]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_purgeable.c
xnu-2050.9.2.tar.gz
[apple/xnu.git] / osfmk / vm / vm_purgeable.c
1 /*
2 * Copyright (c) 2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 #include <mach/mach_types.h>
25 #include <vm/vm_page.h>
26 #include <vm/vm_kern.h> /* kmem_alloc */
27 #include <vm/vm_purgeable_internal.h>
28 #include <sys/kdebug.h>
29 #include <kern/sched_prim.h>
30
31 struct token {
32 token_cnt_t count;
33 token_idx_t next;
34 };
35
36 struct token *tokens;
37 token_idx_t token_q_max_cnt = 0;
38 vm_size_t token_q_cur_size = 0;
39
40 token_idx_t token_free_idx = 0; /* head of free queue */
41 token_idx_t token_init_idx = 1; /* token 0 is reserved!! */
42 int32_t token_new_pagecount = 0; /* count of pages that will
43 * be added onto token queue */
44
45 int available_for_purge = 0; /* increase when ripe token
46 * added, decrease when ripe
47 * token removed.
48 * protected by page_queue_lock
49 */
50
51 static int token_q_allocating = 0; /* flag for singlethreading
52 * allocator */
53
54 struct purgeable_q purgeable_queues[PURGEABLE_Q_TYPE_MAX];
55
56 decl_lck_mtx_data(,vm_purgeable_queue_lock)
57
58 #define TOKEN_ADD 0x40 /* 0x100 */
59 #define TOKEN_DELETE 0x41 /* 0x104 */
60 #define TOKEN_RIPEN 0x42 /* 0x108 */
61 #define OBJECT_ADD 0x48 /* 0x120 */
62 #define OBJECT_REMOVE 0x49 /* 0x124 */
63 #define OBJECT_PURGE 0x4a /* 0x128 */
64 #define OBJECT_PURGE_ALL 0x4b /* 0x12c */
65
66 static token_idx_t vm_purgeable_token_remove_first(purgeable_q_t queue);
67
68 #if MACH_ASSERT
69 static void
70 vm_purgeable_token_check_queue(purgeable_q_t queue)
71 {
72 int token_cnt = 0, page_cnt = 0;
73 token_idx_t token = queue->token_q_head;
74 token_idx_t unripe = 0;
75 int our_inactive_count;
76
77 while (token) {
78 if (tokens[token].count != 0) {
79 assert(queue->token_q_unripe);
80 if (unripe == 0) {
81 assert(token == queue->token_q_unripe);
82 unripe = token;
83 }
84 page_cnt += tokens[token].count;
85 }
86 if (tokens[token].next == 0)
87 assert(queue->token_q_tail == token);
88
89 token_cnt++;
90 token = tokens[token].next;
91 }
92
93 if (unripe)
94 assert(queue->token_q_unripe == unripe);
95 assert(token_cnt == queue->debug_count_tokens);
96
97 /* obsolete queue doesn't maintain token counts */
98 if(queue->type != PURGEABLE_Q_TYPE_OBSOLETE)
99 {
100 our_inactive_count = page_cnt + queue->new_pages + token_new_pagecount;
101 assert(our_inactive_count >= 0);
102 assert((uint32_t) our_inactive_count == vm_page_inactive_count - vm_page_cleaned_count);
103 }
104 }
105 #endif
106
107 /*
108 * Add a token. Allocate token queue memory if necessary.
109 * Call with page queue locked.
