2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
23 * @APPLE_LICENSE_HEADER_END@
26 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
27 * The Regents of the University of California. All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
32 * 1. Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * 2. Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in the
36 * documentation and/or other materials provided with the distribution.
37 * 3. All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 * This product includes software developed by the University of
40 * California, Berkeley and its contributors.
41 * 4. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
58 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/callout.h>
65 #include <sys/kernel.h>
66 #include <sys/sysctl.h>
67 #include <sys/malloc.h>
70 #include <sys/domain.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/protosw.h>
76 #include <sys/random.h>
77 #include <sys/syslog.h>
81 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
89 #include <netinet/ip6.h>
91 #include <netinet/in_pcb.h>
93 #include <netinet6/in6_pcb.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip_var.h>
98 #include <netinet6/ip6_var.h>
100 #include <netinet/tcp.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
106 #include <netinet6/tcp6_var.h>
108 #include <netinet/tcpip.h>
110 #include <netinet/tcp_debug.h>
112 #include <netinet6/ip6protosw.h>
115 #include <netinet6/ipsec.h>
117 #include <netinet6/ipsec6.h>
122 #include <sys/kdebug.h>
124 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
127 /* temporary: for testing */
129 extern int ipsec_bypass
;
132 int tcp_mssdflt
= TCP_MSS
;
133 SYSCTL_INT(_net_inet_tcp
, TCPCTL_MSSDFLT
, mssdflt
, CTLFLAG_RW
,
134 &tcp_mssdflt
, 0, "Default TCP Maximum Segment Size");
137 int tcp_v6mssdflt
= TCP6_MSS
;
138 SYSCTL_INT(_net_inet_tcp
, TCPCTL_V6MSSDFLT
, v6mssdflt
,
139 CTLFLAG_RW
, &tcp_v6mssdflt
, 0,
140 "Default TCP Maximum Segment Size for IPv6");
143 static int tcp_do_rfc1323
= 1;
144 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1323
, rfc1323
, CTLFLAG_RW
,
145 &tcp_do_rfc1323
, 0, "Enable rfc1323 (high performance TCP) extensions");
147 static int tcp_do_rfc1644
= 0;
148 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1644
, rfc1644
, CTLFLAG_RW
,
149 &tcp_do_rfc1644
, 0, "Enable rfc1644 (TTCP) extensions");
151 static int tcp_tcbhashsize
= 0;
152 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcbhashsize
, CTLFLAG_RD
,
153 &tcp_tcbhashsize
, 0, "Size of TCP control-block hashtable");
155 static int do_tcpdrain
= 1;
156 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, do_tcpdrain
, CTLFLAG_RW
, &do_tcpdrain
, 0,
157 "Enable tcp_drain routine for extra help when low on mbufs");
159 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, pcbcount
, CTLFLAG_RD
,
160 &tcbinfo
.ipi_count
, 0, "Number of active PCBs");
162 static int icmp_may_rst
= 1;
163 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, icmp_may_rst
, CTLFLAG_RW
, &icmp_may_rst
, 0,
164 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
166 static int tcp_strict_rfc1948
= 0;
167 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, strict_rfc1948
, CTLFLAG_RW
,
168 &tcp_strict_rfc1948
, 0, "Determines if RFC1948 is followed exactly");
170 static int tcp_isn_reseed_interval
= 0;
171 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, isn_reseed_interval
, CTLFLAG_RW
,
172 &tcp_isn_reseed_interval
, 0, "Seconds between reseeding of ISN secret");
174 static void tcp_cleartaocache
__P((void));
175 static void tcp_notify
__P((struct inpcb
*, int));
178 * Target size of TCP PCB hash tables. Must be a power of two.
180 * Note that this can be overridden by the kernel environment
181 * variable net.inet.tcp.tcbhashsize
184 #define TCBHASHSIZE 4096
188 * This is the actual shape of what we allocate using the zone
189 * allocator. Doing it this way allows us to protect both structures
190 * using the same generation count, and also eliminates the overhead
191 * of allocating tcpcbs separately. By hiding the structure here,
192 * we avoid changing most of the rest of the code (although it needs
193 * to be changed, eventually, for greater efficiency).
