]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/if_vlan.c
xnu-517.7.21.tar.gz
[apple/xnu.git] / bsd / net / if_vlan.c
1 /*
2 * Copyright (c) 2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright 1998 Massachusetts Institute of Technology
24 *
25 * Permission to use, copy, modify, and distribute this software and
26 * its documentation for any purpose and without fee is hereby
27 * granted, provided that both the above copyright notice and this
28 * permission notice appear in all copies, that both the above
29 * copyright notice and this permission notice appear in all
30 * supporting documentation, and that the name of M.I.T. not be used
31 * in advertising or publicity pertaining to distribution of the
32 * software without specific, written prior permission. M.I.T. makes
33 * no representations about the suitability of this software for any
34 * purpose. It is provided "as is" without express or implied
35 * warranty.
36 *
37 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
38 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
39 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
40 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
41 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
44 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
45 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
46 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
47 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
48 * SUCH DAMAGE.
49 *
50 * $FreeBSD: src/sys/net/if_vlan.c,v 1.54 2003/10/31 18:32:08 brooks Exp $
51 */
52
53 /*
54 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
55 * Might be extended some day to also handle IEEE 802.1p priority
56 * tagging. This is sort of sneaky in the implementation, since
57 * we need to pretend to be enough of an Ethernet implementation
58 * to make arp work. The way we do this is by telling everyone
59 * that we are an Ethernet, and then catch the packets that
60 * ether_output() left on our output queue when it calls
61 * if_start(), rewrite them for use by the real outgoing interface,
62 * and ask it to send them.
63 */
64
65
66 #include <sys/param.h>
67 #include <sys/kernel.h>
68 #include <sys/malloc.h>
69 #include <sys/mbuf.h>
70 #include <sys/queue.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/sysctl.h>
74 #include <sys/systm.h>
75 #include <sys/kern_event.h>
76
77 #include <net/bpf.h>
78 #include <net/ethernet.h>
79 #include <net/if.h>
80 #include <net/if_arp.h>
81 #include <net/if_dl.h>
82 #include <net/if_types.h>
83 #include <net/if_vlan_var.h>
84
85 #include <net/dlil.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/if_ether.h>
90 #endif
91
92 #include <net/if_media.h>
93
94 #define ETHER_VLAN_ENCAP_LEN 4 /* len of 802.1Q VLAN encapsulation */
95 #define IF_MAXUNIT 0x7fff /* historical value */
96
97 #define IFP2AC(p) ((struct arpcom *)p)
98
99 #define VLAN_PROTO_FAMILY 0x766c616e /* 'vlan' */
100
101 #define VLANNAME "vlan"
102
103 typedef int (bpf_callback_func)(struct ifnet *, struct mbuf *);
104 typedef int (if_set_bpf_tap_func)(struct ifnet *ifp, int mode, bpf_callback_func * func);
105
106 struct vlan_mc_entry {
107 struct ether_addr mc_addr;
108 SLIST_ENTRY(vlan_mc_entry) mc_entries;
109 };
110
111 struct ifvlan {
112 char ifv_name[IFNAMSIZ]; /* our unique id */
113 struct ifnet *ifv_ifp; /* our interface */
114 struct ifnet *ifv_p; /* parent interface of this vlan */
115 struct ifv_linkmib {
116 int ifvm_parent;
117 int ifvm_encaplen; /* encapsulation length */
118 int ifvm_mtufudge; /* MTU fudged by this much */
119 int ifvm_mintu; /* min transmission unit */
120 u_int16_t ifvm_proto; /* encapsulation ethertype */
121 u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
122 } ifv_mib;
123 SLIST_HEAD(__vlan_mchead, vlan_mc_entry) vlan_mc_listhead;
124 LIST_ENTRY(ifvlan) ifv_list;
125 int ifv_flags;
126 int ifv_detaching;
127 u_long ifv_filter_id;
128 int ifv_filter_valid;
129 bpf_callback_func * ifv_bpf_input;
130 bpf_callback_func * ifv_bpf_output;
131 };
132
133 #define ifv_tag ifv_mib.ifvm_tag
134 #define ifv_encaplen ifv_mib.ifvm_encaplen
135 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
136 #define ifv_mintu ifv_mib.ifvm_mintu
137
138 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
139
140 #if 0
141 SYSCTL_DECL(_net_link);
142 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
143 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
144 #endif 0
145
146 #define M_VLAN M_DEVBUF
147
148 MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
149
150 static LIST_HEAD(, ifvlan) ifv_list;
151
152 #if 0
153 /*
154 * Locking: one lock is used to guard both the ifv_list and modification
155 * to vlan data structures. We are rather conservative here; probably
156 * more than necessary.
157 */
158 static struct mtx ifv_mtx;
159 #define VLAN_LOCK_INIT() mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF)
160 #define VLAN_LOCK_DESTROY() mtx_destroy(&ifv_mtx)
161 #define VLAN_LOCK_ASSERT() mtx_assert(&ifv_mtx, MA_OWNED)
162 #define VLAN_LOCK() mtx_lock(&ifv_mtx)
163 #define VLAN_UNLOCK() mtx_unlock(&ifv_mtx)
164 #else
165 #define VLAN_LOCK_INIT()
166 #define VLAN_LOCK_DESTROY()
167 #define VLAN_LOCK_ASSERT()
168 #define VLAN_LOCK()
169 #define VLAN_UNLOCK()
170 #endif 0
171
172 static int vlan_clone_create(struct if_clone *, int);
173 static void vlan_clone_destroy(struct ifnet *);
174 static int vlan_output(struct ifnet *ifp, struct mbuf *m);
175 static void vlan_ifinit(void *foo);
176 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, void * addr);
177 static int vlan_set_bpf_tap(struct ifnet * ifp, int mode,
178 bpf_callback_func * func);
179 static int vlan_attach_protocol(struct ifnet *ifp);
180 static int vlan_detach_protocol(struct ifnet *ifp);
181 static int vlan_attach_filter(struct ifnet * ifp, u_long * filter_id);
182 static int vlan_detach_filter(u_long filter_id);
183 static int vlan_setmulti(struct ifnet *ifp);
184 static int vlan_unconfig(struct ifnet *ifp);
185 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, int tag);
186 static int vlan_if_free(struct ifnet * ifp);
187
188 static struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
189 vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT);
190
191 static if_set_bpf_tap_func nop_if_bpf;
192 static int nop_if_free(struct ifnet *);
193 static int nop_if_ioctl(struct ifnet *, u_long, void *);
194 static int nop_if_output(struct ifnet * ifp, struct mbuf * m);
195
196 static void interface_link_event(struct ifnet * ifp, u_long event_code);
197
198 static __inline__ void
199 vlan_bpf_output(struct ifnet * ifp, struct mbuf * m,
200 bpf_callback_func func)
201 {
202 if (func != NULL) {
203 func(ifp, m);
204 }
205 return;
206 }
207
208 static __inline__ void
209 vlan_bpf_input(struct ifnet * ifp, struct mbuf * m,
210 bpf_callback_func func, char * frame_header,
211 int frame_header_len, int encap_len)
212 {
213 if (func != NULL) {
214 if (encap_len > 0) {
215 /* present the right header to bpf */
216 bcopy(frame_header, frame_header + encap_len, frame_header_len);
217 }
218 m->m_data -= frame_header_len;
219 m->m_len += frame_header_len;
220 func(ifp, m);
221 m->m_data += frame_header_len;
222 m->m_len -= frame_header_len;
223 if (encap_len > 0) {
224 /* restore the header */
225 bcopy(frame_header + encap_len, frame_header, frame_header_len);
226 }
227 }
228 return;
229 }
230
231 static struct ifaddr *
232 ifaddr_byindex(unsigned int i)
233 {
234 if (i > if_index || i == 0) {
235 return (NULL);
236 }
237 return (ifnet_addrs[i - 1]);
238 }
239
240 /*
241 * Program our multicast filter. What we're actually doing is
242 * programming the multicast filter of the parent. This has the
243 * side effect of causing the parent interface to receive multicast
244 * traffic that it doesn't really want, which ends up being discarded
245 * later by the upper protocol layers. Unfortunately, there's no way
246 * to avoid this: there really is only one physical interface.