110 */
111 kern_return_t
112 vm_purgeable_token_add(purgeable_q_t queue)
113 {
114 #if MACH_ASSERT
115 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
116 #endif
117
118 /* new token */
119 token_idx_t token;
120 enum purgeable_q_type i;
121
122 find_available_token:
123
124 if (token_free_idx) { /* unused tokens available */
125 token = token_free_idx;
126 token_free_idx = tokens[token_free_idx].next;
127 } else if (token_init_idx < token_q_max_cnt) { /* lazy token array init */
128 token = token_init_idx;
129 token_init_idx++;
130 } else { /* allocate more memory */
131 /* Wait if another thread is inside the memory alloc section */
132 while(token_q_allocating) {
133 wait_result_t res = lck_mtx_sleep(&vm_page_queue_lock,
134 LCK_SLEEP_DEFAULT,
135 (event_t)&token_q_allocating,
136 THREAD_UNINT);
137 if(res != THREAD_AWAKENED) return KERN_ABORTED;
138 };
139
140 /* Check whether memory is still maxed out */
141 if(token_init_idx < token_q_max_cnt)
142 goto find_available_token;
143
144 /* Still no memory. Allocate some. */
145 token_q_allocating = 1;
146
147 /* Drop page queue lock so we can allocate */
148 vm_page_unlock_queues();
149
150 struct token *new_loc;
151 vm_size_t alloc_size = token_q_cur_size + PAGE_SIZE;
152 kern_return_t result;
153
154 if (alloc_size / sizeof (struct token) > TOKEN_COUNT_MAX) {
155 result = KERN_RESOURCE_SHORTAGE;
156 } else {
157 if (token_q_cur_size) {
158 result = kmem_realloc(kernel_map,
159 (vm_offset_t) tokens,
160 token_q_cur_size,
161 (vm_offset_t *) &new_loc,
162 alloc_size);
163 } else {
164 result = kmem_alloc(kernel_map,
165 (vm_offset_t *) &new_loc,
166 alloc_size);
167 }
168 }
169
170 vm_page_lock_queues();
171
172 if (result) {
173 /* Unblock waiting threads */
174 token_q_allocating = 0;
175 thread_wakeup((event_t)&token_q_allocating);
176 return result;
177 }
178
179 /* If we get here, we allocated new memory. Update pointers and
180 * dealloc old range */
181 struct token *old_tokens=tokens;
182 tokens=new_loc;
183 vm_size_t old_token_q_cur_size=token_q_cur_size;
184 token_q_cur_size=alloc_size;
185 token_q_max_cnt = (token_idx_t) (token_q_cur_size /
186 sizeof(struct token));
187 assert (token_init_idx < token_q_max_cnt); /* We must have a free token now */
188
189 if (old_token_q_cur_size) { /* clean up old mapping */
190 vm_page_unlock_queues();
191 /* kmem_realloc leaves the old region mapped. Get rid of it. */
192 kmem_free(kernel_map, (vm_offset_t)old_tokens, old_token_q_cur_size);
193 vm_page_lock_queues();
194 }
195
196 /* Unblock waiting threads */
197 token_q_allocating = 0;
198 thread_wakeup((event_t)&token_q_allocating);
199
200 goto find_available_token;
201 }
202
203 assert (token);
204
205 /*
206 * the new pagecount we got need to be applied to all queues except
207 * obsolete
208 */
209 for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
210 int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount;
211 assert(pages >= 0);
212 assert(pages <= TOKEN_COUNT_MAX);
213 purgeable_queues[i].new_pages = (int32_t) pages;
214 assert(purgeable_queues[i].new_pages == pages);
215 }
216 token_new_pagecount = 0;
217
218 /* set token counter value */
219 if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE)
220 tokens[token].count = queue->new_pages;
221 else
222 tokens[token].count = 0; /* all obsolete items are
223 * ripe immediately */
224 queue->new_pages = 0;
225
226 /* put token on token counter list */
227 tokens[token].next = 0;
228 if (queue->token_q_tail == 0) {
229 assert(queue->token_q_head == 0 && queue->token_q_unripe == 0);
230 queue->token_q_head = token;
231 } else {
232 tokens[queue->token_q_tail].next = token;
233 }
234 if (queue->token_q_unripe == 0) { /* only ripe tokens (token
235 * count == 0) in queue */
236 if (tokens[token].count > 0)
237 queue->token_q_unripe = token; /* first unripe token */
238 else
239 available_for_purge++; /* added a ripe token?
