]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/route.c
xnu-3248.40.184.tar.gz
[apple/xnu.git] / bsd / net / route.c
1 /*
2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
62 */
63
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
71 #include <sys/syslog.h>
72 #include <sys/queue.h>
73 #include <sys/mcache.h>
74 #include <sys/protosw.h>
75 #include <sys/kernel.h>
76 #include <kern/locks.h>
77 #include <kern/zalloc.h>
78
79 #include <net/dlil.h>
80 #include <net/if.h>
81 #include <net/route.h>
82 #include <net/ntstat.h>
83
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/ip6.h>
88
89 #if INET6
90 #include <netinet6/ip6_var.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet6/nd6.h>
93 #endif /* INET6 */
94
95 #include <net/if_dl.h>
96
97 #include <libkern/OSAtomic.h>
98 #include <libkern/OSDebug.h>
99
100 #include <pexpert/pexpert.h>
101
102 #if CONFIG_MACF
103 #include <sys/kauth.h>
104 #endif
105
106 /*
107 * Synchronization notes:
108 *
109 * Routing entries fall under two locking domains: the global routing table
110 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
111 * resides (statically defined) in the rtentry structure.
112 *
113 * The locking domains for routing are defined as follows:
114 *
115 * The global routing lock is used to serialize all accesses to the radix
116 * trees defined by rt_tables[], as well as the tree of masks. This includes
117 * lookups, insertions and removals of nodes to/from the respective tree.
118 * It is also used to protect certain fields in the route entry that aren't
119 * often modified and/or require global serialization (more details below.)
120 *
121 * The per-route entry lock is used to serialize accesses to several routing
122 * entry fields (more details below.) Acquiring and releasing this lock is
123 * done via RT_LOCK() and RT_UNLOCK() routines.
124 *
125 * In cases where both rnh_lock and rt_lock must be held, the former must be
126 * acquired first in order to maintain lock ordering. It is not a requirement
127 * that rnh_lock be acquired first before rt_lock, but in case both must be
128 * acquired in succession, the correct lock ordering must be followed.
129 *
130 * The fields of the rtentry structure are protected in the following way:
131 *
132 * rt_nodes[]
133 *
134 * - Routing table lock (rnh_lock).
135 *
136 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
137 *
138 * - Set once during creation and never changes; no locks to read.
139 *
140 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
141 *
142 * - Routing entry lock (rt_lock) for read/write access.
143 *
144 * - Some values of rt_flags are either set once at creation time,
145 * or aren't currently used, and thus checking against them can
146 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
147 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
148 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
149 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
150 *
151 * rt_key, rt_gateway, rt_ifp, rt_ifa
152 *
153 * - Always written/modified with both rnh_lock and rt_lock held.
154 *
155 * - May be read freely with rnh_lock held, else must hold rt_lock
156 * for read access; holding both locks for read is also okay.
157 *
158 * - In the event rnh_lock is not acquired, or is not possible to be
159 * acquired across the operation, setting RTF_CONDEMNED on a route
160 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
161 * from being modified. This is typically done on a route that
162 * has been chosen for a removal (from the tree) prior to dropping
163 * the rt_lock, so that those values will remain the same until
164 * the route is freed.
165 *
166 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
167 * single-threaded, thus exclusive. This flag will also prevent the
168 * route from being looked up via rt_lookup().
169 *
170 * rt_genid
171 *
172 * - Assumes that 32-bit writes are atomic; no locks.
173 *
174 * rt_dlt, rt_output
175 *
176 * - Currently unused; no locks.
177 *
178 * Operations on a route entry can be described as follows:
179 *
180 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
181 *
182 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
183 * for duplicates and then adds the entry. rtrequest returns the entry
184 * after bumping up the reference count to 1 (for the caller).
185 *
186 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
187 * before returning; it is valid to also bump up the reference count using
188 * RT_ADDREF after the lookup has returned an entry.
189 *
190 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
191 * entry but does not decrement the reference count. Removal happens when
192 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
193 * state and it expires. The route is said to be "down" when it is no
194 * longer present in the tree. Freeing the entry will happen on the last
195 * reference release of such a "down" route.
196 *
197 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
198 * decrements the reference count, rt_refcnt, atomically on the rtentry.
199 * rt_refcnt is modified only using this routine. The general rule is to
200 * do RT_ADDREF in the function that is passing the entry as an argument,
201 * in order to prevent the entry from being freed by the callee.
202 */
203
204 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
205
206 extern void kdp_set_gateway_mac(void *gatewaymac);
207
208 __private_extern__ struct rtstat rtstat = { 0, 0, 0, 0, 0 };
209 struct radix_node_head *rt_tables[AF_MAX+1];
210
211 decl_lck_mtx_data(, rnh_lock_data); /* global routing tables mutex */
212 lck_mtx_t *rnh_lock = &rnh_lock_data;
213 static lck_attr_t *rnh_lock_attr;
214 static lck_grp_t *rnh_lock_grp;
215 static lck_grp_attr_t *rnh_lock_grp_attr;
216
217 /* Lock group and attribute for routing entry locks */
218 static lck_attr_t *rte_mtx_attr;
219 static lck_grp_t *rte_mtx_grp;
220 static lck_grp_attr_t *rte_mtx_grp_attr;
221
222 int rttrash = 0; /* routes not in table but not freed */
223
224 unsigned int rte_debug;
225
226 /* Possible flags for rte_debug */
227 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
228 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
229 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
230
231 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
232
233 static struct zone *rte_zone; /* special zone for rtentry */
234 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
235 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
236
237 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
238 #define RTD_FREED 0xDEADBEEF /* entry is freed */
239
240 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
241
242 /* For gdb */
243 __private_extern__ unsigned int ctrace_stack_size = CTRACE_STACK_SIZE;
244 __private_extern__ unsigned int ctrace_hist_size = CTRACE_HIST_SIZE;
245
246 /*
247 * Debug variant of rtentry structure.
248 */
249 struct rtentry_dbg {
250 struct rtentry rtd_entry; /* rtentry */
251 struct rtentry rtd_entry_saved; /* saved rtentry */
252 uint32_t rtd_inuse; /* in use pattern */
253 uint16_t rtd_refhold_cnt; /* # of rtref */
254 uint16_t rtd_refrele_cnt; /* # of rtunref */
255 uint32_t rtd_lock_cnt; /* # of locks */
256 uint32_t rtd_unlock_cnt; /* # of unlocks */
257 /*
258 * Alloc and free callers.
259 */
260 ctrace_t rtd_alloc;
261 ctrace_t rtd_free;
262 /*
263 * Circular lists of rtref and rtunref callers.
264 */
265 ctrace_t rtd_refhold[CTRACE_HIST_SIZE];
266 ctrace_t rtd_refrele[CTRACE_HIST_SIZE];
267 /*
268 * Circular lists of locks and unlocks.
269 */
270 ctrace_t rtd_lock[CTRACE_HIST_SIZE];
271 ctrace_t rtd_unlock[CTRACE_HIST_SIZE];
272 /*
273 * Trash list linkage
274 */
275 TAILQ_ENTRY(rtentry_dbg) rtd_trash_link;
276 };
277
278 /* List of trash route entries protected by rnh_lock */
279 static TAILQ_HEAD(, rtentry_dbg) rttrash_head;
280
281 static void rte_lock_init(struct rtentry *);
282 static void rte_lock_destroy(struct rtentry *);
283 static inline struct rtentry *rte_alloc_debug(void);
284 static inline void rte_free_debug(struct rtentry *);
285 static inline void rte_lock_debug(struct rtentry_dbg *);
286 static inline void rte_unlock_debug(struct rtentry_dbg *);
287 static void rt_maskedcopy(const struct sockaddr *,
288 struct sockaddr *, const struct sockaddr *);
289 static void rtable_init(void **);
290 static inline void rtref_audit(struct rtentry_dbg *);
291 static inline void rtunref_audit(struct rtentry_dbg *);
292 static struct rtentry *rtalloc1_common_locked(struct sockaddr *, int, uint32_t,
293 unsigned int);
294 static int rtrequest_common_locked(int, struct sockaddr *,
295 struct sockaddr *, struct sockaddr *, int, struct rtentry **,
296 unsigned int);
297 static struct rtentry *rtalloc1_locked(struct sockaddr *, int, uint32_t);
298 static void rtalloc_ign_common_locked(struct route *, uint32_t, unsigned int);
299 static inline void sin6_set_ifscope(struct sockaddr *, unsigned int);
300 static inline void sin6_set_embedded_ifscope(struct sockaddr *, unsigned int);
301 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr *);
302 static struct sockaddr *ma_copy(int, struct sockaddr *,
303 struct sockaddr_storage *, unsigned int);
304 static struct sockaddr *sa_trim(struct sockaddr *, int);
305 static struct radix_node *node_lookup(struct sockaddr *, struct sockaddr *,
306 unsigned int);
307 static struct radix_node *node_lookup_default(int);
308 static struct rtentry *rt_lookup_common(boolean_t, boolean_t, struct sockaddr *,
309 struct sockaddr *, struct radix_node_head *, unsigned int);
310 static int rn_match_ifscope(struct radix_node *, void *);
311 static struct ifaddr *ifa_ifwithroute_common_locked(int,
312 const struct sockaddr *, const struct sockaddr *, unsigned int);
313 static struct rtentry *rte_alloc(void);
314 static void rte_free(struct rtentry *);
315 static void rtfree_common(struct rtentry *, boolean_t);
316 static void rte_if_ref(struct ifnet *, int);
317 static void rt_set_idleref(struct rtentry *);
318 static void rt_clear_idleref(struct rtentry *);
319 static void rt_str4(struct rtentry *, char *, uint32_t, char *, uint32_t);
320 #if INET6
321 static void rt_str6(struct rtentry *, char *, uint32_t, char *, uint32_t);
322 #endif /* INET6 */
323
324 uint32_t route_genid_inet = 0;
325 #if INET6
326 uint32_t route_genid_inet6 = 0;
327 #endif /* INET6 */
328
329 #define ASSERT_SINIFSCOPE(sa) { \
330 if ((sa)->sa_family != AF_INET || \
331 (sa)->sa_len < sizeof (struct sockaddr_in)) \
332 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
333 }
334
335 #define ASSERT_SIN6IFSCOPE(sa) { \
336 if ((sa)->sa_family != AF_INET6 || \
337 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
338 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
339 }
340
341 /*
342 * Argument to leaf-matching routine; at present it is scoped routing
343 * specific but can be expanded in future to include other search filters.
344 */
345 struct matchleaf_arg {
346 unsigned int ifscope; /* interface scope */
347 };
348
349 /*
350 * For looking up the non-scoped default route (sockaddr instead
351 * of sockaddr_in for convenience).
352 */
353 static struct sockaddr sin_def = {
354 sizeof (struct sockaddr_in), AF_INET, { 0, }
355 };
356
357 static struct sockaddr_in6 sin6_def = {
358 sizeof (struct sockaddr_in6), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0
359 };
360
361 /*
362 * Interface index (scope) of the primary interface; determined at
363 * the time when the default, non-scoped route gets added, changed
364 * or deleted. Protected by rnh_lock.
365 */
366 static unsigned int primary_ifscope = IFSCOPE_NONE;
367 static unsigned int primary6_ifscope = IFSCOPE_NONE;
368
369 #define INET_DEFAULT(sa) \
370 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
371
372 #define INET6_DEFAULT(sa) \
373 ((sa)->sa_family == AF_INET6 && \
374 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
375
376 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
377 #define RT(r) ((struct rtentry *)r)
378 #define RN(r) ((struct radix_node *)r)
379 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
380
381 SYSCTL_DECL(_net_route);
382
383 unsigned int rt_verbose; /* verbosity level (0 to disable) */
384 SYSCTL_UINT(_net_route, OID_AUTO, verbose, CTLFLAG_RW | CTLFLAG_LOCKED,
385 &rt_verbose, 0, "");
386
387 static void
388 rtable_init(void **table)
389 {
390 struct domain *dom;
391
392 domain_proto_mtx_lock_assert_held();
393
394 TAILQ_FOREACH(dom, &domains, dom_entry) {
395 if (dom->dom_rtattach != NULL)
396 dom->dom_rtattach(&table[dom->dom_family],
397 dom->dom_rtoffset);
398 }
399 }
400
401 /*
402 * Called by route_dinit().
403 */
404 void
405 route_init(void)
406 {
407 int size;
408
409 #if INET6
410 _CASSERT(offsetof(struct route, ro_rt) ==
411 offsetof(struct route_in6, ro_rt));
412 _CASSERT(offsetof(struct route, ro_srcia) ==
413 offsetof(struct route_in6, ro_srcia));
414 _CASSERT(offsetof(struct route, ro_flags) ==
415 offsetof(struct route_in6, ro_flags));
416 _CASSERT(offsetof(struct route, ro_dst) ==
417 offsetof(struct route_in6, ro_dst));
418 #endif /* INET6 */
419
420 PE_parse_boot_argn("rte_debug", &rte_debug, sizeof (rte_debug));
421 if (rte_debug != 0)
422 rte_debug |= RTD_DEBUG;
423
424 rnh_lock_grp_attr = lck_grp_attr_alloc_init();
425 rnh_lock_grp = lck_grp_alloc_init("route", rnh_lock_grp_attr);
426 rnh_lock_attr = lck_attr_alloc_init();
427 lck_mtx_init(rnh_lock, rnh_lock_grp, rnh_lock_attr);
428
429 rte_mtx_grp_attr = lck_grp_attr_alloc_init();
430 rte_mtx_grp = lck_grp_alloc_init(RTE_NAME, rte_mtx_grp_attr);
431 rte_mtx_attr = lck_attr_alloc_init();
432
433 lck_mtx_lock(rnh_lock);
434 rn_init(); /* initialize all zeroes, all ones, mask table */
435 lck_mtx_unlock(rnh_lock);
436 rtable_init((void **)rt_tables);
437
438 if (rte_debug & RTD_DEBUG)
439 size = sizeof (struct rtentry_dbg);
440 else
441 size = sizeof (struct rtentry);
442
443 rte_zone = zinit(size, RTE_ZONE_MAX * size, 0, RTE_ZONE_NAME);
444 if (rte_zone == NULL) {
445 panic("%s: failed allocating rte_zone", __func__);
446 /* NOTREACHED */
447 }
448 zone_change(rte_zone, Z_EXPAND, TRUE);
449 zone_change(rte_zone, Z_CALLERACCT, FALSE);
450 zone_change(rte_zone, Z_NOENCRYPT, TRUE);
451
452 TAILQ_INIT(&rttrash_head);
453 }
454
455 /*
456 * Given a route, determine whether or not it is the non-scoped default
457 * route; dst typically comes from rt_key(rt) but may be coming from
458 * a separate place when rt is in the process of being created.
459 */
460 boolean_t
461 rt_primary_default(struct rtentry *rt, struct sockaddr *dst)
462 {
463 return (SA_DEFAULT(dst) && !(rt->rt_flags & RTF_IFSCOPE));
464 }
465
466 /*
467 * Set the ifscope of the primary interface; caller holds rnh_lock.
468 */
469 void
470 set_primary_ifscope(int af, unsigned int ifscope)
471 {
472 if (af == AF_INET)
473 primary_ifscope = ifscope;
474 else
475 primary6_ifscope = ifscope;
476 }
477
478 /*
479 * Return the ifscope of the primary interface; caller holds rnh_lock.
480 */
481 unsigned int
482 get_primary_ifscope(int af)
483 {
484 return (af == AF_INET ? primary_ifscope : primary6_ifscope);
485 }
486
487 /*
488 * Set the scope ID of a given a sockaddr_in.
489 */
490 void
491 sin_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
492 {
493 /* Caller must pass in sockaddr_in */
494 ASSERT_SINIFSCOPE(sa);
495
496 SINIFSCOPE(sa)->sin_scope_id = ifscope;
497 }
498
499 /*
500 * Set the scope ID of given a sockaddr_in6.
501 */
502 static inline void
503 sin6_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
504 {
505 /* Caller must pass in sockaddr_in6 */
506 ASSERT_SIN6IFSCOPE(sa);
507
508 SIN6IFSCOPE(sa)->sin6_scope_id = ifscope;
509 }
510
511 /*
512 * Given a sockaddr_in, return the scope ID to the caller.
513 */
514 unsigned int
515 sin_get_ifscope(struct sockaddr *sa)
516 {
517 /* Caller must pass in sockaddr_in */
518 ASSERT_SINIFSCOPE(sa);
519
520 return (SINIFSCOPE(sa)->sin_scope_id);
521 }
522
523 /*
524 * Given a sockaddr_in6, return the scope ID to the caller.
525 */
526 unsigned int
527 sin6_get_ifscope(struct sockaddr *sa)
528 {
529 /* Caller must pass in sockaddr_in6 */
530 ASSERT_SIN6IFSCOPE(sa);
531
532 return (SIN6IFSCOPE(sa)->sin6_scope_id);
533 }
534
535 static inline void
536 sin6_set_embedded_ifscope(struct sockaddr *sa, unsigned int ifscope)
537 {
538 /* Caller must pass in sockaddr_in6 */
539 ASSERT_SIN6IFSCOPE(sa);
540 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa)->sin6_addr)));
541
542 SIN6(sa)->sin6_addr.s6_addr16[1] = htons(ifscope);
543 }
544
545 static inline unsigned int
546 sin6_get_embedded_ifscope(struct sockaddr *sa)
547 {
548 /* Caller must pass in sockaddr_in6 */
549 ASSERT_SIN6IFSCOPE(sa);
550
551 return (ntohs(SIN6(sa)->sin6_addr.s6_addr16[1]));
552 }
553
554 /*
555 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
556 *
557 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
558 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
559 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
560 * In any case, the effective scope ID value is returned to the caller via
561 * pifscope, if it is non-NULL.
562 */
563 struct sockaddr *
564 sa_copy(struct sockaddr *src, struct sockaddr_storage *dst,
565 unsigned int *pifscope)
566 {
567 int af = src->sa_family;
568 unsigned int ifscope = (pifscope != NULL) ? *pifscope : IFSCOPE_NONE;
569
570 VERIFY(af == AF_INET || af == AF_INET6);
571
572 bzero(dst, sizeof (*dst));
573
574 if (af == AF_INET) {
575 bcopy(src, dst, sizeof (struct sockaddr_in));
576 if (pifscope == NULL || ifscope != IFSCOPE_NONE)
577 sin_set_ifscope(SA(dst), ifscope);
578 } else {
579 bcopy(src, dst, sizeof (struct sockaddr_in6));
580 if (pifscope != NULL &&
581 IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr)) {
582 unsigned int eifscope;
583 /*
584 * If the address contains the embedded scope ID,
585 * use that as the value for sin6_scope_id as long
586 * the caller doesn't insist on clearing it (by
587 * passing NULL) or setting it.
