2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
61 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $
66 #include <sys/param.h>
67 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/domain.h>
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
74 #include <sys/kernel.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
78 #include <kern/queue.h>
79 #include <kern/locks.h>
82 #include <net/if_var.h>
83 #include <net/if_dl.h>
84 #include <net/route.h>
85 #include <net/kpi_protocol.h>
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_icmp.h>
94 #include <sys/socketvar.h>
96 #include <netinet/ip_fw.h>
97 #include <netinet/ip_divert.h>
99 #include <netinet/kpi_ipfilter_var.h>
101 /* needed for AUTOCONFIGURING: */
102 #include <netinet/udp.h>
103 #include <netinet/udp_var.h>
104 #include <netinet/bootp.h>
106 #include <sys/kdebug.h>
108 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
109 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
110 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
114 #include <netinet6/ipsec.h>
115 #include <netkey/key.h>
119 #if defined(NFAITH) && NFAITH > 0
120 #include <net/if_types.h>
124 #include <netinet/ip_dummynet.h>
128 extern int ipsec_bypass
;
129 extern lck_mtx_t
*sadb_mutex
;
133 static int ip_rsvp_on
;
134 struct socket
*ip_rsvpd
;
136 int ipforwarding
= 0;
137 SYSCTL_INT(_net_inet_ip
, IPCTL_FORWARDING
, forwarding
, CTLFLAG_RW
,
138 &ipforwarding
, 0, "Enable IP forwarding between interfaces");
140 static int ipsendredirects
= 1; /* XXX */
141 SYSCTL_INT(_net_inet_ip
, IPCTL_SENDREDIRECTS
, redirect
, CTLFLAG_RW
,
142 &ipsendredirects
, 0, "Enable sending IP redirects");
144 int ip_defttl
= IPDEFTTL
;
145 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFTTL
, ttl
, CTLFLAG_RW
,
146 &ip_defttl
, 0, "Maximum TTL on IP packets");
148 static int ip_dosourceroute
= 0;
149 SYSCTL_INT(_net_inet_ip
, IPCTL_SOURCEROUTE
, sourceroute
, CTLFLAG_RW
,
150 &ip_dosourceroute
, 0, "Enable forwarding source routed IP packets");
152 static int ip_acceptsourceroute
= 0;
153 SYSCTL_INT(_net_inet_ip
, IPCTL_ACCEPTSOURCEROUTE
, accept_sourceroute
,
154 CTLFLAG_RW
, &ip_acceptsourceroute
, 0,
155 "Enable accepting source routed IP packets");
157 static int ip_keepfaith
= 0;
158 SYSCTL_INT(_net_inet_ip
, IPCTL_KEEPFAITH
, keepfaith
, CTLFLAG_RW
,
160 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
162 static int nipq
= 0; /* total # of reass queues */
164 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragpackets
, CTLFLAG_RW
,
166 "Maximum number of IPv4 fragment reassembly queue entries");
168 static int maxfragsperpacket
;
169 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragsperpacket
, CTLFLAG_RW
,
170 &maxfragsperpacket
, 0,
171 "Maximum number of IPv4 fragments allowed per packet");
174 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfrags
, CTLFLAG_RW
,
175 &maxfrags
, 0, "Maximum number of IPv4 fragments allowed");
177 static int currentfrags
= 0;
180 * XXX - Setting ip_checkinterface mostly implements the receive side of
181 * the Strong ES model described in RFC 1122, but since the routing table
182 * and transmit implementation do not implement the Strong ES model,
183 * setting this to 1 results in an odd hybrid.
185 * XXX - ip_checkinterface currently must be disabled if you use ipnat
186 * to translate the destination address to another local interface.
188 * XXX - ip_checkinterface must be disabled if you add IP aliases
189 * to the loopback interface instead of the interface where the
190 * packets for those addresses are received.
192 static int ip_checkinterface
= 0;
193 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, check_interface
, CTLFLAG_RW
,
194 &ip_checkinterface
, 0, "Verify packet arrives on correct interface");
197 static int ipprintfs
= 0;
200 extern struct domain inetdomain
;
201 extern struct protosw inetsw
[];
202 struct protosw
*ip_protox
[IPPROTO_MAX
];
203 static int ipqmaxlen
= IFQ_MAXLEN
;
204 struct in_ifaddrhead in_ifaddrhead
; /* first inet address */
205 struct ifqueue ipintrq
;
206 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQMAXLEN
, intr_queue_maxlen
, CTLFLAG_RW
,
207 &ipintrq
.ifq_maxlen
, 0, "Maximum size of the IP input queue");
208 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQDROPS
, intr_queue_drops
, CTLFLAG_RD
,
209 &ipintrq
.ifq_drops
, 0, "Number of packets dropped from the IP input queue");
211 struct ipstat ipstat
;
212 SYSCTL_STRUCT(_net_inet_ip
, IPCTL_STATS
, stats
, CTLFLAG_RD
,
213 &ipstat
, ipstat
, "IP statistics (struct ipstat, netinet/ip_var.h)");
215 /* Packet reassembly stuff */
216 #define IPREASS_NHASH_LOG2 6
217 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
218 #define IPREASS_HMASK (IPREASS_NHASH - 1)
219 #define IPREASS_HASH(x,y) \
220 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
222 static struct ipq ipq
[IPREASS_NHASH
];
223 static TAILQ_HEAD(ipq_list
, ipq
) ipq_list
=
224 TAILQ_HEAD_INITIALIZER(ipq_list
);
225 const int ipintrq_present
= 1;
227 lck_attr_t
*ip_mutex_attr
;
228 lck_grp_t
*ip_mutex_grp
;
229 lck_grp_attr_t
*ip_mutex_grp_attr
;
230 lck_mtx_t
*inet_domain_mutex
;
231 extern lck_mtx_t
*domain_proto_mtx
;
234 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFMTU
, mtu
, CTLFLAG_RW
,
235 &ip_mtu
, 0, "Default MTU");
239 static int ipstealth
= 0;
240 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, stealth
, CTLFLAG_RW
,
246 ip_fw_chk_t
*ip_fw_chk_ptr
;
251 ip_dn_io_t
*ip_dn_io_ptr
;
254 int (*fr_checkp
)(struct ip
*, int, struct ifnet
*, int, struct mbuf
**) = NULL
;
256 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, linklocal
, CTLFLAG_RW
, 0, "link local");
258 struct ip_linklocal_stat ip_linklocal_stat
;
259 SYSCTL_STRUCT(_net_inet_ip_linklocal
, OID_AUTO
, stat
, CTLFLAG_RD
,
260 &ip_linklocal_stat
, ip_linklocal_stat
,
261 "Number of link local packets with TTL less than 255");
263 SYSCTL_NODE(_net_inet_ip_linklocal
, OID_AUTO
, in
, CTLFLAG_RW
, 0, "link local input");
265 int ip_linklocal_in_allowbadttl
= 1;
266 SYSCTL_INT(_net_inet_ip_linklocal_in
, OID_AUTO
, allowbadttl
, CTLFLAG_RW
,
267 &ip_linklocal_in_allowbadttl
, 0,
268 "Allow incoming link local packets with TTL less than 255");
272 * We need to save the IP options in case a protocol wants to respond
273 * to an incoming packet over the same route if the packet got here
274 * using IP source routing. This allows connection establishment and
275 * maintenance when the remote end is on a network that is not known
278 static int ip_nhops
= 0;
279 static struct ip_srcrt
{
280 struct in_addr dst
; /* final destination */
281 char nop
; /* one NOP to align */
282 char srcopt
[IPOPT_OFFSET
+ 1]; /* OPTVAL, OLEN and OFFSET */
283 struct in_addr route
[MAX_IPOPTLEN
/sizeof(struct in_addr
)];
287 extern struct mbuf
* m_dup(register struct mbuf
*m
, int how
);
290 static void save_rte(u_char
*, struct in_addr
);
291 static int ip_dooptions(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
292 static void ip_forward(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
293 static void ip_freef(struct ipq
*);
296 static struct mbuf
*ip_reass(struct mbuf
*,
297 struct ipq
*, struct ipq
*, u_int32_t
*, u_int16_t
*);
299 static struct mbuf
*ip_reass(struct mbuf
*,
300 struct ipq
*, struct ipq
*, u_int16_t
*, u_int16_t
*);
303 static struct mbuf
*ip_reass(struct mbuf
*, struct ipq
*, struct ipq
*);
308 extern u_short ip_id
;
311 extern u_long route_generation
;
312 extern int apple_hwcksum_rx
;
315 * IP initialization: fill in IP protocol switch table.
