]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
xnu-792.22.5.tar.gz
[apple/xnu.git] / bsd / net / radix.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1988, 1989, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)radix.c 8.4 (Berkeley) 11/2/94
61 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
62 */
63
64 /*
65 * Routines to build and maintain radix trees for routing lookups.
66 */
67 #ifndef _RADIX_H_
68 #include <sys/param.h>
69 #ifdef KERNEL
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #define M_DONTWAIT M_NOWAIT
73 #include <sys/domain.h>
74 #else
75 #include <stdlib.h>
76 #endif
77 #include <sys/syslog.h>
78 #include <net/radix.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <kern/locks.h>
82 #endif
83
84 static int rn_walktree_from(struct radix_node_head *h, void *a,
85 void *m, walktree_f_t *f, void *w);
86 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
87 static struct radix_node
88 *rn_insert(void *, struct radix_node_head *, int *,
89 struct radix_node [2]),
90 *rn_newpair(void *, int, struct radix_node[2]),
91 *rn_search(void *, struct radix_node *),
92 *rn_search_m(void *, struct radix_node *, void *);
93
94 static int max_keylen;
95 static struct radix_mask *rn_mkfreelist;
96 static struct radix_node_head *mask_rnhead;
97 static char *addmask_key;
98 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
99 static char *rn_zeros, *rn_ones;
100
101
102 extern lck_grp_t *domain_proto_mtx_grp;
103 extern lck_attr_t *domain_proto_mtx_attr;
104 lck_mtx_t *rn_mutex;
105
106 #define rn_masktop (mask_rnhead->rnh_treetop)
107 #undef Bcmp
108 #define Bcmp(a, b, l) \
109 (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
110
111 static int rn_lexobetter(void *m_arg, void *n_arg);
112 static struct radix_mask *
113 rn_new_radix_mask(struct radix_node *tt,
114 struct radix_mask *next);
115 static int rn_satsifies_leaf(char *trial, struct radix_node *leaf,
116 int skip);
117
118 /*
119 * The data structure for the keys is a radix tree with one way
120 * branching removed. The index rn_bit at an internal node n represents a bit
121 * position to be tested. The tree is arranged so that all descendants
122 * of a node n have keys whose bits all agree up to position rn_bit - 1.
123 * (We say the index of n is rn_bit.)
124 *
125 * There is at least one descendant which has a one bit at position rn_bit,
126 * and at least one with a zero there.
127 *
128 * A route is determined by a pair of key and mask. We require that the
129 * bit-wise logical and of the key and mask to be the key.
130 * We define the index of a route to associated with the mask to be
131 * the first bit number in the mask where 0 occurs (with bit number 0
132 * representing the highest order bit).
133 *
134 * We say a mask is normal if every bit is 0, past the index of the mask.
135 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
136 * and m is a normal mask, then the route applies to every descendant of n.
137 * If the index(m) < rn_bit, this implies the trailing last few bits of k
138 * before bit b are all 0, (and hence consequently true of every descendant
139 * of n), so the route applies to all descendants of the node as well.
140 *
141 * Similar logic shows that a non-normal mask m such that
142 * index(m) <= index(n) could potentially apply to many children of n.
143 * Thus, for each non-host route, we attach its mask to a list at an internal
144 * node as high in the tree as we can go.
145 *
146 * The present version of the code makes use of normal routes in short-
147 * circuiting an explict mask and compare operation when testing whether
148 * a key satisfies a normal route, and also in remembering the unique leaf
149 * that governs a subtree.