588 */
589 eifscope = sin6_get_embedded_ifscope(SA(dst));
590 if (eifscope != IFSCOPE_NONE && ifscope == IFSCOPE_NONE)
591 ifscope = eifscope;
592 if (ifscope != IFSCOPE_NONE) {
593 /* Set ifscope from pifscope or eifscope */
594 sin6_set_ifscope(SA(dst), ifscope);
595 } else {
596 /* If sin6_scope_id has a value, use that one */
597 ifscope = sin6_get_ifscope(SA(dst));
598 }
599 /*
600 * If sin6_scope_id is set but the address doesn't
601 * contain the equivalent embedded value, set it.
602 */
603 if (ifscope != IFSCOPE_NONE && eifscope != ifscope)
604 sin6_set_embedded_ifscope(SA(dst), ifscope);
605 } else if (pifscope == NULL || ifscope != IFSCOPE_NONE) {
606 sin6_set_ifscope(SA(dst), ifscope);
607 }
608 }
609
610 if (pifscope != NULL) {
611 *pifscope = (af == AF_INET) ? sin_get_ifscope(SA(dst)) :
612 sin6_get_ifscope(SA(dst));
613 }
614
615 return (SA(dst));
616 }
617
618 /*
619 * Copy a mask from src to a dst storage and set scope ID into dst.
620 */
621 static struct sockaddr *
622 ma_copy(int af, struct sockaddr *src, struct sockaddr_storage *dst,
623 unsigned int ifscope)
624 {
625 VERIFY(af == AF_INET || af == AF_INET6);
626
627 bzero(dst, sizeof (*dst));
628 rt_maskedcopy(src, SA(dst), src);
629
630 /*
631 * The length of the mask sockaddr would need to be adjusted
632 * to cover the additional {sin,sin6}_ifscope field; when ifscope
633 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
634 * the destination mask in addition to extending the length
635 * of the sockaddr, as a side effect. This is okay, as any
636 * trailing zeroes would be skipped by rn_addmask prior to
637 * inserting or looking up the mask in the mask tree.
638 */
639 if (af == AF_INET) {
640 SINIFSCOPE(dst)->sin_scope_id = ifscope;
641 SINIFSCOPE(dst)->sin_len =
642 offsetof(struct sockaddr_inifscope, sin_scope_id) +
643 sizeof (SINIFSCOPE(dst)->sin_scope_id);
644 } else {
645 SIN6IFSCOPE(dst)->sin6_scope_id = ifscope;
646 SIN6IFSCOPE(dst)->sin6_len =
647 offsetof(struct sockaddr_in6, sin6_scope_id) +
648 sizeof (SIN6IFSCOPE(dst)->sin6_scope_id);
649 }
650
651 return (SA(dst));
652 }
653
654 /*
655 * Trim trailing zeroes on a sockaddr and update its length.
656 */
657 static struct sockaddr *
658 sa_trim(struct sockaddr *sa, int skip)
659 {
660 caddr_t cp, base = (caddr_t)sa + skip;
661
662 if (sa->sa_len <= skip)
663 return (sa);
664
665 for (cp = base + (sa->sa_len - skip); cp > base && cp[-1] == 0; )
666 cp--;
667
668 sa->sa_len = (cp - base) + skip;
669 if (sa->sa_len < skip) {
670 /* Must not happen, and if so, panic */
671 panic("%s: broken logic (sa_len %d < skip %d )", __func__,
672 sa->sa_len, skip);
673 /* NOTREACHED */
674 } else if (sa->sa_len == skip) {
675 /* If we end up with all zeroes, then there's no mask */
676 sa->sa_len = 0;
677 }
678
679 return (sa);
680 }
681
682 /*
683 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
684 * kernel private information, so that clients of the routing socket will
685 * not be confused by the presence of the information, or the side effect of
686 * the increased length due to that. The source sockaddr is not modified;
687 * instead, the scrubbing happens on the destination sockaddr storage that
688 * is passed in by the caller.
689 *
690 * Scrubbing entails:
691 * - removing embedded scope identifiers from network mask and destination
692 * IPv4 and IPv6 socket addresses
693 * - optionally removing global scope interface hardware addresses from
694 * link-layer interface addresses when the MAC framework check fails.
695 */
696 struct sockaddr *
697 rtm_scrub(int type, int idx, struct sockaddr *hint, struct sockaddr *sa,
698 void *buf, uint32_t buflen, kauth_cred_t *credp)
699 {
700 struct sockaddr_storage *ss = (struct sockaddr_storage *)buf;
701 struct sockaddr *ret = sa;
702
703 VERIFY(buf != NULL && buflen >= sizeof (*ss));
704 bzero(buf, buflen);
705
706 switch (idx) {
707 case RTAX_DST:
708 /*
709 * If this is for an AF_INET/AF_INET6 destination address,
710 * call sa_copy() to clear the scope ID field.
711 */
712 if (sa->sa_family == AF_INET &&
713 SINIFSCOPE(sa)->sin_scope_id != IFSCOPE_NONE) {
714 ret = sa_copy(sa, ss, NULL);
715 } else if (sa->sa_family == AF_INET6 &&
716 SIN6IFSCOPE(sa)->sin6_scope_id != IFSCOPE_NONE) {
717 ret = sa_copy(sa, ss, NULL);
718 }
719 break;
720
721 case RTAX_NETMASK: {
722 int skip, af;
723 /*
724 * If this is for a mask, we can't tell whether or not there
725 * is an valid scope ID value, as the span of bytes between
726 * sa_len and the beginning of the mask (offset of sin_addr in
727 * the case of AF_INET, or sin6_addr for AF_INET6) may be
728 * filled with all-ones by rn_addmask(), and hence we cannot
729 * rely on sa_family. Because of this, we use the sa_family
730 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
731 * whether or not the mask is to be treated as one for AF_INET
732 * or AF_INET6. Clearing the scope ID field involves setting
733 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
734 * trailing zeroes from the storage sockaddr, which reverses
735 * what was done earlier by ma_copy() on the source sockaddr.
736 */
737 if (hint == NULL ||
738 ((af = hint->sa_family) != AF_INET && af != AF_INET6))
739 break; /* nothing to do */
740
741 skip = (af == AF_INET) ?
742 offsetof(struct sockaddr_in, sin_addr) :
743 offsetof(struct sockaddr_in6, sin6_addr);
744
745 if (sa->sa_len > skip && sa->sa_len <= sizeof (*ss)) {
746 bcopy(sa, ss, sa->sa_len);
747 /*
748 * Don't use {sin,sin6}_set_ifscope() as sa_family
749 * and sa_len for the netmask might not be set to
750 * the corresponding expected values of the hint.
751 */
752 if (hint->sa_family == AF_INET)
753 SINIFSCOPE(ss)->sin_scope_id = IFSCOPE_NONE;
754 else
755 SIN6IFSCOPE(ss)->sin6_scope_id = IFSCOPE_NONE;
756 ret = sa_trim(SA(ss), skip);
757
758 /*
759 * For AF_INET6 mask, set sa_len appropriately unless
760 * this is requested via systl_dumpentry(), in which
761 * case we return the raw value.
762 */
763 if (hint->sa_family == AF_INET6 &&
764 type != RTM_GET && type != RTM_GET2)
765 SA(ret)->sa_len = sizeof (struct sockaddr_in6);
766 }
767 break;
768 }
769 case RTAX_IFP: {
770 if (sa->sa_family == AF_LINK && credp) {
771 struct sockaddr_dl *sdl = SDL(buf);
772 const void *bytes;
773 size_t size;
774
775 /* caller should handle worst case: SOCK_MAXADDRLEN */
776 VERIFY(buflen >= sa->sa_len);
777
778 bcopy(sa, sdl, sa->sa_len);
779 bytes = dlil_ifaddr_bytes(sdl, &size, credp);
780 if (bytes != CONST_LLADDR(sdl)) {
781 VERIFY(sdl->sdl_alen == size);
782 bcopy(bytes, LLADDR(sdl), size);
783 }
784 ret = (struct sockaddr *)sdl;
785 }
786 break;
787 }
788 default:
789 break;
790 }
791
792 return (ret);
793 }
794
795 /*
796 * Callback leaf-matching routine for rn_matchaddr_args used
797 * for looking up an exact match for a scoped route entry.
798 */
799 static int
800 rn_match_ifscope(struct radix_node *rn, void *arg)
801 {
802 struct rtentry *rt = (struct rtentry *)rn;
803 struct matchleaf_arg *ma = arg;
804 int af = rt_key(rt)->sa_family;
805
806 if (!(rt->rt_flags & RTF_IFSCOPE) || (af != AF_INET && af != AF_INET6))
807 return (0);
808
809 return (af == AF_INET ?
810 (SINIFSCOPE(rt_key(rt))->sin_scope_id == ma->ifscope) :
811 (SIN6IFSCOPE(rt_key(rt))->sin6_scope_id == ma->ifscope));
812 }
813
814 /*
815 * Atomically increment route generation counter
816 */
817 void
818 routegenid_update(void)
819 {
820 routegenid_inet_update();
821 #if INET6
822 routegenid_inet6_update();
823 #endif /* INET6 */
824 }
825
826 void
827 routegenid_inet_update(void)
828 {
829 atomic_add_32(&route_genid_inet, 1);
830 }
831
832 #if INET6
833 void
834 routegenid_inet6_update(void)
835 {
836 atomic_add_32(&route_genid_inet6, 1);
837 }
838 #endif /* INET6 */
839
840 /*
841 * Packet routing routines.
842 */
843 void
844 rtalloc(struct route *ro)
845 {
846 rtalloc_ign(ro, 0);
847 }
848
849 void
850 rtalloc_scoped(struct route *ro, unsigned int ifscope)
851 {
852 rtalloc_scoped_ign(ro, 0, ifscope);
853 }
854
855 static void
856 rtalloc_ign_common_locked(struct route *ro, uint32_t ignore,
857 unsigned int ifscope)
858 {
859 struct rtentry *rt;
860
861 if ((rt = ro->ro_rt) != NULL) {
862 RT_LOCK_SPIN(rt);
863 if (rt->rt_ifp != NULL && !ROUTE_UNUSABLE(ro)) {
864 RT_UNLOCK(rt);
865 return;
866 }
867 RT_UNLOCK(rt);
868 ROUTE_RELEASE_LOCKED(ro); /* rnh_lock already held */
869 }
870 ro->ro_rt = rtalloc1_common_locked(&ro->ro_dst, 1, ignore, ifscope);
871 if (ro->ro_rt != NULL) {
872 RT_GENID_SYNC(ro->ro_rt);
873 RT_LOCK_ASSERT_NOTHELD(ro->ro_rt);
874 }
875 }
876
877 void
878 rtalloc_ign(struct route *ro, uint32_t ignore)
879 {
880 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
881 lck_mtx_lock(rnh_lock);
882 rtalloc_ign_common_locked(ro, ignore, IFSCOPE_NONE);
883 lck_mtx_unlock(rnh_lock);
884 }
885
886 void
887 rtalloc_scoped_ign(struct route *ro, uint32_t ignore, unsigned int ifscope)
888 {
889 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
890 lck_mtx_lock(rnh_lock);
891 rtalloc_ign_common_locked(ro, ignore, ifscope);
892 lck_mtx_unlock(rnh_lock);
893 }
894
895 static struct rtentry *
896 rtalloc1_locked(struct sockaddr *dst, int report, uint32_t ignflags)
897 {
898 return (rtalloc1_common_locked(dst, report, ignflags, IFSCOPE_NONE));
899 }
900
901 struct rtentry *
902 rtalloc1_scoped_locked(struct sockaddr *dst, int report, uint32_t ignflags,
903 unsigned int ifscope)
904 {
905 return (rtalloc1_common_locked(dst, report, ignflags, ifscope));
906 }
907
908 /*
909 * Look up the route that matches the address given
910 * Or, at least try.. Create a cloned route if needed.
911 */
912 static struct rtentry *
913 rtalloc1_common_locked(struct sockaddr *dst, int report, uint32_t ignflags,
914 unsigned int ifscope)
915 {
916 struct radix_node_head *rnh = rt_tables[dst->sa_family];
917 struct rtentry *rt, *newrt = NULL;
918 struct rt_addrinfo info;
919 uint32_t nflags;
920 int err = 0, msgtype = RTM_MISS;
921
922 if (rnh == NULL)
923 goto unreachable;
924
925 /*
926 * Find the longest prefix or exact (in the scoped case) address match;
927 * callee adds a reference to entry and checks for root node as well
928 */
929 rt = rt_lookup(FALSE, dst, NULL, rnh, ifscope);
930 if (rt == NULL)
931 goto unreachable;
932
933 RT_LOCK_SPIN(rt);
934 newrt = rt;
935 nflags = rt->rt_flags & ~ignflags;
936 RT_UNLOCK(rt);
937 if (report && (nflags & (RTF_CLONING | RTF_PRCLONING))) {
938 /*
939 * We are apparently adding (report = 0 in delete).
940 * If it requires that it be cloned, do so.
941 * (This implies it wasn't a HOST route.)
942 */
943 err = rtrequest_locked(RTM_RESOLVE, dst, NULL, NULL, 0, &newrt);
944 if (err) {
945 /*
946 * If the cloning didn't succeed, maybe what we
947 * have from lookup above will do. Return that;
948 * no need to hold another reference since it's
949 * already done.
950 */
951 newrt = rt;
952 goto miss;
953 }
954
955 /*
956 * We cloned it; drop the original route found during lookup.
957 * The resulted cloned route (newrt) would now have an extra
958 * reference held during rtrequest.
959 */
960 rtfree_locked(rt);
961
962 /*
963 * If the newly created cloned route is a direct host route
964 * then also check if it is to a router or not.
965 * If it is, then set the RTF_ROUTER flag on the host route
966 * for the gateway.
967 *
968 * XXX It is possible for the default route to be created post
969 * cloned route creation of router's IP.
970 * We can handle that corner case by special handing for RTM_ADD
971 * of default route.
972 */
973 if ((newrt->rt_flags & (RTF_HOST | RTF_LLINFO)) ==
974 (RTF_HOST | RTF_LLINFO)) {
975 struct rtentry *defrt = NULL;
976 struct sockaddr_storage def_key;
977
978 bzero(&def_key, sizeof(def_key));
979 def_key.ss_len = rt_key(newrt)->sa_len;
980 def_key.ss_family = rt_key(newrt)->sa_family;
981
982 defrt = rtalloc1_scoped_locked((struct sockaddr *)&def_key,
983 0, 0, newrt->rt_ifp->if_index);
984
985 if (defrt) {
986 if (equal(rt_key(newrt), defrt->rt_gateway)) {
987 newrt->rt_flags |= RTF_ROUTER;
988 }
989 rtfree_locked(defrt);
990 }
991 }
992
993 if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
994 /*
995 * If the new route specifies it be
996 * externally resolved, then go do that.
997 */
998 msgtype = RTM_RESOLVE;
999 goto miss;
1000 }
1001 }
1002 goto done;
1003
1004 unreachable:
1005 /*
1006 * Either we hit the root or couldn't find any match,
1007 * Which basically means "cant get there from here"
1008 */
1009 rtstat.rts_unreach++;
1010 miss:
1011 if (report) {
1012 /*
1013 * If required, report the failure to the supervising
1014 * Authorities.
1015 * For a delete, this is not an error. (report == 0)
1016 */
1017 bzero((caddr_t)&info, sizeof(info));
1018 info.rti_info[RTAX_DST] = dst;
1019 rt_missmsg(msgtype, &info, 0, err);
1020 }
1021 done:
1022 return (newrt);
1023 }
1024
1025 struct rtentry *
1026 rtalloc1(struct sockaddr *dst, int report, uint32_t ignflags)
1027 {
1028 struct rtentry *entry;
1029 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1030 lck_mtx_lock(rnh_lock);
1031 entry = rtalloc1_locked(dst, report, ignflags);
1032 lck_mtx_unlock(rnh_lock);
1033 return (entry);
1034 }
1035
1036 struct rtentry *
1037 rtalloc1_scoped(struct sockaddr *dst, int report, uint32_t ignflags,
1038 unsigned int ifscope)
1039 {
1040 struct rtentry *entry;
1041 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1042 lck_mtx_lock(rnh_lock);
1043 entry = rtalloc1_scoped_locked(dst, report, ignflags, ifscope);
1044 lck_mtx_unlock(rnh_lock);
1045 return (entry);
1046 }
1047
1048 /*
1049 * Remove a reference count from an rtentry.
1050 * If the count gets low enough, take it out of the routing table
1051 */
1052 void
1053 rtfree_locked(struct rtentry *rt)
1054 {
1055 rtfree_common(rt, TRUE);
1056 }
1057
1058 static void
1059 rtfree_common(struct rtentry *rt, boolean_t locked)
1060 {
1061 struct radix_node_head *rnh;
1062
1063 lck_mtx_assert(rnh_lock, locked ?
1064 LCK_MTX_ASSERT_OWNED : LCK_MTX_ASSERT_NOTOWNED);
1065
1066 /*
1067 * Atomically decrement the reference count and if it reaches 0,
1068 * and there is a close function defined, call the close function.
1069 */
1070 RT_LOCK_SPIN(rt);
1071 if (rtunref(rt) > 0) {
1072 RT_UNLOCK(rt);
1073 return;
1074 }
1075
1076 /*
1077 * To avoid violating lock ordering, we must drop rt_lock before
1078 * trying to acquire the global rnh_lock. If we are called with
1079 * rnh_lock held, then we already have exclusive access; otherwise
1080 * we do the lock dance.
1081 */
1082 if (!locked) {
1083 /*
1084 * Note that we check it again below after grabbing rnh_lock,
1085 * since it is possible that another thread doing a lookup wins
1086 * the race, grabs the rnh_lock first, and bumps up reference
1087 * count in which case the route should be left alone as it is
1088 * still in use. It's also possible that another thread frees
1089 * the route after we drop rt_lock; to prevent the route from
1090 * being freed, we hold an extra reference.