316 * All protocols not implemented in kernel go to raw IP protocol handler.
321 register struct protosw
*pr
;
323 static ip_initialized
= 0;
324 struct timeval timenow
;
329 TAILQ_INIT(&in_ifaddrhead
);
330 pr
= pffindproto_locked(PF_INET
, IPPROTO_RAW
, SOCK_RAW
);
333 for (i
= 0; i
< IPPROTO_MAX
; i
++)
335 for (pr
= inetdomain
.dom_protosw
; pr
; pr
= pr
->pr_next
)
336 { if(!((unsigned int)pr
->pr_domain
)) continue; /* If uninitialized, skip */
337 if (pr
->pr_domain
->dom_family
== PF_INET
&&
338 pr
->pr_protocol
&& pr
->pr_protocol
!= IPPROTO_RAW
)
339 ip_protox
[pr
->pr_protocol
] = pr
;
341 for (i
= 0; i
< IPREASS_NHASH
; i
++)
342 ipq
[i
].next
= ipq
[i
].prev
= &ipq
[i
];
344 maxnipq
= nmbclusters
/ 32;
345 maxfrags
= maxnipq
* 2;
346 maxfragsperpacket
= 128; /* enough for 64k in 512 byte fragments */
349 getmicrouptime(&timenow
);
350 ip_id
= timenow
.tv_sec
& 0xffff;
352 ipintrq
.ifq_maxlen
= ipqmaxlen
;
356 ip_mutex_grp_attr
= lck_grp_attr_alloc_init();
358 ip_mutex_grp
= lck_grp_alloc_init("ip", ip_mutex_grp_attr
);
360 ip_mutex_attr
= lck_attr_alloc_init();
362 if ((ip_mutex
= lck_mtx_alloc_init(ip_mutex_grp
, ip_mutex_attr
)) == NULL
) {
363 printf("ip_init: can't alloc ip_mutex\n");
373 protocol_family_t protocol
,
379 /* Initialize the PF_INET domain, and add in the pre-defined protos */
383 register struct protosw
*pr
;
384 register struct domain
*dp
;
385 static inetdomain_initted
= 0;
386 extern int in_proto_count
;
388 if (!inetdomain_initted
)
390 kprintf("Initing %d protosw entries\n", in_proto_count
);
392 dp
->dom_flags
= DOM_REENTRANT
;
394 for (i
=0, pr
= &inetsw
[0]; i
<in_proto_count
; i
++, pr
++)
395 net_add_proto(pr
, dp
);
396 inet_domain_mutex
= dp
->dom_mtx
;
397 inetdomain_initted
= 1;
399 lck_mtx_unlock(domain_proto_mtx
);
400 proto_register_input(PF_INET
, ip_proto_input
, NULL
);
401 lck_mtx_lock(domain_proto_mtx
);
405 __private_extern__
void
406 ip_proto_dispatch_in(
410 ipfilter_t inject_ipfref
)
412 struct ipfilter
*filter
;
413 int seen
= (inject_ipfref
== 0);
414 int changed_header
= 0;
417 if (!TAILQ_EMPTY(&ipv4_filters
)) {
419 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
421 if ((struct ipfilter
*)inject_ipfref
== filter
)
423 } else if (filter
->ipf_filter
.ipf_input
) {
426 if (changed_header
== 0) {
428 ip
= mtod(m
, struct ip
*);
429 ip
->ip_len
= htons(ip
->ip_len
+ hlen
);
430 ip
->ip_off
= htons(ip
->ip_off
);
432 ip
->ip_sum
= in_cksum(m
, hlen
);
434 result
= filter
->ipf_filter
.ipf_input(
435 filter
->ipf_filter
.cookie
, (mbuf_t
*)&m
, hlen
, proto
);
436 if (result
== EJUSTRETURN
) {
450 * If there isn't a specific lock for the protocol
451 * we're about to call, use the generic lock for AF_INET.
452 * otherwise let the protocol deal with its own locking
454 ip
= mtod(m
, struct ip
*);
456 if (changed_header
) {
457 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
458 ip
->ip_off
= ntohs(ip
->ip_off
);
461 if (!(ip_protox
[ip
->ip_p
]->pr_flags
& PR_PROTOLOCK
)) {
462 lck_mtx_lock(inet_domain_mutex
);
463 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
464 lck_mtx_unlock(inet_domain_mutex
);
467 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
472 * ipforward_rt cleared in in_addroute()
473 * when a new route is successfully created.
475 static struct sockaddr_in ipaddr
= { sizeof(ipaddr
), AF_INET
};
478 * Ip input routine. Checksum and byte swap header. If fragmented
479 * try to reassemble. Process options. Pass to next level.
482 ip_input(struct mbuf
*m
)
486 struct in_ifaddr
*ia
= NULL
;
487 int i
, hlen
, mff
, checkif
;
489 struct in_addr pkt_dst
;
490 u_int32_t div_info
= 0; /* packet divert/tee info */
491 struct ip_fw_args args
;
492 ipfilter_t inject_filter_ref
= 0;
494 struct route ipforward_rt
= { 0 };
496 lck_mtx_lock(ip_mutex
);
501 args
.divert_rule
= 0; /* divert cookie */
502 args
.next_hop
= NULL
;
504 /* Grab info from mtags prepended to the chain */
506 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
507 struct dn_pkt_tag
*dn_tag
;
509 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
510 args
.rule
= dn_tag
->rule
;
512 m_tag_delete(m
, tag
);
514 #endif /* DUMMYNET */
516 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
517 struct divert_tag
*div_tag
;
519 div_tag
= (struct divert_tag
*)(tag
+1);
520 args
.divert_rule
= div_tag
->cookie
;
522 m_tag_delete(m
, tag
);
524 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
525 struct ip_fwd_tag
*ipfwd_tag
;
527 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
528 args
.next_hop
= ipfwd_tag
->next_hop
;
530 m_tag_delete(m
, tag
);
534 if (m
== NULL
|| (m
->m_flags
& M_PKTHDR
) == 0)
535 panic("ip_input no HDR");
538 if (args
.rule
) { /* dummynet already filtered us */
539 ip
= mtod(m
, struct ip
*);
540 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
541 inject_filter_ref
= ipf_get_inject_filter(m
);
546 * No need to proccess packet twice if we've
549 inject_filter_ref
= ipf_get_inject_filter(m
);
550 if (inject_filter_ref
!= 0) {
551 lck_mtx_unlock(ip_mutex
);
552 ip
= mtod(m
, struct ip
*);
553 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
554 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
555 ip
->ip_off
= ntohs(ip
->ip_off
);
556 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, inject_filter_ref
);
562 if (m
->m_pkthdr
.len
< sizeof(struct ip
))
565 if (m
->m_len
< sizeof (struct ip
) &&
566 (m
= m_pullup(m
, sizeof (struct ip
))) == 0) {
567 ipstat
.ips_toosmall
++;
568 lck_mtx_unlock(ip_mutex
);
571 ip
= mtod(m
, struct ip
*);
573 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
,
574 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
576 if (IP_VHL_V(ip
->ip_vhl
) != IPVERSION
) {
577 ipstat
.ips_badvers
++;
581 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
582 if (hlen
< sizeof(struct ip
)) { /* minimum header length */
583 ipstat
.ips_badhlen
++;
586 if (hlen
> m
->m_len
) {
587 if ((m
= m_pullup(m
, hlen
)) == 0) {
588 ipstat
.ips_badhlen
++;
589 lck_mtx_unlock(ip_mutex
);
592 ip
= mtod(m
, struct ip
*);
595 /* 127/8 must not appear on wire - RFC1122 */
596 if ((ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
597 (ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
) {
598 if ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) {
599 ipstat
.ips_badaddr
++;
604 /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */
605 if ((IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
)) ||
606 IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)))) {
607 ip_linklocal_stat
.iplls_in_total
++;
608 if (ip
->ip_ttl
!= MAXTTL
) {
609 ip_linklocal_stat
.iplls_in_badttl
++;
610 /* Silently drop link local traffic with bad TTL */
611 if (!ip_linklocal_in_allowbadttl
)
615 if ((IF_HWASSIST_CSUM_FLAGS(m
->m_pkthdr
.rcvif
->if_hwassist
) == 0)
616 || (apple_hwcksum_rx
== 0) ||
617 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
) && ip
->ip_p
!= IPPROTO_TCP
)) {
618 m
->m_pkthdr
.csum_flags
= 0; /* invalidate HW generated checksum flags */
621 if (m
->m_pkthdr
.csum_flags
& CSUM_IP_CHECKED
) {
622 sum
= !(m
->m_pkthdr
.csum_flags
& CSUM_IP_VALID
);
624 sum
= in_cksum(m
, hlen
);
632 * Convert fields to host representation.
