2 * Copyright (c) 1996 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
16 * 4. Modifications may be freely made to this file if the above conditions
20 * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
22 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
24 * This file contains Original Code and/or Modifications of Original Code
25 * as defined in and that are subject to the Apple Public Source License
26 * Version 2.0 (the 'License'). You may not use this file except in
27 * compliance with the License. The rights granted to you under the License
28 * may not be used to create, or enable the creation or redistribution of,
29 * unlawful or unlicensed copies of an Apple operating system, or to
30 * circumvent, violate, or enable the circumvention or violation of, any
31 * terms of an Apple operating system software license agreement.
33 * Please obtain a copy of the License at
34 * http://www.opensource.apple.com/apsl/ and read it before using this file.
36 * The Original Code and all software distributed under the License are
37 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
38 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
39 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
40 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
41 * Please see the License for the specific language governing rights and
42 * limitations under the License.
44 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
48 * This file contains a high-performance replacement for the socket-based
49 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
50 * all features of sockets, but does do everything that pipes normally
55 * This code has two modes of operation, a small write mode and a large
56 * write mode. The small write mode acts like conventional pipes with
57 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
58 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
59 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
60 * the receiving process can copy it directly from the pages in the sending
63 * If the sending process receives a signal, it is possible that it will
64 * go away, and certainly its address space can change, because control
65 * is returned back to the user-mode side. In that case, the pipe code
66 * arranges to copy the buffer supplied by the user process, to a pageable
67 * kernel buffer, and the receiving process will grab the data from the
68 * pageable kernel buffer. Since signals don't happen all that often,
69 * the copy operation is normally eliminated.
71 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
72 * happen for small transfers so that the system will not spend all of
73 * its time context switching.
75 * In order to limit the resource use of pipes, two sysctls exist:
77 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
78 * address space available to us in pipe_map. Whenever the amount in use
79 * exceeds half of this value, all new pipes will be created with size
80 * SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
81 * as well. This value is loader tunable only.
83 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
84 * be wired in order to facilitate direct copies using page flipping.
85 * Whenever this value is exceeded, pipes will fall back to using regular
86 * copies. This value is sysctl controllable at all times.
88 * These values are autotuned in subr_param.c.
90 * Memory usage may be monitored through the sysctls
91 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/filedesc.h>
98 #include <sys/kernel.h>
99 #include <sys/vnode.h>
100 #include <sys/proc_internal.h>
101 #include <sys/kauth.h>
102 #include <sys/file_internal.h>
103 #include <sys/stat.h>
104 #include <sys/ioctl.h>
105 #include <sys/fcntl.h>
106 #include <sys/malloc.h>
107 #include <sys/syslog.h>
108 #include <sys/unistd.h>
109 #include <sys/resourcevar.h>
110 #include <sys/aio_kern.h>
111 #include <sys/signalvar.h>
112 #include <sys/pipe.h>
113 #include <sys/sysproto.h>
114 #include <sys/proc_info.h>
116 #include <bsm/audit_kernel.h>
118 #include <sys/kdebug.h>
120 #include <kern/zalloc.h>
121 #include <vm/vm_kern.h>
122 #include <libkern/OSAtomic.h>
124 #define f_flag f_fglob->fg_flag
125 #define f_type f_fglob->fg_type
126 #define f_msgcount f_fglob->fg_msgcount
127 #define f_cred f_fglob->fg_cred
128 #define f_ops f_fglob->fg_ops
129 #define f_offset f_fglob->fg_offset
130 #define f_data f_fglob->fg_data
132 * Use this define if you want to disable *fancy* VM things. Expect an
133 * approx 30% decrease in transfer rate. This could be useful for
136 * this needs to be ported to X and the performance measured
137 * before committing to supporting it
139 #define PIPE_NODIRECT 1
141 #ifndef PIPE_NODIRECT
144 #include <vm/vm_param.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_kern.h>
147 #include <vm/vm_extern.h>
149 #include <vm/vm_map.h>
150 #include <vm/vm_page.h>
157 * interfaces to the outside world
159 static int pipe_read(struct fileproc
*fp
, struct uio
*uio
,
160 kauth_cred_t cred
, int flags
, struct proc
*p
);
162 static int pipe_write(struct fileproc
*fp
, struct uio
*uio
,
163 kauth_cred_t cred
, int flags
, struct proc
*p
);
165 static int pipe_close(struct fileglob
*fg
, struct proc
*p
);
167 static int pipe_select(struct fileproc
*fp
, int which
, void * wql
, struct proc
*p
);
169 static int pipe_kqfilter(struct fileproc
*fp
, struct knote
*kn
, struct proc
*p
);
171 static int pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
, struct proc
*p
);
174 struct fileops pipeops
=
184 static void filt_pipedetach(struct knote
*kn
);
185 static int filt_piperead(struct knote
*kn
, long hint
);
186 static int filt_pipewrite(struct knote
*kn
, long hint
);
188 static struct filterops pipe_rfiltops
=
189 { 1, NULL
, filt_pipedetach
, filt_piperead
};
190 static struct filterops pipe_wfiltops
=
191 { 1, NULL
, filt_pipedetach
, filt_pipewrite
};
194 * Default pipe buffer size(s), this can be kind-of large now because pipe
195 * space is pageable. The pipe code will try to maintain locality of
196 * reference for performance reasons, so small amounts of outstanding I/O
197 * will not wipe the cache.