1091 */
1092 RT_ADDREF_LOCKED(rt);
1093 RT_UNLOCK(rt);
1094 lck_mtx_lock(rnh_lock);
1095 RT_LOCK_SPIN(rt);
1096 if (rtunref(rt) > 0) {
1097 /* We've lost the race, so abort */
1098 RT_UNLOCK(rt);
1099 goto done;
1100 }
1101 }
1102
1103 /*
1104 * We may be blocked on other lock(s) as part of freeing
1105 * the entry below, so convert from spin to full mutex.
1106 */
1107 RT_CONVERT_LOCK(rt);
1108
1109 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1110
1111 /* Negative refcnt must never happen */
1112 if (rt->rt_refcnt != 0) {
1113 panic("rt %p invalid refcnt %d", rt, rt->rt_refcnt);
1114 /* NOTREACHED */
1115 }
1116 /* Idle refcnt must have been dropped during rtunref() */
1117 VERIFY(!(rt->rt_flags & RTF_IFREF));
1118
1119 /*
1120 * find the tree for that address family
1121 * Note: in the case of igmp packets, there might not be an rnh
1122 */
1123 rnh = rt_tables[rt_key(rt)->sa_family];
1124
1125 /*
1126 * On last reference give the "close method" a chance to cleanup
1127 * private state. This also permits (for IPv4 and IPv6) a chance
1128 * to decide if the routing table entry should be purged immediately
1129 * or at a later time. When an immediate purge is to happen the
1130 * close routine typically issues RTM_DELETE which clears the RTF_UP
1131 * flag on the entry so that the code below reclaims the storage.
1132 */
1133 if (rnh != NULL && rnh->rnh_close != NULL)
1134 rnh->rnh_close((struct radix_node *)rt, rnh);
1135
1136 /*
1137 * If we are no longer "up" (and ref == 0) then we can free the
1138 * resources associated with the route.
1139 */
1140 if (!(rt->rt_flags & RTF_UP)) {
1141 struct rtentry *rt_parent;
1142 struct ifaddr *rt_ifa;
1143
1144 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1145 panic("rt %p freed while in radix tree\n", rt);
1146 /* NOTREACHED */
1147 }
1148 /*
1149 * the rtentry must have been removed from the routing table
1150 * so it is represented in rttrash; remove that now.
1151 */
1152 (void) OSDecrementAtomic(&rttrash);
1153 if (rte_debug & RTD_DEBUG) {
1154 TAILQ_REMOVE(&rttrash_head, (struct rtentry_dbg *)rt,
1155 rtd_trash_link);
1156 }
1157
1158 /*
1159 * release references on items we hold them on..
1160 * e.g other routes and ifaddrs.
1161 */
1162 if ((rt_parent = rt->rt_parent) != NULL)
1163 rt->rt_parent = NULL;
1164
1165 if ((rt_ifa = rt->rt_ifa) != NULL)
1166 rt->rt_ifa = NULL;
1167
1168 /*
1169 * Now free any attached link-layer info.
1170 */
1171 if (rt->rt_llinfo != NULL) {
1172 if (rt->rt_llinfo_free != NULL)
1173 (*rt->rt_llinfo_free)(rt->rt_llinfo);
1174 else
1175 R_Free(rt->rt_llinfo);
1176 rt->rt_llinfo = NULL;
1177 }
1178
1179 /*
1180 * Route is no longer in the tree and refcnt is 0;
1181 * we have exclusive access, so destroy it.
1182 */
1183 RT_UNLOCK(rt);
1184
1185 if (rt_parent != NULL)
1186 rtfree_locked(rt_parent);
1187
1188 if (rt_ifa != NULL)
1189 IFA_REMREF(rt_ifa);
1190
1191 /*
1192 * The key is separately alloc'd so free it (see rt_setgate()).
1193 * This also frees the gateway, as they are always malloc'd
1194 * together.
1195 */
1196 R_Free(rt_key(rt));
1197
1198 /*
1199 * Free any statistics that may have been allocated
1200 */
1201 nstat_route_detach(rt);
1202
1203 /*
1204 * and the rtentry itself of course
1205 */
1206 rte_lock_destroy(rt);
1207 rte_free(rt);
1208 } else {
1209 /*
1210 * The "close method" has been called, but the route is
1211 * still in the radix tree with zero refcnt, i.e. "up"
1212 * and in the cached state.
1213 */
1214 RT_UNLOCK(rt);
1215 }
1216 done:
1217 if (!locked)
1218 lck_mtx_unlock(rnh_lock);
1219 }
1220
1221 void
1222 rtfree(struct rtentry *rt)
1223 {
1224 rtfree_common(rt, FALSE);
1225 }
1226
1227 /*
1228 * Decrements the refcount but does not free the route when
1229 * the refcount reaches zero. Unless you have really good reason,
1230 * use rtfree not rtunref.
1231 */
1232 int
1233 rtunref(struct rtentry *p)
1234 {
1235 RT_LOCK_ASSERT_HELD(p);
1236
1237 if (p->rt_refcnt == 0) {
1238 panic("%s(%p) bad refcnt\n", __func__, p);
1239 /* NOTREACHED */
1240 } else if (--p->rt_refcnt == 0) {
1241 /*
1242 * Release any idle reference count held on the interface;
1243 * if the route is eligible, still UP and the refcnt becomes
1244 * non-zero at some point in future before it is purged from
1245 * the routing table, rt_set_idleref() will undo this.
1246 */
1247 rt_clear_idleref(p);
1248 }
1249
1250 if (rte_debug & RTD_DEBUG)
1251 rtunref_audit((struct rtentry_dbg *)p);
1252
1253 /* Return new value */
1254 return (p->rt_refcnt);
1255 }
1256
1257 static inline void
1258 rtunref_audit(struct rtentry_dbg *rte)
1259 {
1260 uint16_t idx;
1261
1262 if (rte->rtd_inuse != RTD_INUSE) {
1263 panic("rtunref: on freed rte=%p\n", rte);
1264 /* NOTREACHED */
1265 }
1266 idx = atomic_add_16_ov(&rte->rtd_refrele_cnt, 1) % CTRACE_HIST_SIZE;
1267 if (rte_debug & RTD_TRACE)
1268 ctrace_record(&rte->rtd_refrele[idx]);
1269 }
1270
1271 /*
1272 * Add a reference count from an rtentry.
1273 */
1274 void
1275 rtref(struct rtentry *p)
1276 {
1277 RT_LOCK_ASSERT_HELD(p);
1278
1279 if (++p->rt_refcnt == 0) {
1280 panic("%s(%p) bad refcnt\n", __func__, p);
1281 /* NOTREACHED */
1282 } else if (p->rt_refcnt == 1) {
1283 /*
1284 * Hold an idle reference count on the interface,
1285 * if the route is eligible for it.
1286 */
1287 rt_set_idleref(p);
1288 }
1289
1290 if (rte_debug & RTD_DEBUG)
1291 rtref_audit((struct rtentry_dbg *)p);
1292 }
1293
1294 static inline void
1295 rtref_audit(struct rtentry_dbg *rte)
1296 {
1297 uint16_t idx;
1298
1299 if (rte->rtd_inuse != RTD_INUSE) {
1300 panic("rtref_audit: on freed rte=%p\n", rte);
1301 /* NOTREACHED */
1302 }
1303 idx = atomic_add_16_ov(&rte->rtd_refhold_cnt, 1) % CTRACE_HIST_SIZE;
1304 if (rte_debug & RTD_TRACE)
1305 ctrace_record(&rte->rtd_refhold[idx]);
1306 }
1307
1308 void
1309 rtsetifa(struct rtentry *rt, struct ifaddr *ifa)
1310 {
1311 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1312
1313 RT_LOCK_ASSERT_HELD(rt);
1314
1315 if (rt->rt_ifa == ifa)
1316 return;
1317
1318 /* Become a regular mutex, just in case */
1319 RT_CONVERT_LOCK(rt);
1320
1321 /* Release the old ifa */
1322 if (rt->rt_ifa)
1323 IFA_REMREF(rt->rt_ifa);
1324
1325 /* Set rt_ifa */
1326 rt->rt_ifa = ifa;
1327
1328 /* Take a reference to the ifa */
1329 if (rt->rt_ifa)
1330 IFA_ADDREF(rt->rt_ifa);
1331 }
1332
1333 /*
1334 * Force a routing table entry to the specified
1335 * destination to go through the given gateway.
1336 * Normally called as a result of a routing redirect
1337 * message from the network layer.
1338 */
1339 void
1340 rtredirect(struct ifnet *ifp, struct sockaddr *dst, struct sockaddr *gateway,
1341 struct sockaddr *netmask, int flags, struct sockaddr *src,
1342 struct rtentry **rtp)
1343 {
1344 struct rtentry *rt = NULL;
1345 int error = 0;
1346 short *stat = 0;
1347 struct rt_addrinfo info;
1348 struct ifaddr *ifa = NULL;
1349 unsigned int ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE;
1350 struct sockaddr_storage ss;
1351 int af = src->sa_family;
1352
1353 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1354 lck_mtx_lock(rnh_lock);
1355
1356 /*
1357 * Transform src into the internal routing table form for
1358 * comparison against rt_gateway below.
1359 */
1360 #if INET6
1361 if ((af == AF_INET && ip_doscopedroute) ||
1362 (af == AF_INET6 && ip6_doscopedroute))
1363 #else
1364 if (af == AF_INET && ip_doscopedroute)
1365 #endif /* !INET6 */
1366 src = sa_copy(src, &ss, &ifscope);
1367
1368 /*
1369 * Verify the gateway is directly reachable; if scoped routing
1370 * is enabled, verify that it is reachable from the interface
1371 * where the ICMP redirect arrived on.
1372 */
1373 if ((ifa = ifa_ifwithnet_scoped(gateway, ifscope)) == NULL) {
1374 error = ENETUNREACH;
1375 goto out;
1376 }
1377
1378 /* Lookup route to the destination (from the original IP header) */
1379 rt = rtalloc1_scoped_locked(dst, 0, RTF_CLONING|RTF_PRCLONING, ifscope);
1380 if (rt != NULL)
1381 RT_LOCK(rt);
1382
1383 /*
1384 * If the redirect isn't from our current router for this dst,
1385 * it's either old or wrong. If it redirects us to ourselves,
1386 * we have a routing loop, perhaps as a result of an interface
1387 * going down recently. Holding rnh_lock here prevents the
1388 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1389 * in_ifinit), so okay to access ifa_addr without locking.
1390 */
1391 if (!(flags & RTF_DONE) && rt != NULL &&
1392 (!equal(src, rt->rt_gateway) || !equal(rt->rt_ifa->ifa_addr,
1393 ifa->ifa_addr))) {
1394 error = EINVAL;
1395 } else {
1396 IFA_REMREF(ifa);
1397 if ((ifa = ifa_ifwithaddr(gateway))) {
1398 IFA_REMREF(ifa);
1399 ifa = NULL;
1400 error = EHOSTUNREACH;
1401 }
1402 }
1403
1404 if (ifa) {
1405 IFA_REMREF(ifa);
1406 ifa = NULL;
1407 }
1408
1409 if (error) {
1410 if (rt != NULL)
1411 RT_UNLOCK(rt);
1412 goto done;
1413 }
1414
1415 /*
1416 * Create a new entry if we just got back a wildcard entry
1417 * or the the lookup failed. This is necessary for hosts
1418 * which use routing redirects generated by smart gateways
1419 * to dynamically build the routing tables.
1420 */
1421 if ((rt == NULL) || (rt_mask(rt) != NULL && rt_mask(rt)->sa_len < 2))
1422 goto create;
1423 /*
1424 * Don't listen to the redirect if it's
1425 * for a route to an interface.
1426 */
1427 RT_LOCK_ASSERT_HELD(rt);
1428 if (rt->rt_flags & RTF_GATEWAY) {
1429 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
1430 /*
1431 * Changing from route to net => route to host.
1432 * Create new route, rather than smashing route
1433 * to net; similar to cloned routes, the newly
1434 * created host route is scoped as well.
1435 */
1436 create:
1437 if (rt != NULL)
1438 RT_UNLOCK(rt);
1439 flags |= RTF_GATEWAY | RTF_DYNAMIC;
1440 error = rtrequest_scoped_locked(RTM_ADD, dst,
1441 gateway, netmask, flags, NULL, ifscope);
1442 stat = &rtstat.rts_dynamic;
1443 } else {
1444 /*
1445 * Smash the current notion of the gateway to
1446 * this destination. Should check about netmask!!!
1447 */
1448 rt->rt_flags |= RTF_MODIFIED;
1449 flags |= RTF_MODIFIED;
1450 stat = &rtstat.rts_newgateway;
1451 /*
1452 * add the key and gateway (in one malloc'd chunk).
1453 */
1454 error = rt_setgate(rt, rt_key(rt), gateway);
1455 RT_UNLOCK(rt);
1456 }
1457 } else {
1458 RT_UNLOCK(rt);
1459 error = EHOSTUNREACH;
1460 }
1461 done:
1462 if (rt != NULL) {
1463 RT_LOCK_ASSERT_NOTHELD(rt);
1464 if (rtp && !error)
1465 *rtp = rt;
1466 else
1467 rtfree_locked(rt);
1468 }
1469 out:
1470 if (error) {
1471 rtstat.rts_badredirect++;
1472 } else {
1473 if (stat != NULL)
1474 (*stat)++;
1475
1476 if (af == AF_INET)
1477 routegenid_inet_update();
1478 #if INET6
1479 else if (af == AF_INET6)
1480 routegenid_inet6_update();
1481 #endif /* INET6 */
1482 }
1483 lck_mtx_unlock(rnh_lock);
1484 bzero((caddr_t)&info, sizeof(info));
1485 info.rti_info[RTAX_DST] = dst;
1486 info.rti_info[RTAX_GATEWAY] = gateway;
1487 info.rti_info[RTAX_NETMASK] = netmask;
1488 info.rti_info[RTAX_AUTHOR] = src;
1489 rt_missmsg(RTM_REDIRECT, &info, flags, error);
1490 }
1491
1492 /*
1493 * Routing table ioctl interface.
1494 */
1495 int
1496 rtioctl(unsigned long req, caddr_t data, struct proc *p)
1497 {
1498 #pragma unused(p, req, data)
1499 return (ENXIO);
1500 }
1501
1502 struct ifaddr *
1503 ifa_ifwithroute(
1504 int flags,
1505 const struct sockaddr *dst,
1506 const struct sockaddr *gateway)
1507 {
1508 struct ifaddr *ifa;
1509
1510 lck_mtx_lock(rnh_lock);
1511 ifa = ifa_ifwithroute_locked(flags, dst, gateway);
1512 lck_mtx_unlock(rnh_lock);
1513
1514 return (ifa);
1515 }
1516
1517 struct ifaddr *
1518 ifa_ifwithroute_locked(int flags, const struct sockaddr *dst,
1519 const struct sockaddr *gateway)
1520 {
1521 return (ifa_ifwithroute_common_locked((flags & ~RTF_IFSCOPE), dst,
1522 gateway, IFSCOPE_NONE));
1523 }
1524
1525 struct ifaddr *
1526 ifa_ifwithroute_scoped_locked(int flags, const struct sockaddr *dst,
1527 const struct sockaddr *gateway, unsigned int ifscope)
1528 {
1529 if (ifscope != IFSCOPE_NONE)
1530 flags |= RTF_IFSCOPE;
1531 else
1532 flags &= ~RTF_IFSCOPE;
1533
1534 return (ifa_ifwithroute_common_locked(flags, dst, gateway, ifscope));
1535 }
1536
1537 static struct ifaddr *
1538 ifa_ifwithroute_common_locked(int flags, const struct sockaddr *dst,
1539 const struct sockaddr *gw, unsigned int ifscope)
1540 {
1541 struct ifaddr *ifa = NULL;
1542 struct rtentry *rt = NULL;
1543 struct sockaddr_storage dst_ss, gw_ss;
1544
1545 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1546
1547 /*
1548 * Just in case the sockaddr passed in by the caller
1549 * contains a scope ID, make sure to clear it since
1550 * interface addresses aren't scoped.
1551 */
1552 #if INET6
1553 if (dst != NULL &&
1554 ((dst->sa_family == AF_INET && ip_doscopedroute) ||
1555 (dst->sa_family == AF_INET6 && ip6_doscopedroute)))
1556 #else
1557 if (dst != NULL && dst->sa_family == AF_INET && ip_doscopedroute)
1558 #endif /* !INET6 */
1559 dst = sa_copy(SA((uintptr_t)dst), &dst_ss, NULL);
1560
1561 #if INET6
1562 if (gw != NULL &&
1563 ((gw->sa_family == AF_INET && ip_doscopedroute) ||
1564 (gw->sa_family == AF_INET6 && ip6_doscopedroute)))
1565 #else
1566 if (gw != NULL && gw->sa_family == AF_INET && ip_doscopedroute)
1567 #endif /* !INET6 */
1568 gw = sa_copy(SA((uintptr_t)gw), &gw_ss, NULL);
1569
1570 if (!(flags & RTF_GATEWAY)) {
1571 /*
1572 * If we are adding a route to an interface,
1573 * and the interface is a pt to pt link
1574 * we should search for the destination
1575 * as our clue to the interface. Otherwise
1576 * we can use the local address.
1577 */
1578 if (flags & RTF_HOST) {
1579 ifa = ifa_ifwithdstaddr(dst);
1580 }
1581 if (ifa == NULL)
1582 ifa = ifa_ifwithaddr_scoped(gw, ifscope);
1583 } else {
1584 /*
1585 * If we are adding a route to a remote net
1586 * or host, the gateway may still be on the
1587 * other end of a pt to pt link.