150 */
151
152 static struct radix_node *
153 rn_search(v_arg, head)
154 void *v_arg;
155 struct radix_node *head;
156 {
157 register struct radix_node *x;
158 register caddr_t v;
159
160 for (x = head, v = v_arg; x->rn_bit >= 0;) {
161 if (x->rn_bmask & v[x->rn_offset])
162 x = x->rn_right;
163 else
164 x = x->rn_left;
165 }
166 return (x);
167 }
168
169 static struct radix_node *
170 rn_search_m(v_arg, head, m_arg)
171 struct radix_node *head;
172 void *v_arg, *m_arg;
173 {
174 register struct radix_node *x;
175 register caddr_t v = v_arg, m = m_arg;
176
177 for (x = head; x->rn_bit >= 0;) {
178 if ((x->rn_bmask & m[x->rn_offset]) &&
179 (x->rn_bmask & v[x->rn_offset]))
180 x = x->rn_right;
181 else
182 x = x->rn_left;
183 }
184 return x;
185 }
186
187 int
188 rn_refines(m_arg, n_arg)
189 void *m_arg, *n_arg;
190 {
191 register caddr_t m = m_arg, n = n_arg;
192 register caddr_t lim, lim2 = lim = n + *(u_char *)n;
193 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
194 int masks_are_equal = 1;
195
196 if (longer > 0)
197 lim -= longer;
198 while (n < lim) {
199 if (*n & ~(*m))
200 return 0;
201 if (*n++ != *m++)
202 masks_are_equal = 0;
203 }
204 while (n < lim2)
205 if (*n++)
206 return 0;
207 if (masks_are_equal && (longer < 0))
208 for (lim2 = m - longer; m < lim2; )
209 if (*m++)
210 return 1;
211 return (!masks_are_equal);
212 }
213
214 struct radix_node *
215 rn_lookup(v_arg, m_arg, head)
216 void *v_arg, *m_arg;
217 struct radix_node_head *head;
218 {
219 register struct radix_node *x;
220 caddr_t netmask = 0;
221
222 if (m_arg) {
223 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
224 if (x == 0)
225 return (0);
226 netmask = x->rn_key;
227 }
228 x = rn_match(v_arg, head);
229 if (x && netmask) {
230 while (x && x->rn_mask != netmask)
231 x = x->rn_dupedkey;
232 }
233 return x;
234 }
235
236 static int
237 rn_satsifies_leaf(trial, leaf, skip)
238 char *trial;
239 register struct radix_node *leaf;
240 int skip;
241 {
242 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
243 char *cplim;
244 int length = min(*(u_char *)cp, *(u_char *)cp2);
245
246 if (cp3 == 0)
247 cp3 = rn_ones;
248 else
249 length = min(length, *(u_char *)cp3);
250 cplim = cp + length; cp3 += skip; cp2 += skip;
251 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
252 if ((*cp ^ *cp2) & *cp3)
253 return 0;
254 return 1;
255 }
256
257 struct radix_node *
258 rn_match(v_arg, head)
259 void *v_arg;
260 struct radix_node_head *head;
261 {
262 caddr_t v = v_arg;
263 register struct radix_node *t = head->rnh_treetop, *x;
264 register caddr_t cp = v, cp2;
265 caddr_t cplim;
266 struct radix_node *saved_t, *top = t;
267 int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
268 register int test, b, rn_bit;
269
270 /*
271 * Open code rn_search(v, top) to avoid overhead of extra
272 * subroutine call.
273 */
274 for (; t->rn_bit >= 0; ) {
275 if (t->rn_bmask & cp[t->rn_offset])
276 t = t->rn_right;
277 else
278 t = t->rn_left;
279 }
280 /*
281 * See if we match exactly as a host destination
282 * or at least learn how many bits match, for normal mask finesse.
283 *
284 * It doesn't hurt us to limit how many bytes to check
285 * to the length of the mask, since if it matches we had a genuine
286 * match and the leaf we have is the most specific one anyway;
287 * if it didn't match with a shorter length it would fail
288 * with a long one. This wins big for class B&C netmasks which
289 * are probably the most common case...
290 */
291 if (t->rn_mask)
292 vlen = *(u_char *)t->rn_mask;
293 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
294 for (; cp < cplim; cp++, cp2++)
295 if (*cp != *cp2)
296 goto on1;
297 /*
298 * This extra grot is in case we are explicitly asked
299 * to look up the default. Ugh!
300 *
301 * Never return the root node itself, it seems to cause a
302 * lot of confusion.
303 */
304 if (t->rn_flags & RNF_ROOT)
305 t = t->rn_dupedkey;
306 return t;
307 on1:
308 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
309 for (b = 7; (test >>= 1) > 0;)
310 b--;
311 matched_off = cp - v;
312 b += matched_off << 3;
313 rn_bit = -1 - b;
314 /*
315 * If there is a host route in a duped-key chain, it will be first.
316 */
317 if ((saved_t = t)->rn_mask == 0)
318 t = t->rn_dupedkey;
319 for (; t; t = t->rn_dupedkey)
320 /*
321 * Even if we don't match exactly as a host,
322 * we may match if the leaf we wound up at is
323 * a route to a net.