247 */
248 static int
249 vlan_setmulti(struct ifnet *ifp)
250 {
251 struct ifnet *p;
252 struct ifmultiaddr *ifma, *rifma = NULL;
253 struct ifvlan *sc;
254 struct vlan_mc_entry *mc = NULL;
255 struct sockaddr_dl sdl;
256 int error;
257
258 /* Find the parent. */
259 sc = ifp->if_private;
260 p = sc->ifv_p;
261 if (p == NULL) {
262 /* no parent, so no need to program the multicast filter */
263 return (0);
264 }
265
266 bzero((char *)&sdl, sizeof sdl);
267 sdl.sdl_len = sizeof sdl;
268 sdl.sdl_family = AF_LINK;
269 sdl.sdl_index = p->if_index;
270 sdl.sdl_type = IFT_ETHER;
271 sdl.sdl_alen = ETHER_ADDR_LEN;
272
273 /* First, remove any existing filter entries. */
274 while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
275 mc = SLIST_FIRST(&sc->vlan_mc_listhead);
276 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
277 error = if_delmulti(p, (struct sockaddr *)&sdl);
278 if (error)
279 return(error);
280 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
281 FREE(mc, M_VLAN);
282 }
283
284 /* Now program new ones. */
285 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
286 if (ifma->ifma_addr->sa_family != AF_LINK)
287 continue;
288 mc = _MALLOC(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
289 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
290 (char *)&mc->mc_addr, ETHER_ADDR_LEN);
291 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
292 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
293 LLADDR(&sdl), ETHER_ADDR_LEN);
294 error = if_addmulti(p, (struct sockaddr *)&sdl, &rifma);
295 if (error)
296 return(error);
297 }
298
299 return(0);
300 }
301
302 #if 0
303 /*
304 * VLAN support can be loaded as a module. The only place in the
305 * system that's intimately aware of this is ether_input. We hook
306 * into this code through vlan_input_p which is defined there and
307 * set here. Noone else in the system should be aware of this so
308 * we use an explicit reference here.
309 *
310 * NB: Noone should ever need to check if vlan_input_p is null or
311 * not. This is because interfaces have a count of the number
312 * of active vlans (if_nvlans) and this should never be bumped
313 * except by vlan_config--which is in this module so therefore
314 * the module must be loaded and vlan_input_p must be non-NULL.
315 */
316 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *);
317
318 static int
319 vlan_modevent(module_t mod, int type, void *data)
320 {
321
322 switch (type) {
323 case MOD_LOAD:
324 LIST_INIT(&ifv_list);
325 VLAN_LOCK_INIT();
326 vlan_input_p = vlan_input;
327 if_clone_attach(&vlan_cloner);
328 break;
329 case MOD_UNLOAD:
330 if_clone_detach(&vlan_cloner);
331 vlan_input_p = NULL;
332 while (!LIST_EMPTY(&ifv_list))
333 vlan_clone_destroy(LIST_FIRST(&ifv_list)->ifv_ifp);
334 VLAN_LOCK_DESTROY();
335 break;
336 }
337 return 0;
338 }
339
340 static moduledata_t vlan_mod = {
341 "if_vlan",
342 vlan_modevent,
343 0
344 };
345
346 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
347
348 #endif 0
349
350 static struct ifvlan *
351 vlan_lookup_ifp_and_tag(struct ifnet * ifp, int tag)
352 {
353 struct ifvlan * ifv;
354
355 LIST_FOREACH(ifv, &ifv_list, ifv_list) {
356 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) {
357 return (ifv);
358 }
359 }
360 return (NULL);
361 }
362
363 static struct ifvlan *
364 vlan_lookup_ifp(struct ifnet * ifp)
365 {
366 struct ifvlan * ifv;
367
368 LIST_FOREACH(ifv, &ifv_list, ifv_list) {
369 if (ifp == ifv->ifv_p) {
370 return (ifv);
371 }
372 }
373 return (NULL);
374 }
375
376 static void
377 vlan_clone_attach(void)
378 {
379 if_clone_attach(&vlan_cloner);
380 return;
381 }
382
383 static int
384 vlan_clone_create(struct if_clone *ifc, int unit)
385 {
386 int error;
387 struct ifvlan *ifv;
388 struct ifnet *ifp;
389
390 ifv = _MALLOC(sizeof(struct ifvlan), M_VLAN, M_WAITOK);
391 bzero(ifv, sizeof(struct ifvlan));
392 SLIST_INIT(&ifv->vlan_mc_listhead);
393
394 /* use the interface name as the unique id for ifp recycle */
395 if (snprintf(ifv->ifv_name, sizeof(ifv->ifv_name), "%s%d",
396 ifc->ifc_name, unit) >= sizeof(ifv->ifv_name)) {
397 FREE(ifv, M_VLAN);
398 return (EINVAL);
399 }
400 error = dlil_if_acquire(APPLE_IF_FAM_VLAN,
401 ifv->ifv_name,
402 strlen(ifv->ifv_name),
403 &ifp);
404 if (error) {
405 FREE(ifv, M_VLAN);
406 return (error);
407 }
408 ifv->ifv_ifp = ifp;
409 ifp->if_private = ifv;
410 ifp->if_name = (char *)ifc->ifc_name;
411 ifp->if_unit = unit;
412 ifp->if_family = APPLE_IF_FAM_VLAN;
413
414 #if 0
415 /* NB: flags are not set here */
416 ifp->if_linkmib = &ifv->ifv_mib;
417 ifp->if_linkmiblen = sizeof ifv->ifv_mib;
418 /* NB: mtu is not set here */