1588 */
1589 ifa = ifa_ifwithdstaddr(gw);
1590 }
1591 if (ifa == NULL)
1592 ifa = ifa_ifwithnet_scoped(gw, ifscope);
1593 if (ifa == NULL) {
1594 /* Workaround to avoid gcc warning regarding const variable */
1595 rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)dst,
1596 0, 0, ifscope);
1597 if (rt != NULL) {
1598 RT_LOCK_SPIN(rt);
1599 ifa = rt->rt_ifa;
1600 if (ifa != NULL) {
1601 /* Become a regular mutex */
1602 RT_CONVERT_LOCK(rt);
1603 IFA_ADDREF(ifa);
1604 }
1605 RT_REMREF_LOCKED(rt);
1606 RT_UNLOCK(rt);
1607 rt = NULL;
1608 }
1609 }
1610 /*
1611 * Holding rnh_lock here prevents the possibility of ifa from
1612 * changing (e.g. in_ifinit), so it is safe to access its
1613 * ifa_addr (here and down below) without locking.
1614 */
1615 if (ifa != NULL && ifa->ifa_addr->sa_family != dst->sa_family) {
1616 struct ifaddr *newifa;
1617 /* Callee adds reference to newifa upon success */
1618 newifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
1619 if (newifa != NULL) {
1620 IFA_REMREF(ifa);
1621 ifa = newifa;
1622 }
1623 }
1624 /*
1625 * If we are adding a gateway, it is quite possible that the
1626 * routing table has a static entry in place for the gateway,
1627 * that may not agree with info garnered from the interfaces.
1628 * The routing table should carry more precedence than the
1629 * interfaces in this matter. Must be careful not to stomp
1630 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1631 */
1632 if ((ifa == NULL ||
1633 !equal(ifa->ifa_addr, (struct sockaddr *)(size_t)gw)) &&
1634 (rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)gw,
1635 0, 0, ifscope)) != NULL) {
1636 if (ifa != NULL)
1637 IFA_REMREF(ifa);
1638 RT_LOCK_SPIN(rt);
1639 ifa = rt->rt_ifa;
1640 if (ifa != NULL) {
1641 /* Become a regular mutex */
1642 RT_CONVERT_LOCK(rt);
1643 IFA_ADDREF(ifa);
1644 }
1645 RT_REMREF_LOCKED(rt);
1646 RT_UNLOCK(rt);
1647 }
1648 /*
1649 * If an interface scope was specified, the interface index of
1650 * the found ifaddr must be equivalent to that of the scope;
1651 * otherwise there is no match.
1652 */
1653 if ((flags & RTF_IFSCOPE) &&
1654 ifa != NULL && ifa->ifa_ifp->if_index != ifscope) {
1655 IFA_REMREF(ifa);
1656 ifa = NULL;
1657 }
1658
1659 return (ifa);
1660 }
1661
1662 static int rt_fixdelete(struct radix_node *, void *);
1663 static int rt_fixchange(struct radix_node *, void *);
1664
1665 struct rtfc_arg {
1666 struct rtentry *rt0;
1667 struct radix_node_head *rnh;
1668 };
1669
1670 int
1671 rtrequest_locked(int req, struct sockaddr *dst, struct sockaddr *gateway,
1672 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
1673 {
1674 return (rtrequest_common_locked(req, dst, gateway, netmask,
1675 (flags & ~RTF_IFSCOPE), ret_nrt, IFSCOPE_NONE));
1676 }
1677
1678 int
1679 rtrequest_scoped_locked(int req, struct sockaddr *dst,
1680 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1681 struct rtentry **ret_nrt, unsigned int ifscope)
1682 {
1683 if (ifscope != IFSCOPE_NONE)
1684 flags |= RTF_IFSCOPE;
1685 else
1686 flags &= ~RTF_IFSCOPE;
1687
1688 return (rtrequest_common_locked(req, dst, gateway, netmask,
1689 flags, ret_nrt, ifscope));
1690 }
1691
1692 /*
1693 * Do appropriate manipulations of a routing tree given all the bits of
1694 * info needed.
1695 *
1696 * Storing the scope ID in the radix key is an internal job that should be
1697 * left to routines in this module. Callers should specify the scope value
1698 * to the "scoped" variants of route routines instead of manipulating the
1699 * key itself. This is typically done when creating a scoped route, e.g.
1700 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1701 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1702 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1703 * during certain routing socket operations where the search key might be
1704 * derived from the routing message itself, in which case the caller must
1705 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1706 */
1707 static int
1708 rtrequest_common_locked(int req, struct sockaddr *dst0,
1709 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1710 struct rtentry **ret_nrt, unsigned int ifscope)
1711 {
1712 int error = 0;
1713 struct rtentry *rt;
1714 struct radix_node *rn;
1715 struct radix_node_head *rnh;
1716 struct ifaddr *ifa = NULL;
1717 struct sockaddr *ndst, *dst = dst0;
1718 struct sockaddr_storage ss, mask;
1719 struct timeval caltime;
1720 int af = dst->sa_family;
1721 void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
1722
1723 #define senderr(x) { error = x; goto bad; }
1724
1725 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1726 /*
1727 * Find the correct routing tree to use for this Address Family
1728 */
1729 if ((rnh = rt_tables[af]) == NULL)
1730 senderr(ESRCH);
1731 /*
1732 * If we are adding a host route then we don't want to put
1733 * a netmask in the tree
1734 */
1735 if (flags & RTF_HOST)
1736 netmask = NULL;
1737
1738 /*
1739 * If Scoped Routing is enabled, use a local copy of the destination
1740 * address to store the scope ID into. This logic is repeated below
1741 * in the RTM_RESOLVE handler since the caller does not normally
1742 * specify such a flag during a resolve, as well as for the handling
1743 * of IPv4 link-local address; instead, it passes in the route used for
1744 * cloning for which the scope info is derived from. Note also that
1745 * in the case of RTM_DELETE, the address passed in by the caller
1746 * might already contain the scope ID info when it is the key itself,
1747 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1748 * explicitly set is inside route_output() as part of handling a
1749 * routing socket request.
1750 */
1751 #if INET6
1752 if (req != RTM_RESOLVE &&
1753 ((af == AF_INET && ip_doscopedroute) ||
1754 (af == AF_INET6 && ip6_doscopedroute))) {
1755 #else
1756 if (req != RTM_RESOLVE && af == AF_INET && ip_doscopedroute) {
1757 #endif /* !INET6 */
1758 /* Transform dst into the internal routing table form */
1759 dst = sa_copy(dst, &ss, &ifscope);
1760
1761 /* Transform netmask into the internal routing table form */
1762 if (netmask != NULL)
1763 netmask = ma_copy(af, netmask, &mask, ifscope);
1764
1765 if (ifscope != IFSCOPE_NONE)
1766 flags |= RTF_IFSCOPE;
1767 } else {
1768 if ((flags & RTF_IFSCOPE) && (af != AF_INET && af != AF_INET6))
1769 senderr(EINVAL);
1770
1771 #if INET6
1772 if ((af == AF_INET && !ip_doscopedroute) ||
1773 (af == AF_INET6 && !ip6_doscopedroute))
1774 #else
1775 if (af == AF_INET && !ip_doscopedroute)
1776 #endif /* !INET6 */
1777 ifscope = IFSCOPE_NONE;
1778 }
1779
1780 if (ifscope == IFSCOPE_NONE)
1781 flags &= ~RTF_IFSCOPE;
1782
1783 switch (req) {
1784 case RTM_DELETE: {
1785 struct rtentry *gwrt = NULL;
1786 /*
1787 * Remove the item from the tree and return it.
1788 * Complain if it is not there and do no more processing.
1789 */
1790 if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == NULL)
1791 senderr(ESRCH);
1792 if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1793 panic("rtrequest delete");
1794 /* NOTREACHED */
1795 }
1796 rt = (struct rtentry *)rn;
1797
1798 RT_LOCK(rt);
1799 rt->rt_flags &= ~RTF_UP;
1800 /*
1801 * Release any idle reference count held on the interface
1802 * as this route is no longer externally visible.
1803 */
1804 rt_clear_idleref(rt);
1805 /*
1806 * Take an extra reference to handle the deletion of a route
1807 * entry whose reference count is already 0; e.g. an expiring
1808 * cloned route entry or an entry that was added to the table
1809 * with 0 reference. If the caller is interested in this route,
1810 * we will return it with the reference intact. Otherwise we
1811 * will decrement the reference via rtfree_locked() and then
1812 * possibly deallocate it.
1813 */
1814 RT_ADDREF_LOCKED(rt);
1815
1816 /*
1817 * For consistency, in case the caller didn't set the flag.
1818 */
1819 rt->rt_flags |= RTF_CONDEMNED;
1820
1821 /*
1822 * Clear RTF_ROUTER if it's set.
1823 */
1824 if (rt->rt_flags & RTF_ROUTER) {
1825 VERIFY(rt->rt_flags & RTF_HOST);
1826 rt->rt_flags &= ~RTF_ROUTER;
1827 }
1828
1829 /*
1830 * Now search what's left of the subtree for any cloned
1831 * routes which might have been formed from this node.
1832 */
1833 if ((rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) &&
1834 rt_mask(rt)) {
1835 RT_UNLOCK(rt);
1836 rnh->rnh_walktree_from(rnh, dst, rt_mask(rt),
1837 rt_fixdelete, rt);
1838 RT_LOCK(rt);
1839 }
1840
1841 /*
1842 * Remove any external references we may have.
1843 */
1844 if ((gwrt = rt->rt_gwroute) != NULL)
1845 rt->rt_gwroute = NULL;
1846
1847 /*
1848 * give the protocol a chance to keep things in sync.
1849 */
1850 if ((ifa = rt->rt_ifa) != NULL) {
1851 IFA_LOCK_SPIN(ifa);
1852 ifa_rtrequest = ifa->ifa_rtrequest;
1853 IFA_UNLOCK(ifa);
1854 if (ifa_rtrequest != NULL)
1855 ifa_rtrequest(RTM_DELETE, rt, NULL);
1856 /* keep reference on rt_ifa */
1857 ifa = NULL;
1858 }
1859
1860 /*
1861 * one more rtentry floating around that is not
1862 * linked to the routing table.
1863 */
1864 (void) OSIncrementAtomic(&rttrash);
1865 if (rte_debug & RTD_DEBUG) {
1866 TAILQ_INSERT_TAIL(&rttrash_head,
1867 (struct rtentry_dbg *)rt, rtd_trash_link);
1868 }
1869
1870 /*
1871 * If this is the (non-scoped) default route, clear
1872 * the interface index used for the primary ifscope.
1873 */
1874 if (rt_primary_default(rt, rt_key(rt))) {
1875 set_primary_ifscope(rt_key(rt)->sa_family,
1876 IFSCOPE_NONE);
1877 }
1878
1879 RT_UNLOCK(rt);
1880
1881 /*
1882 * This might result in another rtentry being freed if
1883 * we held its last reference. Do this after the rtentry
1884 * lock is dropped above, as it could lead to the same
1885 * lock being acquired if gwrt is a clone of rt.
1886 */
1887 if (gwrt != NULL)
1888 rtfree_locked(gwrt);
1889
1890 /*
1891 * If the caller wants it, then it can have it,
1892 * but it's up to it to free the rtentry as we won't be
1893 * doing it.
1894 */
1895 if (ret_nrt != NULL) {
1896 /* Return the route to caller with reference intact */
1897 *ret_nrt = rt;
1898 } else {
1899 /* Dereference or deallocate the route */
1900 rtfree_locked(rt);
1901 }
1902 if (af == AF_INET)
1903 routegenid_inet_update();
1904 #if INET6
1905 else if (af == AF_INET6)
1906 routegenid_inet6_update();
1907 #endif /* INET6 */
1908 break;
1909 }
1910 case RTM_RESOLVE:
1911 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
1912 senderr(EINVAL);
1913 /*
1914 * According to the UNIX conformance tests, we need to return
1915 * ENETUNREACH when the parent route is RTF_REJECT.
1916 * However, there isn't any point in cloning RTF_REJECT
1917 * routes, so we immediately return an error.
1918 */
1919 if (rt->rt_flags & RTF_REJECT) {
1920 if (rt->rt_flags & RTF_HOST) {
1921 senderr(EHOSTUNREACH);
1922 } else {
1923 senderr(ENETUNREACH);
1924 }
1925 }
1926 /*
1927 * If cloning, we have the parent route given by the caller
1928 * and will use its rt_gateway, rt_rmx as part of the cloning
1929 * process below. Since rnh_lock is held at this point, the
1930 * parent's rt_ifa and rt_gateway will not change, and its
1931 * relevant rt_flags will not change as well. The only thing
1932 * that could change are the metrics, and thus we hold the
1933 * parent route's rt_lock later on during the actual copying
1934 * of rt_rmx.
1935 */
1936 ifa = rt->rt_ifa;
1937 IFA_ADDREF(ifa);
1938 flags = rt->rt_flags &
1939 ~(RTF_CLONING | RTF_PRCLONING | RTF_STATIC);
1940 flags |= RTF_WASCLONED;
1941 gateway = rt->rt_gateway;
1942 if ((netmask = rt->rt_genmask) == NULL)
1943 flags |= RTF_HOST;
1944
1945 #if INET6
1946 if ((af != AF_INET && af != AF_INET6) ||
1947 (af == AF_INET && !ip_doscopedroute) ||
1948 (af == AF_INET6 && !ip6_doscopedroute))
1949 #else
1950 if (af != AF_INET || !ip_doscopedroute)
1951 #endif /* !INET6 */
1952 goto makeroute;
1953
1954 /*
1955 * When scoped routing is enabled, cloned entries are
1956 * always scoped according to the interface portion of
1957 * the parent route. The exception to this are IPv4
1958 * link local addresses, or those routes that are cloned
1959 * from a RTF_PROXY route. For the latter, the clone
1960 * gets to keep the RTF_PROXY flag.
1961 */
1962 if ((af == AF_INET &&
1963 IN_LINKLOCAL(ntohl(SIN(dst)->sin_addr.s_addr))) ||
1964 (rt->rt_flags & RTF_PROXY)) {
1965 ifscope = IFSCOPE_NONE;
1966 flags &= ~RTF_IFSCOPE;
1967 /*
1968 * These types of cloned routes aren't currently
1969 * eligible for idle interface reference counting.
1970 */
1971 flags |= RTF_NOIFREF;
1972 } else {
1973 if (flags & RTF_IFSCOPE) {
1974 ifscope = (af == AF_INET) ?
1975 sin_get_ifscope(rt_key(rt)) :
1976 sin6_get_ifscope(rt_key(rt));
1977 } else {
1978 ifscope = rt->rt_ifp->if_index;
1979 flags |= RTF_IFSCOPE;
1980 }
1981 VERIFY(ifscope != IFSCOPE_NONE);
1982 }
1983
1984 /*
1985 * Transform dst into the internal routing table form,
1986 * clearing out the scope ID field if ifscope isn't set.
1987 */
1988 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ?
1989 NULL : &ifscope);
1990
1991 /* Transform netmask into the internal routing table form */
1992 if (netmask != NULL)
1993 netmask = ma_copy(af, netmask, &mask, ifscope);
1994
1995 goto makeroute;
1996
1997 case RTM_ADD:
1998 if ((flags & RTF_GATEWAY) && !gateway) {
1999 panic("rtrequest: RTF_GATEWAY but no gateway");
2000 /* NOTREACHED */
2001 }
2002 if (flags & RTF_IFSCOPE) {
2003 ifa = ifa_ifwithroute_scoped_locked(flags, dst0,
2004 gateway, ifscope);
2005 } else {
2006 ifa = ifa_ifwithroute_locked(flags, dst0, gateway);
2007 }
2008 if (ifa == NULL)
2009 senderr(ENETUNREACH);
2010 makeroute:
2011 if ((rt = rte_alloc()) == NULL)
2012 senderr(ENOBUFS);
2013 Bzero(rt, sizeof(*rt));
2014 rte_lock_init(rt);
2015 getmicrotime(&caltime);
2016 rt->base_calendartime = caltime.tv_sec;
2017 rt->base_uptime = net_uptime();
2018 RT_LOCK(rt);
2019 rt->rt_flags = RTF_UP | flags;
2020
2021 /*
2022 * Point the generation ID to the tree's.
2023 */
2024 switch (af) {
2025 case AF_INET:
2026 rt->rt_tree_genid = &route_genid_inet;
2027 break;
2028 #if INET6
2029 case AF_INET6:
2030 rt->rt_tree_genid = &route_genid_inet6;
2031 break;
2032 #endif /* INET6 */
2033 default:
2034 break;
2035 }
2036
2037 /*
2038 * Add the gateway. Possibly re-malloc-ing the storage for it
2039 * also add the rt_gwroute if possible.
2040 */
2041 if ((error = rt_setgate(rt, dst, gateway)) != 0) {
2042 int tmp = error;
2043 RT_UNLOCK(rt);
2044 nstat_route_detach(rt);
2045 rte_lock_destroy(rt);
2046 rte_free(rt);
2047 senderr(tmp);
2048 }
2049
2050 /*
2051 * point to the (possibly newly malloc'd) dest address.
2052 */
2053 ndst = rt_key(rt);
2054
2055 /*
2056 * make sure it contains the value we want (masked if needed).
2057 */
2058 if (netmask)
2059 rt_maskedcopy(dst, ndst, netmask);
2060 else
2061 Bcopy(dst, ndst, dst->sa_len);
2062
2063 /*
2064 * Note that we now have a reference to the ifa.
2065 * This moved from below so that rnh->rnh_addaddr() can
2066 * examine the ifa and ifa->ifa_ifp if it so desires.
2067 */
2068 rtsetifa(rt, ifa);
2069 rt->rt_ifp = rt->rt_ifa->ifa_ifp;
2070
2071 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2072
2073 rn = rnh->rnh_addaddr((caddr_t)ndst, (caddr_t)netmask,
2074 rnh, rt->rt_nodes);
2075 if (rn == 0) {
2076 struct rtentry *rt2;
2077 /*
2078 * Uh-oh, we already have one of these in the tree.
2079 * We do a special hack: if the route that's already
2080 * there was generated by the protocol-cloning
2081 * mechanism, then we just blow it away and retry
2082 * the insertion of the new one.
2083 */
2084 if (flags & RTF_IFSCOPE) {
2085 rt2 = rtalloc1_scoped_locked(dst0, 0,
2086 RTF_CLONING | RTF_PRCLONING, ifscope);
2087 } else {
2088 rt2 = rtalloc1_locked(dst, 0,
2089 RTF_CLONING | RTF_PRCLONING);
2090 }
2091 if (rt2 && rt2->rt_parent) {
2092 /*
2093 * rnh_lock is held here, so rt_key and
2094 * rt_gateway of rt2 will not change.