635 if (ip
->ip_len
< hlen
) {
642 * Check that the amount of data in the buffers
643 * is as at least much as the IP header would have us expect.
644 * Trim mbufs if longer than we expect.
645 * Drop packet if shorter than we expect.
647 if (m
->m_pkthdr
.len
< ip
->ip_len
) {
649 ipstat
.ips_tooshort
++;
652 if (m
->m_pkthdr
.len
> ip
->ip_len
) {
653 /* Invalidate hwcksuming */
654 m
->m_pkthdr
.csum_flags
= 0;
655 m
->m_pkthdr
.csum_data
= 0;
657 if (m
->m_len
== m
->m_pkthdr
.len
) {
658 m
->m_len
= ip
->ip_len
;
659 m
->m_pkthdr
.len
= ip
->ip_len
;
661 m_adj(m
, ip
->ip_len
- m
->m_pkthdr
.len
);
665 if (ipsec_bypass
== 0 && ipsec_gethist(m
, NULL
))
671 * Right now when no processing on packet has done
672 * and it is still fresh out of network we do our black
674 * - Firewall: deny/allow/divert
675 * - Xlate: translate packet's addr/port (NAT).
676 * - Pipe: pass pkt through dummynet.
677 * - Wrap: fake packet's addr/port <unimpl.>
678 * - Encapsulate: put it in another IP and send out. <unimp.>
681 #if defined(IPFIREWALL) && defined(DUMMYNET)
685 * Check if we want to allow this packet to be processed.
686 * Consider it to be bad if not.
691 if (fr_checkp(ip
, hlen
, m
->m_pkthdr
.rcvif
, 0, &m1
) || !m1
) {
692 lck_mtx_unlock(ip_mutex
);
695 ip
= mtod(m
= m1
, struct ip
*);
697 if (fw_enable
&& IPFW_LOADED
) {
698 #if IPFIREWALL_FORWARD
700 * If we've been forwarded from the output side, then
701 * skip the firewall a second time
705 #endif /* IPFIREWALL_FORWARD */
708 lck_mtx_unlock(ip_mutex
);
710 i
= ip_fw_chk_ptr(&args
);
713 if ( (i
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) { /* drop */
718 ip
= mtod(m
, struct ip
*); /* just in case m changed */
719 if (i
== 0 && args
.next_hop
== NULL
) { /* common case */
720 lck_mtx_lock(ip_mutex
);
724 if (DUMMYNET_LOADED
&& (i
& IP_FW_PORT_DYNT_FLAG
) != 0) {
725 /* Send packet to the appropriate pipe */
726 ip_dn_io_ptr(m
, i
&0xffff, DN_TO_IP_IN
, &args
);
729 #endif /* DUMMYNET */
731 if (i
!= 0 && (i
& IP_FW_PORT_DYNT_FLAG
) == 0) {
732 /* Divert or tee packet */
733 lck_mtx_lock(ip_mutex
);
738 #if IPFIREWALL_FORWARD
739 if (i
== 0 && args
.next_hop
!= NULL
) {
740 lck_mtx_lock(ip_mutex
);
745 * if we get here, the packet must be dropped
753 * Process options and, if not destined for us,
754 * ship it on. ip_dooptions returns 1 when an
755 * error was detected (causing an icmp message
756 * to be sent and the original packet to be freed).
758 ip_nhops
= 0; /* for source routed packets */
759 if (hlen
> sizeof (struct ip
) && ip_dooptions(m
, 0, args
.next_hop
, &ipforward_rt
)) {
760 lck_mtx_unlock(ip_mutex
);
764 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
765 * matter if it is destined to another node, or whether it is
766 * a multicast one, RSVP wants it! and prevents it from being forwarded
767 * anywhere else. Also checks if the rsvp daemon is running before
768 * grabbing the packet.
770 if (rsvp_on
&& ip
->ip_p
==IPPROTO_RSVP
)
774 * Check our list of addresses, to see if the packet is for us.
775 * If we don't have any addresses, assume any unicast packet
776 * we receive might be for us (and let the upper layers deal
779 if (TAILQ_EMPTY(&in_ifaddrhead
) &&
780 (m
->m_flags
& (M_MCAST
|M_BCAST
)) == 0)
784 * Cache the destination address of the packet; this may be
785 * changed by use of 'ipfw fwd'.
787 pkt_dst
= args
.next_hop
== NULL
?
788 ip
->ip_dst
: args
.next_hop
->sin_addr
;
791 * Enable a consistency check between the destination address
792 * and the arrival interface for a unicast packet (the RFC 1122
793 * strong ES model) if IP forwarding is disabled and the packet
794 * is not locally generated and the packet is not subject to
797 * XXX - Checking also should be disabled if the destination
798 * address is ipnat'ed to a different interface.
800 * XXX - Checking is incompatible with IP aliases added
801 * to the loopback interface instead of the interface where
802 * the packets are received.
804 checkif
= ip_checkinterface
&& (ipforwarding
== 0) &&
805 ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) &&
806 (args
.next_hop
== NULL
);
808 lck_mtx_lock(rt_mtx
);
809 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
810 #define satosin(sa) ((struct sockaddr_in *)(sa))
812 if (IA_SIN(ia
)->sin_addr
.s_addr
== INADDR_ANY
) {
813 lck_mtx_unlock(rt_mtx
);
818 * If the address matches, verify that the packet
819 * arrived via the correct interface if checking is
822 if (IA_SIN(ia
)->sin_addr
.s_addr
== pkt_dst
.s_addr
&&
823 (!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
)) {
824 lck_mtx_unlock(rt_mtx
);
828 * Only accept broadcast packets that arrive via the
829 * matching interface. Reception of forwarded directed
830 * broadcasts would be handled via ip_forward() and
831 * ether_output() with the loopback into the stack for
832 * SIMPLEX interfaces handled by ether_output().
834 if ((!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
) &&
835 ia
->ia_ifp
&& ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
836 if (satosin(&ia
->ia_broadaddr
)->sin_addr
.s_addr
==
838 lck_mtx_unlock(rt_mtx
);
841 if (ia
->ia_netbroadcast
.s_addr
== pkt_dst
.s_addr
) {
842 lck_mtx_unlock(rt_mtx
);
847 lck_mtx_unlock(rt_mtx
);
848 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
))) {
849 struct in_multi
*inm
;
852 * If we are acting as a multicast router, all
853 * incoming multicast packets are passed to the
854 * kernel-level multicast forwarding function.