240 * increase available count */
241 }
242 queue->token_q_tail = token;
243
244 #if MACH_ASSERT
245 queue->debug_count_tokens++;
246 /* Check both queues, since we modified the new_pages count on each */
247 vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_FIFO]);
248 vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_LIFO]);
249
250 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_ADD)),
251 queue->type,
252 tokens[token].count, /* num pages on token
253 * (last token) */
254 queue->debug_count_tokens,
255 0,
256 0);
257 #endif
258
259 return KERN_SUCCESS;
260 }
261
262 /*
263 * Remove first token from queue and return its index. Add its count to the
264 * count of the next token.
265 * Call with page queue locked.
266 */
267 static token_idx_t
268 vm_purgeable_token_remove_first(purgeable_q_t queue)
269 {
270 #if MACH_ASSERT
271 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
272 #endif
273
274 token_idx_t token;
275 token = queue->token_q_head;
276
277 assert(token);
278
279 if (token) {
280 assert(queue->token_q_tail);
281 if (queue->token_q_head == queue->token_q_unripe) {
282 /* no ripe tokens... must move unripe pointer */
283 queue->token_q_unripe = tokens[token].next;
284 } else {
285 /* we're removing a ripe token. decrease count */
286 available_for_purge--;
287 assert(available_for_purge >= 0);
288 }
289
290 if (queue->token_q_tail == queue->token_q_head)
291 assert(tokens[token].next == 0);
292
293 queue->token_q_head = tokens[token].next;
294 if (queue->token_q_head) {
295 tokens[queue->token_q_head].count += tokens[token].count;
296 } else {
297 /* currently no other tokens in the queue */
298 /*
299 * the page count must be added to the next newly
300 * created token
301 */
302 queue->new_pages += tokens[token].count;
303 /* if head is zero, tail is too */
304 queue->token_q_tail = 0;
305 }
306
307 #if MACH_ASSERT
308 queue->debug_count_tokens--;
309 vm_purgeable_token_check_queue(queue);
310
311 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)),
312 queue->type,
313 tokens[queue->token_q_head].count, /* num pages on new
314 * first token */
315 token_new_pagecount, /* num pages waiting for
316 * next token */
317 available_for_purge,
318 0);
319 #endif
320 }
321 return token;
322 }
323
324 static token_idx_t
325 vm_purgeable_token_remove_last(purgeable_q_t queue)
326 {
327 #if MACH_ASSERT
328 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
329 #endif
330
331 token_idx_t token;
332 token = queue->token_q_tail;
333
334 assert(token);
335
336 if (token) {
337 assert(queue->token_q_head);
338
339 if (queue->token_q_tail == queue->token_q_head)
340 assert(tokens[token].next == 0);
341
342 if (queue->token_q_unripe == 0) {
343 /* we're removing a ripe token. decrease count */
344 available_for_purge--;
345 assert(available_for_purge >= 0);
346 } else if (queue->token_q_unripe == token) {
347 /* we're removing the only unripe token */
348 queue->token_q_unripe = 0;
349 }
350
351 if (token == queue->token_q_head) {
352 /* token is the last one in the queue */
353 queue->token_q_head = 0;
354 queue->token_q_tail = 0;
355 } else {
356 token_idx_t new_tail;
357
358 for (new_tail = queue->token_q_head;
359 tokens[new_tail].next != token && new_tail != 0;
360 new_tail = tokens[new_tail].next) {
361 }
362 assert(tokens[new_tail].next == token);
363 queue->token_q_tail = new_tail;
364 tokens[new_tail].next = 0;
365 }
366
367 queue->new_pages += tokens[token].count;
368
369 #if MACH_ASSERT
370 queue->debug_count_tokens--;
371 vm_purgeable_token_check_queue(queue);
372
373 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)),
374 queue->type,
375 tokens[queue->token_q_head].count, /* num pages on new
376 * first token */
377 token_new_pagecount, /* num pages waiting for
378 * next token */
379 available_for_purge,
380 0);
381 #endif
382 }
383 return token;
384 }
385
386 /*
387 * Delete first token from queue. Return token to token queue.