419 #endif 0
420
421 ifp->if_ioctl = vlan_ioctl;
422 ifp->if_set_bpf_tap = vlan_set_bpf_tap;
423 ifp->if_free = nop_if_free;
424 ifp->if_output = nop_if_output;
425 ifp->if_hwassist = 0;
426 ifp->if_addrlen = ETHER_ADDR_LEN; /* XXX ethernet specific */
427 ifp->if_baudrate = 0;
428 ifp->if_type = IFT_L2VLAN;
429 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
430 error = dlil_if_attach(ifp);
431 if (error) {
432 dlil_if_release(ifp);
433 FREE(ifv, M_VLAN);
434 return (error);
435 }
436
437 /* attach as ethernet */
438 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
439
440 VLAN_LOCK();
441 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
442 VLAN_UNLOCK();
443
444 return (0);
445 }
446
447 static void
448 vlan_remove(struct ifvlan * ifv)
449 {
450 VLAN_LOCK_ASSERT();
451 ifv->ifv_detaching = 1;
452 vlan_unconfig(ifv->ifv_ifp);
453 LIST_REMOVE(ifv, ifv_list);
454 return;
455 }
456
457 static void
458 vlan_if_detach(struct ifnet * ifp)
459 {
460 ifp->if_output = nop_if_output;
461 ifp->if_ioctl = nop_if_ioctl;
462 ifp->if_set_bpf_tap = &nop_if_bpf;
463 if (dlil_if_detach(ifp) == DLIL_WAIT_FOR_FREE) {
464 ifp->if_free = vlan_if_free;
465 } else {
466 vlan_if_free(ifp);
467 }
468 return;
469 }
470
471 static void
472 vlan_clone_destroy(struct ifnet *ifp)
473 {
474 struct ifvlan *ifv = ifp->if_private;
475
476 if (ifv == NULL || ifp->if_type != IFT_L2VLAN) {
477 return;
478 }
479 VLAN_LOCK();
480 if (ifv->ifv_detaching) {
481 VLAN_UNLOCK();
482 return;
483 }
484 vlan_remove(ifv);
485 VLAN_UNLOCK();
486 vlan_if_detach(ifp);
487 return;
488 }
489
490 static int
491 vlan_set_bpf_tap(struct ifnet * ifp, int mode, bpf_callback_func * func)
492 {
493 struct ifvlan *ifv = ifp->if_private;
494
495 switch (mode) {
496 case BPF_TAP_DISABLE:
497 ifv->ifv_bpf_input = ifv->ifv_bpf_output = NULL;
498 break;
499
500 case BPF_TAP_INPUT:
501 ifv->ifv_bpf_input = func;
502 break;
503
504 case BPF_TAP_OUTPUT:
505 ifv->ifv_bpf_output = func;
506 break;
507
508 case BPF_TAP_INPUT_OUTPUT:
509 ifv->ifv_bpf_input = ifv->ifv_bpf_output = func;
510 break;
511 default:
512 break;
513 }
514 return 0;
515 }
516
517 static void
518 vlan_ifinit(void *foo)
519 {
520 return;
521 }
522
523 static int
524 vlan_output(struct ifnet *ifp, struct mbuf *m)
525 {
526 struct ifvlan *ifv;
527 struct ifnet *p;
528 struct ether_vlan_header *evl;
529 int soft_vlan;
530
531 ifv = ifp->if_private;
532 p = ifv->ifv_p;
533 if (p == NULL) {
534 return (nop_if_output(ifp, m));
535 }
536 if (m == 0) {
537 printf("%s: NULL output mbuf\n", ifv->ifv_name);
538 return (EINVAL);
539 }
540 if ((m->m_flags & M_PKTHDR) == 0) {
541 printf("%s: M_PKTHDR bit not set\n", ifv->ifv_name);
542 m_freem(m);
543 return (EINVAL);
544 }
545 ifp->if_obytes += m->m_pkthdr.len;
546 ifp->if_opackets++;
547 soft_vlan = (p->if_hwassist & IF_HWASSIST_VLAN_TAGGING) == 0;
548 vlan_bpf_output(ifp, m, ifv->ifv_bpf_output);
549
550 /* do not run parent's if_output() if the parent is not up */
551 if ((p->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) {
552 m_freem(m);
553 ifp->if_collisions++;
554 return (0);
555 }
556 /*
557 * If underlying interface can do VLAN tag insertion itself,
558 * just pass the packet along. However, we need some way to
559 * tell the interface where the packet came from so that it
560 * knows how to find the VLAN tag to use. We use a field in
561 * the mbuf header to store the VLAN tag, and a bit in the
562 * csum_flags field to mark the field as valid.
563 */
564 if (soft_vlan == 0) {
565 m->m_pkthdr.csum_flags |= CSUM_VLAN_TAG_VALID;
566 m->m_pkthdr.vlan_tag = ifv->ifv_tag;
567 } else {
568 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
569 if (m == NULL) {
570 printf("%s: unable to prepend VLAN header\n",
571 ifv->ifv_name);
572 ifp->if_ierrors++;
573 return (0);
574 }
575 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */
576 if (m->m_len < sizeof(*evl)) {
577 m = m_pullup(m, sizeof(*evl));
578 if (m == NULL) {
579 printf("%s: cannot pullup VLAN header\n",
580 ifv->ifv_name);
581 ifp->if_ierrors++;
582 return (0);
583 }
584 }
585
586 /*
587 * Transform the Ethernet header into an Ethernet header
588 * with 802.1Q encapsulation.
589 */
590 bcopy(mtod(m, char *) + ifv->ifv_encaplen,
591 mtod(m, char *), ETHER_HDR_LEN);
592 evl = mtod(m, struct ether_vlan_header *);
593 evl->evl_proto = evl->evl_encap_proto;
594 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
595 evl->evl_tag = htons(ifv->ifv_tag);
596 m->m_pkthdr.len += ifv->ifv_encaplen;
597 }
598
599 /*
600 * Send it, precisely as ether_output() would have.
601 * We are already running at splimp.