2095 */
2096 (void) rtrequest_locked(RTM_DELETE, rt_key(rt2),
2097 rt2->rt_gateway, rt_mask(rt2),
2098 rt2->rt_flags, 0);
2099 rtfree_locked(rt2);
2100 rn = rnh->rnh_addaddr((caddr_t)ndst,
2101 (caddr_t)netmask, rnh, rt->rt_nodes);
2102 } else if (rt2) {
2103 /* undo the extra ref we got */
2104 rtfree_locked(rt2);
2105 }
2106 }
2107
2108 /*
2109 * If it still failed to go into the tree,
2110 * then un-make it (this should be a function)
2111 */
2112 if (rn == NULL) {
2113 /* Clear gateway route */
2114 rt_set_gwroute(rt, rt_key(rt), NULL);
2115 if (rt->rt_ifa) {
2116 IFA_REMREF(rt->rt_ifa);
2117 rt->rt_ifa = NULL;
2118 }
2119 R_Free(rt_key(rt));
2120 RT_UNLOCK(rt);
2121 nstat_route_detach(rt);
2122 rte_lock_destroy(rt);
2123 rte_free(rt);
2124 senderr(EEXIST);
2125 }
2126
2127 rt->rt_parent = NULL;
2128
2129 /*
2130 * If we got here from RESOLVE, then we are cloning so clone
2131 * the rest, and note that we are a clone (and increment the
2132 * parent's references). rnh_lock is still held, which prevents
2133 * a lookup from returning the newly-created route. Hence
2134 * holding and releasing the parent's rt_lock while still
2135 * holding the route's rt_lock is safe since the new route
2136 * is not yet externally visible.
2137 */
2138 if (req == RTM_RESOLVE) {
2139 RT_LOCK_SPIN(*ret_nrt);
2140 VERIFY((*ret_nrt)->rt_expire == 0 ||
2141 (*ret_nrt)->rt_rmx.rmx_expire != 0);
2142 VERIFY((*ret_nrt)->rt_expire != 0 ||
2143 (*ret_nrt)->rt_rmx.rmx_expire == 0);
2144 rt->rt_rmx = (*ret_nrt)->rt_rmx;
2145 rt_setexpire(rt, (*ret_nrt)->rt_expire);
2146 if ((*ret_nrt)->rt_flags &
2147 (RTF_CLONING | RTF_PRCLONING)) {
2148 rt->rt_parent = (*ret_nrt);
2149 RT_ADDREF_LOCKED(*ret_nrt);
2150 }
2151 RT_UNLOCK(*ret_nrt);
2152 }
2153
2154 /*
2155 * if this protocol has something to add to this then
2156 * allow it to do that as well.
2157 */
2158 IFA_LOCK_SPIN(ifa);
2159 ifa_rtrequest = ifa->ifa_rtrequest;
2160 IFA_UNLOCK(ifa);
2161 if (ifa_rtrequest != NULL)
2162 ifa_rtrequest(req, rt, SA(ret_nrt ? *ret_nrt : NULL));
2163 IFA_REMREF(ifa);
2164 ifa = NULL;
2165
2166 /*
2167 * If this is the (non-scoped) default route, record
2168 * the interface index used for the primary ifscope.
2169 */
2170 if (rt_primary_default(rt, rt_key(rt))) {
2171 set_primary_ifscope(rt_key(rt)->sa_family,
2172 rt->rt_ifp->if_index);
2173 }
2174
2175 /*
2176 * actually return a resultant rtentry and
2177 * give the caller a single reference.
2178 */
2179 if (ret_nrt) {
2180 *ret_nrt = rt;
2181 RT_ADDREF_LOCKED(rt);
2182 }
2183
2184 if (af == AF_INET)
2185 routegenid_inet_update();
2186 #if INET6
2187 else if (af == AF_INET6)
2188 routegenid_inet6_update();
2189 #endif /* INET6 */
2190
2191 RT_GENID_SYNC(rt);
2192
2193 /*
2194 * We repeat the same procedures from rt_setgate() here
2195 * because they weren't completed when we called it earlier,
2196 * since the node was embryonic.
2197 */
2198 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL)
2199 rt_set_gwroute(rt, rt_key(rt), rt->rt_gwroute);
2200
2201 if (req == RTM_ADD &&
2202 !(rt->rt_flags & RTF_HOST) && rt_mask(rt) != NULL) {
2203 struct rtfc_arg arg;
2204 arg.rnh = rnh;
2205 arg.rt0 = rt;
2206 RT_UNLOCK(rt);
2207 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2208 rt_fixchange, &arg);
2209 } else {
2210 RT_UNLOCK(rt);
2211 }
2212
2213 nstat_route_new_entry(rt);
2214 break;
2215 }
2216 bad:
2217 if (ifa)
2218 IFA_REMREF(ifa);
2219 return (error);
2220 }
2221 #undef senderr
2222
2223 int
2224 rtrequest(int req, struct sockaddr *dst, struct sockaddr *gateway,
2225 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
2226 {
2227 int error;
2228 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2229 lck_mtx_lock(rnh_lock);
2230 error = rtrequest_locked(req, dst, gateway, netmask, flags, ret_nrt);
2231 lck_mtx_unlock(rnh_lock);
2232 return (error);
2233 }
2234
2235 int
2236 rtrequest_scoped(int req, struct sockaddr *dst, struct sockaddr *gateway,
2237 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt,
2238 unsigned int ifscope)
2239 {
2240 int error;
2241 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2242 lck_mtx_lock(rnh_lock);
2243 error = rtrequest_scoped_locked(req, dst, gateway, netmask, flags,
2244 ret_nrt, ifscope);
2245 lck_mtx_unlock(rnh_lock);
2246 return (error);
2247 }
2248
2249 /*
2250 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2251 * (i.e., the routes related to it by the operation of cloning). This
2252 * routine is iterated over all potential former-child-routes by way of
2253 * rnh->rnh_walktree_from() above, and those that actually are children of
2254 * the late parent (passed in as VP here) are themselves deleted.
2255 */
2256 static int
2257 rt_fixdelete(struct radix_node *rn, void *vp)
2258 {
2259 struct rtentry *rt = (struct rtentry *)rn;
2260 struct rtentry *rt0 = vp;
2261
2262 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2263
2264 RT_LOCK(rt);
2265 if (rt->rt_parent == rt0 &&
2266 !(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2267 /*
2268 * Safe to drop rt_lock and use rt_key, since holding
2269 * rnh_lock here prevents another thread from calling
2270 * rt_setgate() on this route.
2271 */
2272 RT_UNLOCK(rt);
2273 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2274 rt_mask(rt), rt->rt_flags, NULL));
2275 }
2276 RT_UNLOCK(rt);
2277 return (0);
2278 }
2279
2280 /*
2281 * This routine is called from rt_setgate() to do the analogous thing for
2282 * adds and changes. There is the added complication in this case of a
2283 * middle insert; i.e., insertion of a new network route between an older
2284 * network route and (cloned) host routes. For this reason, a simple check
2285 * of rt->rt_parent is insufficient; each candidate route must be tested
2286 * against the (mask, value) of the new route (passed as before in vp)
2287 * to see if the new route matches it.
2288 *
2289 * XXX - it may be possible to do fixdelete() for changes and reserve this
2290 * routine just for adds. I'm not sure why I thought it was necessary to do
2291 * changes this way.
2292 */
2293 static int
2294 rt_fixchange(struct radix_node *rn, void *vp)
2295 {
2296 struct rtentry *rt = (struct rtentry *)rn;
2297 struct rtfc_arg *ap = vp;
2298 struct rtentry *rt0 = ap->rt0;
2299 struct radix_node_head *rnh = ap->rnh;
2300 u_char *xk1, *xm1, *xk2, *xmp;
2301 int i, len;
2302
2303 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2304
2305 RT_LOCK(rt);
2306
2307 if (!rt->rt_parent ||
2308 (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2309 RT_UNLOCK(rt);
2310 return (0);
2311 }
2312
2313 if (rt->rt_parent == rt0)
2314 goto delete_rt;
2315
2316 /*
2317 * There probably is a function somewhere which does this...
2318 * if not, there should be.
2319 */
2320 len = imin(rt_key(rt0)->sa_len, rt_key(rt)->sa_len);
2321
2322 xk1 = (u_char *)rt_key(rt0);
2323 xm1 = (u_char *)rt_mask(rt0);
2324 xk2 = (u_char *)rt_key(rt);
2325
2326 /*
2327 * Avoid applying a less specific route; do this only if the parent
2328 * route (rt->rt_parent) is a network route, since otherwise its mask
2329 * will be NULL if it is a cloning host route.
2330 */
2331 if ((xmp = (u_char *)rt_mask(rt->rt_parent)) != NULL) {
2332 int mlen = rt_mask(rt->rt_parent)->sa_len;
2333 if (mlen > rt_mask(rt0)->sa_len) {
2334 RT_UNLOCK(rt);
2335 return (0);
2336 }
2337
2338 for (i = rnh->rnh_treetop->rn_offset; i < mlen; i++) {
2339 if ((xmp[i] & ~(xmp[i] ^ xm1[i])) != xmp[i]) {
2340 RT_UNLOCK(rt);
2341 return (0);
2342 }
2343 }
2344 }
2345
2346 for (i = rnh->rnh_treetop->rn_offset; i < len; i++) {
2347 if ((xk2[i] & xm1[i]) != xk1[i]) {
2348 RT_UNLOCK(rt);
2349 return (0);
2350 }
2351 }
2352
2353 /*
2354 * OK, this node is a clone, and matches the node currently being
2355 * changed/added under the node's mask. So, get rid of it.
2356 */
2357 delete_rt:
2358 /*
2359 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2360 * prevents another thread from calling rt_setgate() on this route.
2361 */
2362 RT_UNLOCK(rt);
2363 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2364 rt_mask(rt), rt->rt_flags, NULL));
2365 }
2366
2367 /*
2368 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2369 * or even eliminate the need to re-allocate the chunk of memory used
2370 * for rt_key and rt_gateway in the event the gateway portion changes.
2371 * Certain code paths (e.g. IPSec) are notorious for caching the address
2372 * of rt_gateway; this rounding-up would help ensure that the gateway
2373 * portion never gets deallocated (though it may change contents) and
2374 * thus greatly simplifies things.
2375 */
2376 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2377
2378 /*
2379 * Sets the gateway and/or gateway route portion of a route; may be
2380 * called on an existing route to modify the gateway portion. Both
2381 * rt_key and rt_gateway are allocated out of the same memory chunk.
2382 * Route entry lock must be held by caller; this routine will return
2383 * with the lock held.
2384 */
2385 int
2386 rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate)
2387 {
2388 int dlen = SA_SIZE(dst->sa_len), glen = SA_SIZE(gate->sa_len);
2389 struct radix_node_head *rnh = NULL;
2390 boolean_t loop = FALSE;
2391
2392 if (dst->sa_family != AF_INET && dst->sa_family != AF_INET6) {
2393 return (EINVAL);
2394 }
2395
2396 rnh = rt_tables[dst->sa_family];
2397 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2398 RT_LOCK_ASSERT_HELD(rt);
2399
2400 /*
2401 * If this is for a route that is on its way of being removed,
2402 * or is temporarily frozen, reject the modification request.
2403 */
2404 if (rt->rt_flags & RTF_CONDEMNED) {
2405 return (EBUSY);
2406 }
2407
2408 /* Add an extra ref for ourselves */
2409 RT_ADDREF_LOCKED(rt);
2410
2411 if (rt->rt_flags & RTF_GATEWAY) {
2412 if ((dst->sa_len == gate->sa_len) &&
2413 (dst->sa_family == AF_INET || dst->sa_family == AF_INET6)) {
2414 struct sockaddr_storage dst_ss, gate_ss;
2415
2416 (void) sa_copy(dst, &dst_ss, NULL);
2417 (void) sa_copy(gate, &gate_ss, NULL);
2418
2419 loop = equal(SA(&dst_ss), SA(&gate_ss));
2420 } else {
2421 loop = (dst->sa_len == gate->sa_len &&
2422 equal(dst, gate));
2423 }
2424 }
2425
2426 /*
2427 * A (cloning) network route with the destination equal to the gateway
2428 * will create an endless loop (see notes below), so disallow it.
2429 */
2430 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2431 RTF_GATEWAY) && loop) {
2432 /* Release extra ref */
2433 RT_REMREF_LOCKED(rt);
2434 return (EADDRNOTAVAIL);
2435 }
2436
2437 /*
2438 * A host route with the destination equal to the gateway
2439 * will interfere with keeping LLINFO in the routing
2440 * table, so disallow it.
2441 */
2442 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2443 (RTF_HOST|RTF_GATEWAY)) && loop) {
2444 /*
2445 * The route might already exist if this is an RTM_CHANGE
2446 * or a routing redirect, so try to delete it.
2447 */
2448 if (rt_key(rt) != NULL) {
2449 /*
2450 * Safe to drop rt_lock and use rt_key, rt_gateway,
2451 * since holding rnh_lock here prevents another thread
2452 * from calling rt_setgate() on this route.
2453 */
2454 RT_UNLOCK(rt);
2455 (void) rtrequest_locked(RTM_DELETE, rt_key(rt),
2456 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
2457 RT_LOCK(rt);
2458 }
2459 /* Release extra ref */
2460 RT_REMREF_LOCKED(rt);
2461 return (EADDRNOTAVAIL);
2462 }
2463
2464 /*
2465 * The destination is not directly reachable. Get a route
2466 * to the next-hop gateway and store it in rt_gwroute.
2467 */
2468 if (rt->rt_flags & RTF_GATEWAY) {
2469 struct rtentry *gwrt;
2470 unsigned int ifscope;
2471
2472 if (dst->sa_family == AF_INET)
2473 ifscope = sin_get_ifscope(dst);
2474 else if (dst->sa_family == AF_INET6)
2475 ifscope = sin6_get_ifscope(dst);
2476 else
2477 ifscope = IFSCOPE_NONE;
2478
2479 RT_UNLOCK(rt);
2480 /*
2481 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2482 * points to a clone rather than a cloning route; see above
2483 * check for cloning loop avoidance (dst == gate).
2484 */
2485 gwrt = rtalloc1_scoped_locked(gate, 1, RTF_PRCLONING, ifscope);
2486 if (gwrt != NULL)
2487 RT_LOCK_ASSERT_NOTHELD(gwrt);
2488 RT_LOCK(rt);
2489
2490 /*
2491 * Cloning loop avoidance:
2492 *
2493 * In the presence of protocol-cloning and bad configuration,
2494 * it is possible to get stuck in bottomless mutual recursion
2495 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2496 * allowing protocol-cloning to operate for gateways (which
2497 * is probably the correct choice anyway), and avoid the
2498 * resulting reference loops by disallowing any route to run
2499 * through itself as a gateway. This is obviously mandatory
2500 * when we get rt->rt_output(). It implies that a route to
2501 * the gateway must already be present in the system in order
2502 * for the gateway to be referred to by another route.
2503 */
2504 if (gwrt == rt) {
2505 RT_REMREF_LOCKED(gwrt);
2506 /* Release extra ref */
2507 RT_REMREF_LOCKED(rt);
2508 return (EADDRINUSE); /* failure */
2509 }
2510
2511 /*
2512 * If scoped, the gateway route must use the same interface;
2513 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2514 * should not change and are freely accessible.
2515 */
2516 if (ifscope != IFSCOPE_NONE && (rt->rt_flags & RTF_IFSCOPE) &&
2517 gwrt != NULL && gwrt->rt_ifp != NULL &&
2518 gwrt->rt_ifp->if_index != ifscope) {
2519 rtfree_locked(gwrt); /* rt != gwrt, no deadlock */
2520 /* Release extra ref */
2521 RT_REMREF_LOCKED(rt);
2522 return ((rt->rt_flags & RTF_HOST) ?
2523 EHOSTUNREACH : ENETUNREACH);
2524 }
2525
2526 /* Check again since we dropped the lock above */
2527 if (rt->rt_flags & RTF_CONDEMNED) {
2528 if (gwrt != NULL)
2529 rtfree_locked(gwrt);
2530 /* Release extra ref */
2531 RT_REMREF_LOCKED(rt);
2532 return (EBUSY);
2533 }
2534
2535 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2536 rt_set_gwroute(rt, dst, gwrt);
2537
2538 /*
2539 * In case the (non-scoped) default route gets modified via
2540 * an ICMP redirect, record the interface index used for the
2541 * primary ifscope. Also done in rt_setif() to take care
2542 * of the non-redirect cases.
2543 */
2544 if (rt_primary_default(rt, dst) && rt->rt_ifp != NULL) {
2545 set_primary_ifscope(dst->sa_family,
2546 rt->rt_ifp->if_index);
2547 }
2548
2549 /*
2550 * Tell the kernel debugger about the new default gateway
2551 * if the gateway route uses the primary interface, or
2552 * if we are in a transient state before the non-scoped
2553 * default gateway is installed (similar to how the system
2554 * was behaving in the past). In future, it would be good
2555 * to do all this only when KDP is enabled.
2556 */
2557 if ((dst->sa_family == AF_INET) &&
2558 gwrt != NULL && gwrt->rt_gateway->sa_family == AF_LINK &&
2559 (gwrt->rt_ifp->if_index == get_primary_ifscope(AF_INET) ||
2560 get_primary_ifscope(AF_INET) == IFSCOPE_NONE)) {
2561 kdp_set_gateway_mac(SDL((void *)gwrt->rt_gateway)->
2562 sdl_data);
2563 }
2564
2565 /* Release extra ref from rtalloc1() */
2566 if (gwrt != NULL)
2567 RT_REMREF(gwrt);
2568 }
2569
2570 /*
2571 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2572 * are stored one after the other in the same malloc'd chunk. If we
2573 * have room, reuse the old buffer since rt_gateway already points
2574 * to the right place. Otherwise, malloc a new block and update
2575 * the 'dst' address and point rt_gateway to the right place.
2576 */
2577 if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway->sa_len)) {
2578 caddr_t new;
2579
2580 /* The underlying allocation is done with M_WAITOK set */
2581 R_Malloc(new, caddr_t, dlen + glen);
2582 if (new == NULL) {
2583 /* Clear gateway route */
2584 rt_set_gwroute(rt, dst, NULL);
2585 /* Release extra ref */
2586 RT_REMREF_LOCKED(rt);
2587 return (ENOBUFS);
2588 }
2589
2590 /*
2591 * Copy from 'dst' and not rt_key(rt) because we can get
2592 * here to initialize a newly allocated route entry, in
2593 * which case rt_key(rt) is NULL (and so does rt_gateway).