199 #define MINPIPESIZE (PIPE_SIZE/3)
202 * Limit the number of "big" pipes
204 #define LIMITBIGPIPES 32
207 static int amountpipes
;
208 static int amountpipekva
;
210 #ifndef PIPE_NODIRECT
211 static int amountpipekvawired
;
213 int maxpipekva
= 1024 * 1024 * 16;
216 SYSCTL_DECL(_kern_ipc
);
218 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekva
, CTLFLAG_RD
,
219 &maxpipekva
, 0, "Pipe KVA limit");
220 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekvawired
, CTLFLAG_RW
,
221 &maxpipekvawired
, 0, "Pipe KVA wired limit");
222 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipes
, CTLFLAG_RD
,
223 &amountpipes
, 0, "Current # of pipes");
224 SYSCTL_INT(_kern_ipc
, OID_AUTO
, bigpipes
, CTLFLAG_RD
,
225 &nbigpipe
, 0, "Current # of big pipes");
226 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekva
, CTLFLAG_RD
,
227 &amountpipekva
, 0, "Pipe KVA usage");
228 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekvawired
, CTLFLAG_RD
,
229 &amountpipekvawired
, 0, "Pipe wired KVA usage");
232 void pipeinit(void *dummy __unused
);
233 static void pipeclose(struct pipe
*cpipe
);
234 static void pipe_free_kmem(struct pipe
*cpipe
);
235 static int pipe_create(struct pipe
**cpipep
);
236 static void pipeselwakeup(struct pipe
*cpipe
, struct pipe
*spipe
);
237 static __inline
int pipelock(struct pipe
*cpipe
, int catch);
238 static __inline
void pipeunlock(struct pipe
*cpipe
);
240 #ifndef PIPE_NODIRECT
241 static int pipe_build_write_buffer(struct pipe
*wpipe
, struct uio
*uio
);
242 static void pipe_destroy_write_buffer(struct pipe
*wpipe
);
243 static int pipe_direct_write(struct pipe
*wpipe
, struct uio
*uio
);
244 static void pipe_clone_write_buffer(struct pipe
*wpipe
);
247 extern int postpipeevent(struct pipe
*, int);
248 extern void evpipefree(struct pipe
*cpipe
);
251 static int pipespace(struct pipe
*cpipe
, int size
);
253 static lck_grp_t
*pipe_mtx_grp
;
254 static lck_attr_t
*pipe_mtx_attr
;
255 static lck_grp_attr_t
*pipe_mtx_grp_attr
;
257 static zone_t pipe_zone
;
259 SYSINIT(vfs
, SI_SUB_VFS
, SI_ORDER_ANY
, pipeinit
, NULL
);
262 pipeinit(void *dummy __unused
)
264 pipe_zone
= (zone_t
)zinit(sizeof(struct pipe
), 8192 * sizeof(struct pipe
), 4096, "pipe zone");
267 * allocate lock group attribute and group for pipe mutexes
269 pipe_mtx_grp_attr
= lck_grp_attr_alloc_init();
270 pipe_mtx_grp
= lck_grp_alloc_init("pipe", pipe_mtx_grp_attr
);
273 * allocate the lock attribute for pipe mutexes
275 pipe_mtx_attr
= lck_attr_alloc_init();
281 * The pipe system call for the DTYPE_PIPE type of pipes
286 pipe(struct proc
*p
, __unused
struct pipe_args
*uap
, register_t
*retval
)
288 struct fileproc
*rf
, *wf
;
289 struct pipe
*rpipe
, *wpipe
;
293 if ((pmtx
= lck_mtx_alloc_init(pipe_mtx_grp
, pipe_mtx_attr
)) == NULL
)
296 rpipe
= wpipe
= NULL
;
297 if (pipe_create(&rpipe
) || pipe_create(&wpipe
)) {
302 * allocate the space for the normal I/O direction up
303 * front... we'll delay the allocation for the other
304 * direction until a write actually occurs (most
305 * likely it won't)...
307 * Reduce to 1/4th pipe size if we're over our global max.
309 if (amountpipekva
> maxpipekva
/ 2)
310 error
= pipespace(rpipe
, SMALL_PIPE_SIZE
);
312 error
= pipespace(rpipe
, PIPE_SIZE
);
316 #ifndef PIPE_NODIRECT
317 rpipe
->pipe_state
|= PIPE_DIRECTOK
;
318 wpipe
->pipe_state
|= PIPE_DIRECTOK
;
320 TAILQ_INIT(&rpipe
->pipe_evlist
);
321 TAILQ_INIT(&wpipe
->pipe_evlist
);
323 error
= falloc(p
, &rf
, &fd
);
330 * for now we'll create half-duplex
331 * pipes... this is what we've always
335 rf
->f_type
= DTYPE_PIPE
;
336 rf
->f_data
= (caddr_t
)rpipe
;
337 rf
->f_ops
= &pipeops
;
339 error
= falloc(p
, &wf
, &fd
);
341 fp_free(p
, retval
[0], rf
);
345 wf
->f_type
= DTYPE_PIPE
;
346 wf
->f_data
= (caddr_t
)wpipe
;
347 wf
->f_ops
= &pipeops
;
352 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
354 * struct pipe represents a pipe endpoint. The MAC label is shared
355 * between the connected endpoints. As a result mac_init_pipe() and
356 * mac_create_pipe() should only be called on one of the endpoints
357 * after they have been connected.