196 #define ALIGNM1 (ALIGNMENT - 1)
200 char align
[(sizeof(struct inpcb
) + ALIGNM1
) & ~ALIGNM1
];
204 struct callout inp_tp_rexmt
, inp_tp_persist
, inp_tp_keep
, inp_tp_2msl
;
205 struct callout inp_tp_delack
;
211 static struct tcpcb dummy_tcb
;
214 extern struct inpcbhead time_wait_slots
[];
215 extern int cur_tw_slot
;
216 extern u_long
*delack_bitmask
;
217 extern u_long route_generation
;
220 int get_inpcb_str_size()
222 return sizeof(struct inpcb
);
226 int get_tcp_str_size()
228 return sizeof(struct tcpcb
);
231 int tcp_freeq
__P((struct tcpcb
*tp
));
240 int hashsize
= TCBHASHSIZE
;
247 tcp_delacktime
= TCPTV_DELACK
;
248 tcp_keepinit
= TCPTV_KEEP_INIT
;
249 tcp_keepidle
= TCPTV_KEEP_IDLE
;
250 tcp_keepintvl
= TCPTV_KEEPINTVL
;
251 tcp_maxpersistidle
= TCPTV_KEEP_IDLE
;
253 read_random(&tcp_now
, sizeof(tcp_now
));
254 tcp_now
= tcp_now
& 0x7fffffffffffffff; /* Starts tcp internal 500ms clock at a random value */
258 tcbinfo
.listhead
= &tcb
;
260 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize
);
262 if (!powerof2(hashsize
)) {
263 printf("WARNING: TCB hash size not a power of 2\n");
264 hashsize
= 512; /* safe default */
266 tcp_tcbhashsize
= hashsize
;
267 tcbinfo
.hashsize
= hashsize
;
268 tcbinfo
.hashbase
= hashinit(hashsize
, M_PCB
, &tcbinfo
.hashmask
);
269 tcbinfo
.porthashbase
= hashinit(hashsize
, M_PCB
,
270 &tcbinfo
.porthashmask
);
272 str_size
= (vm_size_t
) sizeof(struct inp_tp
);
273 tcbinfo
.ipi_zone
= (void *) zinit(str_size
, 120000*str_size
, 8192, "tcpcb");
275 tcbinfo
.ipi_zone
= zinit("tcpcb", sizeof(struct inp_tp
), maxsockets
,
279 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
281 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
283 if (max_protohdr
< TCP_MINPROTOHDR
)
284 max_protohdr
= TCP_MINPROTOHDR
;
285 if (max_linkhdr
+ TCP_MINPROTOHDR
> MHLEN
)
287 #undef TCP_MINPROTOHDR
288 tcbinfo
.last_pcb
= 0;
289 dummy_tcb
.t_state
= TCP_NSTATES
;
290 dummy_tcb
.t_flags
= 0;
291 tcbinfo
.dummy_cb
= (caddr_t
) &dummy_tcb
;
292 in_pcb_nat_init(&tcbinfo
, AF_INET
, IPPROTO_TCP
, SOCK_STREAM
);
294 delack_bitmask
= _MALLOC((4 * hashsize
)/32, M_PCB
, M_WAITOK
);
295 if (delack_bitmask
== 0)
296 panic("Delack Memory");
298 for (i
=0; i
< (tcbinfo
.hashsize
/ 32); i
++)
299 delack_bitmask
[i
] = 0;
301 for (i
=0; i
< N_TIME_WAIT_SLOTS
; i
++) {
302 LIST_INIT(&time_wait_slots
[i
]);
307 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
308 * tcp_template used to store this data in mbufs, but we now recopy it out
309 * of the tcpcb each time to conserve mbufs.
312 tcp_fillheaders(tp
, ip_ptr
, tcp_ptr
)
317 struct inpcb
*inp
= tp
->t_inpcb
;
318 struct tcphdr
*tcp_hdr
= (struct tcphdr
*)tcp_ptr
;
321 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
324 ip6
= (struct ip6_hdr
*)ip_ptr
;
325 ip6
->ip6_flow
= (ip6
->ip6_flow
& ~IPV6_FLOWINFO_MASK
) |
326 (inp
->in6p_flowinfo
& IPV6_FLOWINFO_MASK
);
327 ip6
->ip6_vfc
= (ip6
->ip6_vfc
& ~IPV6_VERSION_MASK
) |
328 (IPV6_VERSION
& IPV6_VERSION_MASK
);
329 ip6
->ip6_nxt
= IPPROTO_TCP
;
330 ip6
->ip6_plen
= sizeof(struct tcphdr
);
331 ip6
->ip6_src
= inp
->in6p_laddr
;
332 ip6
->ip6_dst
= inp
->in6p_faddr
;
337 struct ip
*ip
= (struct ip
*) ip_ptr
;
339 ip
->ip_vhl
= IP_VHL_BORING
;
346 ip
->ip_p
= IPPROTO_TCP
;
347 ip
->ip_src
= inp
->inp_laddr
;
348 ip
->ip_dst
= inp
->inp_faddr
;
349 tcp_hdr
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
350 htons(sizeof(struct tcphdr
) + IPPROTO_TCP
));
353 tcp_hdr
->th_sport
= inp
->inp_lport
;
354 tcp_hdr
->th_dport
= inp
->inp_fport
;
359 tcp_hdr
->th_flags
= 0;
365 * Create template to be used to send tcp packets on a connection.
366 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
367 * use for this function is in keepalives, which use tcp_respond.
376 m
= m_get(M_DONTWAIT
, MT_HEADER
);
379 m
->m_len
= sizeof(struct tcptemp
);
380 n
= mtod(m
, struct tcptemp
*);
382 tcp_fillheaders(tp
, (void *)&n
->tt_ipgen
, (void *)&n
->tt_t
);
387 * Send a single message to the TCP at address specified by
388 * the given TCP/IP header. If m == 0, then we make a copy
389 * of the tcpiphdr at ti and send directly to the addressed host.
390 * This is used to force keep alive messages out using the TCP
391 * template for a connection. If flags are given then we send
392 * a message back to the TCP which originated the * segment ti,
393 * and discard the mbuf containing it and any other attached mbufs.
395 * In any case the ack and sequence number of the transmitted
396 * segment are as specified by the parameters.