602 */
603 return ((*p->if_output)(p, m));
604 }
605
606 extern int
607 vlan_demux(struct ifnet * ifp, struct mbuf * m,
608 char * frame_header, struct if_proto * * proto)
609 {
610 register struct ether_header *eh = (struct ether_header *)frame_header;
611 struct ether_vlan_header *evl;
612 struct ifvlan *ifv = NULL;
613 int soft_vlan = 0;
614 u_int tag;
615
616 if (m->m_pkthdr.csum_flags & CSUM_VLAN_TAG_VALID) {
617 /*
618 * Packet is tagged, m contains a normal
619 * Ethernet frame; the tag is stored out-of-band.
620 */
621 m->m_pkthdr.csum_flags &= ~CSUM_VLAN_TAG_VALID;
622 tag = EVL_VLANOFTAG(m->m_pkthdr.vlan_tag);
623 m->m_pkthdr.vlan_tag = 0;
624 } else {
625 soft_vlan = 1;
626
627 switch (ifp->if_type) {
628 case IFT_ETHER:
629 if (m->m_len < ETHER_VLAN_ENCAP_LEN) {
630 m_freem(m);
631 return (EJUSTRETURN);
632 }
633 evl = (struct ether_vlan_header *)frame_header;
634 if (ntohs(evl->evl_proto) == ETHERTYPE_VLAN) {
635 /* don't allow VLAN within VLAN */
636 m_freem(m);
637 return (EJUSTRETURN);
638 }
639 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
640
641 /*
642 * Restore the original ethertype. We'll remove
643 * the encapsulation after we've found the vlan
644 * interface corresponding to the tag.
645 */
646 evl->evl_encap_proto = evl->evl_proto;
647 break;
648 default:
649 printf("vlan_demux: unsupported if type %u",
650 ifp->if_type);
651 m_freem(m);
652 return (EJUSTRETURN);
653 break;
654 }
655 }
656 if (tag != 0) {
657 if (ifp->if_nvlans == 0) {
658 /* don't bother looking through the VLAN list */
659 m_freem(m);
660 ifp->if_noproto++;
661 return (EJUSTRETURN);
662 }
663 VLAN_LOCK();
664 ifv = vlan_lookup_ifp_and_tag(ifp, tag);
665 if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
666 VLAN_UNLOCK();
667 m_freem(m);
668 ifp->if_noproto++;
669 return (EJUSTRETURN);
670 }
671 VLAN_UNLOCK(); /* XXX extend below? */
672 }
673 if (soft_vlan) {
674 /*
675 * Packet had an in-line encapsulation header;
676 * remove it. The original header has already
677 * been fixed up above.
678 */
679 m->m_len -= ETHER_VLAN_ENCAP_LEN;
680 m->m_data += ETHER_VLAN_ENCAP_LEN;
681 m->m_pkthdr.len -= ETHER_VLAN_ENCAP_LEN;
682 m->m_pkthdr.csum_flags = 0; /* can't trust hardware checksum */
683 }
684 if (tag != 0) {
685 /* we found a vlan interface above, so send it up */
686 m->m_pkthdr.rcvif = ifv->ifv_ifp;
687 ifv->ifv_ifp->if_ipackets++;
688 ifv->ifv_ifp->if_ibytes += m->m_pkthdr.len;
689
690 vlan_bpf_input(ifv->ifv_ifp, m, ifv->ifv_bpf_input, frame_header,
691 ETHER_HDR_LEN, soft_vlan ? ETHER_VLAN_ENCAP_LEN : 0);
692
693 /* Pass it back through the parent's demux routine. */
694 return ((*ifp->if_demux)(ifv->ifv_ifp, m, frame_header, proto));
695 }
696 /* Pass it back through calling demux routine. */
697 return ((*ifp->if_demux)(ifp, m, frame_header, proto));
698 }
699
700 static int
701 vlan_config(struct ifvlan *ifv, struct ifnet *p, int tag)
702 {
703 struct ifnet * ifp;
704 struct ifaddr *ifa1, *ifa2;
705 struct sockaddr_dl *sdl1, *sdl2;
706 int supports_vlan_mtu = 0;
707
708 VLAN_LOCK_ASSERT();
709 if (p->if_data.ifi_type != IFT_ETHER)
710 return EPROTONOSUPPORT;
711 if (ifv->ifv_p != NULL || ifv->ifv_detaching) {
712 return EBUSY;
713 }
714 if (vlan_lookup_ifp_and_tag(p, tag) != NULL) {
715 /* already a VLAN with that tag on this interface */
716 return (EADDRINUSE);
717 }
718 ifp = ifv->ifv_ifp;
719 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
720 ifv->ifv_mintu = ETHERMIN;
721 ifv->ifv_flags = 0;
722
723 /*
724 * If the parent supports the VLAN_MTU capability,
725 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
726 * enable it.
727 */
728 if (p->if_hwassist & (IF_HWASSIST_VLAN_MTU | IF_HWASSIST_VLAN_TAGGING)) {
729 supports_vlan_mtu = 1;
730 }
731 if (p->if_nvlans == 0) {
732 u_long dltag;
733 u_long filter_id;
734 int error;
735
736 /* attach our VLAN "interface filter" to the interface */
737 error = vlan_attach_filter(p, &filter_id);
738 if (error) {
739 return (error);
740 }
741
742 /* attach our VLAN "protocol" to the interface */
743 error = vlan_attach_protocol(p);
744 if (error) {
745 (void)vlan_detach_filter(filter_id);
746 return (error);
747 }
748 ifv->ifv_filter_id = filter_id;
749 ifv->ifv_filter_valid = TRUE;
750 #if 0
751 if (supports_vlan_mtu) {
752 /*
753 * Enable Tx/Rx of VLAN-sized frames.
754 */
755 p->if_capenable |= IFCAP_VLAN_MTU;
756 if (p->if_flags & IFF_UP) {
757 struct ifreq ifr;
758 int error;
759
760 ifr.ifr_flags = p->if_flags;
761 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
762 (caddr_t) &ifr);
763 if (error) {
764 if (p->if_nvlans == 0)
765 p->if_capenable &= ~IFCAP_VLAN_MTU;
766 return (error);
767 }
768 }
769 }
770 #endif 0
771 } else {
772 struct ifvlan * other_ifv;
773
774 other_ifv = vlan_lookup_ifp(p);
775 if (other_ifv == NULL) {
776 printf("vlan: other_ifv can't be NULL\n");
777 return (EINVAL);
778 }
779 ifv->ifv_filter_id = other_ifv->ifv_filter_id;
780 ifv->ifv_filter_valid = TRUE;
781 }
782 p->if_nvlans++;
783 if (supports_vlan_mtu) {
784 ifv->ifv_mtufudge = 0;
785 } else {
786 /*
787 * Fudge the MTU by the encapsulation size. This
788 * makes us incompatible with strictly compliant
789 * 802.1Q implementations, but allows us to use
790 * the feature with other NetBSD implementations,
791 * which might still be useful.