359 mac_init_pipe(rpipe
);
360 mac_create_pipe(td
->td_ucred
, rpipe
);
363 *fdflags(p
, retval
[0]) &= ~UF_RESERVED
;
364 *fdflags(p
, retval
[1]) &= ~UF_RESERVED
;
365 fp_drop(p
, retval
[0], rf
, 1);
366 fp_drop(p
, retval
[1], wf
, 1);
369 rpipe
->pipe_peer
= wpipe
;
370 wpipe
->pipe_peer
= rpipe
;
372 rpipe
->pipe_mtxp
= wpipe
->pipe_mtxp
= pmtx
;
379 lck_mtx_free(pmtx
, pipe_mtx_grp
);
386 pipe_stat(struct pipe
*cpipe
, struct stat
*ub
)
397 error
= mac_check_pipe_stat(active_cred
, cpipe
);
402 if (cpipe
->pipe_buffer
.buffer
== 0) {
404 * must be stat'ing the write fd
406 cpipe
= cpipe
->pipe_peer
;
411 bzero(ub
, sizeof(*ub
));
412 ub
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
413 ub
->st_blksize
= cpipe
->pipe_buffer
.size
;
414 ub
->st_size
= cpipe
->pipe_buffer
.cnt
;
415 ub
->st_blocks
= (ub
->st_size
+ ub
->st_blksize
- 1) / ub
->st_blksize
;
418 ub
->st_uid
= kauth_getuid();
419 ub
->st_gid
= kauth_getgid();
422 ub
->st_atimespec
.tv_sec
= now
.tv_sec
;
423 ub
->st_atimespec
.tv_nsec
= now
.tv_usec
* 1000;
425 ub
->st_mtimespec
.tv_sec
= now
.tv_sec
;
426 ub
->st_mtimespec
.tv_nsec
= now
.tv_usec
* 1000;
428 ub
->st_ctimespec
.tv_sec
= now
.tv_sec
;
429 ub
->st_ctimespec
.tv_nsec
= now
.tv_usec
* 1000;
432 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
433 * XXX (st_dev, st_ino) should be unique.
440 * Allocate kva for pipe circular buffer, the space is pageable
441 * This routine will 'realloc' the size of a pipe safely, if it fails
442 * it will retain the old buffer.
443 * If it fails it will return ENOMEM.
446 pipespace(struct pipe
*cpipe
, int size
)
450 size
= round_page(size
);
452 if (kmem_alloc(kernel_map
, &buffer
, size
) != KERN_SUCCESS
)
455 /* free old resources if we're resizing */
456 pipe_free_kmem(cpipe
);
457 cpipe
->pipe_buffer
.buffer
= (caddr_t
)buffer
;
458 cpipe
->pipe_buffer
.size
= size
;
459 cpipe
->pipe_buffer
.in
= 0;
460 cpipe
->pipe_buffer
.out
= 0;
461 cpipe
->pipe_buffer
.cnt
= 0;
463 OSAddAtomic(1, (SInt32
*)&amountpipes
);
464 OSAddAtomic(cpipe
->pipe_buffer
.size
, (SInt32
*)&amountpipekva
);
470 * initialize and allocate VM and memory for pipe
473 pipe_create(struct pipe
**cpipep
)
477 cpipe
= (struct pipe
*)zalloc(pipe_zone
);
479 if ((*cpipep
= cpipe
) == NULL
)
483 * protect so pipespace or pipeclose don't follow a junk pointer
484 * if pipespace() fails.
486 bzero(cpipe
, sizeof *cpipe
);
493 * lock a pipe for I/O, blocking other access
496 pipelock(cpipe
, catch)
502 while (cpipe
->pipe_state
& PIPE_LOCKFL
) {
503 cpipe
->pipe_state
|= PIPE_LWANT
;
505 error
= msleep(cpipe
, PIPE_MTX(cpipe
), catch ? (PRIBIO
| PCATCH
) : PRIBIO
,
510 cpipe
->pipe_state
|= PIPE_LOCKFL
;
516 * unlock a pipe I/O lock
523 cpipe
->pipe_state
&= ~PIPE_LOCKFL
;
525 if (cpipe
->pipe_state
& PIPE_LWANT
) {
526 cpipe
->pipe_state
&= ~PIPE_LWANT
;
532 pipeselwakeup(cpipe
, spipe
)
537 if (cpipe
->pipe_state
& PIPE_SEL
) {
538 cpipe
->pipe_state
&= ~PIPE_SEL
;
539 selwakeup(&cpipe
->pipe_sel
);
541 if (cpipe
->pipe_state
& PIPE_KNOTE
)
542 KNOTE(&cpipe
->pipe_sel
.si_note
, 1);
544 postpipeevent(cpipe
, EV_RWBYTES
);
546 if (spipe
&& (spipe
->pipe_state
& PIPE_ASYNC
) && spipe
->pipe_pgid
) {
549 if (spipe
->pipe_pgid
< 0)
550 gsignal(-spipe
->pipe_pgid
, SIGIO
);
551 else if ((p
= pfind(spipe
->pipe_pgid
)) != (struct proc
*)0)
558 pipe_read(struct fileproc
*fp
, struct uio
*uio
, __unused kauth_cred_t active_cred
, __unused
int flags
, __unused
struct proc
*p
)
560 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
568 error
= pipelock(rpipe
, 1);
573 error
= mac_check_pipe_read(active_cred
, rpipe
);
578 while (uio_resid(uio
)) {
580 * normal pipe buffer receive
582 if (rpipe
->pipe_buffer
.cnt
> 0) {
583 size
= rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.out
;
584 if (size
> rpipe
->pipe_buffer
.cnt
)
585 size
= rpipe
->pipe_buffer
.cnt
;
586 // LP64todo - fix this!