324 */
325 if (t->rn_flags & RNF_NORMAL) {
326 if (rn_bit <= t->rn_bit)
327 return t;
328 } else if (rn_satsifies_leaf(v, t, matched_off))
329 return t;
330 t = saved_t;
331 /* start searching up the tree */
332 do {
333 register struct radix_mask *m;
334 t = t->rn_parent;
335 m = t->rn_mklist;
336 /*
337 * If non-contiguous masks ever become important
338 * we can restore the masking and open coding of
339 * the search and satisfaction test and put the
340 * calculation of "off" back before the "do".
341 */
342 while (m) {
343 if (m->rm_flags & RNF_NORMAL) {
344 if (rn_bit <= m->rm_bit)
345 return (m->rm_leaf);
346 } else {
347 off = min(t->rn_offset, matched_off);
348 x = rn_search_m(v, t, m->rm_mask);
349 while (x && x->rn_mask != m->rm_mask)
350 x = x->rn_dupedkey;
351 if (x && rn_satsifies_leaf(v, x, off))
352 return x;
353 }
354 m = m->rm_mklist;
355 }
356 } while (t != top);
357 return 0;
358 }
359
360 #ifdef RN_DEBUG
361 int rn_nodenum;
362 struct radix_node *rn_clist;
363 int rn_saveinfo;
364 int rn_debug = 1;
365 #endif
366
367 static struct radix_node *
368 rn_newpair(v, b, nodes)
369 void *v;
370 int b;
371 struct radix_node nodes[2];
372 {
373 register struct radix_node *tt = nodes, *t = tt + 1;
374 t->rn_bit = b;
375 t->rn_bmask = 0x80 >> (b & 7);
376 t->rn_left = tt;
377 t->rn_offset = b >> 3;
378 tt->rn_bit = -1;
379 tt->rn_key = (caddr_t)v;
380 tt->rn_parent = t;
381 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
382 tt->rn_mklist = t->rn_mklist = 0;
383 #ifdef RN_DEBUG
384 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
385 tt->rn_twin = t;
386 tt->rn_ybro = rn_clist;
387 rn_clist = tt;
388 #endif
389 return t;
390 }
391
392 static struct radix_node *
393 rn_insert(v_arg, head, dupentry, nodes)
394 void *v_arg;
395 struct radix_node_head *head;
396 int *dupentry;
397 struct radix_node nodes[2];
398 {
399 caddr_t v = v_arg;
400 struct radix_node *top = head->rnh_treetop;
401 int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
402 register struct radix_node *t = rn_search(v_arg, top);
403 register caddr_t cp = v + head_off;
404 register int b;
405 struct radix_node *tt;
406 /*
407 * Find first bit at which v and t->rn_key differ
408 */
409 {
410 register caddr_t cp2 = t->rn_key + head_off;
411 register int cmp_res;
412 caddr_t cplim = v + vlen;
413
414 while (cp < cplim)
415 if (*cp2++ != *cp++)
416 goto on1;
417 *dupentry = 1;
418 return t;
419 on1:
420 *dupentry = 0;
421 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
422 for (b = (cp - v) << 3; cmp_res; b--)
423 cmp_res >>= 1;
424 }
425 {
426 register struct radix_node *p, *x = top;
427 cp = v;
428 do {
429 p = x;
430 if (cp[x->rn_offset] & x->rn_bmask)
431 x = x->rn_right;
432 else
433 x = x->rn_left;
434 } while (b > (unsigned) x->rn_bit);
435 /* x->rn_bit < b && x->rn_bit >= 0 */
436 #ifdef RN_DEBUG
437 if (rn_debug)
438 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
439 #endif
440 t = rn_newpair(v_arg, b, nodes);
441 tt = t->rn_left;
442 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
443 p->rn_left = t;
444 else
445 p->rn_right = t;
446 x->rn_parent = t;
447 t->rn_parent = p; /* frees x, p as temp vars below */
448 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
449 t->rn_right = x;
450 } else {
451 t->rn_right = tt;
452 t->rn_left = x;
453 }
454 #ifdef RN_DEBUG
455 if (rn_debug)
456 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
457 #endif
458 }
459 return (tt);
460 }
461
462 struct radix_node *
463 rn_addmask(n_arg, search, skip)
464 int search, skip;
465 void *n_arg;
466 {
467 caddr_t netmask = (caddr_t)n_arg;
468 register struct radix_node *x;
469 register caddr_t cp, cplim;
470 register int b = 0, mlen, j;
471 int maskduplicated, m0, isnormal;
472 struct radix_node *saved_x;
473 static int last_zeroed = 0;
474
475 if ((mlen = *(u_char *)netmask) > max_keylen)
476 mlen = max_keylen;
477 if (skip == 0)
478 skip = 1;
479 if (mlen <= skip)
480 return (mask_rnhead->rnh_nodes);
481 if (skip > 1)
482 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
483 if ((m0 = mlen) > skip)
484 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
485 /*
486 * Trim trailing zeroes.