398 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
401 tcp_respond(tp
, ipgen
, th
, m
, ack
, seq
, flags
)
404 register struct tcphdr
*th
;
405 register struct mbuf
*m
;
411 struct route
*ro
= 0;
416 struct route_in6
*ro6
= 0;
417 struct route_in6 sro6
;
424 isipv6
= IP_VHL_V(((struct ip
*)ipgen
)->ip_vhl
) == 6;
430 if (!(flags
& TH_RST
)) {
431 win
= sbspace(&tp
->t_inpcb
->inp_socket
->so_rcv
);
432 if (win
> (long)TCP_MAXWIN
<< tp
->rcv_scale
)
433 win
= (long)TCP_MAXWIN
<< tp
->rcv_scale
;
437 ro6
= &tp
->t_inpcb
->in6p_route
;
440 ro
= &tp
->t_inpcb
->inp_route
;
445 bzero(ro6
, sizeof *ro6
);
450 bzero(ro
, sizeof *ro
);
454 m
= m_gethdr(M_DONTWAIT
, MT_HEADER
);
458 m
->m_data
+= max_linkhdr
;
461 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
),
462 sizeof(struct ip6_hdr
));
463 ip6
= mtod(m
, struct ip6_hdr
*);
464 nth
= (struct tcphdr
*)(ip6
+ 1);
468 bcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
469 ip
= mtod(m
, struct ip
*);
470 nth
= (struct tcphdr
*)(ip
+ 1);
472 bcopy((caddr_t
)th
, (caddr_t
)nth
, sizeof(struct tcphdr
));
477 m
->m_data
= (caddr_t
)ipgen
;
478 /* m_len is set later */
480 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
483 xchg(ip6
->ip6_dst
, ip6
->ip6_src
, struct in6_addr
);
484 nth
= (struct tcphdr
*)(ip6
+ 1);
488 xchg(ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
, n_long
);
489 nth
= (struct tcphdr
*)(ip
+ 1);
493 * this is usually a case when an extension header
494 * exists between the IPv6 header and the
497 nth
->th_sport
= th
->th_sport
;
498 nth
->th_dport
= th
->th_dport
;
500 xchg(nth
->th_dport
, nth
->th_sport
, n_short
);
505 ip6
->ip6_plen
= htons((u_short
)(sizeof (struct tcphdr
) +
507 tlen
+= sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
);
511 tlen
+= sizeof (struct tcpiphdr
);
513 ip
->ip_ttl
= ip_defttl
;
516 m
->m_pkthdr
.len
= tlen
;
517 m
->m_pkthdr
.rcvif
= (struct ifnet
*) 0;
518 nth
->th_seq
= htonl(seq
);
519 nth
->th_ack
= htonl(ack
);
521 nth
->th_off
= sizeof (struct tcphdr
) >> 2;
522 nth
->th_flags
= flags
;
524 nth
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
526 nth
->th_win
= htons((u_short
)win
);
531 nth
->th_sum
= in6_cksum(m
, IPPROTO_TCP
,
532 sizeof(struct ip6_hdr
),
533 tlen
- sizeof(struct ip6_hdr
));
534 ip6
->ip6_hlim
= in6_selecthlim(tp
? tp
->t_inpcb
: NULL
,
541 nth
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
542 htons((u_short
)(tlen
- sizeof(struct ip
) + ip
->ip_p
)));
543 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
544 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
547 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
548 tcp_trace(TA_OUTPUT
, 0, tp
, mtod(m
, void *), th
, 0);
551 if (ipsec_bypass
== 0 && ipsec_setsocket(m
, tp
? tp
->t_inpcb
->inp_socket
: NULL
) != 0) {
558 (void)ip6_output(m
, NULL
, ro6
, ipflags
, NULL
, NULL
);
559 if (ro6
== &sro6
&& ro6
->ro_rt
) {
566 (void) ip_output(m
, NULL
, ro
, ipflags
, NULL
);
567 if (ro
== &sro
&& ro
->ro_rt
) {
575 * Create a new TCP control block, making an
576 * empty reassembly queue and hooking it to the argument
577 * protocol control block. The `inp' parameter must have
578 * come from the zone allocator set up in tcp_init().
585 register struct tcpcb
*tp
;
586 register struct socket
*so
= inp
->inp_socket
;
588 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
591 if (so
->cached_in_sock_layer
== 0) {
592 it
= (struct inp_tp
*)inp
;
596 tp
= (struct tcpcb
*) inp
->inp_saved_ppcb
;
598 bzero((char *) tp
, sizeof(struct tcpcb
));
599 LIST_INIT(&tp
->t_segq
);
600 tp
->t_maxseg
= tp
->t_maxopd
=
602 isipv6
? tcp_v6mssdflt
:
607 /* Set up our timeouts. */
608 callout_init(tp
->tt_rexmt
= &it
->inp_tp_rexmt
);
609 callout_init(tp
->tt_persist
= &it
->inp_tp_persist
);
610 callout_init(tp
->tt_keep
= &it
->inp_tp_keep
);
611 callout_init(tp
->tt_2msl
= &it
->inp_tp_2msl
);
612 callout_init(tp
->tt_delack
= &it
->inp_tp_delack
);
616 tp
->t_flags
= (TF_REQ_SCALE
|TF_REQ_TSTMP
);
618 tp
->t_flags
|= TF_REQ_CC
;
619 tp
->t_inpcb
= inp
; /* XXX */
621 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
622 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
623 * reasonable initial retransmit time.
625 tp
->t_srtt
= TCPTV_SRTTBASE
;
626 tp
->t_rttvar
= ((TCPTV_RTOBASE
- TCPTV_SRTTBASE
) << TCP_RTTVAR_SHIFT
) / 4;
627 tp
->t_rttmin
= TCPTV_MIN
;
628 tp
->t_rxtcur
= TCPTV_RTOBASE
;
629 tp
->snd_cwnd
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
630 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
632 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
633 * because the socket may be bound to an IPv6 wildcard address,
634 * which may match an IPv4-mapped IPv6 address.