587 if (size
> (u_int
) uio_resid(uio
))
588 size
= (u_int
) uio_resid(uio
);
592 &rpipe
->pipe_buffer
.buffer
[rpipe
->pipe_buffer
.out
],
598 rpipe
->pipe_buffer
.out
+= size
;
599 if (rpipe
->pipe_buffer
.out
>= rpipe
->pipe_buffer
.size
)
600 rpipe
->pipe_buffer
.out
= 0;
602 rpipe
->pipe_buffer
.cnt
-= size
;
605 * If there is no more to read in the pipe, reset
606 * its pointers to the beginning. This improves
609 if (rpipe
->pipe_buffer
.cnt
== 0) {
610 rpipe
->pipe_buffer
.in
= 0;
611 rpipe
->pipe_buffer
.out
= 0;
614 #ifndef PIPE_NODIRECT
616 * Direct copy, bypassing a kernel buffer.
618 } else if ((size
= rpipe
->pipe_map
.cnt
) &&
619 (rpipe
->pipe_state
& PIPE_DIRECTW
)) {
621 // LP64todo - fix this!
622 if (size
> (u_int
) uio_resid(uio
))
623 size
= (u_int
) uio_resid(uio
);
625 va
= (caddr_t
) rpipe
->pipe_map
.kva
+
628 error
= uiomove(va
, size
, uio
);
633 rpipe
->pipe_map
.pos
+= size
;
634 rpipe
->pipe_map
.cnt
-= size
;
635 if (rpipe
->pipe_map
.cnt
== 0) {
636 rpipe
->pipe_state
&= ~PIPE_DIRECTW
;
642 * detect EOF condition
643 * read returns 0 on EOF, no need to set error
645 if (rpipe
->pipe_state
& PIPE_EOF
)
649 * If the "write-side" has been blocked, wake it up now.
651 if (rpipe
->pipe_state
& PIPE_WANTW
) {
652 rpipe
->pipe_state
&= ~PIPE_WANTW
;
657 * Break if some data was read.
663 * Unlock the pipe buffer for our remaining processing.
664 * We will either break out with an error or we will
665 * sleep and relock to loop.
670 * Handle non-blocking mode operation or
671 * wait for more data.
673 if (fp
->f_flag
& FNONBLOCK
) {
676 rpipe
->pipe_state
|= PIPE_WANTR
;
678 error
= msleep(rpipe
, PIPE_MTX(rpipe
), PRIBIO
| PCATCH
, "piperd", 0);
681 error
= pipelock(rpipe
, 1);
696 * PIPE_WANT processing only makes sense if pipe_busy is 0.
698 if ((rpipe
->pipe_busy
== 0) && (rpipe
->pipe_state
& PIPE_WANT
)) {
699 rpipe
->pipe_state
&= ~(PIPE_WANT
|PIPE_WANTW
);
701 } else if (rpipe
->pipe_buffer
.cnt
< MINPIPESIZE
) {
703 * Handle write blocking hysteresis.
705 if (rpipe
->pipe_state
& PIPE_WANTW
) {
706 rpipe
->pipe_state
&= ~PIPE_WANTW
;
711 if ((rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)
712 pipeselwakeup(rpipe
, rpipe
->pipe_peer
);
721 #ifndef PIPE_NODIRECT
723 * Map the sending processes' buffer into kernel space and wire it.
724 * This is similar to a physical write operation.
727 pipe_build_write_buffer(wpipe
, uio
)
734 vm_offset_t addr
, endaddr
;
737 size
= (u_int
) uio
->uio_iov
->iov_len
;
738 if (size
> wpipe
->pipe_buffer
.size
)
739 size
= wpipe
->pipe_buffer
.size
;
741 pmap
= vmspace_pmap(curproc
->p_vmspace
);
742 endaddr
= round_page((vm_offset_t
)uio
->uio_iov
->iov_base
+ size
);
743 addr
= trunc_page((vm_offset_t
)uio
->uio_iov
->iov_base
);
744 for (i
= 0; addr
< endaddr
; addr
+= PAGE_SIZE
, i
++) {
746 * vm_fault_quick() can sleep. Consequently,
747 * vm_page_lock_queue() and vm_page_unlock_queue()
748 * should not be performed outside of this loop.
751 if (vm_fault_quick((caddr_t
)addr
, VM_PROT_READ
) < 0) {
752 vm_page_lock_queues();
753 for (j
= 0; j
< i
; j
++)
754 vm_page_unhold(wpipe
->pipe_map
.ms
[j
]);
755 vm_page_unlock_queues();
758 wpipe
->pipe_map
.ms
[i
] = pmap_extract_and_hold(pmap
, addr
,
760 if (wpipe
->pipe_map
.ms
[i
] == NULL
)
765 * set up the control block
767 wpipe
->pipe_map
.npages
= i
;
768 wpipe
->pipe_map
.pos
=
769 ((vm_offset_t
) uio
->uio_iov
->iov_base
) & PAGE_MASK
;
770 wpipe
->pipe_map
.cnt
= size
;
775 if (wpipe
->pipe_map
.kva
== 0) {
777 * We need to allocate space for an extra page because the
778 * address range might (will) span pages at times.
