buf == NULL) {
2481 lck_mtx_unlock(dn_mutex);
2482 return ENOBUFS ;
2483 }
2484
2485
2486 bp = buf;
2487 for (i = 0; i < HASHSIZE; i++)
2488 SLIST_FOREACH(p, &pipehash[i], next) {
2489 /*
2490 * copy pipe descriptor into *bp, convert delay back to ms,
2491 * then copy the flow_set descriptor(s) one at a time.
2492 * After each flow_set, copy the queue descriptor it owns.
2493 */
2494 if ( is64user ){
2495 bp = cp_pipe_to_64_user(p, (struct dn_pipe_64 *)bp);
2496 }
2497 else{
2498 bp = cp_pipe_to_32_user(p, (struct dn_pipe_32 *)bp);
2499 }
2500 }
2501 for (i = 0; i < HASHSIZE; i++)
2502 SLIST_FOREACH(set, &flowsethash[i], next) {
2503 struct dn_flow_set_64 *fs_bp = (struct dn_flow_set_64 *)bp ;
2504 cp_flow_set_to_64_user(set, fs_bp);
2505 /* XXX same hack as above */
2506 fs_bp->next = CAST_DOWN(user64_addr_t, DN_IS_QUEUE);
2507 fs_bp->pipe = USER_ADDR_NULL;
2508 fs_bp->rq = USER_ADDR_NULL ;
2509 bp += sizeof(struct dn_flow_set_64);
2510 bp = dn_copy_set_64( set, bp );
2511 }
2512 lck_mtx_unlock(dn_mutex);
2513
2514 error = sooptcopyout(sopt, buf, size);
2515 FREE(buf, M_TEMP);
2516 return error ;
2517 }
2518
2519 /*
2520 * Handler for the various dummynet socket options (get, flush, config, del)
2521 */
2522 static int
2523 ip_dn_ctl(struct sockopt *sopt)
2524 {
2525 int error = 0 ;
2526 struct dn_pipe *p, tmp_pipe;
2527
2528 /* Disallow sets in really-really secure mode. */
2529 if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
2530 return (EPERM);
2531
2532 switch (sopt->sopt_name) {
2533 default :
2534 printf("dummynet: -- unknown option %d", sopt->sopt_name);
2535 return EINVAL ;
2536
2537 case IP_DUMMYNET_GET :
2538 error = dummynet_get(sopt);
2539 break ;
2540
2541 case IP_DUMMYNET_FLUSH :
2542 dummynet_flush() ;
2543 break ;
2544
2545 case IP_DUMMYNET_CONFIGURE :
2546 p = &tmp_pipe ;
2547 if (proc_is64bit(sopt->sopt_p))
2548 error = cp_pipe_from_user_64( sopt, p );
2549 else
2550 error = cp_pipe_from_user_32( sopt, p );
2551
2552 if (error)
2553 break ;
2554 error = config_pipe(p);
2555 break ;
2556
2557 case IP_DUMMYNET_DEL : /* remove a pipe or queue */
2558 p = &tmp_pipe ;
2559 if (proc_is64bit(sopt->sopt_p))
2560 error = cp_pipe_from_user_64( sopt, p );
2561 else
2562 error = cp_pipe_from_user_32( sopt, p );
2563 if (error)
2564 break ;
2565
2566 error = delete_pipe(p);
2567 break ;
2568 }
2569 return error ;
2570 }
2571
2572 void
2573 ip_dn_init(void)
2574 {
2575 /* setup locks */
2576 dn_mutex_grp_attr = lck_grp_attr_alloc_init();
2577 dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
2578 dn_mutex_attr = lck_attr_alloc_init();
2579 lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr);
2580
2581 ready_heap.size = ready_heap.elements = 0 ;
2582 ready_heap.offset = 0 ;
2583
2584 wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
2585 wfq_ready_heap.offset = 0 ;
2586
2587 extract_heap.size = extract_heap.elements = 0 ;
2588 extract_heap.offset = 0 ;
2589 ip_dn_ctl_ptr = ip_dn_ctl;
2590 ip_dn_io_ptr = dummynet_io;
2591
2592 bzero(&default_rule, sizeof default_rule);
2593
2594 default_rule.act_ofs = 0;
2595 default_rule.rulenum = IPFW_DEFAULT_RULE;
2596 default_rule.cmd_len = 1;
2597 default_rule.set = RESVD_SET;
2598
2599 default_rule.cmd[0].len = 1;
2600 default_rule.cmd[0].opcode =
2601 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2602 1 ? O_ACCEPT :
2603 #endif
2604 O_DENY;
2605 }