2594 */
2595 bzero(new, dlen + glen);
2596 Bcopy(dst, new, dst->sa_len);
2597 R_Free(rt_key(rt)); /* free old block; NULL is okay */
2598 rt->rt_nodes->rn_key = new;
2599 rt->rt_gateway = (struct sockaddr *)(new + dlen);
2600 }
2601
2602 /*
2603 * Copy the new gateway value into the memory chunk.
2604 */
2605 Bcopy(gate, rt->rt_gateway, gate->sa_len);
2606
2607 /*
2608 * For consistency between rt_gateway and rt_key(gwrt).
2609 */
2610 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL &&
2611 (rt->rt_gwroute->rt_flags & RTF_IFSCOPE)) {
2612 if (rt->rt_gateway->sa_family == AF_INET &&
2613 rt_key(rt->rt_gwroute)->sa_family == AF_INET) {
2614 sin_set_ifscope(rt->rt_gateway,
2615 sin_get_ifscope(rt_key(rt->rt_gwroute)));
2616 } else if (rt->rt_gateway->sa_family == AF_INET6 &&
2617 rt_key(rt->rt_gwroute)->sa_family == AF_INET6) {
2618 sin6_set_ifscope(rt->rt_gateway,
2619 sin6_get_ifscope(rt_key(rt->rt_gwroute)));
2620 }
2621 }
2622
2623 /*
2624 * This isn't going to do anything useful for host routes, so
2625 * don't bother. Also make sure we have a reasonable mask
2626 * (we don't yet have one during adds).
2627 */
2628 if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) {
2629 struct rtfc_arg arg;
2630 arg.rnh = rnh;
2631 arg.rt0 = rt;
2632 RT_UNLOCK(rt);
2633 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2634 rt_fixchange, &arg);
2635 RT_LOCK(rt);
2636 }
2637
2638 /* Release extra ref */
2639 RT_REMREF_LOCKED(rt);
2640 return (0);
2641 }
2642
2643 #undef SA_SIZE
2644
2645 void
2646 rt_set_gwroute(struct rtentry *rt, struct sockaddr *dst, struct rtentry *gwrt)
2647 {
2648 boolean_t gwrt_isrouter;
2649
2650 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2651 RT_LOCK_ASSERT_HELD(rt);
2652
2653 if (gwrt != NULL)
2654 RT_ADDREF(gwrt); /* for this routine */
2655
2656 /*
2657 * Get rid of existing gateway route; if rt_gwroute is already
2658 * set to gwrt, this is slightly redundant (though safe since
2659 * we held an extra ref above) but makes the code simpler.
2660 */
2661 if (rt->rt_gwroute != NULL) {
2662 struct rtentry *ogwrt = rt->rt_gwroute;
2663
2664 VERIFY(rt != ogwrt); /* sanity check */
2665 rt->rt_gwroute = NULL;
2666 RT_UNLOCK(rt);
2667 rtfree_locked(ogwrt);
2668 RT_LOCK(rt);
2669 VERIFY(rt->rt_gwroute == NULL);
2670 }
2671
2672 /*
2673 * And associate the new gateway route.
2674 */
2675 if ((rt->rt_gwroute = gwrt) != NULL) {
2676 RT_ADDREF(gwrt); /* for rt */
2677
2678 if (rt->rt_flags & RTF_WASCLONED) {
2679 /* rt_parent might be NULL if rt is embryonic */
2680 gwrt_isrouter = (rt->rt_parent != NULL &&
2681 SA_DEFAULT(rt_key(rt->rt_parent)) &&
2682 !RT_HOST(rt->rt_parent));
2683 } else {
2684 gwrt_isrouter = (SA_DEFAULT(dst) && !RT_HOST(rt));
2685 }
2686
2687 /* If gwrt points to a default router, mark it accordingly */
2688 if (gwrt_isrouter && RT_HOST(gwrt) &&
2689 !(gwrt->rt_flags & RTF_ROUTER)) {
2690 RT_LOCK(gwrt);
2691 gwrt->rt_flags |= RTF_ROUTER;
2692 RT_UNLOCK(gwrt);
2693 }
2694
2695 RT_REMREF(gwrt); /* for this routine */
2696 }
2697 }
2698
2699 static void
2700 rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst,
2701 const struct sockaddr *netmask)
2702 {
2703 const char *netmaskp = &netmask->sa_data[0];
2704 const char *srcp = &src->sa_data[0];
2705 char *dstp = &dst->sa_data[0];
2706 const char *maskend = (char *)dst
2707 + MIN(netmask->sa_len, src->sa_len);
2708 const char *srcend = (char *)dst + src->sa_len;
2709
2710 dst->sa_len = src->sa_len;
2711 dst->sa_family = src->sa_family;
2712
2713 while (dstp < maskend)
2714 *dstp++ = *srcp++ & *netmaskp++;
2715 if (dstp < srcend)
2716 memset(dstp, 0, (size_t)(srcend - dstp));
2717 }
2718
2719 /*
2720 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2721 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2722 */
2723 static struct radix_node *
2724 node_lookup(struct sockaddr *dst, struct sockaddr *netmask,
2725 unsigned int ifscope)
2726 {
2727 struct radix_node_head *rnh;
2728 struct radix_node *rn;
2729 struct sockaddr_storage ss, mask;
2730 int af = dst->sa_family;
2731 struct matchleaf_arg ma = { ifscope };
2732 rn_matchf_t *f = rn_match_ifscope;
2733 void *w = &ma;
2734
2735 if (af != AF_INET && af != AF_INET6)
2736 return (NULL);
2737
2738 rnh = rt_tables[af];
2739
2740 /*
2741 * Transform dst into the internal routing table form,
2742 * clearing out the scope ID field if ifscope isn't set.
2743 */
2744 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ? NULL : &ifscope);
2745
2746 /* Transform netmask into the internal routing table form */
2747 if (netmask != NULL)
2748 netmask = ma_copy(af, netmask, &mask, ifscope);
2749
2750 if (ifscope == IFSCOPE_NONE)
2751 f = w = NULL;
2752
2753 rn = rnh->rnh_lookup_args(dst, netmask, rnh, f, w);
2754 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2755 rn = NULL;
2756
2757 return (rn);
2758 }
2759
2760 /*
2761 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2762 */
2763 static struct radix_node *
2764 node_lookup_default(int af)
2765 {
2766 struct radix_node_head *rnh;
2767
2768 VERIFY(af == AF_INET || af == AF_INET6);
2769 rnh = rt_tables[af];
2770
2771 return (af == AF_INET ? rnh->rnh_lookup(&sin_def, NULL, rnh) :
2772 rnh->rnh_lookup(&sin6_def, NULL, rnh));
2773 }
2774
2775 boolean_t
2776 rt_ifa_is_dst(struct sockaddr *dst, struct ifaddr *ifa)
2777 {
2778 boolean_t result = FALSE;
2779
2780 if (ifa == NULL || ifa->ifa_addr == NULL)
2781 return (result);
2782
2783 IFA_LOCK_SPIN(ifa);
2784
2785 if (dst->sa_family == ifa->ifa_addr->sa_family &&
2786 ((dst->sa_family == AF_INET &&
2787 SIN(dst)->sin_addr.s_addr ==
2788 SIN(ifa->ifa_addr)->sin_addr.s_addr) ||
2789 (dst->sa_family == AF_INET6 &&
2790 SA6_ARE_ADDR_EQUAL(SIN6(dst), SIN6(ifa->ifa_addr)))))
2791 result = TRUE;
2792
2793 IFA_UNLOCK(ifa);
2794
2795 return (result);
2796 }
2797
2798 /*
2799 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2800 * callback which could be address family-specific. The main difference
2801 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2802 * not alter the expiring state of a route, whereas a match would unexpire
2803 * or revalidate the route.
2804 *
2805 * The optional scope or interface index property of a route allows for a
2806 * per-interface route instance. This permits multiple route entries having
2807 * the same destination (but not necessarily the same gateway) to exist in
2808 * the routing table; each of these entries is specific to the corresponding
2809 * interface. This is made possible by storing the scope ID value into the
2810 * radix key, thus making each route entry unique. These scoped entries
2811 * exist along with the regular, non-scoped entries in the same radix tree
2812 * for a given address family (AF_INET/AF_INET6); the scope logically
2813 * partitions it into multiple per-interface sub-trees.
2814 *
2815 * When a scoped route lookup is performed, the routing table is searched for
2816 * the best match that would result in a route using the same interface as the
2817 * one associated with the scope (the exception to this are routes that point
2818 * to the loopback interface). The search rule follows the longest matching
2819 * prefix with the additional interface constraint.
2820 */
2821 static struct rtentry *
2822 rt_lookup_common(boolean_t lookup_only, boolean_t coarse, struct sockaddr *dst,
2823 struct sockaddr *netmask, struct radix_node_head *rnh, unsigned int ifscope)
2824 {
2825 struct radix_node *rn0, *rn;
2826 boolean_t dontcare;
2827 int af = dst->sa_family;
2828 struct sockaddr_storage dst_ss, mask_ss;
2829 char s_dst[MAX_IPv6_STR_LEN], s_netmask[MAX_IPv6_STR_LEN];
2830 char dbuf[MAX_SCOPE_ADDR_STR_LEN], gbuf[MAX_IPv6_STR_LEN];
2831
2832 VERIFY(!coarse || ifscope == IFSCOPE_NONE);
2833
2834 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2835 #if INET6
2836 /*
2837 * While we have rnh_lock held, see if we need to schedule the timer.
2838 */
2839 if (nd6_sched_timeout_want)
2840 nd6_sched_timeout(NULL, NULL);
2841 #endif /* INET6 */
2842
2843 if (!lookup_only)
2844 netmask = NULL;
2845
2846 /*
2847 * Non-scoped route lookup.
2848 */
2849 #if INET6
2850 if ((af != AF_INET && af != AF_INET6) ||
2851 (af == AF_INET && !ip_doscopedroute) ||
2852 (af == AF_INET6 && !ip6_doscopedroute)) {
2853 #else
2854 if (af != AF_INET || !ip_doscopedroute) {
2855 #endif /* !INET6 */
2856 rn = rnh->rnh_matchaddr(dst, rnh);
2857
2858 /*
2859 * Don't return a root node; also, rnh_matchaddr callback
2860 * would have done the necessary work to clear RTPRF_OURS
2861 * for certain protocol families.
2862 */
2863 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2864 rn = NULL;
2865 if (rn != NULL) {
2866 RT_LOCK_SPIN(RT(rn));
2867 if (!(RT(rn)->rt_flags & RTF_CONDEMNED)) {
2868 RT_ADDREF_LOCKED(RT(rn));
2869 RT_UNLOCK(RT(rn));
2870 } else {
2871 RT_UNLOCK(RT(rn));
2872 rn = NULL;
2873 }
2874 }
2875 return (RT(rn));
2876 }
2877
2878 /* Transform dst/netmask into the internal routing table form */
2879 dst = sa_copy(dst, &dst_ss, &ifscope);
2880 if (netmask != NULL)
2881 netmask = ma_copy(af, netmask, &mask_ss, ifscope);
2882 dontcare = (ifscope == IFSCOPE_NONE);
2883
2884 if (rt_verbose) {
2885 if (af == AF_INET)
2886 (void) inet_ntop(af, &SIN(dst)->sin_addr.s_addr,
2887 s_dst, sizeof (s_dst));
2888 else
2889 (void) inet_ntop(af, &SIN6(dst)->sin6_addr,
2890 s_dst, sizeof (s_dst));
2891
2892 if (netmask != NULL && af == AF_INET)
2893 (void) inet_ntop(af, &SIN(netmask)->sin_addr.s_addr,
2894 s_netmask, sizeof (s_netmask));
2895 if (netmask != NULL && af == AF_INET6)
2896 (void) inet_ntop(af, &SIN6(netmask)->sin6_addr,
2897 s_netmask, sizeof (s_netmask));
2898 else
2899 *s_netmask = '\0';
2900 printf("%s (%d, %d, %s, %s, %u)\n",
2901 __func__, lookup_only, coarse, s_dst, s_netmask, ifscope);
2902 }
2903
2904 /*
2905 * Scoped route lookup:
2906 *
2907 * We first perform a non-scoped lookup for the original result.
2908 * Afterwards, depending on whether or not the caller has specified
2909 * a scope, we perform a more specific scoped search and fallback
2910 * to this original result upon failure.
2911 */
2912 rn0 = rn = node_lookup(dst, netmask, IFSCOPE_NONE);
2913
2914 /*
2915 * If the caller did not specify a scope, use the primary scope
2916 * derived from the system's non-scoped default route. If, for
2917 * any reason, there is no primary interface, ifscope will be
2918 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
2919 * we'll do a more-specific search below, scoped to the interface
2920 * of that route.
2921 */
2922 if (dontcare)
2923 ifscope = get_primary_ifscope(af);
2924
2925 /*
2926 * Keep the original result if either of the following is true:
2927 *
2928 * 1) The interface portion of the route has the same interface
2929 * index as the scope value and it is marked with RTF_IFSCOPE.
2930 * 2) The route uses the loopback interface, in which case the
2931 * destination (host/net) is local/loopback.
2932 *
2933 * Otherwise, do a more specified search using the scope;
2934 * we're holding rnh_lock now, so rt_ifp should not change.
2935 */
2936 if (rn != NULL) {
2937 struct rtentry *rt = RT(rn);
2938
2939 if (rt_verbose) {
2940 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
2941 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
2942 __func__, rt,
2943 dbuf, gbuf,
2944 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
2945 (rt->rt_ifa->ifa_ifp != NULL) ?
2946 rt->rt_ifa->ifa_ifp->if_xname : "");
2947 }
2948 if (!(rt->rt_ifp->if_flags & IFF_LOOPBACK)) {
2949 if (rt->rt_ifp->if_index != ifscope) {
2950 /*
2951 * Wrong interface; keep the original result
2952 * only if the caller did not specify a scope,
2953 * and do a more specific scoped search using
2954 * the scope of the found route. Otherwise,
2955 * start again from scratch.
2956 *
2957 * For loopback scope we keep the unscoped
2958 * route for local addresses
2959 */
2960 rn = NULL;
2961 if (dontcare)
2962 ifscope = rt->rt_ifp->if_index;
2963 else if (ifscope != lo_ifp->if_index ||
2964 rt_ifa_is_dst(dst, rt->rt_ifa) == FALSE)
2965 rn0 = NULL;
2966 } else if (!(rt->rt_flags & RTF_IFSCOPE)) {
2967 /*
2968 * Right interface, except that this route
2969 * isn't marked with RTF_IFSCOPE. Do a more
2970 * specific scoped search. Keep the original
2971 * result and return it it in case the scoped
2972 * search fails.
2973 */
2974 rn = NULL;
2975 }
2976 }
2977 }
2978
2979 /*
2980 * Scoped search. Find the most specific entry having the same
2981 * interface scope as the one requested. The following will result
2982 * in searching for the longest prefix scoped match.
2983 */
2984 if (rn == NULL) {
2985 rn = node_lookup(dst, netmask, ifscope);
2986
2987 if (rt_verbose && rn != NULL) {
2988 struct rtentry *rt = RT(rn);
2989
2990 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
2991 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
2992 __func__, rt,
2993 dbuf, gbuf,
2994 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
2995 (rt->rt_ifa->ifa_ifp != NULL) ?
2996 rt->rt_ifa->ifa_ifp->if_xname : "");
2997 }
2998 }
2999 /*
3000 * Use the original result if either of the following is true:
3001 *
3002 * 1) The scoped search did not yield any result.
3003 * 2) The caller insists on performing a coarse-grained lookup.
3004 * 3) The result from the scoped search is a scoped default route,
3005 * and the original (non-scoped) result is not a default route,
3006 * i.e. the original result is a more specific host/net route.
3007 * 4) The scoped search yielded a net route but the original
3008 * result is a host route, i.e. the original result is treated
3009 * as a more specific route.
3010 */
3011 if (rn == NULL || coarse || (rn0 != NULL &&
3012 ((SA_DEFAULT(rt_key(RT(rn))) && !SA_DEFAULT(rt_key(RT(rn0)))) ||
3013 (!RT_HOST(rn) && RT_HOST(rn0)))))
3014 rn = rn0;
3015
3016 /*
3017 * If we still don't have a route, use the non-scoped default
3018 * route as long as the interface portion satistifes the scope.
3019 */
3020 if (rn == NULL && (rn = node_lookup_default(af)) != NULL &&
3021 RT(rn)->rt_ifp->if_index != ifscope) {
3022 rn = NULL;
3023 }
3024
3025 if (rn != NULL) {
3026 /*
3027 * Manually clear RTPRF_OURS using rt_validate() and
3028 * bump up the reference count after, and not before;
3029 * we only get here for AF_INET/AF_INET6. node_lookup()
3030 * has done the check against RNF_ROOT, so we can be sure
3031 * that we're not returning a root node here.
3032 */
3033 RT_LOCK_SPIN(RT(rn));
3034 if (rt_validate(RT(rn))) {
3035 RT_ADDREF_LOCKED(RT(rn));
3036 RT_UNLOCK(RT(rn));
3037 } else {
3038 RT_UNLOCK(RT(rn));
3039 rn = NULL;
3040 }
3041 }
3042
3043 if (rt_verbose) {
3044 if (rn == NULL)
3045 printf("%s %u return NULL\n", __func__, ifscope);
3046 else {
3047 struct rtentry *rt = RT(rn);
3048
3049 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3050
3051 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3052 __func__, ifscope, rt,
3053 dbuf, gbuf,
3054 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
3055 (rt->rt_ifa->ifa_ifp != NULL) ?