855 * The packet is returned (relatively) intact; if
856 * ip_mforward() returns a non-zero value, the packet
857 * must be discarded, else it may be accepted below.
860 ip_mforward(ip
, m
->m_pkthdr
.rcvif
, m
, 0) != 0) {
861 ipstat
.ips_cantforward
++;
863 lck_mtx_unlock(ip_mutex
);
868 * The process-level routing daemon needs to receive
869 * all multicast IGMP packets, whether or not this
870 * host belongs to their destination groups.
872 if (ip
->ip_p
== IPPROTO_IGMP
)
874 ipstat
.ips_forward
++;
877 * See if we belong to the destination multicast group on the
880 IN_LOOKUP_MULTI(ip
->ip_dst
, m
->m_pkthdr
.rcvif
, inm
);
882 ipstat
.ips_notmember
++;
884 lck_mtx_unlock(ip_mutex
);
889 if (ip
->ip_dst
.s_addr
== (u_long
)INADDR_BROADCAST
)
891 if (ip
->ip_dst
.s_addr
== INADDR_ANY
)
894 /* Allow DHCP/BootP responses through */
895 if (m
->m_pkthdr
.rcvif
!= NULL
896 && (m
->m_pkthdr
.rcvif
->if_eflags
& IFEF_AUTOCONFIGURING
)
897 && hlen
== sizeof(struct ip
)
898 && ip
->ip_p
== IPPROTO_UDP
) {
900 if (m
->m_len
< sizeof(struct udpiphdr
)
901 && (m
= m_pullup(m
, sizeof(struct udpiphdr
))) == 0) {
902 udpstat
.udps_hdrops
++;
903 lck_mtx_unlock(ip_mutex
);
906 ui
= mtod(m
, struct udpiphdr
*);
907 if (ntohs(ui
->ui_dport
) == IPPORT_BOOTPC
) {
910 ip
= mtod(m
, struct ip
*); /* in case it changed */
913 #if defined(NFAITH) && 0 < NFAITH
915 * FAITH(Firewall Aided Internet Translator)
917 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
== IFT_FAITH
) {
919 if (ip
->ip_p
== IPPROTO_TCP
|| ip
->ip_p
== IPPROTO_ICMP
)
923 lck_mtx_unlock(ip_mutex
);
927 lck_mtx_unlock(ip_mutex
);
929 * Not for us; forward if possible and desirable.
931 if (ipforwarding
== 0) {
932 ipstat
.ips_cantforward
++;
935 ip_forward(m
, 0, args
.next_hop
, &ipforward_rt
);
941 /* Darwin does not have an if_data in ifaddr */
942 /* Count the packet in the ip address stats */
944 ia
->ia_ifa
.if_ipackets
++;
945 ia
->ia_ifa
.if_ibytes
+= m
->m_pkthdr
.len
;
950 * If offset or IP_MF are set, must reassemble.
951 * Otherwise, nothing need be done.
952 * (We could look in the reassembly queue to see
953 * if the packet was previously fragmented,
954 * but it's not worth the time; just let them time out.)
956 if (ip
->ip_off
& (IP_MF
| IP_OFFMASK
| IP_RF
)) {
958 /* If maxnipq is 0, never accept fragments. */
960 ipstat
.ips_fragments
++;
961 ipstat
.ips_fragdropped
++;
966 * If we will exceed the number of fragments in queues, timeout the
967 * oldest fragemented packet to make space.
969 if (currentfrags
>= maxfrags
) {
970 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
971 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
973 if (ip
->ip_id
== fp
->ipq_id
&&
974 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
975 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
976 ip
->ip_p
== fp
->ipq_p
) {
978 * If we match the fragment queue we were going to
979 * discard, drop this packet too.
981 ipstat
.ips_fragdropped
++;
989 sum
= IPREASS_HASH(ip
->ip_src
.s_addr
, ip
->ip_id
);
991 * Look for queue of fragments
994 for (fp
= ipq
[sum
].next
; fp
!= &ipq
[sum
]; fp
= fp
->next
)
995 if (ip
->ip_id
== fp
->ipq_id
&&
996 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
997 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
998 ip
->ip_p
== fp
->ipq_p
)
1002 * Enforce upper bound on number of fragmented packets
1003 * for which we attempt reassembly;
1004 * If maxnipq is -1, accept all fragments without limitation.
1006 if ((nipq
> maxnipq
) && (maxnipq
> 0)) {
1008 * drop the oldest fragment before proceeding further
1010 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
1011 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
1019 * Adjust ip_len to not reflect header,
1020 * convert offset of this to bytes.
1023 if (ip
->ip_off
& IP_MF
) {
1025 * Make sure that fragments have a data length
1026 * that's a non-zero multiple of 8 bytes.
1028 if (ip
->ip_len
== 0 || (ip
->ip_len
& 0x7) != 0) {
1029 ipstat
.ips_toosmall
++; /* XXX */
1032 m
->m_flags
|= M_FRAG
;
1034 /* Clear the flag in case packet comes from loopback */
1035 m
->m_flags
&= ~M_FRAG
;
1040 * Attempt reassembly; if it succeeds, proceed.
1041 * ip_reass() will return a different mbuf, and update
1042 * the divert info in div_info and args.divert_rule.
1044 ipstat
.ips_fragments
++;
1045 m
->m_pkthdr
.header
= ip
;
1048 fp
, &ipq
[sum
], &div_info
, &args
.divert_rule
);
1050 m
= ip_reass(m
, fp
, &ipq
[sum
]);
1053 lck_mtx_unlock(ip_mutex
);
1056 ipstat
.ips_reassembled
++;
1057 ip
= mtod(m
, struct ip
*);
1058 /* Get the header length of the reassembled packet */
1059 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1061 /* Restore original checksum before diverting packet */
1062 if (div_info
!= 0) {
1067 ip
->ip_sum
= in_cksum(m
, hlen
);
1078 * Divert or tee packet to the divert protocol if required.
1080 * If div_info is zero then cookie should be too, so we shouldn't
1081 * need to clear them here. Assume divert_packet() does so also.
1083 if (div_info
!= 0) {
1084 struct mbuf
*clone
= NULL
;
1086 /* Clone packet if we're doing a 'tee' */
1087 if ((div_info
& IP_FW_PORT_TEE_FLAG
) != 0)
1088 clone
= m_dup(m
, M_DONTWAIT
);
1090 /* Restore packet header fields to original values */
1095 /* Deliver packet to divert input routine */
1096 ipstat
.ips_delivered
++;
1097 lck_mtx_unlock(ip_mutex
);
1098 divert_packet(m
, 1, div_info
& 0xffff, args
.divert_rule
);
1100 /* If 'tee', continue with original packet */
1101 if (clone
== NULL
) {
1104 lck_mtx_lock(ip_mutex
);
1106 ip
= mtod(m
, struct ip
*);
1112 * enforce IPsec policy checking if we are seeing last header.
1113 * note that we do not visit this with protocols with pcb layer
1114 * code - like udp/tcp/raw ip.
1116 if (ipsec_bypass
== 0 && (ip_protox
[ip
->ip_p
]->pr_flags
& PR_LASTHDR
) != 0) {
1117 lck_mtx_lock(sadb_mutex
);
1118 if (ipsec4_in_reject(m
, NULL
)) {
1119 ipsecstat
.in_polvio
++;
1120 lck_mtx_unlock(sadb_mutex
);
1123 lck_mtx_unlock(sadb_mutex
);
1128 * Switch out to protocol's input routine.