636 inp
->inp_ip_ttl
= ip_defttl
;
637 inp
->inp_ppcb
= (caddr_t
)tp
;
638 return (tp
); /* XXX */
642 * Drop a TCP connection, reporting
643 * the specified error. If connection is synchronized,
644 * then send a RST to peer.
648 register struct tcpcb
*tp
;
651 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
656 case TCPS_ESTABLISHED
:
657 case TCPS_FIN_WAIT_1
:
659 case TCPS_CLOSE_WAIT
:
665 if (TCPS_HAVERCVDSYN(tp
->t_state
)) {
666 tp
->t_state
= TCPS_CLOSED
;
667 (void) tcp_output(tp
);
668 tcpstat
.tcps_drops
++;
670 tcpstat
.tcps_conndrops
++;
671 if (errno
== ETIMEDOUT
&& tp
->t_softerror
)
672 errno
= tp
->t_softerror
;
673 so
->so_error
= errno
;
674 return (tcp_close(tp
));
678 * Close a TCP control block:
679 * discard all space held by the tcp
680 * discard internet protocol block
681 * wake up any sleepers
685 register struct tcpcb
*tp
;
687 register struct tseg_qent
*q
;
688 struct inpcb
*inp
= tp
->t_inpcb
;
689 struct socket
*so
= inp
->inp_socket
;
691 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
693 register struct rtentry
*rt
;
696 if ( inp
->inp_ppcb
== NULL
) /* tcp_close was called previously, bail */
701 * Make sure that all of our timers are stopped before we
704 callout_stop(tp
->tt_rexmt
);
705 callout_stop(tp
->tt_persist
);
706 callout_stop(tp
->tt_keep
);
707 callout_stop(tp
->tt_2msl
);
708 callout_stop(tp
->tt_delack
);
710 /* Clear the timers before we delete the PCB. */
713 for (i
= 0; i
< TCPT_NTIMERS
; i
++) {
720 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_START
, tp
,0,0,0,0);
723 case TCPS_ESTABLISHED
:
724 case TCPS_FIN_WAIT_1
:
726 case TCPS_CLOSE_WAIT
:
733 * If we got enough samples through the srtt filter,
734 * save the rtt and rttvar in the routing entry.
735 * 'Enough' is arbitrarily defined as the 16 samples.
736 * 16 samples is enough for the srtt filter to converge
737 * to within 5% of the correct value; fewer samples and
738 * we could save a very bogus rtt.
740 * Don't update the default route's characteristics and don't
741 * update anything that the user "locked".
743 if (tp
->t_rttupdated
>= 16) {
744 register u_long i
= 0;
747 struct sockaddr_in6
*sin6
;
749 if ((rt
= inp
->in6p_route
.ro_rt
) == NULL
)
751 sin6
= (struct sockaddr_in6
*)rt_key(rt
);
752 if (IN6_IS_ADDR_UNSPECIFIED(&sin6
->sin6_addr
))
757 rt
= inp
->inp_route
.ro_rt
;
759 ((struct sockaddr_in
*)rt_key(rt
))->sin_addr
.s_addr
760 == INADDR_ANY
|| rt
->generation_id
!= route_generation
) {
761 if (tp
->t_state
>= TCPS_CLOSE_WAIT
)
762 tp
->t_state
= TCPS_CLOSING
;
767 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0) {
769 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTT_SCALE
));
770 if (rt
->rt_rmx
.rmx_rtt
&& i
)
772 * filter this update to half the old & half
773 * the new values, converting scale.
774 * See route.h and tcp_var.h for a
775 * description of the scaling constants.
778 (rt
->rt_rmx
.rmx_rtt
+ i
) / 2;
780 rt
->rt_rmx
.rmx_rtt
= i
;
781 tcpstat
.tcps_cachedrtt
++;
783 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTTVAR
) == 0) {
785 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTTVAR_SCALE
));
786 if (rt
->rt_rmx
.rmx_rttvar
&& i
)
787 rt
->rt_rmx
.rmx_rttvar
=
788 (rt
->rt_rmx
.rmx_rttvar
+ i
) / 2;
790 rt
->rt_rmx
.rmx_rttvar
= i
;
791 tcpstat
.tcps_cachedrttvar
++;
794 * The old comment here said:
795 * update the pipelimit (ssthresh) if it has been updated
796 * already or if a pipesize was specified & the threshhold
797 * got below half the pipesize. I.e., wait for bad news
798 * before we start updating, then update on both good
801 * But we want to save the ssthresh even if no pipesize is
802 * specified explicitly in the route, because such
803 * connections still have an implicit pipesize specified
804 * by the global tcp_sendspace. In the absence of a reliable
805 * way to calculate the pipesize, it will have to do.
807 i
= tp
->snd_ssthresh
;
808 if (rt
->rt_rmx
.rmx_sendpipe
!= 0)
809 dosavessthresh
= (i
< rt
->rt_rmx
.rmx_sendpipe
/ 2);
811 dosavessthresh
= (i
< so
->so_snd
.sb_hiwat
/ 2);
812 if (((rt
->rt_rmx
.rmx_locks
& RTV_SSTHRESH
) == 0 &&
813 i
!= 0 && rt
->rt_rmx
.rmx_ssthresh
!= 0)
816 * convert the limit from user data bytes to
817 * packets then to packet data bytes.