3056 rt->rt_ifa->ifa_ifp->if_xname : "");
3057 }
3058 }
3059
3060 return (RT(rn));
3061 }
3062
3063 struct rtentry *
3064 rt_lookup(boolean_t lookup_only, struct sockaddr *dst, struct sockaddr *netmask,
3065 struct radix_node_head *rnh, unsigned int ifscope)
3066 {
3067 return (rt_lookup_common(lookup_only, FALSE, dst, netmask,
3068 rnh, ifscope));
3069 }
3070
3071 struct rtentry *
3072 rt_lookup_coarse(boolean_t lookup_only, struct sockaddr *dst,
3073 struct sockaddr *netmask, struct radix_node_head *rnh)
3074 {
3075 return (rt_lookup_common(lookup_only, TRUE, dst, netmask,
3076 rnh, IFSCOPE_NONE));
3077 }
3078
3079 boolean_t
3080 rt_validate(struct rtentry *rt)
3081 {
3082 RT_LOCK_ASSERT_HELD(rt);
3083
3084 if ((rt->rt_flags & (RTF_UP | RTF_CONDEMNED)) == RTF_UP) {
3085 int af = rt_key(rt)->sa_family;
3086
3087 if (af == AF_INET)
3088 (void) in_validate(RN(rt));
3089 else if (af == AF_INET6)
3090 (void) in6_validate(RN(rt));
3091 } else {
3092 rt = NULL;
3093 }
3094
3095 return (rt != NULL);
3096 }
3097
3098 /*
3099 * Set up a routing table entry, normally
3100 * for an interface.
3101 */
3102 int
3103 rtinit(struct ifaddr *ifa, int cmd, int flags)
3104 {
3105 int error;
3106
3107 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
3108
3109 lck_mtx_lock(rnh_lock);
3110 error = rtinit_locked(ifa, cmd, flags);
3111 lck_mtx_unlock(rnh_lock);
3112
3113 return (error);
3114 }
3115
3116 int
3117 rtinit_locked(struct ifaddr *ifa, int cmd, int flags)
3118 {
3119 struct radix_node_head *rnh;
3120 uint8_t nbuf[128]; /* long enough for IPv6 */
3121 char dbuf[MAX_IPv6_STR_LEN], gbuf[MAX_IPv6_STR_LEN];
3122 char abuf[MAX_IPv6_STR_LEN];
3123 struct rtentry *rt = NULL;
3124 struct sockaddr *dst;
3125 struct sockaddr *netmask;
3126 int error = 0;
3127
3128 /*
3129 * Holding rnh_lock here prevents the possibility of ifa from
3130 * changing (e.g. in_ifinit), so it is safe to access its
3131 * ifa_{dst}addr (here and down below) without locking.
3132 */
3133 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
3134
3135 if (flags & RTF_HOST) {
3136 dst = ifa->ifa_dstaddr;
3137 netmask = NULL;
3138 } else {
3139 dst = ifa->ifa_addr;
3140 netmask = ifa->ifa_netmask;
3141 }
3142
3143 if (dst->sa_len == 0) {
3144 log(LOG_ERR, "%s: %s failed, invalid dst sa_len %d\n",
3145 __func__, rtm2str(cmd), dst->sa_len);
3146 error = EINVAL;
3147 goto done;
3148 }
3149 if (netmask != NULL && netmask->sa_len > sizeof (nbuf)) {
3150 log(LOG_ERR, "%s: %s failed, mask sa_len %d too large\n",
3151 __func__, rtm2str(cmd), dst->sa_len);
3152 error = EINVAL;
3153 goto done;
3154 }
3155
3156 if (dst->sa_family == AF_INET) {
3157 (void) inet_ntop(AF_INET, &SIN(dst)->sin_addr.s_addr,
3158 abuf, sizeof (abuf));
3159 }
3160 #if INET6
3161 else if (dst->sa_family == AF_INET6) {
3162 (void) inet_ntop(AF_INET6, &SIN6(dst)->sin6_addr,
3163 abuf, sizeof (abuf));
3164 }
3165 #endif /* INET6 */
3166
3167 if ((rnh = rt_tables[dst->sa_family]) == NULL) {
3168 error = EINVAL;
3169 goto done;
3170 }
3171
3172 /*
3173 * If it's a delete, check that if it exists, it's on the correct
3174 * interface or we might scrub a route to another ifa which would
3175 * be confusing at best and possibly worse.
3176 */
3177 if (cmd == RTM_DELETE) {
3178 /*
3179 * It's a delete, so it should already exist..
3180 * If it's a net, mask off the host bits
3181 * (Assuming we have a mask)
3182 */
3183 if (netmask != NULL) {
3184 rt_maskedcopy(dst, SA(nbuf), netmask);
3185 dst = SA(nbuf);
3186 }
3187 /*
3188 * Get an rtentry that is in the routing tree and contains
3189 * the correct info. Note that we perform a coarse-grained
3190 * lookup here, in case there is a scoped variant of the
3191 * subnet/prefix route which we should ignore, as we never
3192 * add a scoped subnet/prefix route as part of adding an
3193 * interface address.
3194 */
3195 rt = rt_lookup_coarse(TRUE, dst, NULL, rnh);
3196 if (rt != NULL) {
3197 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3198 /*
3199 * Ok so we found the rtentry. it has an extra reference
3200 * for us at this stage. we won't need that so
3201 * lop that off now.
3202 */
3203 RT_LOCK(rt);
3204 if (rt->rt_ifa != ifa) {
3205 /*
3206 * If the interface address in the rtentry
3207 * doesn't match the interface we are using,
3208 * then we don't want to delete it, so return
3209 * an error. This seems to be the only point
3210 * of this whole RTM_DELETE clause.
3211 */
3212 if (rt_verbose) {
3213 log(LOG_DEBUG, "%s: not removing "
3214 "route to %s->%s->%s, flags %b, "
3215 "ifaddr %s, rt_ifa 0x%llx != "
3216 "ifa 0x%llx\n", __func__, dbuf,
3217 gbuf, ((rt->rt_ifp != NULL) ?
3218 rt->rt_ifp->if_xname : ""),
3219 rt->rt_flags, RTF_BITS, abuf,
3220 (uint64_t)VM_KERNEL_ADDRPERM(
3221 rt->rt_ifa),
3222 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3223 }
3224 RT_REMREF_LOCKED(rt);
3225 RT_UNLOCK(rt);
3226 rt = NULL;
3227 error = ((flags & RTF_HOST) ?
3228 EHOSTUNREACH : ENETUNREACH);
3229 goto done;
3230 } else if (rt->rt_flags & RTF_STATIC) {
3231 /*
3232 * Don't remove the subnet/prefix route if
3233 * this was manually added from above.
3234 */
3235 if (rt_verbose) {
3236 log(LOG_DEBUG, "%s: not removing "
3237 "static route to %s->%s->%s, "
3238 "flags %b, ifaddr %s\n", __func__,
3239 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3240 rt->rt_ifp->if_xname : ""),
3241 rt->rt_flags, RTF_BITS, abuf);
3242 }
3243 RT_REMREF_LOCKED(rt);
3244 RT_UNLOCK(rt);
3245 rt = NULL;
3246 error = EBUSY;
3247 goto done;
3248 }
3249 if (rt_verbose) {
3250 log(LOG_DEBUG, "%s: removing route to "
3251 "%s->%s->%s, flags %b, ifaddr %s\n",
3252 __func__, dbuf, gbuf,
3253 ((rt->rt_ifp != NULL) ?
3254 rt->rt_ifp->if_xname : ""),
3255 rt->rt_flags, RTF_BITS, abuf);
3256 }
3257 RT_REMREF_LOCKED(rt);
3258 RT_UNLOCK(rt);
3259 rt = NULL;
3260 }
3261 }
3262 /*
3263 * Do the actual request
3264 */
3265 if ((error = rtrequest_locked(cmd, dst, ifa->ifa_addr, netmask,
3266 flags | ifa->ifa_flags, &rt)) != 0)
3267 goto done;
3268
3269 VERIFY(rt != NULL);
3270
3271 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3272
3273 switch (cmd) {
3274 case RTM_DELETE:
3275 /*
3276 * If we are deleting, and we found an entry, then it's
3277 * been removed from the tree. Notify any listening
3278 * routing agents of the change and throw it away.
3279 */
3280 RT_LOCK(rt);
3281 rt_newaddrmsg(cmd, ifa, error, rt);
3282 RT_UNLOCK(rt);
3283 if (rt_verbose) {
3284 log(LOG_DEBUG, "%s: removed route to %s->%s->%s, "
3285 "flags %b, ifaddr %s\n", __func__, dbuf, gbuf,
3286 ((rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : ""),
3287 rt->rt_flags, RTF_BITS, abuf);
3288 }
3289 rtfree_locked(rt);
3290 break;
3291
3292 case RTM_ADD:
3293 /*
3294 * We are adding, and we have a returned routing entry.
3295 * We need to sanity check the result. If it came back
3296 * with an unexpected interface, then it must have already
3297 * existed or something.
3298 */
3299 RT_LOCK(rt);
3300 if (rt->rt_ifa != ifa) {
3301 void (*ifa_rtrequest)
3302 (int, struct rtentry *, struct sockaddr *);
3303
3304 if (!(rt->rt_ifa->ifa_ifp->if_flags &
3305 (IFF_POINTOPOINT|IFF_LOOPBACK))) {
3306 log(LOG_ERR, "%s: %s route to %s->%s->%s, "
3307 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3308 "ifa 0x%llx\n", __func__, rtm2str(cmd),
3309 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3310 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3311 RTF_BITS, abuf,
3312 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3313 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3314 }
3315
3316 if (rt_verbose) {
3317 log(LOG_DEBUG, "%s: %s route to %s->%s->%s, "
3318 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3319 "now 0x%llx\n", __func__, rtm2str(cmd),
3320 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3321 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3322 RTF_BITS, abuf,
3323 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3324 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3325 }
3326
3327 /*
3328 * Ask that the protocol in question
3329 * remove anything it has associated with
3330 * this route and ifaddr.
3331 */
3332 ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
3333 if (ifa_rtrequest != NULL)
3334 ifa_rtrequest(RTM_DELETE, rt, NULL);
3335 /*
3336 * Set the route's ifa.
3337 */
3338 rtsetifa(rt, ifa);
3339
3340 if (rt->rt_ifp != ifa->ifa_ifp) {
3341 /*
3342 * Purge any link-layer info caching.
3343 */
3344 if (rt->rt_llinfo_purge != NULL)
3345 rt->rt_llinfo_purge(rt);
3346 /*
3347 * Adjust route ref count for the interfaces.
3348 */
3349 if (rt->rt_if_ref_fn != NULL) {
3350 rt->rt_if_ref_fn(ifa->ifa_ifp, 1);
3351 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3352 }
3353 }
3354
3355 /*
3356 * And substitute in references to the ifaddr
3357 * we are adding.
3358 */
3359 rt->rt_ifp = ifa->ifa_ifp;
3360 /*
3361 * If rmx_mtu is not locked, update it
3362 * to the MTU used by the new interface.
3363 */
3364 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
3365 rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
3366
3367 /*
3368 * Now ask the protocol to check if it needs
3369 * any special processing in its new form.
3370 */
3371 ifa_rtrequest = ifa->ifa_rtrequest;
3372 if (ifa_rtrequest != NULL)
3373 ifa_rtrequest(RTM_ADD, rt, NULL);
3374 } else {
3375 if (rt_verbose) {
3376 log(LOG_DEBUG, "%s: added route to %s->%s->%s, "
3377 "flags %b, ifaddr %s\n", __func__, dbuf,
3378 gbuf, ((rt->rt_ifp != NULL) ?
3379 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3380 RTF_BITS, abuf);
3381 }
3382 }
3383 /*
3384 * notify any listenning routing agents of the change
3385 */
3386 rt_newaddrmsg(cmd, ifa, error, rt);
3387 /*
3388 * We just wanted to add it; we don't actually need a
3389 * reference. This will result in a route that's added
3390 * to the routing table without a reference count. The
3391 * RTM_DELETE code will do the necessary step to adjust
3392 * the reference count at deletion time.
3393 */
3394 RT_REMREF_LOCKED(rt);
3395 RT_UNLOCK(rt);
3396 break;
3397
3398 default:
3399 VERIFY(0);
3400 /* NOTREACHED */
3401 }
3402 done:
3403 return (error);
3404 }
3405
3406 static void
3407 rt_set_idleref(struct rtentry *rt)
3408 {
3409 RT_LOCK_ASSERT_HELD(rt);
3410
3411 /*
3412 * We currently keep idle refcnt only on unicast cloned routes
3413 * that aren't marked with RTF_NOIFREF.
3414 */
3415 if (rt->rt_parent != NULL && !(rt->rt_flags &
3416 (RTF_NOIFREF|RTF_BROADCAST | RTF_MULTICAST)) &&
3417 (rt->rt_flags & (RTF_UP|RTF_WASCLONED|RTF_IFREF)) ==
3418 (RTF_UP|RTF_WASCLONED)) {
3419 rt_clear_idleref(rt); /* drop existing refcnt if any */
3420 rt->rt_if_ref_fn = rte_if_ref;
3421 /* Become a regular mutex, just in case */
3422 RT_CONVERT_LOCK(rt);
3423 rt->rt_if_ref_fn(rt->rt_ifp, 1);
3424 rt->rt_flags |= RTF_IFREF;
3425 }
3426 }
3427
3428 void
3429 rt_clear_idleref(struct rtentry *rt)
3430 {
3431 RT_LOCK_ASSERT_HELD(rt);
3432
3433 if (rt->rt_if_ref_fn != NULL) {
3434 VERIFY((rt->rt_flags & (RTF_NOIFREF | RTF_IFREF)) == RTF_IFREF);
3435 /* Become a regular mutex, just in case */
3436 RT_CONVERT_LOCK(rt);
3437 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3438 rt->rt_flags &= ~RTF_IFREF;
3439 rt->rt_if_ref_fn = NULL;
3440 }
3441 }
3442
3443 void
3444 rt_set_proxy(struct rtentry *rt, boolean_t set)
3445 {
3446 lck_mtx_lock(rnh_lock);
3447 RT_LOCK(rt);
3448 /*
3449 * Search for any cloned routes which might have
3450 * been formed from this node, and delete them.
3451 */
3452 if (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) {
3453 struct radix_node_head *rnh = rt_tables[rt_key(rt)->sa_family];
3454
3455 if (set)
3456 rt->rt_flags |= RTF_PROXY;
3457 else
3458 rt->rt_flags &= ~RTF_PROXY;
3459
3460 RT_UNLOCK(rt);
3461 if (rnh != NULL && rt_mask(rt)) {
3462 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
3463 rt_fixdelete, rt);
3464 }
3465 } else {
3466 RT_UNLOCK(rt);
3467 }
3468 lck_mtx_unlock(rnh_lock);
3469 }
3470
3471 static void
3472 rte_lock_init(struct rtentry *rt)
3473 {
3474 lck_mtx_init(&rt->rt_lock, rte_mtx_grp, rte_mtx_attr);
3475 }
3476
3477 static void
3478 rte_lock_destroy(struct rtentry *rt)
3479 {
3480 RT_LOCK_ASSERT_NOTHELD(rt);
3481 lck_mtx_destroy(&rt->rt_lock, rte_mtx_grp);
3482 }
3483
3484 void
3485 rt_lock(struct rtentry *rt, boolean_t spin)
3486 {
3487 RT_LOCK_ASSERT_NOTHELD(rt);
3488 if (spin)
3489 lck_mtx_lock_spin(&rt->rt_lock);
3490 else
3491 lck_mtx_lock(&rt->rt_lock);
3492 if (rte_debug & RTD_DEBUG)
3493 rte_lock_debug((struct rtentry_dbg *)rt);
3494 }
3495
3496 void
3497 rt_unlock(struct rtentry *rt)
3498 {
3499 if (rte_debug & RTD_DEBUG)
3500 rte_unlock_debug((struct rtentry_dbg *)rt);
3501 lck_mtx_unlock(&rt->rt_lock);
3502
3503 }
3504
3505 static inline void
3506 rte_lock_debug(struct rtentry_dbg *rte)
3507 {
3508 uint32_t idx;
3509
3510 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3511 idx = atomic_add_32_ov(&rte->rtd_lock_cnt, 1) % CTRACE_HIST_SIZE;
3512 if (rte_debug & RTD_TRACE)
3513 ctrace_record(&rte->rtd_lock[idx]);
3514 }
3515
3516 static inline void
3517 rte_unlock_debug(struct rtentry_dbg *rte)
3518 {
3519 uint32_t idx;
3520
3521 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3522 idx = atomic_add_32_ov(&rte->rtd_unlock_cnt, 1) % CTRACE_HIST_SIZE;
3523 if (rte_debug & RTD_TRACE)
3524 ctrace_record(&rte->rtd_unlock[idx]);
3525 }
3526
3527 static struct rtentry *
3528 rte_alloc(void)
3529 {
3530 if (rte_debug & RTD_DEBUG)
3531 return (rte_alloc_debug());
3532
3533 return ((struct rtentry *)zalloc(rte_zone));
3534 }
3535
3536 static void
3537 rte_free(struct rtentry *p)
3538 {
3539 if (rte_debug & RTD_DEBUG) {
3540 rte_free_debug(p);
3541 return;
3542 }
3543
3544 if (p->rt_refcnt != 0) {
3545 panic("rte_free: rte=%p refcnt=%d non-zero\n", p, p->rt_refcnt);
3546 /* NOTREACHED */
3547 }
3548
3549 zfree(rte_zone, p);
3550 }
3551
3552 static void
3553 rte_if_ref(struct ifnet *ifp, int cnt)
3554 {
3555 struct kev_msg ev_msg;
3556 struct net_event_data ev_data;
3557 uint32_t old;
3558
3559 /* Force cnt to 1 increment/decrement */
3560 if (cnt < -1 || cnt > 1) {
3561 panic("%s: invalid count argument (%d)", __func__, cnt);
3562 /* NOTREACHED */
3563 }
3564 old = atomic_add_32_ov(&ifp->if_route_refcnt, cnt);
3565 if (cnt < 0 && old == 0) {
3566 panic("%s: ifp=%p negative route refcnt!", __func__, ifp);
3567 /* NOTREACHED */
3568 }
3569 /*
3570 * The following is done without first holding the ifnet lock,
3571 * for performance reasons. The relevant ifnet fields, with
3572 * the exception of the if_idle_flags, are never changed
3573 * during the lifetime of the ifnet. The if_idle_flags
3574 * may possibly be modified, so in the event that the value
3575 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3576 * sending the event anyway. This is harmless as it is just
3577 * a notification to the monitoring agent in user space, and
3578 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3579 */
3580 if ((ifp->if_idle_flags & IFRF_IDLE_NOTIFY) && cnt < 0 && old == 1) {
3581 bzero(&ev_msg, sizeof (ev_msg));
3582 bzero(&ev_data, sizeof (ev_data));
3583
3584 ev_msg.vendor_code = KEV_VENDOR_APPLE;
3585 ev_msg.kev_class = KEV_NETWORK_CLASS;
3586 ev_msg.kev_subclass = KEV_DL_SUBCLASS;
3587 ev_msg.event_code = KEV_DL_IF_IDLE_ROUTE_REFCNT;
3588
3589 strlcpy(&ev_data.if_name[0], ifp->if_name, IFNAMSIZ);
3590
3591 ev_data.if_family = ifp->if_family;
3592 ev_data.if_unit = ifp->if_unit;
3593 ev_msg.dv[0].data_length = sizeof (struct net_event_data);
3594 ev_msg.dv[0].data_ptr = &ev_data;
3595
3596 kev_post_msg(&ev_msg);
3597 }
3598 }
3599
3600 static inline struct rtentry *
3601 rte_alloc_debug(void)
3602 {
3603 struct rtentry_dbg *rte;
3604
3605 rte = ((struct rtentry_dbg *)zalloc(rte_zone));
3606 if (rte != NULL) {
3607 bzero(rte, sizeof (*rte));
3608 if (rte_debug & RTD_TRACE)
3609 ctrace_record(&rte->rtd_alloc);
3610 rte->rtd_inuse = RTD_INUSE;
3611 }
3612 return ((struct rtentry *)rte);
3613 }
3614
3615 static inline void
3616 rte_free_debug(struct rtentry *p)
3617 {
3618 struct rtentry_dbg *rte = (struct rtentry_dbg *)p;
3619
3620 if (p->rt_refcnt != 0) {
3621 panic("rte_free: rte=%p refcnt=%d\n", p, p->rt_refcnt);
3622 /* NOTREACHED */
3623 }
3624 if (rte->rtd_inuse == RTD_FREED) {
3625 panic("rte_free: double free rte=%p\n", rte);
3626 /* NOTREACHED */
3627 } else if (rte->rtd_inuse != RTD_INUSE) {
3628 panic("rte_free: corrupted rte=%p\n", rte);
3629 /* NOTREACHED */
3630 }
3631 bcopy((caddr_t)p, (caddr_t)&rte->rtd_entry_saved, sizeof (*p));
3632 /* Preserve rt_lock to help catch use-after-free cases */
3633 bzero((caddr_t)p, offsetof(struct rtentry, rt_lock));
3634
3635 rte->rtd_inuse = RTD_FREED;
3636
3637 if (rte_debug & RTD_TRACE)
3638 ctrace_record(&rte->rtd_free);
3639
3640 if (!(rte_debug & RTD_NO_FREE))
3641 zfree(rte_zone, p);
3642 }
3643
3644 void
3645 ctrace_record(ctrace_t *tr)
3646 {
3647 tr->th = current_thread();
3648 bzero(tr->pc, sizeof (tr->pc));
3649 (void) OSBacktrace(tr->pc, CTRACE_STACK_SIZE);
3650 }
3651
3652 void
3653 route_copyout(struct route *dst, const struct route *src, size_t length)
3654 {
3655 /* Copy everything (rt, srcif, flags, dst) from src */
3656 bcopy(src, dst, length);
3657
3658 /* Hold one reference for the local copy of struct route */
3659 if (dst->ro_rt != NULL)
3660 RT_ADDREF(dst->ro_rt);
3661
3662 /* Hold one reference for the local copy of struct ifaddr */
3663 if (dst->ro_srcia != NULL)
3664 IFA_ADDREF(dst->ro_srcia);
3665 }
3666
3667 void
3668 route_copyin(struct route *src, struct route *dst, size_t length)
3669 {
3670 /* No cached route at the destination? */
3671 if (dst->ro_rt == NULL) {
3672 /*
3673 * Ditch the address in the cached copy (dst) since
3674 * we're about to take everything there is in src.