487 */
488 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
489 cp--;
490 mlen = cp - addmask_key;
491 if (mlen <= skip) {
492 if (m0 >= last_zeroed)
493 last_zeroed = mlen;
494 return (mask_rnhead->rnh_nodes);
495 }
496 if (m0 < last_zeroed)
497 Bzero(addmask_key + m0, last_zeroed - m0);
498 *addmask_key = last_zeroed = mlen;
499 x = rn_search(addmask_key, rn_masktop);
500 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
501 x = 0;
502 if (x || search)
503 return (x);
504 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
505 if ((saved_x = x) == 0)
506 return (0);
507 Bzero(x, max_keylen + 2 * sizeof (*x));
508 netmask = cp = (caddr_t)(x + 2);
509 Bcopy(addmask_key, cp, mlen);
510 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
511 if (maskduplicated) {
512 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
513 R_Free(saved_x);
514 return (x);
515 }
516 /*
517 * Calculate index of mask, and check for normalcy.
518 */
519 cplim = netmask + mlen; isnormal = 1;
520 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
521 cp++;
522 if (cp != cplim) {
523 for (j = 0x80; (j & *cp) != 0; j >>= 1)
524 b++;
525 if (*cp != normal_chars[b] || cp != (cplim - 1))
526 isnormal = 0;
527 }
528 b += (cp - netmask) << 3;
529 x->rn_bit = -1 - b;
530 if (isnormal)
531 x->rn_flags |= RNF_NORMAL;
532 return (x);
533 }
534
535 static int /* XXX: arbitrary ordering for non-contiguous masks */
536 rn_lexobetter(m_arg, n_arg)
537 void *m_arg, *n_arg;
538 {
539 register u_char *mp = m_arg, *np = n_arg, *lim;
540
541 if (*mp > *np)
542 return 1; /* not really, but need to check longer one first */
543 if (*mp == *np)
544 for (lim = mp + *mp; mp < lim;)
545 if (*mp++ > *np++)
546 return 1;
547 return 0;
548 }
549
550 static struct radix_mask *
551 rn_new_radix_mask(tt, next)
552 register struct radix_node *tt;
553 register struct radix_mask *next;
554 {
555 register struct radix_mask *m;
556
557 MKGet(m);
558 if (m == 0) {
559 log(LOG_ERR, "Mask for route not entered\n");
560 return (0);
561 }
562 Bzero(m, sizeof *m);
563 m->rm_bit = tt->rn_bit;
564 m->rm_flags = tt->rn_flags;
565 if (tt->rn_flags & RNF_NORMAL)
566 m->rm_leaf = tt;
567 else
568 m->rm_mask = tt->rn_mask;
569 m->rm_mklist = next;
570 tt->rn_mklist = m;
571 return m;
572 }
573
574 struct radix_node *
575 rn_addroute(v_arg, n_arg, head, treenodes)
576 void *v_arg, *n_arg;
577 struct radix_node_head *head;
578 struct radix_node treenodes[2];
579 {
580 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
581 register struct radix_node *t, *x = 0, *tt;
582 struct radix_node *saved_tt, *top = head->rnh_treetop;
583 short b = 0, b_leaf = 0;
584 int keyduplicated;
585 caddr_t mmask;
586 struct radix_mask *m, **mp;
587
588 /*
589 * In dealing with non-contiguous masks, there may be
590 * many different routes which have the same mask.
591 * We will find it useful to have a unique pointer to
592 * the mask to speed avoiding duplicate references at
593 * nodes and possibly save time in calculating indices.
