]> git.saurik.com Git - apple/xnu.git/blob - bsd/sys/queue.h
xnu-792.22.5.tar.gz
[apple/xnu.git] / bsd / sys / queue.h
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)queue.h 8.5 (Berkeley) 8/20/94
61 */
62
63 #ifndef _SYS_QUEUE_H_
64 #define _SYS_QUEUE_H_
65
66 /*
67 * This file defines five types of data structures: singly-linked lists,
68 * slingly-linked tail queues, lists, tail queues, and circular queues.
69 *
70 * A singly-linked list is headed by a single forward pointer. The elements
71 * are singly linked for minimum space and pointer manipulation overhead at
72 * the expense of O(n) removal for arbitrary elements. New elements can be
73 * added to the list after an existing element or at the head of the list.
74 * Elements being removed from the head of the list should use the explicit
75 * macro for this purpose for optimum efficiency. A singly-linked list may
76 * only be traversed in the forward direction. Singly-linked lists are ideal
77 * for applications with large datasets and few or no removals or for
78 * implementing a LIFO queue.
79 *
80 * A singly-linked tail queue is headed by a pair of pointers, one to the
81 * head of the list and the other to the tail of the list. The elements are
82 * singly linked for minimum space and pointer manipulation overhead at the
83 * expense of O(n) removal for arbitrary elements. New elements can be added
84 * to the list after an existing element, at the head of the list, or at the
85 * end of the list. Elements being removed from the head of the tail queue
86 * should use the explicit macro for this purpose for optimum efficiency.
87 * A singly-linked tail queue may only be traversed in the forward direction.
88 * Singly-linked tail queues are ideal for applications with large datasets
89 * and few or no removals or for implementing a FIFO queue.
90 *
91 * A list is headed by a single forward pointer (or an array of forward
92 * pointers for a hash table header). The elements are doubly linked
93 * so that an arbitrary element can be removed without a need to
94 * traverse the list. New elements can be added to the list before
95 * or after an existing element or at the head of the list. A list
96 * may only be traversed in the forward direction.
97 *
98 * A tail queue is headed by a pair of pointers, one to the head of the
99 * list and the other to the tail of the list. The elements are doubly
100 * linked so that an arbitrary element can be removed without a need to
101 * traverse the list. New elements can be added to the list before or
102 * after an existing element, at the head of the list, or at the end of
103 * the list. A tail queue may only be traversed in the forward direction.
104 *
105 * A circle queue is headed by a pair of pointers, one to the head of the
106 * list and the other to the tail of the list. The elements are doubly
107 * linked so that an arbitrary element can be removed without a need to
108 * traverse the list. New elements can be added to the list before or after
109 * an existing element, at the head of the list, or at the end of the list.
110 * A circle queue may be traversed in either direction, but has a more
111 * complex end of list detection.
112 *
113 * For details on the use of these macros, see the queue(3) manual page.
114 *
115 *
116 * SLIST LIST STAILQ TAILQ CIRCLEQ
117 * _HEAD + + + + +
118 * _ENTRY + + + + +
119 * _INIT + + + + +
120 * _EMPTY + + + + +
121 * _FIRST + + + + +
122 * _NEXT + + + + +
123 * _PREV - - - + +
124 * _LAST - - + + +
125 * _FOREACH + + - + +
126 * _INSERT_HEAD + + + + +
127 * _INSERT_BEFORE - + - + +
128 * _INSERT_AFTER + + + + +
129 * _INSERT_TAIL - - + + +
130 * _REMOVE_HEAD + - + - -
131 * _REMOVE + + + + +
132 *
133 */
134
135 /*
136 * Singly-linked List definitions.
137 */
138 #define SLIST_HEAD(name, type) \
139 struct name { \
140 struct type *slh_first; /* first element */ \
141 }
142
143 #define SLIST_ENTRY(type) \
144 struct { \
145 struct type *sle_next; /* next element */ \
146 }
147
148 /*
149 * Singly-linked List functions.