388 * Call with page queue locked.
389 */
390 void
391 vm_purgeable_token_delete_first(purgeable_q_t queue)
392 {
393 #if MACH_ASSERT
394 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
395 #endif
396 token_idx_t token = vm_purgeable_token_remove_first(queue);
397
398 if (token) {
399 /* stick removed token on free queue */
400 tokens[token].next = token_free_idx;
401 token_free_idx = token;
402 }
403 }
404
405 void
406 vm_purgeable_token_delete_last(purgeable_q_t queue)
407 {
408 #if MACH_ASSERT
409 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
410 #endif
411 token_idx_t token = vm_purgeable_token_remove_last(queue);
412
413 if (token) {
414 /* stick removed token on free queue */
415 tokens[token].next = token_free_idx;
416 token_free_idx = token;
417 }
418 }
419
420
421 /* Call with page queue locked. */
422 void
423 vm_purgeable_q_advance_all()
424 {
425 #if MACH_ASSERT
426 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
427 #endif
428
429 /* check queue counters - if they get really large, scale them back.
430 * They tend to get that large when there is no purgeable queue action */
431 int i;
432 if(token_new_pagecount > (TOKEN_NEW_PAGECOUNT_MAX >> 1)) /* a system idling years might get there */
433 {
434 for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
435 int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount;
436 assert(pages >= 0);
437 assert(pages <= TOKEN_COUNT_MAX);
438 purgeable_queues[i].new_pages = (int32_t) pages;
439 assert(purgeable_queues[i].new_pages == pages);
440 }
441 token_new_pagecount = 0;
442 }
443
444 /*
445 * Decrement token counters. A token counter can be zero, this means the
446 * object is ripe to be purged. It is not purged immediately, because that
447 * could cause several objects to be purged even if purging one would satisfy
448 * the memory needs. Instead, the pageout thread purges one after the other
449 * by calling vm_purgeable_object_purge_one and then rechecking the memory
450 * balance.
451 *
452 * No need to advance obsolete queue - all items are ripe there,
453 * always
454 */
455 for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
456 purgeable_q_t queue = &purgeable_queues[i];
457 uint32_t num_pages = 1;
458
459 /* Iterate over tokens as long as there are unripe tokens. */
460 while (queue->token_q_unripe) {
461 if (tokens[queue->token_q_unripe].count && num_pages)
462 {
463 tokens[queue->token_q_unripe].count -= 1;
464 num_pages -= 1;
465 }
466
467 if (tokens[queue->token_q_unripe].count == 0) {
468 queue->token_q_unripe = tokens[queue->token_q_unripe].next;
469 available_for_purge++;
470 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_RIPEN)),
471 queue->type,
472 tokens[queue->token_q_head].count, /* num pages on new
473 * first token */
474 0,
475 available_for_purge,
476 0);
477 continue; /* One token ripened. Make sure to
478 * check the next. */
479 }
480 if (num_pages == 0)
481 break; /* Current token not ripe and no more pages.
482 * Work done. */
483 }
484
485 /*
486 * if there are no unripe tokens in the queue, decrement the
487 * new_pages counter instead new_pages can be negative, but must be
488 * canceled out by token_new_pagecount -- since inactive queue as a
489 * whole always contains a nonnegative number of pages
490 */
491 if (!queue->token_q_unripe) {
492 queue->new_pages -= num_pages;
493 assert((int32_t) token_new_pagecount + queue->new_pages >= 0);
494 }
495 #if MACH_ASSERT
496 vm_purgeable_token_check_queue(queue);
497 #endif
498 }
499 }
500
501 /*
502 * grab any ripe object and purge it obsolete queue first. then, go through
503 * each volatile group. Select a queue with a ripe token.
504 * Start with first group (0)
505 * 1. Look at queue. Is there an object?
506 * Yes - purge it. Remove token.
507 * No - check other queue. Is there an object?
508 * No - increment group, then go to (1)
509 * Yes - purge it. Remove token. If there is no ripe token, remove ripe
510 * token from other queue and migrate unripe token from this
511 * queue to other queue.