819 i
= (i
+ tp
->t_maxseg
/ 2) / tp
->t_maxseg
;
822 i
*= (u_long
)(tp
->t_maxseg
+
824 (isipv6
? sizeof (struct ip6_hdr
) +
825 sizeof (struct tcphdr
) :
827 sizeof (struct tcpiphdr
)
832 if (rt
->rt_rmx
.rmx_ssthresh
)
833 rt
->rt_rmx
.rmx_ssthresh
=
834 (rt
->rt_rmx
.rmx_ssthresh
+ i
) / 2;
836 rt
->rt_rmx
.rmx_ssthresh
= i
;
837 tcpstat
.tcps_cachedssthresh
++;
840 rt
= inp
->inp_route
.ro_rt
;
843 * mark route for deletion if no information is
846 if ((tp
->t_flags
& TF_LQ_OVERFLOW
) &&
847 ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0)){
848 if (rt
->rt_rmx
.rmx_rtt
== 0)
849 rt
->rt_flags
|= RTF_DELCLONE
;
853 /* free the reassembly queue, if any */
854 (void) tcp_freeq(tp
);
857 if (so
->cached_in_sock_layer
)
858 inp
->inp_saved_ppcb
= (caddr_t
) tp
;
861 inp
->inp_ppcb
= NULL
;
862 soisdisconnected(so
);
864 if (INP_CHECK_SOCKAF(so
, AF_INET6
))
869 tcpstat
.tcps_closed
++;
870 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_END
, tcpstat
.tcps_closed
,0,0,0,0);
871 return ((struct tcpcb
*)0);
879 register struct tseg_qent
*q
;
882 while((q
= LIST_FIRST(&tp
->t_segq
)) != NULL
) {
883 LIST_REMOVE(q
, tqe_q
);
898 struct tseg_qent
*te
;
901 * Walk the tcpbs, if existing, and flush the reassembly queue,
903 * XXX: The "Net/3" implementation doesn't imply that the TCP
904 * reassembly queue should be flushed, but in a situation
905 * where we're really low on mbufs, this is potentially
908 for (inpb
= LIST_FIRST(tcbinfo
.listhead
); inpb
;
909 inpb
= LIST_NEXT(inpb
, inp_list
)) {
910 if ((tcpb
= intotcpcb(inpb
))) {
911 while ((te
= LIST_FIRST(&tcpb
->t_segq
))
913 LIST_REMOVE(te
, tqe_q
);
924 * Notify a tcp user of an asynchronous error;
925 * store error as soft error, but wake up user
926 * (for now, won't do anything until can select for soft error).
928 * Do not wake up user since there currently is no mechanism for
929 * reporting soft errors (yet - a kqueue filter may be added).
932 tcp_notify(inp
, error
)
939 return; /* pcb is gone already */
941 tp
= (struct tcpcb
*)inp
->inp_ppcb
;
944 * Ignore some errors if we are hooked up.
945 * If connection hasn't completed, has retransmitted several times,
946 * and receives a second error, give up now. This is better
947 * than waiting a long time to establish a connection that
948 * can never complete.
950 if (tp
->t_state
== TCPS_ESTABLISHED
&&
951 (error
== EHOSTUNREACH
|| error
== ENETUNREACH
||
952 error
== EHOSTDOWN
)) {
954 } else if (tp
->t_state
< TCPS_ESTABLISHED
&& tp
->t_rxtshift
> 3 &&
958 tp
->t_softerror
= error
;
960 wakeup((caddr_t
) &so
->so_timeo
);
967 tcp_pcblist SYSCTL_HANDLER_ARGS
970 struct inpcb
*inp
, **inp_list
;
975 * The process of preparing the TCB list is too time-consuming and
976 * resource-intensive to repeat twice on every request.
978 if (req
->oldptr
== 0) {
979 n
= tcbinfo
.ipi_count
;
980 req
->oldidx
= 2 * (sizeof xig
)
981 + (n
+ n
/8) * sizeof(struct xtcpcb
);
985 if (req
->newptr
!= 0)
989 * OK, now we're committed to doing something.
992 gencnt
= tcbinfo
.ipi_gencnt
;
993 n
= tcbinfo
.ipi_count
;
996 xig
.xig_len
= sizeof xig
;
998 xig
.xig_gen
= gencnt
;
999 xig
.xig_sogen
= so_gencnt
;
1000 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1004 * We are done if there is no pcb
1009 inp_list
= _MALLOC(n
* sizeof *inp_list
, M_TEMP
, M_WAITOK
);
1014 for (inp
= LIST_FIRST(tcbinfo
.listhead
), i
= 0; inp
&& i
< n
;
1015 inp
= LIST_NEXT(inp
, inp_list
)) {
1017 if (inp
->inp_gencnt
<= gencnt
)
1019 if (inp
->inp_gencnt
<= gencnt
&& !prison_xinpcb(req
->p
, inp
))
1021 inp_list
[i
++] = inp
;
1027 for (i
= 0; i
< n
; i
++) {
1029 if (inp
->inp_gencnt
<= gencnt
) {
1032 xt
.xt_len
= sizeof xt
;
1033 /* XXX should avoid extra copy */
1034 bcopy(inp
, &xt
.xt_inp
, sizeof *inp
);
1035 inp_ppcb
= inp
->inp_ppcb
;
1036 if (inp_ppcb
!= NULL
)
1037 bcopy(inp_ppcb
, &xt
.xt_tp
, sizeof xt
.xt_tp
);
1039 bzero((char *) &xt
.xt_tp
, sizeof xt
.xt_tp
);
1040 if (inp
->inp_socket
)
1041 sotoxsocket(inp
->inp_socket
, &xt
.xt_socket
);
1042 error
= SYSCTL_OUT(req
, &xt
, sizeof xt
);
1047 * Give the user an updated idea of our state.