3675 */
3676 if (dst->ro_srcia != NULL)
3677 IFA_REMREF(dst->ro_srcia);
3678 /*
3679 * Copy everything (rt, srcia, flags, dst) from src; the
3680 * references to rt and/or srcia were held at the time
3681 * of storage and are kept intact.
3682 */
3683 bcopy(src, dst, length);
3684 } else if (src->ro_rt != NULL) {
3685 /*
3686 * If the same, update srcia and flags, and ditch the route
3687 * in the local copy. Else ditch the one that is currently
3688 * cached, and cache the new route.
3689 */
3690 if (dst->ro_rt == src->ro_rt) {
3691 dst->ro_flags = src->ro_flags;
3692 if (dst->ro_srcia != src->ro_srcia) {
3693 if (dst->ro_srcia != NULL)
3694 IFA_REMREF(dst->ro_srcia);
3695 dst->ro_srcia = src->ro_srcia;
3696 } else if (src->ro_srcia != NULL) {
3697 IFA_REMREF(src->ro_srcia);
3698 }
3699 rtfree(src->ro_rt);
3700 } else {
3701 rtfree(dst->ro_rt);
3702 if (dst->ro_srcia != NULL)
3703 IFA_REMREF(dst->ro_srcia);
3704 bcopy(src, dst, length);
3705 }
3706 } else if (src->ro_srcia != NULL) {
3707 /*
3708 * Ditch src address in the local copy (src) since we're
3709 * not caching the route entry anyway (ro_rt is NULL).
3710 */
3711 IFA_REMREF(src->ro_srcia);
3712 }
3713
3714 /* This function consumes the references on src */
3715 src->ro_rt = NULL;
3716 src->ro_srcia = NULL;
3717 }
3718
3719 /*
3720 * route_to_gwroute will find the gateway route for a given route.
3721 *
3722 * If the route is down, look the route up again.
3723 * If the route goes through a gateway, get the route to the gateway.
3724 * If the gateway route is down, look it up again.
3725 * If the route is set to reject, verify it hasn't expired.
3726 *
3727 * If the returned route is non-NULL, the caller is responsible for
3728 * releasing the reference and unlocking the route.
3729 */
3730 #define senderr(e) { error = (e); goto bad; }
3731 errno_t
3732 route_to_gwroute(const struct sockaddr *net_dest, struct rtentry *hint0,
3733 struct rtentry **out_route)
3734 {
3735 uint64_t timenow;
3736 struct rtentry *rt = hint0, *hint = hint0;
3737 errno_t error = 0;
3738 unsigned int ifindex;
3739 boolean_t gwroute;
3740
3741 *out_route = NULL;
3742
3743 if (rt == NULL)
3744 return (0);
3745
3746 /*
3747 * Next hop determination. Because we may involve the gateway route
3748 * in addition to the original route, locking is rather complicated.
3749 * The general concept is that regardless of whether the route points
3750 * to the original route or to the gateway route, this routine takes
3751 * an extra reference on such a route. This extra reference will be
3752 * released at the end.
3753 *
3754 * Care must be taken to ensure that the "hint0" route never gets freed
3755 * via rtfree(), since the caller may have stored it inside a struct
3756 * route with a reference held for that placeholder.
3757 */
3758 RT_LOCK_SPIN(rt);
3759 ifindex = rt->rt_ifp->if_index;
3760 RT_ADDREF_LOCKED(rt);
3761 if (!(rt->rt_flags & RTF_UP)) {
3762 RT_REMREF_LOCKED(rt);
3763 RT_UNLOCK(rt);
3764 /* route is down, find a new one */
3765 hint = rt = rtalloc1_scoped((struct sockaddr *)
3766 (size_t)net_dest, 1, 0, ifindex);
3767 if (hint != NULL) {
3768 RT_LOCK_SPIN(rt);
3769 ifindex = rt->rt_ifp->if_index;
3770 } else {
3771 senderr(EHOSTUNREACH);
3772 }
3773 }
3774
3775 /*
3776 * We have a reference to "rt" by now; it will either
3777 * be released or freed at the end of this routine.
3778 */
3779 RT_LOCK_ASSERT_HELD(rt);
3780 if ((gwroute = (rt->rt_flags & RTF_GATEWAY))) {
3781 struct rtentry *gwrt = rt->rt_gwroute;
3782 struct sockaddr_storage ss;
3783 struct sockaddr *gw = (struct sockaddr *)&ss;
3784
3785 VERIFY(rt == hint);
3786 RT_ADDREF_LOCKED(hint);
3787
3788 /* If there's no gateway rt, look it up */
3789 if (gwrt == NULL) {
3790 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3791 rt->rt_gateway->sa_len));
3792 RT_UNLOCK(rt);
3793 goto lookup;
3794 }
3795 /* Become a regular mutex */
3796 RT_CONVERT_LOCK(rt);
3797
3798 /*
3799 * Take gwrt's lock while holding route's lock;
3800 * this is okay since gwrt never points back
3801 * to "rt", so no lock ordering issues.
3802 */
3803 RT_LOCK_SPIN(gwrt);
3804 if (!(gwrt->rt_flags & RTF_UP)) {
3805 rt->rt_gwroute = NULL;
3806 RT_UNLOCK(gwrt);
3807 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3808 rt->rt_gateway->sa_len));
3809 RT_UNLOCK(rt);
3810 rtfree(gwrt);
3811 lookup:
3812 lck_mtx_lock(rnh_lock);
3813 gwrt = rtalloc1_scoped_locked(gw, 1, 0, ifindex);
3814
3815 RT_LOCK(rt);
3816 /*
3817 * Bail out if the route is down, no route
3818 * to gateway, circular route, or if the
3819 * gateway portion of "rt" has changed.
3820 */
3821 if (!(rt->rt_flags & RTF_UP) || gwrt == NULL ||
3822 gwrt == rt || !equal(gw, rt->rt_gateway)) {
3823 if (gwrt == rt) {
3824 RT_REMREF_LOCKED(gwrt);
3825 gwrt = NULL;
3826 }
3827 VERIFY(rt == hint);
3828 RT_REMREF_LOCKED(hint);
3829 hint = NULL;
3830 RT_UNLOCK(rt);
3831 if (gwrt != NULL)
3832 rtfree_locked(gwrt);
3833 lck_mtx_unlock(rnh_lock);
3834 senderr(EHOSTUNREACH);
3835 }
3836 VERIFY(gwrt != NULL);
3837 /*
3838 * Set gateway route; callee adds ref to gwrt;
3839 * gwrt has an extra ref from rtalloc1() for
3840 * this routine.
3841 */
3842 rt_set_gwroute(rt, rt_key(rt), gwrt);
3843 VERIFY(rt == hint);
3844 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
3845 RT_UNLOCK(rt);
3846 lck_mtx_unlock(rnh_lock);
3847 rt = gwrt;
3848 } else {
3849 RT_ADDREF_LOCKED(gwrt);
3850 RT_UNLOCK(gwrt);
3851 VERIFY(rt == hint);
3852 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
3853 RT_UNLOCK(rt);
3854 rt = gwrt;
3855 }
3856 VERIFY(rt == gwrt && rt != hint);
3857
3858 /*
3859 * This is an opportunity to revalidate the parent route's
3860 * rt_gwroute, in case it now points to a dead route entry.
3861 * Parent route won't go away since the clone (hint) holds
3862 * a reference to it. rt == gwrt.
3863 */
3864 RT_LOCK_SPIN(hint);
3865 if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) ==
3866 (RTF_WASCLONED | RTF_UP)) {
3867 struct rtentry *prt = hint->rt_parent;
3868 VERIFY(prt != NULL);
3869
3870 RT_CONVERT_LOCK(hint);
3871 RT_ADDREF(prt);
3872 RT_UNLOCK(hint);
3873 rt_revalidate_gwroute(prt, rt);
3874 RT_REMREF(prt);
3875 } else {
3876 RT_UNLOCK(hint);
3877 }
3878
3879 /* Clean up "hint" now; see notes above regarding hint0 */
3880 if (hint == hint0)
3881 RT_REMREF(hint);
3882 else
3883 rtfree(hint);
3884 hint = NULL;
3885
3886 /* rt == gwrt; if it is now down, give up */
3887 RT_LOCK_SPIN(rt);
3888 if (!(rt->rt_flags & RTF_UP)) {
3889 RT_UNLOCK(rt);
3890 senderr(EHOSTUNREACH);
3891 }
3892 }
3893
3894 if (rt->rt_flags & RTF_REJECT) {
3895 VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0);
3896 VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0);
3897 timenow = net_uptime();
3898 if (rt->rt_expire == 0 || timenow < rt->rt_expire) {
3899 RT_UNLOCK(rt);
3900 senderr(!gwroute ? EHOSTDOWN : EHOSTUNREACH);
3901 }
3902 }
3903
3904 /* Become a regular mutex */
3905 RT_CONVERT_LOCK(rt);
3906
3907 /* Caller is responsible for cleaning up "rt" */
3908 *out_route = rt;
3909 return (0);
3910
3911 bad:
3912 /* Clean up route (either it is "rt" or "gwrt") */
3913 if (rt != NULL) {
3914 RT_LOCK_SPIN(rt);
3915 if (rt == hint0) {
3916 RT_REMREF_LOCKED(rt);
3917 RT_UNLOCK(rt);
3918 } else {
3919 RT_UNLOCK(rt);
3920 rtfree(rt);
3921 }
3922 }
3923 return (error);
3924 }
3925 #undef senderr
3926
3927 void
3928 rt_revalidate_gwroute(struct rtentry *rt, struct rtentry *gwrt)
3929 {
3930 VERIFY(gwrt != NULL);
3931
3932 RT_LOCK_SPIN(rt);
3933 if ((rt->rt_flags & (RTF_GATEWAY | RTF_UP)) == (RTF_GATEWAY | RTF_UP) &&
3934 rt->rt_ifp == gwrt->rt_ifp && rt->rt_gateway->sa_family ==
3935 rt_key(gwrt)->sa_family && (rt->rt_gwroute == NULL ||
3936 !(rt->rt_gwroute->rt_flags & RTF_UP))) {
3937 boolean_t isequal;
3938 VERIFY(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING));
3939
3940 if (rt->rt_gateway->sa_family == AF_INET ||
3941 rt->rt_gateway->sa_family == AF_INET6) {
3942 struct sockaddr_storage key_ss, gw_ss;
3943 /*
3944 * We need to compare rt_key and rt_gateway; create
3945 * local copies to get rid of any ifscope association.
3946 */
3947 (void) sa_copy(rt_key(gwrt), &key_ss, NULL);
3948 (void) sa_copy(rt->rt_gateway, &gw_ss, NULL);
3949
3950 isequal = equal(SA(&key_ss), SA(&gw_ss));
3951 } else {
3952 isequal = equal(rt_key(gwrt), rt->rt_gateway);
3953 }
3954
3955 /* If they are the same, update gwrt */
3956 if (isequal) {
3957 RT_UNLOCK(rt);
3958 lck_mtx_lock(rnh_lock);
3959 RT_LOCK(rt);
3960 rt_set_gwroute(rt, rt_key(rt), gwrt);
3961 RT_UNLOCK(rt);
3962 lck_mtx_unlock(rnh_lock);
3963 } else {
3964 RT_UNLOCK(rt);
3965 }
3966 } else {
3967 RT_UNLOCK(rt);
3968 }
3969 }
3970
3971 static void
3972 rt_str4(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
3973 {
3974 VERIFY(rt_key(rt)->sa_family == AF_INET);
3975
3976 if (ds != NULL) {
3977 (void) inet_ntop(AF_INET,
3978 &SIN(rt_key(rt))->sin_addr.s_addr, ds, dslen);
3979 if (dslen >= MAX_SCOPE_ADDR_STR_LEN &&
3980 SINIFSCOPE(rt_key(rt))->sin_scope_id != IFSCOPE_NONE) {
3981 char scpstr[16];
3982
3983 snprintf(scpstr, sizeof(scpstr), "@%u",
3984 SINIFSCOPE(rt_key(rt))->sin_scope_id);
3985
3986 strlcat(ds, scpstr, dslen);
3987 }
3988 }
3989
3990 if (gs != NULL) {
3991 if (rt->rt_flags & RTF_GATEWAY) {
3992 (void) inet_ntop(AF_INET,
3993 &SIN(rt->rt_gateway)->sin_addr.s_addr, gs, gslen);
3994 } else if (rt->rt_ifp != NULL) {
3995 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
3996 } else {
3997 snprintf(gs, gslen, "%s", "link");
3998 }
3999 }
4000 }
4001
4002 #if INET6
4003 static void
4004 rt_str6(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4005 {
4006 VERIFY(rt_key(rt)->sa_family == AF_INET6);
4007
4008 if (ds != NULL) {
4009 (void) inet_ntop(AF_INET6,
4010 &SIN6(rt_key(rt))->sin6_addr, ds, dslen);
4011 if (dslen >= MAX_SCOPE_ADDR_STR_LEN &&
4012 SIN6IFSCOPE(rt_key(rt))->sin6_scope_id != IFSCOPE_NONE) {
4013 char scpstr[16];
4014
4015 snprintf(scpstr, sizeof(scpstr), "@%u",
4016 SIN6IFSCOPE(rt_key(rt))->sin6_scope_id);
4017
4018 strlcat(ds, scpstr, dslen);
4019 }
4020 }
4021
4022 if (gs != NULL) {
4023 if (rt->rt_flags & RTF_GATEWAY) {
4024 (void) inet_ntop(AF_INET6,
4025 &SIN6(rt->rt_gateway)->sin6_addr, gs, gslen);
4026 } else if (rt->rt_ifp != NULL) {
4027 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
4028 } else {
4029 snprintf(gs, gslen, "%s", "link");
4030 }
4031 }
4032 }
4033 #endif /* INET6 */
4034
4035
4036 void
4037 rt_str(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4038 {
4039 switch (rt_key(rt)->sa_family) {
4040 case AF_INET:
4041 rt_str4(rt, ds, dslen, gs, gslen);
4042 break;
4043 #if INET6
4044 case AF_INET6:
4045 rt_str6(rt, ds, dslen, gs, gslen);
4046 break;
4047 #endif /* INET6 */
4048 default:
4049 if (ds != NULL)
4050 bzero(ds, dslen);
4051 if (gs != NULL)
4052 bzero(gs, gslen);
4053 break;
4054 }
4055 }