512 * Call with page queue locked.
513 */
514 static void
515 vm_purgeable_token_remove_ripe(purgeable_q_t queue)
516 {
517 #if MACH_ASSERT
518 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
519 #endif
520 assert(queue->token_q_head && tokens[queue->token_q_head].count == 0);
521 /* return token to free list. advance token list. */
522 token_idx_t new_head = tokens[queue->token_q_head].next;
523 tokens[queue->token_q_head].next = token_free_idx;
524 token_free_idx = queue->token_q_head;
525 queue->token_q_head = new_head;
526 if (new_head == 0)
527 queue->token_q_tail = 0;
528
529 #if MACH_ASSERT
530 queue->debug_count_tokens--;
531 vm_purgeable_token_check_queue(queue);
532 #endif
533
534 available_for_purge--;
535 assert(available_for_purge >= 0);
536 }
537
538 /*
539 * Delete a ripe token from the given queue. If there are no ripe tokens on
540 * that queue, delete a ripe token from queue2, and migrate an unripe token
541 * from queue to queue2
542 * Call with page queue locked.
543 */
544 static void
545 vm_purgeable_token_choose_and_delete_ripe(purgeable_q_t queue, purgeable_q_t queue2)
546 {
547 #if MACH_ASSERT
548 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
549 #endif
550 assert(queue->token_q_head);
551
552 if (tokens[queue->token_q_head].count == 0) {
553 /* This queue has a ripe token. Remove. */
554 vm_purgeable_token_remove_ripe(queue);
555 } else {
556 assert(queue2);
557 /*
558 * queue2 must have a ripe token. Remove, and migrate one
559 * from queue to queue2.
560 */
561 vm_purgeable_token_remove_ripe(queue2);
562 /* migrate unripe token */
563 token_idx_t token;
564 token_cnt_t count;
565
566 /* remove token from queue1 */
567 assert(queue->token_q_unripe == queue->token_q_head); /* queue1 had no unripe
568 * tokens, remember? */
569 token = vm_purgeable_token_remove_first(queue);
570 assert(token);
571
572 count = tokens[token].count;
573
574 /* migrate to queue2 */
575 /* go to migration target loc */
576 token_idx_t *token_in_queue2 = &queue2->token_q_head;
577 while (*token_in_queue2 && count > tokens[*token_in_queue2].count) {
578 count -= tokens[*token_in_queue2].count;
579 token_in_queue2 = &tokens[*token_in_queue2].next;
580 }
581
582 if ((*token_in_queue2 == queue2->token_q_unripe) || /* becomes the first
583 * unripe token */
584 (queue2->token_q_unripe == 0))
585 queue2->token_q_unripe = token; /* must update unripe
586 * pointer */
587
588 /* insert token */
589 tokens[token].count = count;
590 tokens[token].next = *token_in_queue2;
591
592 /*
593 * if inserting at end, reduce new_pages by that value if
594 * inserting before token, reduce counter of that token
595 */
596 if (*token_in_queue2 == 0) { /* insertion at end of queue2 */
597 queue2->token_q_tail = token; /* must update tail
598 * pointer */
599 assert(queue2->new_pages >= (int32_t) count);
600 queue2->new_pages -= count;
601 } else {
602 assert(tokens[*token_in_queue2].count >= count);
603 tokens[*token_in_queue2].count -= count;
604 }
605 *token_in_queue2 = token;
606
607 #if MACH_ASSERT
608 queue2->debug_count_tokens++;
609 vm_purgeable_token_check_queue(queue2);
610 #endif
611 }
612 }
613
614 /* Find an object that can be locked. Returns locked object. */
615 /* Call with purgeable queue locked. */
616 static vm_object_t
617 vm_purgeable_object_find_and_lock(purgeable_q_t queue, int group)
618 {
619 lck_mtx_assert(&vm_purgeable_queue_lock, LCK_MTX_ASSERT_OWNED);
620 /*
621 * Usually we would pick the first element from a queue. However, we
622 * might not be able to get a lock on it, in which case we try the
623 * remaining elements in order.