594 */
595 if (netmask) {
596 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
597 return (0);
598 b_leaf = x->rn_bit;
599 b = -1 - x->rn_bit;
600 netmask = x->rn_key;
601 }
602 /*
603 * Deal with duplicated keys: attach node to previous instance
604 */
605 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
606 if (keyduplicated) {
607 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
608 if (tt->rn_mask == netmask)
609 return (0);
610 if (netmask == 0 ||
611 (tt->rn_mask &&
612 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
613 || rn_refines(netmask, tt->rn_mask)
614 || rn_lexobetter(netmask, tt->rn_mask))))
615 break;
616 }
617 /*
618 * If the mask is not duplicated, we wouldn't
619 * find it among possible duplicate key entries
620 * anyway, so the above test doesn't hurt.
621 *
622 * We sort the masks for a duplicated key the same way as
623 * in a masklist -- most specific to least specific.
624 * This may require the unfortunate nuisance of relocating
625 * the head of the list.
626 */
627 if (tt == saved_tt) {
628 struct radix_node *xx = x;
629 /* link in at head of list */
630 (tt = treenodes)->rn_dupedkey = t;
631 tt->rn_flags = t->rn_flags;
632 tt->rn_parent = x = t->rn_parent;
633 t->rn_parent = tt; /* parent */
634 if (x->rn_left == t)
635 x->rn_left = tt;
636 else
637 x->rn_right = tt;
638 saved_tt = tt; x = xx;
639 } else {
640 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
641 t->rn_dupedkey = tt;
642 tt->rn_parent = t; /* parent */
643 if (tt->rn_dupedkey) /* parent */
644 tt->rn_dupedkey->rn_parent = tt; /* parent */
645 }
646 #ifdef RN_DEBUG
647 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
648 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
649 #endif
650 tt->rn_key = (caddr_t) v;
651 tt->rn_bit = -1;
652 tt->rn_flags = RNF_ACTIVE;
653 }
654 /*
655 * Put mask in tree.
656 */
657 if (netmask) {
658 tt->rn_mask = netmask;
659 tt->rn_bit = x->rn_bit;
660 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
661 }
662 t = saved_tt->rn_parent;
663 if (keyduplicated)
664 goto on2;
665 b_leaf = -1 - t->rn_bit;
666 if (t->rn_right == saved_tt)
667 x = t->rn_left;
668 else
669 x = t->rn_right;
670 /* Promote general routes from below */
671 if (x->rn_bit < 0) {
672 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
673 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
674 *mp = m = rn_new_radix_mask(x, 0);
675 if (m)
676 mp = &m->rm_mklist;
677 }
678 } else if (x->rn_mklist) {
679 /*
680 * Skip over masks whose index is > that of new node
681 */
682 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
683 if (m->rm_bit >= b_leaf)
684 break;
685 t->rn_mklist = m; *mp = 0;
686 }
687 on2:
688 /* Add new route to highest possible ancestor's list */
689 if ((netmask == 0) || (b > t->rn_bit ))
690 return tt; /* can't lift at all */
691 b_leaf = tt->rn_bit;
692 do {
693 x = t;
694 t = t->rn_parent;
695 } while (b <= t->rn_bit && x != top);
696 /*
697 * Search through routes associated with node to
698 * insert new route according to index.
699 * Need same criteria as when sorting dupedkeys to avoid
700 * double loop on deletion.
701 */
702 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
703 if (m->rm_bit < b_leaf)
704 continue;
705 if (m->rm_bit > b_leaf)
706 break;
707 if (m->rm_flags & RNF_NORMAL) {
708 mmask = m->rm_leaf->rn_mask;
709 if (tt->rn_flags & RNF_NORMAL) {
710 log(LOG_ERR,
711 "Non-unique normal route, mask not entered");
712 return tt;
713 }
714 } else
715 mmask = m->rm_mask;
716 if (mmask == netmask) {
717 m->rm_refs++;
718 tt->rn_mklist = m;
719 return tt;
720 }
721 if (rn_refines(netmask, mmask)
722 || rn_lexobetter(netmask, mmask))
723 break;
724 }
725 *mp = rn_new_radix_mask(tt, *mp);
726 return tt;
727 }
728
729 struct radix_node *
730 rn_delete(v_arg, netmask_arg, head)
731 void *v_arg, *netmask_arg;
732 struct radix_node_head *head;
733 {
734 register struct radix_node *t, *p, *x, *tt;
735 struct radix_mask *m, *saved_m, **mp;
736 struct radix_node *dupedkey, *saved_tt, *top;
737 caddr_t v, netmask;
738 int b, head_off, vlen;
739
740 v = v_arg;
741 netmask = netmask_arg;
742 x = head->rnh_treetop;
743 tt = rn_search(v, x);
744 head_off = x->rn_offset;
745 vlen = *(u_char *)v;
746 saved_tt = tt;
747 top = x;
748 if (tt == 0 ||
749 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
750 return (0);
751 /*
752 * Delete our route from mask lists.