1048 * If the generation differs from what we told
1049 * her before, she knows that something happened
1050 * while we were processing this request, and it
1051 * might be necessary to retry.
1054 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
1055 xig
.xig_sogen
= so_gencnt
;
1056 xig
.xig_count
= tcbinfo
.ipi_count
;
1058 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1060 FREE(inp_list
, M_TEMP
);
1064 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_PCBLIST
, pcblist
, CTLFLAG_RD
, 0, 0,
1065 tcp_pcblist
, "S,xtcpcb", "List of active TCP connections");
1069 tcp_getcred(SYSCTL_HANDLER_ARGS
)
1071 struct sockaddr_in addrs
[2];
1075 error
= suser(req
->p
);
1078 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1082 inp
= in_pcblookup_hash(&tcbinfo
, addrs
[1].sin_addr
, addrs
[1].sin_port
,
1083 addrs
[0].sin_addr
, addrs
[0].sin_port
, 0, NULL
);
1084 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1088 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
, sizeof(struct ucred
));
1094 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1095 0, 0, tcp_getcred
, "S,ucred", "Get the ucred of a TCP connection");
1099 tcp6_getcred(SYSCTL_HANDLER_ARGS
)
1101 struct sockaddr_in6 addrs
[2];
1103 int error
, s
, mapped
= 0;
1105 error
= suser(req
->p
);
1108 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1111 if (IN6_IS_ADDR_V4MAPPED(&addrs
[0].sin6_addr
)) {
1112 if (IN6_IS_ADDR_V4MAPPED(&addrs
[1].sin6_addr
))
1119 inp
= in_pcblookup_hash(&tcbinfo
,
1120 *(struct in_addr
*)&addrs
[1].sin6_addr
.s6_addr
[12],
1122 *(struct in_addr
*)&addrs
[0].sin6_addr
.s6_addr
[12],
1126 inp
= in6_pcblookup_hash(&tcbinfo
, &addrs
[1].sin6_addr
,
1128 &addrs
[0].sin6_addr
, addrs
[0].sin6_port
,
1130 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1134 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
,
1135 sizeof(struct ucred
));
1141 SYSCTL_PROC(_net_inet6_tcp6
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1143 tcp6_getcred
, "S,ucred", "Get the ucred of a TCP6 connection");
1145 #endif /* __APPLE__*/
1148 tcp_ctlinput(cmd
, sa
, vip
)
1150 struct sockaddr
*sa
;
1153 struct ip
*ip
= vip
;
1155 struct in_addr faddr
;
1158 void (*notify
) __P((struct inpcb
*, int)) = tcp_notify
;
1162 faddr
= ((struct sockaddr_in
*)sa
)->sin_addr
;
1163 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
)
1166 if (cmd
== PRC_QUENCH
)
1167 notify
= tcp_quench
;
1168 else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
1169 cmd
== PRC_UNREACH_PORT
) && ip
)
1170 notify
= tcp_drop_syn_sent
;
1171 else if (cmd
== PRC_MSGSIZE
)
1172 notify
= tcp_mtudisc
;
1173 else if (PRC_IS_REDIRECT(cmd
)) {
1175 notify
= in_rtchange
;
1176 } else if (cmd
== PRC_HOSTDEAD
)
1178 else if ((unsigned)cmd
> PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0)
1182 th
= (struct tcphdr
*)((caddr_t
)ip
1183 + (IP_VHL_HL(ip
->ip_vhl
) << 2));
1184 inp
= in_pcblookup_hash(&tcbinfo
, faddr
, th
->th_dport
,
1185 ip
->ip_src
, th
->th_sport
, 0, NULL
);
1186 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
1187 icmp_seq
= htonl(th
->th_seq
);
1188 tp
= intotcpcb(inp
);
1189 if (SEQ_GEQ(icmp_seq
, tp
->snd_una
) &&
1190 SEQ_LT(icmp_seq
, tp
->snd_max
))
1191 (*notify
)(inp
, inetctlerrmap
[cmd
]);
1195 in_pcbnotifyall(&tcb
, faddr
, inetctlerrmap
[cmd
], notify
);
1200 tcp6_ctlinput(cmd
, sa
, d
)
1202 struct sockaddr
*sa
;
1206 void (*notify
) __P((struct inpcb
*, int)) = tcp_notify
;
1207 struct ip6_hdr
*ip6
;
1209 struct ip6ctlparam
*ip6cp
= NULL
;
1210 const struct sockaddr_in6
*sa6_src
= NULL
;
1212 struct tcp_portonly
{
1217 if (sa
->sa_family
!= AF_INET6
||
1218 sa
->sa_len
!= sizeof(struct sockaddr_in6
))
1221 if (cmd
== PRC_QUENCH
)
1222 notify
= tcp_quench
;
1223 else if (cmd
== PRC_MSGSIZE
)
1224 notify
= tcp_mtudisc
;
1225 else if (!PRC_IS_REDIRECT(cmd
) &&
1226 ((unsigned)cmd
> PRC_NCMDS
|| inet6ctlerrmap
[cmd
] == 0))
1229 /* if the parameter is from icmp6, decode it. */
1231 ip6cp
= (struct ip6ctlparam
*)d
;
1233 ip6
= ip6cp
->ip6c_ip6
;
1234 off
= ip6cp
->ip6c_off
;
1235 sa6_src
= ip6cp
->ip6c_src
;
1239 off
= 0; /* fool gcc */
1245 * XXX: We assume that when IPV6 is non NULL,
1246 * M and OFF are valid.