150 */
151 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
152
153 #define SLIST_FIRST(head) ((head)->slh_first)
154
155 #define SLIST_FOREACH(var, head, field) \
156 for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
157
158 #define SLIST_INIT(head) { \
159 (head)->slh_first = NULL; \
160 }
161
162 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
163 (elm)->field.sle_next = (slistelm)->field.sle_next; \
164 (slistelm)->field.sle_next = (elm); \
165 } while (0)
166
167 #define SLIST_INSERT_HEAD(head, elm, field) do { \
168 (elm)->field.sle_next = (head)->slh_first; \
169 (head)->slh_first = (elm); \
170 } while (0)
171
172 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
173
174 #define SLIST_REMOVE_HEAD(head, field) do { \
175 (head)->slh_first = (head)->slh_first->field.sle_next; \
176 } while (0)
177
178 #define SLIST_REMOVE(head, elm, type, field) do { \
179 if ((head)->slh_first == (elm)) { \
180 SLIST_REMOVE_HEAD((head), field); \
181 } \
182 else { \
183 struct type *curelm = (head)->slh_first; \
184 while( curelm->field.sle_next != (elm) ) \
185 curelm = curelm->field.sle_next; \
186 curelm->field.sle_next = \
187 curelm->field.sle_next->field.sle_next; \
188 } \
189 } while (0)
190
191 /*
192 * Singly-linked Tail queue definitions.
193 */
194 #define STAILQ_HEAD(name, type) \
195 struct name { \
196 struct type *stqh_first;/* first element */ \
197 struct type **stqh_last;/* addr of last next element */ \
198 }
199
200 #define STAILQ_HEAD_INITIALIZER(head) \
201 { NULL, &(head).stqh_first }
202
203 #define STAILQ_ENTRY(type) \
204 struct { \
205 struct type *stqe_next; /* next element */ \
206 }
207
208 /*
209 * Singly-linked Tail queue functions.
210 */
211 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
212
213 #define STAILQ_INIT(head) do { \
214 (head)->stqh_first = NULL; \
215 (head)->stqh_last = &(head)->stqh_first; \
216 } while (0)
217
218 #define STAILQ_FIRST(head) ((head)->stqh_first)
219 #define STAILQ_LAST(head) (*(head)->stqh_last)
220
221 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
222 if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
223 (head)->stqh_last = &(elm)->field.stqe_next; \
224 (head)->stqh_first = (elm); \
225 } while (0)
226
227 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
228 (elm)->field.stqe_next = NULL; \
229 *(head)->stqh_last = (elm); \
230 (head)->stqh_last = &(elm)->field.stqe_next; \
231 } while (0)
232
233 #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
234 if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
235 (head)->stqh_last = &(elm)->field.stqe_next; \
236 (tqelm)->field.stqe_next = (elm); \
237 } while (0)
238
239 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
240
241 #define STAILQ_REMOVE_HEAD(head, field) do { \
242 if (((head)->stqh_first = \
243 (head)->stqh_first->field.stqe_next) == NULL) \
244 (head)->stqh_last = &(head)->stqh_first; \
245 } while (0)
246
247 #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
248 if (((head)->stqh_first = (elm)->field.stqe_next) == NULL) \
249 (head)->stqh_last = &(head)->stqh_first; \
250 } while (0)
251
252
253 #define STAILQ_REMOVE(head, elm, type, field) do { \
254 if ((head)->stqh_first == (elm)) { \
255 STAILQ_REMOVE_HEAD(head, field); \
256 } \
257 else { \
258 struct type *curelm = (head)->stqh_first; \
259 while( curelm->field.stqe_next != (elm) ) \
260 curelm = curelm->field.stqe_next; \
261 if((curelm->field.stqe_next = \
262 curelm->field.stqe_next->field.stqe_next) == NULL) \
263 (head)->stqh_last = &(curelm)->field.stqe_next; \
264 } \
265 } while (0)
266
267 /*
268 * List definitions.
269 */
270 #define LIST_HEAD(name, type) \
271 struct name { \
272 struct type *lh_first; /* first element */ \
273 }
274
275 #define LIST_HEAD_INITIALIZER(head) \
276 { NULL }
277
278 #define LIST_ENTRY(type) \
279 struct { \
280 struct type *le_next; /* next element */ \
281 struct type **le_prev; /* address of previous next element */ \
282 }
283
284 /*
285 * List functions.