780 wpipe
->pipe_map
.kva
= kmem_alloc_nofault(kernel_map
,
781 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
782 atomic_add_int(&amountpipekvawired
,
783 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
785 pmap_qenter(wpipe
->pipe_map
.kva
, wpipe
->pipe_map
.ms
,
786 wpipe
->pipe_map
.npages
);
789 * and update the uio data
792 uio
->uio_iov
->iov_len
-= size
;
793 uio
->uio_iov
->iov_base
= (char *)uio
->uio_iov
->iov_base
+ size
;
794 if (uio
->uio_iov
->iov_len
== 0)
796 uio_setresid(uio
, (uio_resid(uio
) - size
));
797 uio
->uio_offset
+= size
;
802 * unmap and unwire the process buffer
805 pipe_destroy_write_buffer(wpipe
)
810 if (wpipe
->pipe_map
.kva
) {
811 pmap_qremove(wpipe
->pipe_map
.kva
, wpipe
->pipe_map
.npages
);
813 if (amountpipekvawired
> maxpipekvawired
/ 2) {
814 /* Conserve address space */
815 vm_offset_t kva
= wpipe
->pipe_map
.kva
;
816 wpipe
->pipe_map
.kva
= 0;
817 kmem_free(kernel_map
, kva
,
818 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
819 atomic_subtract_int(&amountpipekvawired
,
820 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
823 vm_page_lock_queues();
824 for (i
= 0; i
< wpipe
->pipe_map
.npages
; i
++) {
825 vm_page_unhold(wpipe
->pipe_map
.ms
[i
]);
827 vm_page_unlock_queues();
828 wpipe
->pipe_map
.npages
= 0;
832 * In the case of a signal, the writing process might go away. This
833 * code copies the data into the circular buffer so that the source
834 * pages can be freed without loss of data.
837 pipe_clone_write_buffer(wpipe
)
843 size
= wpipe
->pipe_map
.cnt
;
844 pos
= wpipe
->pipe_map
.pos
;
846 wpipe
->pipe_buffer
.in
= size
;
847 wpipe
->pipe_buffer
.out
= 0;
848 wpipe
->pipe_buffer
.cnt
= size
;
849 wpipe
->pipe_state
&= ~PIPE_DIRECTW
;
852 bcopy((caddr_t
) wpipe
->pipe_map
.kva
+ pos
,
853 wpipe
->pipe_buffer
.buffer
, size
);
854 pipe_destroy_write_buffer(wpipe
);
859 * This implements the pipe buffer write mechanism. Note that only
860 * a direct write OR a normal pipe write can be pending at any given time.
861 * If there are any characters in the pipe buffer, the direct write will
862 * be deferred until the receiving process grabs all of the bytes from
863 * the pipe buffer. Then the direct mapping write is set-up.
866 pipe_direct_write(wpipe
, uio
)
873 while (wpipe
->pipe_state
& PIPE_DIRECTW
) {
874 if (wpipe
->pipe_state
& PIPE_WANTR
) {
875 wpipe
->pipe_state
&= ~PIPE_WANTR
;
878 wpipe
->pipe_state
|= PIPE_WANTW
;
879 error
= msleep(wpipe
, PIPE_MTX(wpipe
),
880 PRIBIO
| PCATCH
, "pipdww", 0);
883 if (wpipe
->pipe_state
& PIPE_EOF
) {
888 wpipe
->pipe_map
.cnt
= 0; /* transfer not ready yet */
889 if (wpipe
->pipe_buffer
.cnt
> 0) {
890 if (wpipe
->pipe_state
& PIPE_WANTR
) {
891 wpipe
->pipe_state
&= ~PIPE_WANTR
;
895 wpipe
->pipe_state
|= PIPE_WANTW
;
896 error
= msleep(wpipe
, PIPE_MTX(wpipe
),
897 PRIBIO
| PCATCH
, "pipdwc", 0);
900 if (wpipe
->pipe_state
& PIPE_EOF
) {
907 wpipe
->pipe_state
|= PIPE_DIRECTW
;
911 error
= pipe_build_write_buffer(wpipe
, uio
);
915 wpipe
->pipe_state
&= ~PIPE_DIRECTW
;
920 while (!error
&& (wpipe
->pipe_state
& PIPE_DIRECTW
)) {
921 if (wpipe
->pipe_state
& PIPE_EOF
) {
924 pipe_destroy_write_buffer(wpipe
);
926 pipeselwakeup(wpipe
, wpipe
);
931 if (wpipe
->pipe_state
& PIPE_WANTR
) {
932 wpipe
->pipe_state
&= ~PIPE_WANTR
;
935 pipeselwakeup(wpipe
, wpipe
);
936 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
,
941 if (wpipe
->pipe_state
& PIPE_DIRECTW
) {
943 * this bit of trickery substitutes a kernel buffer for
944 * the process that might be going away.
946 pipe_clone_write_buffer(wpipe
);
949 pipe_destroy_write_buffer(wpipe
);
964 pipe_write(struct fileproc
*fp
, struct uio
*uio
, __unused kauth_cred_t active_cred
, __unused
int flags
, __unused
struct proc
*p
)
969 struct pipe
*wpipe
, *rpipe
;
971 rpipe
= (struct pipe
*)fp
->f_data
;
974 wpipe
= rpipe
->pipe_peer
;
977 * detect loss of pipe read side, issue SIGPIPE if lost.
979 if (wpipe
== NULL
|| (wpipe
->pipe_state
& PIPE_EOF
)) {
984 error
= mac_check_pipe_write(active_cred
, wpipe
);
994 if (wpipe
->pipe_buffer
.buffer
== 0) {
996 * need to allocate some storage... we delay the allocation
997 * until the first write on fd[0] to avoid allocating storage for both
998 * 'pipe ends'... most pipes are half-duplex with the writes targeting
999 * fd[1], so allocating space for both ends is a waste...
1001 * Reduce to 1/4th pipe size if we're over our global max.