753 */
754 if (netmask) {
755 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
756 return (0);
757 netmask = x->rn_key;
758 while (tt->rn_mask != netmask)
759 if ((tt = tt->rn_dupedkey) == 0)
760 return (0);
761 }
762 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
763 goto on1;
764 if (tt->rn_flags & RNF_NORMAL) {
765 if (m->rm_leaf != tt || m->rm_refs > 0) {
766 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
767 return 0; /* dangling ref could cause disaster */
768 }
769 } else {
770 if (m->rm_mask != tt->rn_mask) {
771 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
772 goto on1;
773 }
774 if (--m->rm_refs >= 0)
775 goto on1;
776 }
777 b = -1 - tt->rn_bit;
778 t = saved_tt->rn_parent;
779 if (b > t->rn_bit)
780 goto on1; /* Wasn't lifted at all */
781 do {
782 x = t;
783 t = t->rn_parent;
784 } while (b <= t->rn_bit && x != top);
785 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
786 if (m == saved_m) {
787 *mp = m->rm_mklist;
788 MKFree(m);
789 break;
790 }
791 if (m == 0) {
792 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
793 if (tt->rn_flags & RNF_NORMAL)
794 return (0); /* Dangling ref to us */
795 }
796 on1:
797 /*
798 * Eliminate us from tree
799 */
800 if (tt->rn_flags & RNF_ROOT)
801 return (0);
802 #ifdef RN_DEBUG
803 /* Get us out of the creation list */
804 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
805 if (t) t->rn_ybro = tt->rn_ybro;
806 #endif
807 t = tt->rn_parent;
808 dupedkey = saved_tt->rn_dupedkey;
809 if (dupedkey) {
810 /*
811 * at this point, tt is the deletion target and saved_tt
812 * is the head of the dupekey chain
813 */
814 if (tt == saved_tt) {
815 /* remove from head of chain */
816 x = dupedkey; x->rn_parent = t;
817 if (t->rn_left == tt)
818 t->rn_left = x;
819 else
820 t->rn_right = x;
821 } else {
822 /* find node in front of tt on the chain */
823 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
824 p = p->rn_dupedkey;
825 if (p) {
826 p->rn_dupedkey = tt->rn_dupedkey;
827 if (tt->rn_dupedkey) /* parent */
828 tt->rn_dupedkey->rn_parent = p;
829 /* parent */
830 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
831 }
832 t = tt + 1;
833 if (t->rn_flags & RNF_ACTIVE) {
834 #ifndef RN_DEBUG
835 *++x = *t;
836 p = t->rn_parent;
837 #else
838 b = t->rn_info;
839 *++x = *t;
840 t->rn_info = b;
841 p = t->rn_parent;
842 #endif
843 if (p->rn_left == t)
844 p->rn_left = x;
845 else
846 p->rn_right = x;
847 x->rn_left->rn_parent = x;
848 x->rn_right->rn_parent = x;
849 }
850 goto out;
851 }
852 if (t->rn_left == tt)
853 x = t->rn_right;
854 else
855 x = t->rn_left;
856 p = t->rn_parent;
857 if (p->rn_right == t)
858 p->rn_right = x;
859 else
860 p->rn_left = x;
861 x->rn_parent = p;
862 /*
863 * Demote routes attached to us.
864 */
865 if (t->rn_mklist) {
866 if (x->rn_bit >= 0) {
867 for (mp = &x->rn_mklist; (m = *mp);)
868 mp = &m->rm_mklist;
869 *mp = t->rn_mklist;
870 } else {
871 /* If there are any key,mask pairs in a sibling
872 duped-key chain, some subset will appear sorted
873 in the same order attached to our mklist */
874 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
875 if (m == x->rn_mklist) {
876 struct radix_mask *mm = m->rm_mklist;
877 x->rn_mklist = 0;
878 if (--(m->rm_refs) < 0)
879 MKFree(m);
880 m = mm;
881 }
882 if (m)
883 log(LOG_ERR,
884 "rn_delete: Orphaned Mask %p at %p\n",
885 (void *)m, (void *)x);
886 }
887 }
888 /*
889 * We may be holding an active internal node in the tree.