792 */
793 ifv->ifv_mtufudge = ifv->ifv_encaplen;
794 }
795
796 ifv->ifv_p = p;
797 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
798 /*
799 * Copy only a selected subset of flags from the parent.
800 * Other flags are none of our business.
801 */
802 ifp->if_flags |= (p->if_flags &
803 (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX));
804 /*
805 * If the parent interface can do hardware-assisted
806 * VLAN encapsulation, then propagate its hardware-
807 * assisted checksumming flags.
808 */
809 if (p->if_hwassist & IF_HWASSIST_VLAN_TAGGING) {
810 ifp->if_hwassist |= IF_HWASSIST_CSUM_FLAGS(p->if_hwassist);
811 }
812 /*
813 * Set up our ``Ethernet address'' to reflect the underlying
814 * physical interface's.
815 */
816 ifa1 = ifaddr_byindex(ifp->if_index);
817 ifa2 = ifaddr_byindex(p->if_index);
818 sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
819 sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
820 sdl1->sdl_type = IFT_ETHER;
821 sdl1->sdl_alen = ETHER_ADDR_LEN;
822 bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
823 bcopy(LLADDR(sdl2), IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN);
824
825 /*
826 * Configure multicast addresses that may already be
827 * joined on the vlan device.
828 */
829 (void)vlan_setmulti(ifp);
830 ifp->if_output = vlan_output;
831 ifv->ifv_tag = tag;
832
833 return 0;
834 }
835
836 static void
837 vlan_link_event(struct ifnet * ifp, struct ifnet * p)
838 {
839 struct ifmediareq ifmr;
840
841 /* generate a link event based on the state of the underlying interface */
842 bzero(&ifmr, sizeof(ifmr));
843 snprintf(ifmr.ifm_name, sizeof(ifmr.ifm_name),
844 "%s%d", p->if_name, p->if_unit);
845 if ((*p->if_ioctl)(p, SIOCGIFMEDIA, (caddr_t)&ifmr) == 0
846 && ifmr.ifm_count > 0 && ifmr.ifm_status & IFM_AVALID) {
847 u_long event;
848
849 event = (ifmr.ifm_status & IFM_ACTIVE)
850 ? KEV_DL_LINK_ON : KEV_DL_LINK_OFF;
851 interface_link_event(ifp, event);
852 }
853 return;
854 }
855
856 static int
857 vlan_unconfig(struct ifnet *ifp)
858 {
859 struct ifaddr *ifa;
860 struct sockaddr_dl *sdl;
861 struct vlan_mc_entry *mc;
862 struct ifvlan *ifv;
863 struct ifnet *p;
864 int error;
865
866 VLAN_LOCK_ASSERT();
867
868 ifv = ifp->if_private;
869
870 /* Disconnect from parent. */
871 p = ifv->ifv_p;
872 ifv->ifv_p = NULL;
873
874 if (p != NULL) {
875 struct sockaddr_dl sdl;
876
877 /*
878 * Since the interface is being unconfigured, we need to
879 * empty the list of multicast groups that we may have joined
880 * while we were alive from the parent's list.
881 */
882 bzero((char *)&sdl, sizeof sdl);
883 sdl.sdl_len = sizeof sdl;
884 sdl.sdl_family = AF_LINK;
885 sdl.sdl_index = p->if_index;
886 sdl.sdl_type = IFT_ETHER;
887 sdl.sdl_alen = ETHER_ADDR_LEN;
888
889 while (SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
890 mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
891 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
892 error = if_delmulti(p, (struct sockaddr *)&sdl);
893 if (error) {
894 printf("vlan_unconfig: if_delmulti %s failed, %d\n",
895 ifv->ifv_name, error);
896 }
897 SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
898 FREE(mc, M_VLAN);
899 }
900 p->if_nvlans--;
901 if (p->if_nvlans == 0) {
902 /* detach our VLAN "protocol" from the interface */
903 if (ifv->ifv_filter_valid) {
904 (void)vlan_detach_filter(ifv->ifv_filter_id);
905 }
906 (void)vlan_detach_protocol(p);
907 #if 0
908 /*
909 * Disable Tx/Rx of VLAN-sized frames.
910 */
911 p->if_capenable &= ~IFCAP_VLAN_MTU;
912 if (p->if_flags & IFF_UP) {
913 struct ifreq ifr;
914
915 ifr.ifr_flags = p->if_flags;
916 (*p->if_ioctl)(p, SIOCSIFFLAGS, (caddr_t) &ifr);
917 }
918 #endif 0
919 }
920 }
921
922 /* return to the state we were in before SETVLAN */
923 ifp->if_mtu = 0;
924 ifp->if_flags &= ~(IFF_BROADCAST | IFF_MULTICAST
925 | IFF_SIMPLEX | IFF_RUNNING);
926 ifv->ifv_ifp->if_hwassist = 0;
927 ifv->ifv_flags = 0;
928 ifv->ifv_ifp->if_output = nop_if_output;
929 ifv->ifv_mtufudge = 0;
930 ifv->ifv_filter_valid = FALSE;
931
932 /* Clear our MAC address. */
933 ifa = ifaddr_byindex(ifv->ifv_ifp->if_index);
934 sdl = (struct sockaddr_dl *)(ifa->ifa_addr);
935 sdl->sdl_type = IFT_L2VLAN;
936 sdl->sdl_alen = 0;
937 bzero(LLADDR(sdl), ETHER_ADDR_LEN);
938 bzero(IFP2AC(ifv->ifv_ifp)->ac_enaddr, ETHER_ADDR_LEN);
939
940 /* send a link down event */
941 if (p != NULL) {
942 interface_link_event(ifv->ifv_ifp, KEV_DL_LINK_OFF);
943 }
944 return 0;
945 }
946
947 static int
948 vlan_set_promisc(struct ifnet *ifp)
949 {
950 struct ifvlan *ifv = ifp->if_private;
951 int error = 0;
952
953 if ((ifp->if_flags & IFF_PROMISC) != 0) {
954 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
955 error = ifpromisc(ifv->ifv_p, 1);
956 if (error == 0)
957 ifv->ifv_flags |= IFVF_PROMISC;
958 }
959 } else {
960 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
961 error = ifpromisc(ifv->ifv_p, 0);
962 if (error == 0)
963 ifv->ifv_flags &= ~IFVF_PROMISC;
964 }
965 }
966
967 return (error);
968 }
969
970 static int
971 vlan_ioctl(struct ifnet *ifp, u_long cmd, void * data)
972 {
973 struct ifaddr *ifa;
974 struct ifnet *p;
975 struct ifreq *ifr;
976 struct ifvlan *ifv;
977 struct vlanreq vlr;
978 int error = 0;
979
980 ifr = (struct ifreq *)data;
981 ifa = (struct ifaddr *)data;
982 ifv = (struct ifvlan *)ifp->if_private;
983
984 switch (cmd) {
985 case SIOCSIFADDR:
986 ifp->if_flags |= IFF_UP;
987 break;
988
989 case SIOCGIFMEDIA:
990 VLAN_LOCK();
991 if (ifv->ifv_p != NULL) {
992 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
993 SIOCGIFMEDIA, data);
994 VLAN_UNLOCK();
995 /* Limit the result to the parent's current config. */
996 if (error == 0) {
997 struct ifmediareq *ifmr;
998
999 ifmr = (struct ifmediareq *) data;
1000 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1001 ifmr->ifm_count = 1;
1002 error = copyout(&ifmr->ifm_current,
1003 ifmr->ifm_ulist,
1004 sizeof(int));
1005 }
1006 }
1007 } else {
1008 struct ifmediareq *ifmr;
1009 VLAN_UNLOCK();
1010
1011 ifmr = (struct ifmediareq *) data;
1012 ifmr->ifm_current = 0;
1013 ifmr->ifm_mask = 0;
1014 ifmr->ifm_status = IFM_AVALID;
1015 ifmr->ifm_active = 0;
1016 ifmr->ifm_count = 1;
1017 if (ifmr->ifm_ulist) {
1018 error = copyout(&ifmr->ifm_current,
1019 ifmr->ifm_ulist,
1020 sizeof(int));
1021 }
1022 error = 0;
1023 }
1024 break;
1025
1026 case SIOCSIFMEDIA:
1027 error = EINVAL;
1028 break;
1029
1030 case SIOCSIFMTU:
1031 /*
1032 * Set the interface MTU.