1003 if (amountpipekva
> maxpipekva
/ 2)
1004 pipe_size
= SMALL_PIPE_SIZE
;
1006 pipe_size
= PIPE_SIZE
;
1010 * If it is advantageous to resize the pipe buffer, do
1013 if ((uio_resid(uio
) > PIPE_SIZE
) &&
1014 (wpipe
->pipe_buffer
.size
<= PIPE_SIZE
) &&
1015 (amountpipekva
< maxpipekva
/ 2) &&
1016 (nbigpipe
< LIMITBIGPIPES
) &&
1017 #ifndef PIPE_NODIRECT
1018 (wpipe
->pipe_state
& PIPE_DIRECTW
) == 0 &&
1020 (wpipe
->pipe_buffer
.cnt
== 0)) {
1022 pipe_size
= BIG_PIPE_SIZE
;
1027 * need to do initial allocation or resizing of pipe
1029 if ((error
= pipelock(wpipe
, 1)) == 0) {
1031 if (pipespace(wpipe
, pipe_size
) == 0)
1032 OSAddAtomic(1, (SInt32
*)&nbigpipe
);
1036 if (wpipe
->pipe_buffer
.buffer
== 0) {
1038 * initial allocation failed
1045 * If an error occurred unbusy and return, waking up any pending
1049 if ((wpipe
->pipe_busy
== 0) &&
1050 (wpipe
->pipe_state
& PIPE_WANT
)) {
1051 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1058 // LP64todo - fix this!
1059 orig_resid
= uio_resid(uio
);
1061 while (uio_resid(uio
)) {
1064 #ifndef PIPE_NODIRECT
1066 * If the transfer is large, we can gain performance if
1067 * we do process-to-process copies directly.
1068 * If the write is non-blocking, we don't use the
1069 * direct write mechanism.
1071 * The direct write mechanism will detect the reader going
1074 if ((uio
->uio_iov
->iov_len
>= PIPE_MINDIRECT
) &&
1075 (fp
->f_flag
& FNONBLOCK
) == 0 &&
1076 amountpipekvawired
+ uio
->uio_resid
< maxpipekvawired
) {
1077 error
= pipe_direct_write(wpipe
, uio
);
1084 * Pipe buffered writes cannot be coincidental with
1085 * direct writes. We wait until the currently executing
1086 * direct write is completed before we start filling the
1087 * pipe buffer. We break out if a signal occurs or the
1091 while (wpipe
->pipe_state
& PIPE_DIRECTW
) {
1092 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1093 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1096 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipbww", 0);
1098 if (wpipe
->pipe_state
& PIPE_EOF
)
1106 space
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1109 * Writes of size <= PIPE_BUF must be atomic.
1111 if ((space
< uio_resid(uio
)) && (orig_resid
<= PIPE_BUF
))
1116 if ((error
= pipelock(wpipe
,1)) == 0) {
1117 int size
; /* Transfer size */
1118 int segsize
; /* first segment to transfer */
1120 if (wpipe
->pipe_state
& PIPE_EOF
) {
1125 #ifndef PIPE_NODIRECT
1127 * It is possible for a direct write to
1128 * slip in on us... handle it here...
1130 if (wpipe
->pipe_state
& PIPE_DIRECTW
) {
1136 * If a process blocked in pipelock, our
1137 * value for space might be bad... the mutex
1138 * is dropped while we're blocked
1140 if (space
> (int)(wpipe
->pipe_buffer
.size
-
1141 wpipe
->pipe_buffer
.cnt
)) {
1147 * Transfer size is minimum of uio transfer
1148 * and free space in pipe buffer.
1150 // LP64todo - fix this!
1151 if (space
> uio_resid(uio
))
1152 size
= uio_resid(uio
);
1156 * First segment to transfer is minimum of
1157 * transfer size and contiguous space in
1158 * pipe buffer. If first segment to transfer
1159 * is less than the transfer size, we've got
1160 * a wraparound in the buffer.
1162 segsize
= wpipe
->pipe_buffer
.size
-
1163 wpipe
->pipe_buffer
.in
;
1167 /* Transfer first segment */
1170 error
= uiomove(&wpipe
->pipe_buffer
.buffer
[wpipe
->pipe_buffer
.in
],
1174 if (error
== 0 && segsize
< size
) {
1176 * Transfer remaining part now, to
1177 * support atomic writes. Wraparound
1180 if (wpipe
->pipe_buffer
.in
+ segsize
!=
1181 wpipe
->pipe_buffer
.size
)
1182 panic("Expected pipe buffer "
1183 "wraparound disappeared");
1187 &wpipe
->pipe_buffer
.buffer
[0],
1188 size
- segsize
, uio
);
1192 wpipe
->pipe_buffer
.in
+= size
;
1193 if (wpipe
->pipe_buffer
.in
>=
1194 wpipe
->pipe_buffer
.size
) {
1195 if (wpipe
->pipe_buffer
.in
!=
1197 wpipe
->pipe_buffer
.size
)
1200 wpipe
->pipe_buffer
.in
= size
-
1204 wpipe
->pipe_buffer
.cnt
+= size
;
1205 if (wpipe
->pipe_buffer
.cnt
>
1206 wpipe
->pipe_buffer
.size
)
1207 panic("Pipe buffer overflow");
1217 * If the "read-side" has been blocked, wake it up now.
1219 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1220 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1224 * don't block on non-blocking I/O
1225 * we'll do the pipeselwakeup on the way out
1227 if (fp
->f_flag
& FNONBLOCK
) {
1232 * We have no more space and have something to offer,
1233 * wake up select/poll.