1130 ipstat
.ips_delivered
++;
1132 if (args
.next_hop
&& ip
->ip_p
== IPPROTO_TCP
) {
1133 /* TCP needs IPFORWARD info if available */
1134 struct m_tag
*fwd_tag
;
1135 struct ip_fwd_tag
*ipfwd_tag
;
1137 fwd_tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
1138 sizeof(struct sockaddr_in
), M_NOWAIT
);
1139 if (fwd_tag
== NULL
) {
1143 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+1);
1144 ipfwd_tag
->next_hop
= args
.next_hop
;
1146 m_tag_prepend(m
, fwd_tag
);
1148 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1149 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1151 lck_mtx_unlock(ip_mutex
);
1153 /* TCP deals with its own locking */
1154 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1156 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1157 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1159 lck_mtx_unlock(ip_mutex
);
1160 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1166 KERNEL_DEBUG(DBG_LAYER_END
, 0,0,0,0,0);
1167 lck_mtx_unlock(ip_mutex
);
1172 * Take incoming datagram fragment and try to reassemble it into
1173 * whole datagram. If a chain for reassembly of this datagram already
1174 * exists, then it is given as fp; otherwise have to make a chain.
1176 * When IPDIVERT enabled, keep additional state with each packet that
1177 * tells us if we need to divert or tee the packet we're building.
1180 static struct mbuf
*
1182 ip_reass(m
, fp
, where
, divinfo
, divcookie
)
1184 ip_reass(m
, fp
, where
)
1186 register struct mbuf
*m
;
1187 register struct ipq
*fp
;
1195 u_int16_t
*divcookie
;
1198 struct ip
*ip
= mtod(m
, struct ip
*);
1199 register struct mbuf
*p
= 0, *q
, *nq
;
1201 int hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1205 * Presence of header sizes in mbufs
1206 * would confuse code below.
1211 if (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1212 m
->m_pkthdr
.csum_flags
= 0;
1214 * If first fragment to arrive, create a reassembly queue.
1217 if ((t
= m_get(M_DONTWAIT
, MT_FTABLE
)) == NULL
)
1219 fp
= mtod(t
, struct ipq
*);
1220 insque((void*)fp
, (void*)where
);
1223 fp
->ipq_ttl
= IPFRAGTTL
;
1224 fp
->ipq_p
= ip
->ip_p
;
1225 fp
->ipq_id
= ip
->ip_id
;
1226 fp
->ipq_src
= ip
->ip_src
;
1227 fp
->ipq_dst
= ip
->ip_dst
;
1229 m
->m_nextpkt
= NULL
;
1232 fp
->ipq_div_info
= 0;
1236 fp
->ipq_div_cookie
= 0;
1238 TAILQ_INSERT_HEAD(&ipq_list
, fp
, ipq_list
);
1244 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1247 * Find a segment which begins after this one does.
1249 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
)
1250 if (GETIP(q
)->ip_off
> ip
->ip_off
)
1254 * If there is a preceding segment, it may provide some of
1255 * our data already. If so, drop the data from the incoming
1256 * segment. If it provides all of our data, drop us, otherwise
1257 * stick new segment in the proper place.
1259 * If some of the data is dropped from the the preceding
1260 * segment, then it's checksum is invalidated.
1263 i
= GETIP(p
)->ip_off
+ GETIP(p
)->ip_len
- ip
->ip_off
;
1265 if (i
>= ip
->ip_len
)
1268 m
->m_pkthdr
.csum_flags
= 0;
1272 m
->m_nextpkt
= p
->m_nextpkt
;
1275 m
->m_nextpkt
= fp
->ipq_frags
;
1280 * While we overlap succeeding segments trim them or,
1281 * if they are completely covered, dequeue them.
1283 for (; q
!= NULL
&& ip
->ip_off
+ ip
->ip_len
> GETIP(q
)->ip_off
;
1285 i
= (ip
->ip_off
+ ip
->ip_len
) -
1287 if (i
< GETIP(q
)->ip_len
) {
1288 GETIP(q
)->ip_len
-= i
;
1289 GETIP(q
)->ip_off
+= i
;
1291 q
->m_pkthdr
.csum_flags
= 0;
1296 ipstat
.ips_fragdropped
++;
1306 * Transfer firewall instructions to the fragment structure.
1307 * Only trust info in the fragment at offset 0.
1309 if (ip
->ip_off
== 0) {
1311 fp
->ipq_div_info
= *divinfo
;
1313 fp
->ipq_divert
= *divinfo
;
1315 fp
->ipq_div_cookie
= *divcookie
;
1322 * Check for complete reassembly and perform frag per packet
1325 * Frag limiting is performed here so that the nth frag has
1326 * a chance to complete the packet before we drop the packet.
1327 * As a result, n+1 frags are actually allowed per packet, but
1328 * only n will ever be stored. (n = maxfragsperpacket.)
1332 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1333 if (GETIP(q
)->ip_off
!= next
) {
1334 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1335 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1340 next
+= GETIP(q
)->ip_len
;
1342 /* Make sure the last packet didn't have the IP_MF flag */
1343 if (p
->m_flags
& M_FRAG
) {
1344 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1345 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1352 * Reassembly is complete. Make sure the packet is a sane size.
1356 if (next
+ (IP_VHL_HL(ip
->ip_vhl
) << 2) > IP_MAXPACKET
) {
1357 ipstat
.ips_toolong
++;
1358 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1364 * Concatenate fragments.
1372 for (q
= nq
; q
!= NULL
; q
= nq
) {
1374 q
->m_nextpkt
= NULL
;
1375 if (q
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1376 m
->m_pkthdr
.csum_flags
= 0;
1378 m
->m_pkthdr
.csum_flags
&= q
->m_pkthdr
.csum_flags
;
1379 m
->m_pkthdr
.csum_data
+= q
->m_pkthdr
.csum_data
;
1386 * Extract firewall instructions from the fragment structure.
1389 *divinfo
= fp
->ipq_div_info
;
1391 *divinfo
= fp
->ipq_divert
;
1393 *divcookie
= fp
->ipq_div_cookie
;
1397 * Create header for new ip packet by
1398 * modifying header of first packet;
1399 * dequeue and discard fragment reassembly header.
1400 * Make header visible.
1403 ip
->ip_src
= fp
->ipq_src
;
1404 ip
->ip_dst
= fp
->ipq_dst
;
1406 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1407 currentfrags
-= fp
->ipq_nfrags
;
1409 (void) m_free(dtom(fp
));
1410 m
->m_len
+= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1411 m
->m_data
-= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1412 /* some debugging cruft by sklower, below, will go away soon */
1413 if (m
->m_flags
& M_PKTHDR
) { /* XXX this should be done elsewhere */
1414 register int plen
= 0;
1415 for (t
= m
; t
; t
= t
->m_next
)
1417 m
->m_pkthdr
.len
= plen
;
1426 ipstat
.ips_fragdropped
++;
1436 * Free a fragment reassembly header and all
1437 * associated datagrams.
1443 currentfrags
-= fp
->ipq_nfrags
;
1444 m_freem_list(fp
->ipq_frags
);
1446 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1447 (void) m_free(dtom(fp
));
1452 * IP timer processing;
1453 * if a timer expires on a reassembly
1454 * queue, discard it.
1459 register struct ipq
*fp
;
1461 lck_mtx_lock(ip_mutex
);
1462 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1466 while (fp
!= &ipq
[i
]) {
1469 if (fp
->prev
->ipq_ttl
== 0) {
1470 ipstat
.ips_fragtimeout
+= fp
->prev
->ipq_nfrags
;
1476 * If we are over the maximum number of fragments
1477 * (due to the limit being lowered), drain off
1478 * enough to get down to the new limit.
1480 if (maxnipq
>= 0 && nipq
> maxnipq
) {
1481 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1482 while (nipq
> maxnipq
&&
1483 (ipq
[i
].next
!= &ipq
[i
])) {
1484 ipstat
.ips_fragdropped
+=
1485 ipq
[i
].next
->ipq_nfrags
;
1486 ip_freef(ipq
[i
].next
);
1491 lck_mtx_unlock(ip_mutex
);
1495 * Drain off all datagram fragments.