1033 */
1034 VLAN_LOCK();
1035 if (ifv->ifv_p != NULL) {
1036 if (ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge)
1037 || ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge)) {
1038 error = EINVAL;
1039 } else {
1040 ifp->if_mtu = ifr->ifr_mtu;
1041 }
1042 } else {
1043 error = EINVAL;
1044 }
1045 VLAN_UNLOCK();
1046 break;
1047
1048 case SIOCSETVLAN:
1049 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1050 if (error)
1051 break;
1052 if (vlr.vlr_parent[0] == '\0') {
1053 VLAN_LOCK();
1054 vlan_unconfig(ifp);
1055 #if 0
1056 if (ifp->if_flags & IFF_UP)
1057 if_down(ifp);
1058 ifp->if_flags &= ~IFF_RUNNING;
1059 #endif 0
1060 VLAN_UNLOCK();
1061 break;
1062 }
1063 p = ifunit(vlr.vlr_parent);
1064 if (p == 0) {
1065 error = ENOENT;
1066 break;
1067 }
1068 /*
1069 * Don't let the caller set up a VLAN tag with
1070 * anything except VLID bits.
1071 */
1072 if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1073 error = EINVAL;
1074 break;
1075 }
1076 VLAN_LOCK();
1077 error = vlan_config(ifv, p, vlr.vlr_tag);
1078 if (error) {
1079 VLAN_UNLOCK();
1080 break;
1081 }
1082 ifp->if_flags |= IFF_RUNNING;
1083 VLAN_UNLOCK();
1084
1085 /* Update promiscuous mode, if necessary. */
1086 vlan_set_promisc(ifp);
1087
1088 /* generate a link event */
1089 vlan_link_event(ifp, p);
1090 break;
1091
1092 case SIOCGETVLAN:
1093 bzero(&vlr, sizeof vlr);
1094 VLAN_LOCK();
1095 if (ifv->ifv_p != NULL) {
1096 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
1097 "%s%d", ifv->ifv_p->if_name,
1098 ifv->ifv_p->if_unit);
1099 vlr.vlr_tag = ifv->ifv_tag;
1100 }
1101 VLAN_UNLOCK();
1102 error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
1103 break;
1104
1105 case SIOCSIFFLAGS:
1106 /*
1107 * For promiscuous mode, we enable promiscuous mode on
1108 * the parent if we need promiscuous on the VLAN interface.
1109 */
1110 if (ifv->ifv_p != NULL)
1111 error = vlan_set_promisc(ifp);
1112 break;
1113
1114 case SIOCADDMULTI:
1115 case SIOCDELMULTI:
1116 error = vlan_setmulti(ifp);
1117 break;
1118 default:
1119 error = EOPNOTSUPP;
1120 }
1121 return error;
1122 }
1123
1124 static int
1125 nop_if_ioctl(struct ifnet * ifp, u_long cmd, void * data)
1126 {
1127 return EOPNOTSUPP;
1128 }
1129
1130 static int
1131 nop_if_bpf(struct ifnet *ifp, int mode, bpf_callback_func * func)
1132 {
1133 return ENODEV;
1134 }
1135
1136 static int
1137 nop_if_free(struct ifnet * ifp)
1138 {
1139 return 0;
1140 }
1141
1142 static int
1143 nop_if_output(struct ifnet * ifp, struct mbuf * m)
1144 {
1145 if (m != NULL) {
1146 m_freem_list(m);
1147 }
1148 return 0;
1149 }
1150
1151 static int
1152 vlan_if_free(struct ifnet * ifp)
1153 {
1154 struct ifvlan *ifv;
1155
1156 if (ifp == NULL) {
1157 return 0;
1158 }
1159 ifv = (struct ifvlan *)ifp->if_private;
1160 if (ifv == NULL) {
1161 return 0;
1162 }
1163 ifp->if_private = NULL;
1164 dlil_if_release(ifp);
1165 FREE(ifv, M_VLAN);
1166 return 0;
1167 }
1168
1169 /*
1170 * Function: vlan_if_filter_detach
1171 * Purpose:
1172 * Destroy all vlan interfaces that refer to the interface
1173 */
1174 static int
1175 vlan_if_filter_detach(caddr_t cookie)
1176 {
1177 struct ifnet * ifp;
1178 struct ifvlan * ifv;
1179 struct ifnet * p = (struct ifnet *)cookie;
1180
1181 VLAN_LOCK();
1182 while (TRUE) {
1183 ifv = vlan_lookup_ifp(p);
1184 if (ifv == NULL) {
1185 break;
1186 }
1187 if (ifv->ifv_detaching) {
1188 continue;
1189 }
1190 /* make sure we don't invoke vlan_detach_filter */
1191 ifv->ifv_filter_valid = FALSE;
1192 vlan_remove(ifv);
1193 ifp = ifv->ifv_ifp;
1194 VLAN_UNLOCK();
1195 vlan_if_detach(ifp);
1196 VLAN_LOCK();
1197 }
1198 VLAN_UNLOCK();
1199 return (0);
1200 }
1201
1202 /*
1203 * Function: vlan_attach_filter
1204 * Purpose:
1205 * We attach an interface filter to detect when the underlying interface
1206 * goes away. We are forced to do that because dlil does not call our
1207 * protocol's dl_event function for KEV_DL_IF_DETACHING.