1249 /* check if we can safely examine src and dst ports */
1250 if (m
->m_pkthdr
.len
< off
+ sizeof(*thp
))
1253 bzero(&th
, sizeof(th
));
1254 m_copydata(m
, off
, sizeof(*thp
), (caddr_t
)&th
);
1256 in6_pcbnotify(&tcb
, sa
, th
.th_dport
,
1257 (struct sockaddr
*)ip6cp
->ip6c_src
,
1258 th
.th_sport
, cmd
, notify
);
1260 in6_pcbnotify(&tcb
, sa
, 0, (struct sockaddr
*)sa6_src
,
1267 * Following is where TCP initial sequence number generation occurs.
1269 * There are two places where we must use initial sequence numbers:
1270 * 1. In SYN-ACK packets.
1271 * 2. In SYN packets.
1273 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1274 * and should be as unpredictable as possible to avoid the possibility
1275 * of spoofing and/or connection hijacking. To satisfy this
1276 * requirement, SYN-ACK ISNs are generated via the arc4random()
1277 * function. If exact RFC 1948 compliance is requested via sysctl,
1278 * these ISNs will be generated just like those in SYN packets.
1280 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1281 * depends on this property. In addition, these ISNs should be
1282 * unguessable so as to prevent connection hijacking. To satisfy
1283 * the requirements of this situation, the algorithm outlined in
1284 * RFC 1948 is used to generate sequence numbers.
1286 * For more information on the theory of operation, please see
1289 * Implementation details:
1291 * Time is based off the system timer, and is corrected so that it
1292 * increases by one megabyte per second. This allows for proper
1293 * recycling on high speed LANs while still leaving over an hour
1296 * Two sysctls control the generation of ISNs:
1298 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1299 * between seeding of isn_secret. This is normally set to zero,
1300 * as reseeding should not be necessary.
1302 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1303 * strictly. When strict compliance is requested, reseeding is
1304 * disabled and SYN-ACKs will be generated in the same manner as
1305 * SYNs. Strict mode is disabled by default.
1309 #define ISN_BYTES_PER_SECOND 1048576
1311 u_char isn_secret
[32];
1312 int isn_last_reseed
;
1319 u_int32_t md5_buffer
[4];
1321 struct timeval time
;
1323 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1324 if (((tp
->t_state
== TCPS_LISTEN
) || (tp
->t_state
== TCPS_TIME_WAIT
))
1325 && tcp_strict_rfc1948
== 0)
1329 return arc4random();
1332 /* Seed if this is the first use, reseed if requested. */
1333 if ((isn_last_reseed
== 0) ||
1334 ((tcp_strict_rfc1948
== 0) && (tcp_isn_reseed_interval
> 0) &&
1335 (((u_int
)isn_last_reseed
+ (u_int
)tcp_isn_reseed_interval
*hz
)
1336 < (u_int
)time
.tv_sec
))) {
1338 read_random(&isn_secret
, sizeof(isn_secret
));
1340 read_random_unlimited(&isn_secret
, sizeof(isn_secret
));
1342 isn_last_reseed
= time
.tv_sec
;
1345 /* Compute the md5 hash and return the ISN. */
1347 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_fport
, sizeof(u_short
));
1348 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_lport
, sizeof(u_short
));
1350 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
1351 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_faddr
,
1352 sizeof(struct in6_addr
));
1353 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_laddr
,
1354 sizeof(struct in6_addr
));
1358 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_faddr
,
1359 sizeof(struct in_addr
));
1360 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_laddr
,
1361 sizeof(struct in_addr
));
1363 MD5Update(&isn_ctx
, (u_char
*) &isn_secret
, sizeof(isn_secret
));
1364 MD5Final((u_char
*) &md5_buffer
, &isn_ctx
);
1365 new_isn
= (tcp_seq
) md5_buffer
[0];
1366 new_isn
+= time
.tv_sec
* (ISN_BYTES_PER_SECOND
/ hz
);
1371 * When a source quench is received, close congestion window
1372 * to one segment. We will gradually open it again as we proceed.
1375 tcp_quench(inp
, errno
)
1379 struct tcpcb
*tp
= intotcpcb(inp
);
1382 tp
->snd_cwnd
= tp
->t_maxseg
;
1386 * When a specific ICMP unreachable message is received and the
1387 * connection state is SYN-SENT, drop the connection. This behavior
1388 * is controlled by the icmp_may_rst sysctl.
1391 tcp_drop_syn_sent(inp
, errno
)
1395 struct tcpcb
*tp
= intotcpcb(inp
);
1397 if (tp
&& tp
->t_state
== TCPS_SYN_SENT
)
1398 tcp_drop(tp
, errno
);
1402 * When `need fragmentation' ICMP is received, update our idea of the MSS
1403 * based on the new value in the route. Also nudge TCP to send something,
1404 * since we know the packet we just sent was dropped.