890 */
891 x = tt + 1;
892 if (t != x) {
893 #ifndef RN_DEBUG
894 *t = *x;
895 #else
896 b = t->rn_info;
897 *t = *x;
898 t->rn_info = b;
899 #endif
900 t->rn_left->rn_parent = t;
901 t->rn_right->rn_parent = t;
902 p = x->rn_parent;
903 if (p->rn_left == x)
904 p->rn_left = t;
905 else
906 p->rn_right = t;
907 }
908 out:
909 tt->rn_flags &= ~RNF_ACTIVE;
910 tt[1].rn_flags &= ~RNF_ACTIVE;
911 return (tt);
912 }
913
914 /*
915 * This is the same as rn_walktree() except for the parameters and the
916 * exit.
917 */
918 static int
919 rn_walktree_from(h, a, m, f, w)
920 struct radix_node_head *h;
921 void *a, *m;
922 walktree_f_t *f;
923 void *w;
924 {
925 int error;
926 struct radix_node *base, *next;
927 u_char *xa = (u_char *)a;
928 u_char *xm = (u_char *)m;
929 register struct radix_node *rn, *last = 0 /* shut up gcc */;
930 int stopping = 0;
931 int lastb;
932
933 /*
934 * rn_search_m is sort-of-open-coded here.
935 */
936 /* printf("about to search\n"); */
937 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
938 last = rn;
939 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
940 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
941 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
942 break;
943 }
944 if (rn->rn_bmask & xa[rn->rn_offset]) {
945 rn = rn->rn_right;
946 } else {
947 rn = rn->rn_left;
948 }
949 }
950 /* printf("done searching\n"); */
951
952 /*
953 * Two cases: either we stepped off the end of our mask,
954 * in which case last == rn, or we reached a leaf, in which
955 * case we want to start from the last node we looked at.
956 * Either way, last is the node we want to start from.
957 */
958 rn = last;
959 lastb = rn->rn_bit;
960
961 /* printf("rn %p, lastb %d\n", rn, lastb);*/
962
963 /*
964 * This gets complicated because we may delete the node
965 * while applying the function f to it, so we need to calculate
966 * the successor node in advance.
967 */
968 while (rn->rn_bit >= 0)
969 rn = rn->rn_left;
970
971 while (!stopping) {
972 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
973 base = rn;
974 /* If at right child go back up, otherwise, go right */
975 while (rn->rn_parent->rn_right == rn
976 && !(rn->rn_flags & RNF_ROOT)) {
977 rn = rn->rn_parent;
978
979 /* if went up beyond last, stop */
980 if (rn->rn_bit < lastb) {
981 stopping = 1;
982 /* printf("up too far\n"); */
983 }
984 }
985
986 /* Find the next *leaf* since next node might vanish, too */
987 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
988 rn = rn->rn_left;
989 next = rn;
990 /* Process leaves */
991 while ((rn = base) != 0) {
992 base = rn->rn_dupedkey;
993 /* printf("leaf %p\n", rn); */
994 if (!(rn->rn_flags & RNF_ROOT)
995 && (error = (*f)(rn, w)))
996 return (error);
997 }
998 rn = next;
999
1000 if (rn->rn_flags & RNF_ROOT) {
1001 /* printf("root, stopping"); */
1002 stopping = 1;
1003 }
1004
1005 }
1006 return 0;
1007 }
1008
1009 static int
1010 rn_walktree(h, f, w)
1011 struct radix_node_head *h;
1012 walktree_f_t *f;
1013 void *w;
1014 {
1015 int error;
1016 struct radix_node *base, *next;
1017 register struct radix_node *rn = h->rnh_treetop;
1018 /*
1019 * This gets complicated because we may delete the node
1020 * while applying the function f to it, so we need to calculate
1021 * the successor node in advance.