286 */
287
288 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
289
290 #define LIST_FIRST(head) ((head)->lh_first)
291
292 #define LIST_FOREACH(var, head, field) \
293 for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next)
294
295 #define LIST_INIT(head) do { \
296 (head)->lh_first = NULL; \
297 } while (0)
298
299 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
300 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
301 (listelm)->field.le_next->field.le_prev = \
302 &(elm)->field.le_next; \
303 (listelm)->field.le_next = (elm); \
304 (elm)->field.le_prev = &(listelm)->field.le_next; \
305 } while (0)
306
307 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
308 (elm)->field.le_prev = (listelm)->field.le_prev; \
309 (elm)->field.le_next = (listelm); \
310 *(listelm)->field.le_prev = (elm); \
311 (listelm)->field.le_prev = &(elm)->field.le_next; \
312 } while (0)
313
314 #define LIST_INSERT_HEAD(head, elm, field) do { \
315 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
316 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
317 (head)->lh_first = (elm); \
318 (elm)->field.le_prev = &(head)->lh_first; \
319 } while (0)
320
321 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
322
323 #define LIST_REMOVE(elm, field) do { \
324 if ((elm)->field.le_next != NULL) \
325 (elm)->field.le_next->field.le_prev = \
326 (elm)->field.le_prev; \
327 *(elm)->field.le_prev = (elm)->field.le_next; \
328 } while (0)
329
330 /*
331 * Tail queue definitions.
332 */
333 #define TAILQ_HEAD(name, type) \
334 struct name { \
335 struct type *tqh_first; /* first element */ \
336 struct type **tqh_last; /* addr of last next element */ \
337 }
338
339 #define TAILQ_HEAD_INITIALIZER(head) \
340 { NULL, &(head).tqh_first }
341
342 #define TAILQ_ENTRY(type) \
343 struct { \
344 struct type *tqe_next; /* next element */ \
345 struct type **tqe_prev; /* address of previous next element */ \
346 }
347
348 /*
349 * Tail queue functions.
350 */
351 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
352
353 #define TAILQ_FOREACH(var, head, field) \
354 for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field))
355
356 #define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
357 for (var = TAILQ_LAST(head, headname); \
358 var; var = TAILQ_PREV(var, headname, field))
359
360 #define TAILQ_FIRST(head) ((head)->tqh_first)
361
362 #define TAILQ_LAST(head, headname) \
363 (*(((struct headname *)((head)->tqh_last))->tqh_last))
364
365 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
366
367 #define TAILQ_PREV(elm, headname, field) \
368 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
369
370 #define TAILQ_INIT(head) do { \
371 (head)->tqh_first = NULL; \
372 (head)->tqh_last = &(head)->tqh_first; \
373 } while (0)
374
375 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
376 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
377 (head)->tqh_first->field.tqe_prev = \
378 &(elm)->field.tqe_next; \
379 else \
380 (head)->tqh_last = &(elm)->field.tqe_next; \
381 (head)->tqh_first = (elm); \
382 (elm)->field.tqe_prev = &(head)->tqh_first; \
383 } while (0)
384
385 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
386 (elm)->field.tqe_next = NULL; \
387 (elm)->field.tqe_prev = (head)->tqh_last; \
388 *(head)->tqh_last = (elm); \
389 (head)->tqh_last = &(elm)->field.tqe_next; \
390 } while (0)
391
392 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
393 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
394 (elm)->field.tqe_next->field.tqe_prev = \
395 &(elm)->field.tqe_next; \
396 else \
397 (head)->tqh_last = &(elm)->field.tqe_next; \
398 (listelm)->field.tqe_next = (elm); \
399 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
400 } while (0)
401
402 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
403 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
404 (elm)->field.tqe_next = (listelm); \
405 *(listelm)->field.tqe_prev = (elm); \
406 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
407 } while (0)
408
409 #define TAILQ_REMOVE(head, elm, field) do { \
410 if (((elm)->field.tqe_next) != NULL) \
411 (elm)->field.tqe_next->field.tqe_prev = \
412 (elm)->field.tqe_prev; \
413 else \
414 (head)->tqh_last = (elm)->field.tqe_prev; \
415 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
416 } while (0)
417
418 /*
419 * Circular queue definitions.