1405 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1408 tcp_mtudisc(inp
, errno
)
1412 struct tcpcb
*tp
= intotcpcb(inp
);
1414 struct rmxp_tao
*taop
;
1415 struct socket
*so
= inp
->inp_socket
;
1419 int isipv6
= (tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0;
1425 rt
= tcp_rtlookup6(inp
);
1428 rt
= tcp_rtlookup(inp
);
1429 if (!rt
|| !rt
->rt_rmx
.rmx_mtu
) {
1430 tp
->t_maxopd
= tp
->t_maxseg
=
1432 isipv6
? tcp_v6mssdflt
:
1437 taop
= rmx_taop(rt
->rt_rmx
);
1438 offered
= taop
->tao_mssopt
;
1439 mss
= rt
->rt_rmx
.rmx_mtu
-
1442 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
1444 sizeof(struct tcpiphdr
)
1451 mss
= min(mss
, offered
);
1453 * XXX - The above conditional probably violates the TCP
1454 * spec. The problem is that, since we don't know the
1455 * other end's MSS, we are supposed to use a conservative
1456 * default. But, if we do that, then MTU discovery will
1457 * never actually take place, because the conservative
1458 * default is much less than the MTUs typically seen
1459 * on the Internet today. For the moment, we'll sweep
1460 * this under the carpet.
1462 * The conservative default might not actually be a problem
1463 * if the only case this occurs is when sending an initial
1464 * SYN with options and data to a host we've never talked
1465 * to before. Then, they will reply with an MSS value which
1466 * will get recorded and the new parameters should get
1467 * recomputed. For Further Study.
1469 if (tp
->t_maxopd
<= mss
)
1473 if ((tp
->t_flags
& (TF_REQ_TSTMP
|TF_NOOPT
)) == TF_REQ_TSTMP
&&
1474 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
)
1475 mss
-= TCPOLEN_TSTAMP_APPA
;
1476 if ((tp
->t_flags
& (TF_REQ_CC
|TF_NOOPT
)) == TF_REQ_CC
&&
1477 (tp
->t_flags
& TF_RCVD_CC
) == TF_RCVD_CC
)
1478 mss
-= TCPOLEN_CC_APPA
;
1480 if (so
->so_snd
.sb_hiwat
< mss
)
1481 mss
= so
->so_snd
.sb_hiwat
;
1485 tcpstat
.tcps_mturesent
++;
1487 tp
->snd_nxt
= tp
->snd_una
;
1493 * Look-up the routing entry to the peer of this inpcb. If no route
1494 * is found and it cannot be allocated the return NULL. This routine
1495 * is called by TCP routines that access the rmx structure and by tcp_mss
1496 * to get the interface MTU.
1505 ro
= &inp
->inp_route
;
1509 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
) || rt
->generation_id
!= route_generation
) {
1510 /* No route yet, so try to acquire one */
1511 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
1512 ro
->ro_dst
.sa_family
= AF_INET
;
1513 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1514 ((struct sockaddr_in
*) &ro
->ro_dst
)->sin_addr
=
1528 struct route_in6
*ro6
;
1531 ro6
= &inp
->in6p_route
;
1533 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
)) {
1534 /* No route yet, so try to acquire one */
1535 if (!IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
1536 struct sockaddr_in6
*dst6
;
1538 dst6
= (struct sockaddr_in6
*)&ro6
->ro_dst
;
1539 dst6
->sin6_family
= AF_INET6
;
1540 dst6
->sin6_len
= sizeof(*dst6
);
1541 dst6
->sin6_addr
= inp
->in6p_faddr
;
1542 rtalloc((struct route
*)ro6
);
1551 /* compute ESP/AH header size for TCP, including outer IP header. */
1553 ipsec_hdrsiz_tcp(tp
)
1561 struct ip6_hdr
*ip6
= NULL
;
1565 if ((tp
== NULL
) || ((inp
= tp
->t_inpcb
) == NULL
))
1567 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1572 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
1573 ip6
= mtod(m
, struct ip6_hdr
*);
1574 th
= (struct tcphdr
*)(ip6
+ 1);
1575 m
->m_pkthdr
.len
= m
->m_len
=
1576 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
1577 tcp_fillheaders(tp
, ip6
, th
);
1578 hdrsiz
= ipsec6_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1582 ip
= mtod(m
, struct ip
*);
1583 th
= (struct tcphdr
*)(ip
+ 1);
1584 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct tcpiphdr
);
1585 tcp_fillheaders(tp
, ip
, th
);
1586 hdrsiz
= ipsec4_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1595 * Return a pointer to the cached information about the remote host.
1596 * The cached information is stored in the protocol specific part of
1597 * the route metrics.
1600 tcp_gettaocache(inp
)
1606 if ((inp
->inp_vflag
& INP_IPV6
) != 0)
1607 rt
= tcp_rtlookup6(inp
);
1610 rt
= tcp_rtlookup(inp
);
1612 /* Make sure this is a host route and is up. */
1614 (rt
->rt_flags
& (RTF_UP
|RTF_HOST
)) != (RTF_UP
|RTF_HOST
))
1617 return rmx_taop(rt
->rt_rmx
);
1621 * Clear all the TAO cache entries, called from tcp_init.
1624 * This routine is just an empty one, because we assume that the routing
1625 * routing tables are initialized at the same time when TCP, so there is
1626 * nothing in the cache left over.