624 */
625
626 vm_object_t object;
627 for (object = (vm_object_t) queue_first(&queue->objq[group]);
628 !queue_end(&queue->objq[group], (queue_entry_t) object);
629 object = (vm_object_t) queue_next(&object->objq)) {
630 if (vm_object_lock_try(object)) {
631 /* Locked. Great. We'll take it. Remove and return. */
632 queue_remove(&queue->objq[group], object,
633 vm_object_t, objq);
634 object->objq.next = 0;
635 object->objq.prev = 0;
636 #if MACH_ASSERT
637 queue->debug_count_objects--;
638 #endif
639 return object;
640 }
641 }
642
643 return 0;
644 }
645
646 /* Can be called without holding locks */
647 void
648 vm_purgeable_object_purge_all(void)
649 {
650 enum purgeable_q_type i;
651 int group;
652 vm_object_t object;
653 unsigned int purged_count;
654 uint32_t collisions;
655
656 purged_count = 0;
657 collisions = 0;
658
659 restart:
660 lck_mtx_lock(&vm_purgeable_queue_lock);
661 /* Cycle through all queues */
662 for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) {
663 purgeable_q_t queue;
664
665 queue = &purgeable_queues[i];
666
667 /*
668 * Look through all groups, starting from the lowest. If
669 * we find an object in that group, try to lock it (this can
670 * fail). If locking is successful, we can drop the queue
671 * lock, remove a token and then purge the object.
672 */
673 for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
674 while (!queue_empty(&queue->objq[group])) {
675 object = vm_purgeable_object_find_and_lock(queue, group);
676 if (object == VM_OBJECT_NULL) {
677 lck_mtx_unlock(&vm_purgeable_queue_lock);
678 mutex_pause(collisions++);
679 goto restart;
680 }
681
682 lck_mtx_unlock(&vm_purgeable_queue_lock);
683
684 /* Lock the page queue here so we don't hold it
685 * over the whole, legthy operation */
686 vm_page_lock_queues();
687 vm_purgeable_token_remove_first(queue);
688 vm_page_unlock_queues();
689
690 assert(object->purgable == VM_PURGABLE_VOLATILE);
691 (void) vm_object_purge(object);
692 vm_object_unlock(object);
693 purged_count++;
694 goto restart;
695 }
696 assert(queue->debug_count_objects >= 0);
697 }
698 }
699 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_ALL)),
700 purged_count, /* # of purged objects */
701 0,
702 available_for_purge,
703 0,
704 0);
705 lck_mtx_unlock(&vm_purgeable_queue_lock);
706 return;
707 }
708
709 boolean_t
710 vm_purgeable_object_purge_one(void)
711 {
712 enum purgeable_q_type i;
713 int group;
714 vm_object_t object = 0;
715 purgeable_q_t queue, queue2;
716
717 /* Need the page queue lock since we'll be changing the token queue. */
718 #if MACH_ASSERT
719 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
720 #endif
721 lck_mtx_lock(&vm_purgeable_queue_lock);
722
723 /* Cycle through all queues */
724 for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) {
725 queue = &purgeable_queues[i];
726
727 /*
728 * Are there any ripe tokens on this queue? If yes, we'll
729 * find an object to purge there
730 */
731 if (!(queue->token_q_head && tokens[queue->token_q_head].count == 0))
732 continue; /* no token? Look at next purgeable
733 * queue */
734
735 /*
736 * Now look through all groups, starting from the lowest. If
737 * we find an object in that group, try to lock it (this can
738 * fail). If locking is successful, we can drop the queue
739 * lock, remove a token and then purge the object.