1502 lck_mtx_lock(ip_mutex
);
1503 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1504 while (ipq
[i
].next
!= &ipq
[i
]) {
1505 ipstat
.ips_fragdropped
+= ipq
[i
].next
->ipq_nfrags
;
1506 ip_freef(ipq
[i
].next
);
1509 lck_mtx_unlock(ip_mutex
);
1514 * Do option processing on a datagram,
1515 * possibly discarding it if bad options are encountered,
1516 * or forwarding it if source-routed.
1517 * The pass argument is used when operating in the IPSTEALTH
1518 * mode to tell what options to process:
1519 * [LS]SRR (pass 0) or the others (pass 1).
1520 * The reason for as many as two passes is that when doing IPSTEALTH,
1521 * non-routing options should be processed only if the packet is for us.
1522 * Returns 1 if packet has been forwarded/freed,
1523 * 0 if the packet should be processed further.
1526 ip_dooptions(struct mbuf
*m
, int pass
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1528 register struct ip
*ip
= mtod(m
, struct ip
*);
1529 register u_char
*cp
;
1530 register struct ip_timestamp
*ipt
;
1531 register struct in_ifaddr
*ia
;
1532 int opt
, optlen
, cnt
, off
, code
, type
= ICMP_PARAMPROB
, forward
= 0;
1533 struct in_addr
*sin
, dst
;
1537 cp
= (u_char
*)(ip
+ 1);
1538 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1539 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
1540 opt
= cp
[IPOPT_OPTVAL
];
1541 if (opt
== IPOPT_EOL
)
1543 if (opt
== IPOPT_NOP
)
1546 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
1547 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1550 optlen
= cp
[IPOPT_OLEN
];
1551 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
1552 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1562 * Source routing with record.
1563 * Find interface with current destination address.
1564 * If none on this machine then drop if strictly routed,
1565 * or do nothing if loosely routed.
1566 * Record interface address and bring up next address
1567 * component. If strictly routed make sure next
1568 * address is on directly accessible net.
1572 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1573 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1576 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1577 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1580 ipaddr
.sin_addr
= ip
->ip_dst
;
1581 ia
= (struct in_ifaddr
*)
1582 ifa_ifwithaddr((struct sockaddr
*)&ipaddr
);
1584 if (opt
== IPOPT_SSRR
) {
1585 type
= ICMP_UNREACH
;
1586 code
= ICMP_UNREACH_SRCFAIL
;
1589 if (!ip_dosourceroute
)
1590 goto nosourcerouting
;
1592 * Loose routing, and not at next destination
1593 * yet; nothing to do except forward.
1598 ifafree(&ia
->ia_ifa
);
1601 off
--; /* 0 origin */
1602 if (off
> optlen
- (int)sizeof(struct in_addr
)) {
1604 * End of source route. Should be for us.
1606 if (!ip_acceptsourceroute
)
1607 goto nosourcerouting
;
1608 save_rte(cp
, ip
->ip_src
);
1612 if (!ip_dosourceroute
) {
1614 char buf
[MAX_IPv4_STR_LEN
];
1615 char buf2
[MAX_IPv4_STR_LEN
];
1617 * Acting as a router, so generate ICMP
1621 "attempted source route from %s to %s\n",
1622 inet_ntop(AF_INET
, &ip
->ip_src
, buf
, sizeof(buf
)),
1623 inet_ntop(AF_INET
, &ip
->ip_dst
, buf2
, sizeof(buf2
)));
1624 type
= ICMP_UNREACH
;
1625 code
= ICMP_UNREACH_SRCFAIL
;
1629 * Not acting as a router, so silently drop.
1631 ipstat
.ips_cantforward
++;
1638 * locate outgoing interface
1640 (void)memcpy(&ipaddr
.sin_addr
, cp
+ off
,
1641 sizeof(ipaddr
.sin_addr
));
1643 if (opt
== IPOPT_SSRR
) {
1644 #define INA struct in_ifaddr *
1645 #define SA struct sockaddr *
1646 if ((ia
= (INA
)ifa_ifwithdstaddr((SA
)&ipaddr
)) == 0) {
1647 ia
= (INA
)ifa_ifwithnet((SA
)&ipaddr
);
1650 ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
);
1653 type
= ICMP_UNREACH
;
1654 code
= ICMP_UNREACH_SRCFAIL
;
1657 ip
->ip_dst
= ipaddr
.sin_addr
;
1658 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1659 sizeof(struct in_addr
));
1660 ifafree(&ia
->ia_ifa
);
1662 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1664 * Let ip_intr's mcast routing check handle mcast pkts
1666 forward
= !IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
));
1670 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1671 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1674 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1675 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1679 * If no space remains, ignore.
1681 off
--; /* 0 origin */
1682 if (off
> optlen
- (int)sizeof(struct in_addr
))
1684 (void)memcpy(&ipaddr
.sin_addr
, &ip
->ip_dst
,
1685 sizeof(ipaddr
.sin_addr
));
1687 * locate outgoing interface; if we're the destination,
1688 * use the incoming interface (should be same).
1690 if ((ia
= (INA
)ifa_ifwithaddr((SA
)&ipaddr
)) == 0) {
1691 if ((ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
)) == 0) {
1692 type
= ICMP_UNREACH
;
1693 code
= ICMP_UNREACH_HOST
;
1697 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1698 sizeof(struct in_addr
));
1699 ifafree(&ia
->ia_ifa
);
1701 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1705 code
= cp
- (u_char
*)ip
;
1706 ipt
= (struct ip_timestamp
*)cp
;
1707 if (ipt
->ipt_len
< 4 || ipt
->ipt_len
> 40) {
1708 code
= (u_char
*)&ipt
->ipt_len
- (u_char
*)ip
;
1711 if (ipt
->ipt_ptr
< 5) {
1712 code
= (u_char
*)&ipt
->ipt_ptr
- (u_char
*)ip
;
1716 ipt
->ipt_len
- (int)sizeof(int32_t)) {
1717 if (++ipt
->ipt_oflw
== 0) {
1718 code
= (u_char
*)&ipt
->ipt_ptr
-
1724 sin
= (struct in_addr
*)(cp
+ ipt
->ipt_ptr
- 1);
1725 switch (ipt
->ipt_flg
) {
1727 case IPOPT_TS_TSONLY
:
1730 case IPOPT_TS_TSANDADDR
:
1731 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1732 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1733 code
= (u_char
*)&ipt
->ipt_ptr
-
1737 ipaddr
.sin_addr
= dst
;
1738 ia
= (INA
)ifaof_ifpforaddr((SA
)&ipaddr
,
1742 (void)memcpy(sin
, &IA_SIN(ia
)->sin_addr
,
1743 sizeof(struct in_addr
));
1744 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1745 ifafree(&ia
->ia_ifa
);
1749 case IPOPT_TS_PRESPEC
:
1750 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1751 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1752 code
= (u_char
*)&ipt
->ipt_ptr
-
1756 (void)memcpy(&ipaddr
.sin_addr
, sin
,
1757 sizeof(struct in_addr
));
1758 if ((ia
= (struct in_ifaddr
*)ifa_ifwithaddr((SA
)&ipaddr
)) == 0)
1760 ifafree(&ia
->ia_ifa
);
1762 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1766 /* XXX can't take &ipt->ipt_flg */
1767 code
= (u_char
*)&ipt
->ipt_ptr
-
1772 (void)memcpy(cp
+ ipt
->ipt_ptr
- 1, &ntime
,
1774 ipt
->ipt_ptr
+= sizeof(n_time
);
1777 if (forward
&& ipforwarding
) {
1778 ip_forward(m
, 1, next_hop
, ipforward_rt
);
1783 ip
->ip_len
-= IP_VHL_HL(ip
->ip_vhl
) << 2; /* XXX icmp_error adds in hdr length */
1784 lck_mtx_unlock(ip_mutex
);
1785 icmp_error(m
, type
, code
, 0, 0);
1786 lck_mtx_lock(ip_mutex
);
1787 ipstat
.ips_badoptions
++;
1792 * Given address of next destination (final or next hop),
1793 * return internet address info of interface to be used to get there.