420 */
421 #define CIRCLEQ_HEAD(name, type) \
422 struct name { \
423 struct type *cqh_first; /* first element */ \
424 struct type *cqh_last; /* last element */ \
425 }
426
427 #define CIRCLEQ_ENTRY(type) \
428 struct { \
429 struct type *cqe_next; /* next element */ \
430 struct type *cqe_prev; /* previous element */ \
431 }
432
433 /*
434 * Circular queue functions.
435 */
436 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
437
438 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
439
440 #define CIRCLEQ_FOREACH(var, head, field) \
441 for((var) = (head)->cqh_first; \
442 (var) != (void *)(head); \
443 (var) = (var)->field.cqe_next)
444
445 #define CIRCLEQ_INIT(head) do { \
446 (head)->cqh_first = (void *)(head); \
447 (head)->cqh_last = (void *)(head); \
448 } while (0)
449
450 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
451 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
452 (elm)->field.cqe_prev = (listelm); \
453 if ((listelm)->field.cqe_next == (void *)(head)) \
454 (head)->cqh_last = (elm); \
455 else \
456 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
457 (listelm)->field.cqe_next = (elm); \
458 } while (0)
459
460 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
461 (elm)->field.cqe_next = (listelm); \
462 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
463 if ((listelm)->field.cqe_prev == (void *)(head)) \
464 (head)->cqh_first = (elm); \
465 else \
466 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
467 (listelm)->field.cqe_prev = (elm); \
468 } while (0)
469
470 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
471 (elm)->field.cqe_next = (head)->cqh_first; \
472 (elm)->field.cqe_prev = (void *)(head); \
473 if ((head)->cqh_last == (void *)(head)) \
474 (head)->cqh_last = (elm); \
475 else \
476 (head)->cqh_first->field.cqe_prev = (elm); \
477 (head)->cqh_first = (elm); \
478 } while (0)
479
480 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
481 (elm)->field.cqe_next = (void *)(head); \
482 (elm)->field.cqe_prev = (head)->cqh_last; \
483 if ((head)->cqh_first == (void *)(head)) \
484 (head)->cqh_first = (elm); \
485 else \
486 (head)->cqh_last->field.cqe_next = (elm); \
487 (head)->cqh_last = (elm); \
488 } while (0)
489
490 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
491
492 #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
493
494 #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
495
496 #define CIRCLEQ_REMOVE(head, elm, field) do { \
497 if ((elm)->field.cqe_next == (void *)(head)) \
498 (head)->cqh_last = (elm)->field.cqe_prev; \
499 else \
500 (elm)->field.cqe_next->field.cqe_prev = \
501 (elm)->field.cqe_prev; \
502 if ((elm)->field.cqe_prev == (void *)(head)) \
503 (head)->cqh_first = (elm)->field.cqe_next; \
504 else \
505 (elm)->field.cqe_prev->field.cqe_next = \
506 (elm)->field.cqe_next; \
507 } while (0)
508
509 #ifdef KERNEL
510
511 #if NOTFB31
512
513 /*
514 * XXX insque() and remque() are an old way of handling certain queues.
515 * They bogusly assumes that all queue heads look alike.
516 */
517
518 struct quehead {
519 struct quehead *qh_link;
520 struct quehead *qh_rlink;
521 };
522
523 #ifdef __GNUC__
524
525 static __inline void
526 insque(void *a, void *b)
527 {
528 struct quehead *element = a, *head = b;
529
530 element->qh_link = head->qh_link;
531 element->qh_rlink = head;
532 head->qh_link = element;
533 element->qh_link->qh_rlink = element;
534 }
535
536 static __inline void
537 remque(void *a)
538 {
539 struct quehead *element = a;
540
541 element->qh_link->qh_rlink = element->qh_rlink;
542 element->qh_rlink->qh_link = element->qh_link;
543 element->qh_rlink = 0;
544 }
545
546 #else /* !__GNUC__ */
547
548 void insque(void *a, void *b);
549 void remque(void *a);
550
551 #endif /* __GNUC__ */
552
553 #endif
554 #endif /* KERNEL */
555
556 #endif /* !_SYS_QUEUE_H_ */