1022 */
1023 /* First time through node, go left */
1024 while (rn->rn_bit >= 0)
1025 if (rn)
1026 rn = rn->rn_left;
1027 else return(0);
1028 for (;;) {
1029 base = rn;
1030 /* If at right child go back up, otherwise, go right */
1031 while (rn != NULL && rn->rn_parent != NULL && rn->rn_parent->rn_right == rn
1032 && (rn->rn_flags & RNF_ROOT) == 0)
1033 rn = rn->rn_parent;
1034 /* Find the next *leaf* since next node might vanish, too */
1035 if (rn == NULL || rn->rn_parent == NULL || rn->rn_parent->rn_right == NULL)
1036 return (0);
1037 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
1038 if (rn == NULL || rn->rn_parent == NULL || rn->rn_parent->rn_right == NULL || rn->rn_left == NULL)
1039 return(0);
1040 rn = rn->rn_left;
1041 }
1042 next = rn;
1043 /* Process leaves */
1044 while ((rn = base)) {
1045 if (rn == NULL)
1046 return(0);
1047 base = rn->rn_dupedkey;
1048 if (!(rn->rn_flags & RNF_ROOT)
1049 && (error = (*f)(rn, w)))
1050 return (error);
1051 }
1052 rn = next;
1053 if (rn == NULL)
1054 return (0);
1055 if (rn->rn_flags & RNF_ROOT)
1056 return (0);
1057 }
1058 /* NOTREACHED */
1059 }
1060
1061 int
1062 rn_inithead(head, off)
1063 void **head;
1064 int off;
1065 {
1066 register struct radix_node_head *rnh;
1067 register struct radix_node *t, *tt, *ttt;
1068 if (*head)
1069 return (1);
1070 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1071 if (rnh == 0)
1072 return (0);
1073 Bzero(rnh, sizeof (*rnh));
1074 *head = rnh;
1075 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1076 ttt = rnh->rnh_nodes + 2;
1077 t->rn_right = ttt;
1078 t->rn_parent = t;
1079 tt = t->rn_left;
1080 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1081 tt->rn_bit = -1 - off;
1082 *ttt = *tt;
1083 ttt->rn_key = rn_ones;
1084 rnh->rnh_addaddr = rn_addroute;
1085 rnh->rnh_deladdr = rn_delete;
1086 rnh->rnh_matchaddr = rn_match;
1087 rnh->rnh_lookup = rn_lookup;
1088 rnh->rnh_walktree = rn_walktree;
1089 rnh->rnh_walktree_from = rn_walktree_from;
1090 rnh->rnh_treetop = t;
1091 return (1);
1092 }
1093
1094 void
1095 rn_init()
1096 {
1097 char *cp, *cplim;
1098 #ifdef KERNEL
1099 struct domain *dom;
1100
1101 /* lock already held when rn_init is called */
1102 for (dom = domains; dom; dom = dom->dom_next)
1103 if (dom->dom_maxrtkey > max_keylen)
1104 max_keylen = dom->dom_maxrtkey;
1105 #endif
1106 if (max_keylen == 0) {
1107 log(LOG_ERR,
1108 "rn_init: radix functions require max_keylen be set\n");
1109 return;
1110 }
1111 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1112 if (rn_zeros == NULL)
1113 panic("rn_init");
1114 Bzero(rn_zeros, 3 * max_keylen);
1115 rn_ones = cp = rn_zeros + max_keylen;
1116 addmask_key = cplim = rn_ones + max_keylen;
1117 while (cp < cplim)
1118 *cp++ = -1;
1119 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1120 panic("rn_init 2");
1121
1122 rn_mutex = lck_mtx_alloc_init(domain_proto_mtx_grp, domain_proto_mtx_attr);
1123 }
1124 int
1125 rn_lock(so, refcount, lr)
1126 struct socket *so;
1127 int refcount;
1128 int lr;
1129 {
1130 // printf("rn_lock: (global) so=%x ref=%d lr=%x\n", so, so->so_usecount, lr);
1131 lck_mtx_assert(rn_mutex, LCK_MTX_ASSERT_NOTOWNED);
1132 lck_mtx_lock(rn_mutex);
1133 if (refcount)
1134 so->so_usecount++;
1135 return (0);
1136 }
1137
1138 int
1139 rn_unlock(so, refcount, lr)
1140 struct socket *so;
1141 int refcount;
1142 int lr;
1143 {
1144 // printf("rn_unlock: (global) so=%x ref=%d lr=%x\n", so, so->so_usecount, lr);
1145 if (refcount)
1146 so->so_usecount--;
1147 lck_mtx_assert(rn_mutex, LCK_MTX_ASSERT_OWNED);
1148 lck_mtx_unlock(rn_mutex);
1149 return (0);
1150 }
1151 lck_mtx_t *
1152 rn_getlock(so, locktype)
1153 struct socket *so;
1154 int locktype;
1155 {
1156 // printf("rn_getlock: (global) so=%x\n", so);
1157 return (rn_mutex);
1158 }