1800 register struct sockaddr_in
*sin
;
1802 sin
= (struct sockaddr_in
*)&rt
->ro_dst
;
1804 lck_mtx_lock(rt_mtx
);
1805 if (rt
->ro_rt
== 0 || dst
.s_addr
!= sin
->sin_addr
.s_addr
||
1806 rt
->ro_rt
->generation_id
!= route_generation
) {
1808 rtfree_locked(rt
->ro_rt
);
1811 sin
->sin_family
= AF_INET
;
1812 sin
->sin_len
= sizeof(*sin
);
1813 sin
->sin_addr
= dst
;
1815 rtalloc_ign_locked(rt
, RTF_PRCLONING
);
1817 if (rt
->ro_rt
== 0) {
1818 lck_mtx_unlock(rt_mtx
);
1819 return ((struct in_ifaddr
*)0);
1822 if (rt
->ro_rt
->rt_ifa
)
1823 ifaref(rt
->ro_rt
->rt_ifa
);
1824 lck_mtx_unlock(rt_mtx
);
1825 return ((struct in_ifaddr
*) rt
->ro_rt
->rt_ifa
);
1829 * Save incoming source route for use in replies,
1830 * to be picked up later by ip_srcroute if the receiver is interested.
1833 save_rte(option
, dst
)
1839 olen
= option
[IPOPT_OLEN
];
1842 printf("save_rte: olen %d\n", olen
);
1844 if (olen
> sizeof(ip_srcrt
) - (1 + sizeof(dst
)))
1846 bcopy(option
, ip_srcrt
.srcopt
, olen
);
1847 ip_nhops
= (olen
- IPOPT_OFFSET
- 1) / sizeof(struct in_addr
);
1852 * Retrieve incoming source route for use in replies,
1853 * in the same form used by setsockopt.
1854 * The first hop is placed before the options, will be removed later.
1859 register struct in_addr
*p
, *q
;
1860 register struct mbuf
*m
;
1863 return ((struct mbuf
*)0);
1864 m
= m_get(M_DONTWAIT
, MT_HEADER
);
1866 return ((struct mbuf
*)0);
1868 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1870 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1871 m
->m_len
= ip_nhops
* sizeof(struct in_addr
) + sizeof(struct in_addr
) +
1875 printf("ip_srcroute: nhops %d mlen %d", ip_nhops
, m
->m_len
);
1879 * First save first hop for return route
1881 p
= &ip_srcrt
.route
[ip_nhops
- 1];
1882 *(mtod(m
, struct in_addr
*)) = *p
--;
1885 printf(" hops %lx", (u_long
)ntohl(mtod(m
, struct in_addr
*)->s_addr
));
1889 * Copy option fields and padding (nop) to mbuf.
1891 ip_srcrt
.nop
= IPOPT_NOP
;
1892 ip_srcrt
.srcopt
[IPOPT_OFFSET
] = IPOPT_MINOFF
;
1893 (void)memcpy(mtod(m
, caddr_t
) + sizeof(struct in_addr
),
1894 &ip_srcrt
.nop
, OPTSIZ
);
1895 q
= (struct in_addr
*)(mtod(m
, caddr_t
) +
1896 sizeof(struct in_addr
) + OPTSIZ
);
1899 * Record return path as an IP source route,
1900 * reversing the path (pointers are now aligned).
1902 while (p
>= ip_srcrt
.route
) {
1905 printf(" %lx", (u_long
)ntohl(q
->s_addr
));
1910 * Last hop goes to final destination.
1915 printf(" %lx\n", (u_long
)ntohl(q
->s_addr
));
1921 * Strip out IP options, at higher
1922 * level protocol in the kernel.
1923 * Second argument is buffer to which options
1924 * will be moved, and return value is their length.
1925 * XXX should be deleted; last arg currently ignored.
1928 ip_stripoptions(m
, mopt
)
1929 register struct mbuf
*m
;
1933 struct ip
*ip
= mtod(m
, struct ip
*);
1934 register caddr_t opts
;
1937 olen
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1938 opts
= (caddr_t
)(ip
+ 1);
1939 i
= m
->m_len
- (sizeof (struct ip
) + olen
);
1940 bcopy(opts
+ olen
, opts
, (unsigned)i
);
1942 if (m
->m_flags
& M_PKTHDR
)
1943 m
->m_pkthdr
.len
-= olen
;
1944 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, sizeof(struct ip
) >> 2);
1947 u_char inetctlerrmap
[PRC_NCMDS
] = {
1949 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
1950 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
1951 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
1953 ENOPROTOOPT
, ECONNREFUSED
1957 * Forward a packet. If some error occurs return the sender
1958 * an icmp packet. Note we can't always generate a meaningful
1959 * icmp message because icmp doesn't have a large enough repertoire
1960 * of codes and types.
1962 * If not forwarding, just drop the packet. This could be confusing
1963 * if ipforwarding was zero but some routing protocol was advancing
1964 * us as a gateway to somewhere. However, we must let the routing
1965 * protocol deal with that.
1967 * The srcrt parameter indicates whether the packet is being forwarded
1968 * via a source route.
1971 ip_forward(struct mbuf
*m
, int srcrt
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1973 register struct ip
*ip
= mtod(m
, struct ip
*);
1974 register struct sockaddr_in
*sin
;
1975 register struct rtentry
*rt
;
1976 int error
, type
= 0, code
= 0;
1979 struct in_addr pkt_dst
;
1980 struct ifnet
*destifp
;
1982 struct ifnet dummyifp
;
1987 * Cache the destination address of the packet; this may be
1988 * changed by use of 'ipfw fwd'.
1990 pkt_dst
= next_hop
? next_hop
->sin_addr
: ip
->ip_dst
;
1994 printf("forward: src %lx dst %lx ttl %x\n",
1995 (u_long
)ip
->ip_src
.s_addr
, (u_long
)pkt_dst
.s_addr
,
2000 if (m
->m_flags
& (M_BCAST
|M_MCAST
) || in_canforward(pkt_dst
) == 0) {
2001 ipstat
.ips_cantforward
++;
2008 if (ip
->ip_ttl
<= IPTTLDEC
) {
2009 icmp_error(m
, ICMP_TIMXCEED
, ICMP_TIMXCEED_INTRANS
,
2017 sin
= (struct sockaddr_in
*)&ipforward_rt
->ro_dst
;
2018 if ((rt
= ipforward_rt
->ro_rt
) == 0 ||
2019 pkt_dst
.s_addr
!= sin
->sin_addr
.s_addr
||
2020 ipforward_rt
->ro_rt
->generation_id
!= route_generation
) {
2021 if (ipforward_rt
->ro_rt
) {
2022 rtfree(ipforward_rt
->ro_rt
);
2023 ipforward_rt
->ro_rt
= 0;
2025 sin
->sin_family
= AF_INET
;
2026 sin
->sin_len
= sizeof(*sin
);
2027 sin
->sin_addr
= pkt_dst
;
2029 rtalloc_ign(ipforward_rt
, RTF_PRCLONING
);
2030 if (ipforward_rt
->ro_rt
== 0) {
2031 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_HOST
, dest
, 0);
2034 rt
= ipforward_rt
->ro_rt
;
2038 * Save the IP header and at most 8 bytes of the payload,
2039 * in case we need to generate an ICMP message to the src.
2041 * We don't use m_copy() because it might return a reference
2042 * to a shared cluster. Both this function and ip_output()
2043 * assume exclusive access to the IP header in `m', so any
2044 * data in a cluster may change before we reach icmp_error().
2046 MGET(mcopy
, M_DONTWAIT
, m
->m_type
);
2047 if (mcopy
!= NULL
) {
2048 M_COPY_PKTHDR(mcopy
, m
);
2049 mcopy
->m_len
= imin((IP_VHL_HL(ip
->ip_vhl
) << 2) + 8,
2051 m_copydata(m
, 0, mcopy
->m_len
, mtod(mcopy
, caddr_t
));
2057 ip
->ip_ttl
-= IPTTLDEC
;
2063 * If forwarding packet using same interface that it came in on,
2064 * perhaps should send a redirect to sender to shortcut a hop.