740 */
741 for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
742 if (!queue_empty(&queue->objq[group]) &&
743 (object = vm_purgeable_object_find_and_lock(queue, group))) {
744 lck_mtx_unlock(&vm_purgeable_queue_lock);
745 vm_purgeable_token_choose_and_delete_ripe(queue, 0);
746 goto purge_now;
747 }
748 if (i != PURGEABLE_Q_TYPE_OBSOLETE) {
749 /* This is the token migration case, and it works between
750 * FIFO and LIFO only */
751 queue2 = &purgeable_queues[i != PURGEABLE_Q_TYPE_FIFO ?
752 PURGEABLE_Q_TYPE_FIFO :
753 PURGEABLE_Q_TYPE_LIFO];
754
755 if (!queue_empty(&queue2->objq[group]) &&
756 (object = vm_purgeable_object_find_and_lock(queue2, group))) {
757 lck_mtx_unlock(&vm_purgeable_queue_lock);
758 vm_purgeable_token_choose_and_delete_ripe(queue2, queue);
759 goto purge_now;
760 }
761 }
762 assert(queue->debug_count_objects >= 0);
763 }
764 }
765 /*
766 * because we have to do a try_lock on the objects which could fail,
767 * we could end up with no object to purge at this time, even though
768 * we have objects in a purgeable state
769 */
770 lck_mtx_unlock(&vm_purgeable_queue_lock);
771 return FALSE;
772
773 purge_now:
774
775 assert(object);
776 assert(object->purgable == VM_PURGABLE_VOLATILE);
777 vm_page_unlock_queues(); /* Unlock for call to vm_object_purge() */
778 (void) vm_object_purge(object);
779 vm_object_unlock(object);
780 vm_page_lock_queues();
781
782 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)),
783 object, /* purged object */
784 0,
785 available_for_purge,
786 0,
787 0);
788
789 return TRUE;
790 }
791
792 /* Called with object lock held */
793 void
794 vm_purgeable_object_add(vm_object_t object, purgeable_q_t queue, int group)
795 {
796 vm_object_lock_assert_exclusive(object);
797 lck_mtx_lock(&vm_purgeable_queue_lock);
798
799 if (queue->type == PURGEABLE_Q_TYPE_OBSOLETE)
800 group = 0;
801 if (queue->type != PURGEABLE_Q_TYPE_LIFO) /* fifo and obsolete are
802 * fifo-queued */
803 queue_enter(&queue->objq[group], object, vm_object_t, objq); /* last to die */
804 else
805 queue_enter_first(&queue->objq[group], object, vm_object_t, objq); /* first to die */
806
807 #if MACH_ASSERT
808 queue->debug_count_objects++;
809 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_ADD)),
810 0,
811 tokens[queue->token_q_head].count,
812 queue->type,
813 group,
814 0);
815 #endif
816
817 lck_mtx_unlock(&vm_purgeable_queue_lock);
818 }
819
820 /* Look for object. If found, remove from purgeable queue. */
821 /* Called with object lock held */
822 purgeable_q_t
823 vm_purgeable_object_remove(vm_object_t object)
824 {
825 enum purgeable_q_type i;
826 int group;
827
828 vm_object_lock_assert_exclusive(object);
829 lck_mtx_lock(&vm_purgeable_queue_lock);
830
831 for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) {
832 purgeable_q_t queue = &purgeable_queues[i];
833 for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
834 vm_object_t o;
835 for (o = (vm_object_t) queue_first(&queue->objq[group]);
836 !queue_end(&queue->objq[group], (queue_entry_t) o);
837 o = (vm_object_t) queue_next(&o->objq)) {
838 if (o == object) {
839 queue_remove(&queue->objq[group], object,
840 vm_object_t, objq);
841 #if MACH_ASSERT
842 queue->debug_count_objects--;
843 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_REMOVE)),
844 0,
845 tokens[queue->token_q_head].count,
846 queue->type,
847 group,
848 0);
849 #endif
850 lck_mtx_unlock(&vm_purgeable_queue_lock);
851 object->objq.next = 0;
852 object->objq.prev = 0;
853 return &purgeable_queues[i];
854 }
855 }
856 }
857 }
858 lck_mtx_unlock(&vm_purgeable_queue_lock);
859 return 0;
860 }