1235 pipeselwakeup(wpipe
, wpipe
);
1237 wpipe
->pipe_state
|= PIPE_WANTW
;
1239 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipewr", 0);
1244 * If read side wants to go away, we just issue a signal
1247 if (wpipe
->pipe_state
& PIPE_EOF
) {
1255 if ((wpipe
->pipe_busy
== 0) && (wpipe
->pipe_state
& PIPE_WANT
)) {
1256 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1259 if (wpipe
->pipe_buffer
.cnt
> 0) {
1261 * If there are any characters in the buffer, we wake up
1262 * the reader if it was blocked waiting for data.
1264 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1265 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1269 * wake up thread blocked in select/poll or post the notification
1271 pipeselwakeup(wpipe
, wpipe
);
1279 * we implement a very minimal set of ioctls for compatibility with sockets.
1283 pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
, __unused
struct proc
*p
)
1285 struct pipe
*mpipe
= (struct pipe
*)fp
->f_data
;
1293 error
= mac_check_pipe_ioctl(active_cred
, mpipe
, cmd
, data
);
1309 mpipe
->pipe_state
|= PIPE_ASYNC
;
1311 mpipe
->pipe_state
&= ~PIPE_ASYNC
;
1317 #ifndef PIPE_NODIRECT
1318 if (mpipe
->pipe_state
& PIPE_DIRECTW
)
1319 *(int *)data
= mpipe
->pipe_map
.cnt
;
1322 *(int *)data
= mpipe
->pipe_buffer
.cnt
;
1327 mpipe
->pipe_pgid
= *(int *)data
;
1333 *(int *)data
= mpipe
->pipe_pgid
;
1345 pipe_select(struct fileproc
*fp
, int which
, void *wql
, struct proc
*p
)
1347 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
1351 if (rpipe
== NULL
|| rpipe
== (struct pipe
*)-1)
1356 wpipe
= rpipe
->pipe_peer
;
1361 if ((rpipe
->pipe_state
& PIPE_DIRECTW
) ||
1362 (rpipe
->pipe_buffer
.cnt
> 0) ||
1363 (rpipe
->pipe_state
& PIPE_EOF
)) {
1367 rpipe
->pipe_state
|= PIPE_SEL
;
1368 selrecord(p
, &rpipe
->pipe_sel
, wql
);
1373 if (wpipe
== NULL
|| (wpipe
->pipe_state
& PIPE_EOF
) ||
1374 (((wpipe
->pipe_state
& PIPE_DIRECTW
) == 0) &&
1375 (wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)) {
1379 wpipe
->pipe_state
|= PIPE_SEL
;
1380 selrecord(p
, &wpipe
->pipe_sel
, wql
);
1384 rpipe
->pipe_state
|= PIPE_SEL
;
1385 selrecord(p
, &rpipe
->pipe_sel
, wql
);
1396 pipe_close(struct fileglob
*fg
, __unused
struct proc
*p
)
1401 cpipe
= (struct pipe
*)fg
->fg_data
;
1412 pipe_free_kmem(struct pipe
*cpipe
)
1415 if (cpipe
->pipe_buffer
.buffer
!= NULL
) {
1416 if (cpipe
->pipe_buffer
.size
> PIPE_SIZE
)
1417 OSAddAtomic(-1, (SInt32
*)&nbigpipe
);
1418 OSAddAtomic(-(cpipe
->pipe_buffer
.size
), (SInt32
*)&amountpipekva
);
1419 OSAddAtomic(-1, (SInt32
*)&amountpipes
);
1421 kmem_free(kernel_map
, (vm_offset_t
)cpipe
->pipe_buffer
.buffer
,
1422 cpipe
->pipe_buffer
.size
);
1423 cpipe
->pipe_buffer
.buffer
= NULL
;
1425 #ifndef PIPE_NODIRECT
1426 if (cpipe
->pipe_map
.kva
!= 0) {
1427 atomic_subtract_int(&amountpipekvawired
,
1428 cpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
1429 kmem_free(kernel_map
,
1430 cpipe
->pipe_map
.kva
,
1431 cpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
1432 cpipe
->pipe_map
.cnt
= 0;
1433 cpipe
->pipe_map
.kva
= 0;
1434 cpipe
->pipe_map
.pos
= 0;
1435 cpipe
->pipe_map
.npages
= 0;
1444 pipeclose(struct pipe
*cpipe
)
1451 /* partially created pipes won't have a valid mutex. */
1452 if (PIPE_MTX(cpipe
) != NULL
)
1455 pipeselwakeup(cpipe
, cpipe
);
1458 * If the other side is blocked, wake it up saying that
1459 * we want to close it down.