2065 * Only send redirect if source is sending directly to us,
2066 * and if packet was not source routed (or has any options).
2067 * Also, don't send redirect if forwarding using a default route
2068 * or a route modified by a redirect.
2070 #define satosin(sa) ((struct sockaddr_in *)(sa))
2071 if (rt
->rt_ifp
== m
->m_pkthdr
.rcvif
&&
2072 (rt
->rt_flags
& (RTF_DYNAMIC
|RTF_MODIFIED
)) == 0 &&
2073 satosin(rt_key(rt
))->sin_addr
.s_addr
!= 0 &&
2074 ipsendredirects
&& !srcrt
) {
2075 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
2076 u_long src
= ntohl(ip
->ip_src
.s_addr
);
2079 (src
& RTA(rt
)->ia_subnetmask
) == RTA(rt
)->ia_subnet
) {
2080 if (rt
->rt_flags
& RTF_GATEWAY
)
2081 dest
= satosin(rt
->rt_gateway
)->sin_addr
.s_addr
;
2083 dest
= pkt_dst
.s_addr
;
2084 /* Router requirements says to only send host redirects */
2085 type
= ICMP_REDIRECT
;
2086 code
= ICMP_REDIRECT_HOST
;
2089 printf("redirect (%d) to %lx\n", code
, (u_long
)dest
);
2096 /* Pass IPFORWARD info if available */
2098 struct ip_fwd_tag
*ipfwd_tag
;
2100 tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
2101 sizeof(struct sockaddr_in
), M_NOWAIT
);
2108 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
2109 ipfwd_tag
->next_hop
= next_hop
;
2111 m_tag_prepend(m
, tag
);
2113 error
= ip_output_list(m
, 0, (struct mbuf
*)0, ipforward_rt
,
2117 ipstat
.ips_cantforward
++;
2119 ipstat
.ips_forward
++;
2121 ipstat
.ips_redirectsent
++;
2124 ipflow_create(ipforward_rt
, mcopy
);
2136 case 0: /* forwarded, but need redirect */
2137 /* type, code set above */
2140 case ENETUNREACH
: /* shouldn't happen, checked above */
2145 type
= ICMP_UNREACH
;
2146 code
= ICMP_UNREACH_HOST
;
2150 type
= ICMP_UNREACH
;
2151 code
= ICMP_UNREACH_NEEDFRAG
;
2153 if (ipforward_rt
->ro_rt
)
2154 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2157 * If the packet is routed over IPsec tunnel, tell the
2158 * originator the tunnel MTU.
2159 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2162 if (ipforward_rt
->ro_rt
) {
2163 struct secpolicy
*sp
= NULL
;
2169 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2170 ipstat
.ips_cantfrag
++;
2173 lck_mtx_lock(sadb_mutex
);
2174 sp
= ipsec4_getpolicybyaddr(mcopy
,
2180 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2182 /* count IPsec header size */
2183 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2188 * find the correct route for outer IPv4
2189 * header, compute tunnel MTU.
2192 * The "dummyifp" code relies upon the fact
2193 * that icmp_error() touches only ifp->if_mtu.
2198 && sp
->req
->sav
!= NULL
2199 && sp
->req
->sav
->sah
!= NULL
) {
2200 ro
= &sp
->req
->sav
->sah
->sa_route
;
2201 if (ro
->ro_rt
&& ro
->ro_rt
->rt_ifp
) {
2203 ro
->ro_rt
->rt_ifp
->if_mtu
;
2204 dummyifp
.if_mtu
-= ipsechdr
;
2205 destifp
= &dummyifp
;
2211 lck_mtx_unlock(sadb_mutex
);
2214 ipstat
.ips_cantfrag
++;
2218 type
= ICMP_SOURCEQUENCH
;
2222 case EACCES
: /* ipfw denied packet */
2226 icmp_error(mcopy
, type
, code
, dest
, destifp
);
2231 register struct inpcb
*inp
,
2232 register struct mbuf
**mp
,
2233 register struct ip
*ip
,
2234 register struct mbuf
*m
)
2236 if (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) {
2240 *mp
= sbcreatecontrol((caddr_t
) &tv
, sizeof(tv
),
2241 SCM_TIMESTAMP
, SOL_SOCKET
);
2243 mp
= &(*mp
)->m_next
;
2245 if (inp
->inp_flags
& INP_RECVDSTADDR
) {
2246 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_dst
,
2247 sizeof(struct in_addr
), IP_RECVDSTADDR
, IPPROTO_IP
);
2249 mp
= &(*mp
)->m_next
;
2253 * Moving these out of udp_input() made them even more broken
2254 * than they already were.
2256 /* options were tossed already */
2257 if (inp
->inp_flags
& INP_RECVOPTS
) {
2258 *mp
= sbcreatecontrol((caddr_t
) opts_deleted_above
,
2259 sizeof(struct in_addr
), IP_RECVOPTS
, IPPROTO_IP
);
2261 mp
= &(*mp
)->m_next
;
2263 /* ip_srcroute doesn't do what we want here, need to fix */
2264 if (inp
->inp_flags
& INP_RECVRETOPTS
) {
2265 *mp
= sbcreatecontrol((caddr_t
) ip_srcroute(),
2266 sizeof(struct in_addr
), IP_RECVRETOPTS
, IPPROTO_IP
);
2268 mp
= &(*mp
)->m_next
;
2271 if (inp
->inp_flags
& INP_RECVIF
) {
2274 struct sockaddr_dl sdl
;
2277 struct sockaddr_dl
*sdp
;
2278 struct sockaddr_dl
*sdl2
= &sdlbuf
.sdl
;
2280 ifnet_head_lock_shared();
2281 if (((ifp
= m
->m_pkthdr
.rcvif
))
2282 && ( ifp
->if_index
&& (ifp
->if_index
<= if_index
))) {
2283 struct ifaddr
*ifa
= ifnet_addrs
[ifp
->if_index
- 1];
2285 if (!ifa
|| !ifa
->ifa_addr
)
2288 sdp
= (struct sockaddr_dl
*)ifa
->ifa_addr
;
2290 * Change our mind and don't try copy.
2292 if ((sdp
->sdl_family
!= AF_LINK
)
2293 || (sdp
->sdl_len
> sizeof(sdlbuf
))) {
2296 bcopy(sdp
, sdl2
, sdp
->sdl_len
);
2300 = offsetof(struct sockaddr_dl
, sdl_data
[0]);
2301 sdl2
->sdl_family
= AF_LINK
;
2302 sdl2
->sdl_index
= 0;
2303 sdl2
->sdl_nlen
= sdl2
->sdl_alen
= sdl2
->sdl_slen
= 0;
2306 *mp
= sbcreatecontrol((caddr_t
) sdl2
, sdl2
->sdl_len
,
2307 IP_RECVIF
, IPPROTO_IP
);
2309 mp
= &(*mp
)->m_next
;
2311 if (inp
->inp_flags
& INP_RECVTTL
) {
2312 *mp
= sbcreatecontrol((caddr_t
)&ip
->ip_ttl
, sizeof(ip
->ip_ttl
), IP_RECVTTL
, IPPROTO_IP
);
2313 if (*mp
) mp
= &(*mp
)->m_next
;
2318 ip_rsvp_init(struct socket
*so
)
2320 if (so
->so_type
!= SOCK_RAW
||
2321 so
->so_proto
->pr_protocol
!= IPPROTO_RSVP
)
2324 if (ip_rsvpd
!= NULL
)
2329 * This may seem silly, but we need to be sure we don't over-increment
2330 * the RSVP counter, in case something slips up.
2345 * This may seem silly, but we need to be sure we don't over-decrement
2346 * the RSVP counter, in case something slips up.