1208 */
1209
1210 static int
1211 vlan_attach_filter(struct ifnet * ifp, u_long * filter_id)
1212 {
1213 int error;
1214 struct dlil_if_flt_str filt;
1215
1216 bzero(&filt, sizeof(filt));
1217 filt.filter_detach = vlan_if_filter_detach;
1218 filt.cookie = (caddr_t)ifp;
1219 error = dlil_attach_interface_filter(ifp, &filt, filter_id,
1220 DLIL_LAST_FILTER);
1221 if (error) {
1222 printf("vlan: dlil_attach_interface_filter(%s%d) failed, %d\n",
1223 ifp->if_name, ifp->if_unit, error);
1224 }
1225 return (error);
1226 }
1227
1228 /*
1229 * Function: vlan_detach_filter
1230 * Purpose:
1231 * Remove our interface filter.
1232 */
1233 static int
1234 vlan_detach_filter(u_long filter_id)
1235 {
1236 int error;
1237
1238 error = dlil_detach_filter(filter_id);
1239 if (error) {
1240 printf("vlan: dlil_detach_filter failed, %d\n", error);
1241 }
1242 return (error);
1243 }
1244
1245 /*
1246 * Function: vlan_proto_input
1247 * Purpose:
1248 * This function is never called. We aren't allowed to leave the
1249 * function pointer NULL, so this function simply free's the mbuf.
1250 */
1251 static int
1252 vlan_proto_input(m, frame_header, ifp, dl_tag, sync_ok)
1253 struct mbuf *m;
1254 char *frame_header;
1255 struct ifnet *ifp;
1256 u_long dl_tag;
1257 int sync_ok;
1258 {
1259 m_freem(m);
1260 return (EJUSTRETURN);
1261 }
1262
1263 static struct ifnet *
1264 find_if_name_unit(const char * if_name, int unit)
1265 {
1266 struct ifnet * ifp;
1267
1268 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1269 if (strcmp(if_name, ifp->if_name) == 0 && unit == ifp->if_unit) {
1270 return (ifp);
1271 }
1272 }
1273 return (ifp);
1274 }
1275
1276 static void
1277 interface_link_event(struct ifnet * ifp, u_long event_code)
1278 {
1279 struct {
1280 struct kern_event_msg header;
1281 u_long unit;
1282 char if_name[IFNAMSIZ];
1283 } event;
1284
1285 event.header.total_size = sizeof(event);
1286 event.header.vendor_code = KEV_VENDOR_APPLE;
1287 event.header.kev_class = KEV_NETWORK_CLASS;
1288 event.header.kev_subclass = KEV_DL_SUBCLASS;
1289 event.header.event_code = event_code;
1290 event.header.event_data[0] = ifp->if_family;
1291 event.unit = (u_long) ifp->if_unit;
1292 strncpy(event.if_name, ifp->if_name, IFNAMSIZ);
1293 dlil_event(ifp, &event.header);
1294 return;
1295 }
1296
1297 static void
1298 parent_link_event(struct ifnet * p, u_long event_code)
1299 {
1300 struct ifvlan * ifv;
1301
1302 LIST_FOREACH(ifv, &ifv_list, ifv_list) {
1303 if (p == ifv->ifv_p) {
1304 interface_link_event(ifv->ifv_ifp, event_code);
1305 }
1306 }
1307 return;
1308
1309 }
1310
1311 /*
1312 * Function: vlan_dl_event
1313 * Purpose:
1314 * Process DLIL events that interest us. Currently, that is
1315 * just the interface UP and DOWN. Ideally, this would also
1316 * include the KEV_DL_IF_DETACH{ING} messages, which would eliminate
1317 * the need for an interface filter.
1318 */
1319 static int
1320 vlan_dl_event(struct kern_event_msg * event, u_long dl_tag)
1321 {
1322 struct ifnet * p;
1323 struct net_event_data * net_event;
1324
1325 if (event->vendor_code != KEV_VENDOR_APPLE
1326 || event->kev_class != KEV_NETWORK_CLASS
1327 || event->kev_subclass != KEV_DL_SUBCLASS) {
1328 goto done;
1329 }
1330 net_event = (struct net_event_data *)(event->event_data);
1331 switch (event->event_code) {
1332 case KEV_DL_LINK_OFF:
1333 case KEV_DL_LINK_ON:
1334 p = find_if_name_unit(net_event->if_name, net_event->if_unit);
1335 if (p != NULL) {
1336 parent_link_event(p, event->event_code);
1337 }
1338 break;
1339 #if 0
1340 case KEV_DL_IF_DETACHING:
1341 case KEV_DL_IF_DETACHED:
1342 /* we don't get these, unfortunately */
1343 break;
1344 #endif 0
1345 default:
1346 break;
1347 }
1348
1349 done:
1350 return (0);
1351 }
1352
1353 /*
1354 * Function: vlan_attach_protocol
1355 * Purpose:
1356 * Attach a DLIL protocol to the interface, using the ETHERTYPE_VLAN
1357 * demux ether type. We're not a real protocol, we'll never receive
1358 * any packets because they're intercepted by ether_demux before
1359 * our input routine would be called.
1360 *
1361 * The reasons for attaching a protocol to the interface are:
1362 * 1) add a protocol reference to the interface so that the underlying
1363 * interface automatically gets marked up while we're attached
1364 * 2) receive link status events which we can propagate to our
1365 * VLAN interfaces.