1461 while (cpipe
->pipe_busy
) {
1462 cpipe
->pipe_state
|= PIPE_WANT
| PIPE_EOF
;
1466 msleep(cpipe
, PIPE_MTX(cpipe
), PRIBIO
, "pipecl", 0);
1470 if (cpipe
->pipe_label
!= NULL
&& cpipe
->pipe_peer
== NULL
)
1471 mac_destroy_pipe(cpipe
);
1475 * Disconnect from peer
1477 if ((ppipe
= cpipe
->pipe_peer
) != NULL
) {
1479 ppipe
->pipe_state
|= PIPE_EOF
;
1481 pipeselwakeup(ppipe
, ppipe
);
1484 if (cpipe
->pipe_state
& PIPE_KNOTE
)
1485 KNOTE(&ppipe
->pipe_sel
.si_note
, 1);
1487 postpipeevent(ppipe
, EV_RCLOSED
);
1489 ppipe
->pipe_peer
= NULL
;
1496 if (PIPE_MTX(cpipe
) != NULL
) {
1497 if (ppipe
!= NULL
) {
1499 * since the mutex is shared and the peer is still
1500 * alive, we need to release the mutex, not free it
1505 * peer is gone, so we're the sole party left with
1506 * interest in this mutex... we can just free it
1508 lck_mtx_free(PIPE_MTX(cpipe
), pipe_mtx_grp
);
1511 pipe_free_kmem(cpipe
);
1513 zfree(pipe_zone
, cpipe
);
1519 pipe_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused
struct proc
*p
)
1523 cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1527 switch (kn
->kn_filter
) {
1529 kn
->kn_fop
= &pipe_rfiltops
;
1532 kn
->kn_fop
= &pipe_wfiltops
;
1534 if (cpipe
->pipe_peer
== NULL
) {
1536 * other end of pipe has been closed
1541 cpipe
= cpipe
->pipe_peer
;
1548 if (KNOTE_ATTACH(&cpipe
->pipe_sel
.si_note
, kn
))
1549 cpipe
->pipe_state
|= PIPE_KNOTE
;
1556 filt_pipedetach(struct knote
*kn
)
1558 struct pipe
*cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1562 if (kn
->kn_filter
== EVFILT_WRITE
) {
1563 if (cpipe
->pipe_peer
== NULL
) {
1567 cpipe
= cpipe
->pipe_peer
;
1569 if (cpipe
->pipe_state
& PIPE_KNOTE
) {
1570 if (KNOTE_DETACH(&cpipe
->pipe_sel
.si_note
, kn
))
1571 cpipe
->pipe_state
&= ~PIPE_KNOTE
;
1578 filt_piperead(struct knote
*kn
, long hint
)
1580 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1585 * if hint == 0, then we've been called from the kevent
1586 * world directly and do not currently hold the pipe mutex...
1587 * if hint == 1, we're being called back via the KNOTE post
1588 * we made in pipeselwakeup, and we already hold the mutex...
1593 wpipe
= rpipe
->pipe_peer
;
1594 kn
->kn_data
= rpipe
->pipe_buffer
.cnt
;
1596 #ifndef PIPE_NODIRECT
1597 if ((kn
->kn_data
== 0) && (rpipe
->pipe_state
& PIPE_DIRECTW
))
1598 kn
->kn_data
= rpipe
->pipe_map
.cnt
;
1600 if ((rpipe
->pipe_state
& PIPE_EOF
) ||
1601 (wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1602 kn
->kn_flags
|= EV_EOF
;
1605 retval
= (kn
->kn_sfflags
& NOTE_LOWAT
) ?
1606 (kn
->kn_data
>= kn
->kn_sdata
) : (kn
->kn_data
> 0);
1616 filt_pipewrite(struct knote
*kn
, long hint
)
1618 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1622 * if hint == 0, then we've been called from the kevent
1623 * world directly and do not currently hold the pipe mutex...
1624 * if hint == 1, we're being called back via the KNOTE post
1625 * we made in pipeselwakeup, and we already hold the mutex...
1630 wpipe
= rpipe
->pipe_peer
;
1632 if ((wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1634 kn
->kn_flags
|= EV_EOF
;
1640 kn
->kn_data
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1642 #ifndef PIPE_NODIRECT
1643 if (wpipe
->pipe_state
& PIPE_DIRECTW
)
1649 return (kn
->kn_data
>= ((kn
->kn_sfflags
& NOTE_LOWAT
) ?
1650 kn
->kn_sdata
: PIPE_BUF
));
1654 fill_pipeinfo(struct pipe
* cpipe
, struct pipe_info
* pinfo
)
1666 error
= mac_check_pipe_stat(active_cred
, cpipe
);
1671 if (cpipe
->pipe_buffer
.buffer
== 0) {
1673 * must be stat'ing the write fd
1675 cpipe
= cpipe
->pipe_peer
;
1681 ub
= &pinfo
->pipe_stat
;
1683 bzero(ub
, sizeof(*ub
));
1684 ub
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
1685 ub
->st_blksize
= cpipe
->pipe_buffer
.size
;
1686 ub
->st_size
= cpipe
->pipe_buffer
.cnt
;
1687 if (ub
->st_blksize
!= 0);
1688 ub
->st_blocks
= (ub
->st_size
+ ub
->st_blksize
- 1) / ub
->st_blksize
;
1691 ub
->st_uid
= kauth_getuid();
1692 ub
->st_gid
= kauth_getgid();
1695 ub
->st_atimespec
.tv_sec
= now
.tv_sec
;
1696 ub
->st_atimespec
.tv_nsec
= now
.tv_usec
* 1000;
1698 ub
->st_mtimespec
.tv_sec
= now
.tv_sec
;
1699 ub
->st_mtimespec
.tv_nsec
= now
.tv_usec
* 1000;
1701 ub
->st_ctimespec
.tv_sec
= now
.tv_sec
;
1702 ub
->st_ctimespec
.tv_nsec
= now
.tv_usec
* 1000;
1705 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
1706 * XXX (st_dev, st_ino) should be unique.
1709 pinfo
->pipe_handle
= (uint64_t)((uintptr_t)cpipe
);
1710 pinfo
->pipe_peerhandle
= (uint64_t)((uintptr_t)(cpipe
->pipe_peer
));
1711 pinfo
->pipe_status
= cpipe
->pipe_state
;