1366 */
1367 static int
1368 vlan_attach_protocol(struct ifnet *ifp)
1369 {
1370 struct dlil_demux_desc desc;
1371 u_long dl_tag;
1372 u_short en_native = ETHERTYPE_VLAN;
1373 int error;
1374 int i;
1375 struct dlil_proto_reg_str reg;
1376
1377 TAILQ_INIT(&reg.demux_desc_head);
1378 desc.type = DLIL_DESC_RAW;
1379 desc.variants.bitmask.proto_id_length = 0;
1380 desc.variants.bitmask.proto_id = 0;
1381 desc.variants.bitmask.proto_id_mask = 0;
1382 desc.native_type = (char *) &en_native;
1383 TAILQ_INSERT_TAIL(&reg.demux_desc_head, &desc, next);
1384 reg.interface_family = ifp->if_family;
1385 reg.unit_number = ifp->if_unit;
1386 reg.input = vlan_proto_input;
1387 reg.pre_output = 0;
1388 reg.event = vlan_dl_event;
1389 reg.offer = 0;
1390 reg.ioctl = 0;
1391 reg.default_proto = 0;
1392 reg.protocol_family = VLAN_PROTO_FAMILY;
1393
1394 error = dlil_attach_protocol(&reg, &dl_tag);
1395 if (error) {
1396 printf("vlan_proto_attach(%s%d) dlil_attach_protocol failed, %d\n",
1397 ifp->if_name, ifp->if_unit, error);
1398 }
1399 return (error);
1400 }
1401
1402 /*
1403 * Function: vlan_detach_protocol
1404 * Purpose:
1405 * Detach our DLIL protocol from an interface
1406 */
1407 static int
1408 vlan_detach_protocol(struct ifnet *ifp)
1409 {
1410 u_long dl_tag;
1411 int error;
1412
1413 error = dlil_find_dltag(ifp->if_family, ifp->if_unit,
1414 VLAN_PROTO_FAMILY, &dl_tag);
1415 if (error) {
1416 printf("vlan_proto_detach(%s%d) dlil_find_dltag failed, %d\n",
1417 ifp->if_name, ifp->if_unit, error);
1418 } else {
1419 error = dlil_detach_protocol(dl_tag);
1420 if (error) {
1421 printf("vlan_proto_detach(%s%d) dlil_detach_protocol failed, %d\n",
1422 ifp->if_name, ifp->if_unit, error);
1423 }
1424 }
1425 return (error);
1426 }
1427
1428 /*
1429 * DLIL interface family functions
1430 * We use the ethernet dlil functions, since that's all we support.
1431 * If we wanted to handle multiple LAN types (tokenring, etc.), we'd
1432 * call the appropriate routines for that LAN type instead of hard-coding
1433 * ethernet.
1434 */
1435 extern int ether_add_if(struct ifnet *ifp);
1436 extern int ether_del_if(struct ifnet *ifp);
1437 extern int ether_init_if(struct ifnet *ifp);
1438 extern int ether_add_proto(struct ddesc_head_str *desc_head,
1439 struct if_proto *proto, u_long dl_tag);
1440 extern int ether_del_proto(struct if_proto *proto, u_long dl_tag);
1441 extern int ether_ifmod_ioctl(struct ifnet *ifp, u_long command,
1442 caddr_t data);
1443 extern int ether_del_proto(struct if_proto *proto, u_long dl_tag);
1444 extern int ether_add_proto(struct ddesc_head_str *desc_head, struct if_proto *proto, u_long dl_tag);
1445
1446 extern int ether_attach_inet(struct ifnet *ifp, u_long *dl_tag);
1447 extern int ether_detach_inet(struct ifnet *ifp, u_long dl_tag);
1448 extern int ether_attach_inet6(struct ifnet *ifp, u_long *dl_tag);
1449 extern int ether_detach_inet6(struct ifnet *ifp, u_long dl_tag);
1450
1451 static int
1452 vlan_attach_inet(struct ifnet *ifp, u_long *dl_tag)
1453 {
1454 return (ether_attach_inet(ifp, dl_tag));
1455 }
1456
1457 static int
1458 vlan_detach_inet(struct ifnet *ifp, u_long dl_tag)
1459 {
1460 return (ether_detach_inet(ifp, dl_tag));
1461 }
1462
1463 static int
1464 vlan_attach_inet6(struct ifnet *ifp, u_long *dl_tag)
1465 {
1466 return (ether_attach_inet6(ifp, dl_tag));
1467 }
1468
1469 static int
1470 vlan_detach_inet6(struct ifnet *ifp, u_long dl_tag)
1471 {
1472 return (ether_detach_inet6(ifp, dl_tag));
1473 }
1474
1475 static int
1476 vlan_add_if(struct ifnet *ifp)
1477 {
1478 return (ether_add_if(ifp));
1479 }
1480
1481 static int
1482 vlan_del_if(struct ifnet *ifp)
1483 {
1484 return (ether_del_if(ifp));
1485 }
1486
1487 static int
1488 vlan_init_if(struct ifnet *ifp)
1489 {
1490 return (0);
1491 }
1492
1493 static int
1494 vlan_shutdown()
1495 {
1496 return 0;
1497 }
1498
1499 __private_extern__ int
1500 vlan_family_init()
1501 {
1502 int i, error=0;
1503 struct dlil_ifmod_reg_str ifmod_reg;
1504 struct dlil_protomod_reg_str vlan_protoreg;
1505
1506 #if 0
1507 /* VLAN family is built-in, called from ether_family_init */
1508 thread_funnel_switch(KERNEL_FUNNEL, NETWORK_FUNNEL);
1509 #endif 0
1510
1511 bzero(&ifmod_reg, sizeof(ifmod_reg));
1512 ifmod_reg.add_if = vlan_add_if;
1513 ifmod_reg.del_if = vlan_del_if;
1514 ifmod_reg.init_if = vlan_init_if;
1515 ifmod_reg.add_proto = ether_add_proto;
1516 ifmod_reg.del_proto = ether_del_proto;
1517 ifmod_reg.ifmod_ioctl = ether_ifmod_ioctl;
1518 ifmod_reg.shutdown = vlan_shutdown;
1519
1520 if (dlil_reg_if_modules(APPLE_IF_FAM_VLAN, &ifmod_reg)) {
1521 printf("WARNING: vlan_family_init -- "
1522 "Can't register if family modules\n");
1523 error = EIO;
1524 goto done;
1525 }
1526
1527 /* Register protocol registration functions */
1528 bzero(&vlan_protoreg, sizeof(vlan_protoreg));
1529 vlan_protoreg.attach_proto = vlan_attach_inet;
1530 vlan_protoreg.detach_proto = vlan_detach_inet;
1531
1532 if (error = dlil_reg_proto_module(PF_INET, APPLE_IF_FAM_VLAN,
1533 &vlan_protoreg) != 0) {
1534 kprintf("dlil_reg_proto_module failed for AF_INET6 error=%d\n",
1535 error);
1536 goto done;
1537 }
1538 vlan_protoreg.attach_proto = vlan_attach_inet6;
1539 vlan_protoreg.detach_proto = vlan_detach_inet6;
1540
1541 if (error = dlil_reg_proto_module(PF_INET6, APPLE_IF_FAM_VLAN,
1542 &vlan_protoreg) != 0) {
1543 kprintf("dlil_reg_proto_module failed for AF_INET6 error=%d\n",
1544 error);
1545 goto done;
1546 }
1547 vlan_clone_attach();
1548
1549 done:
1550 #if 0
1551 thread_funnel_switch(NETWORK_FUNNEL, KERNEL_FUNNEL);
1552 #endif 0
1553 return (error);
1554 }