]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/sync_sema.c
xnu-344.49.tar.gz
[apple/xnu.git] / osfmk / kern / sync_sema.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /*
26 * @OSF_COPYRIGHT@
27 *
28 */
29 /*
30 * File: kern/sync_sema.c
31 * Author: Joseph CaraDonna
32 *
33 * Contains RT distributed semaphore synchronization services.
34 */
35
36 #include <mach/mach_types.h>
37 #include <mach/kern_return.h>
38 #include <mach/semaphore.h>
39 #include <mach/sync_policy.h>
40
41 #include <kern/misc_protos.h>
42 #include <kern/sync_sema.h>
43 #include <kern/spl.h>
44 #include <kern/ipc_kobject.h>
45 #include <kern/ipc_sync.h>
46 #include <kern/ipc_tt.h>
47 #include <kern/thread.h>
48 #include <kern/clock.h>
49 #include <ipc/ipc_port.h>
50 #include <ipc/ipc_space.h>
51 #include <kern/host.h>
52 #include <kern/wait_queue.h>
53 #include <kern/zalloc.h>
54 #include <kern/mach_param.h>
55
56 static unsigned int semaphore_event;
57 #define SEMAPHORE_EVENT ((event64_t)&semaphore_event)
58
59 zone_t semaphore_zone;
60 unsigned int semaphore_max = SEMAPHORE_MAX;
61
62 /*
63 * ROUTINE: semaphore_init [private]
64 *
65 * Initialize the semaphore mechanisms.
66 * Right now, we only need to initialize the semaphore zone.
67 */
68 void
69 semaphore_init(void)
70 {
71 semaphore_zone = zinit(sizeof(struct semaphore),
72 semaphore_max * sizeof(struct semaphore),
73 sizeof(struct semaphore),
74 "semaphores");
75 }
76
77 /*
78 * Routine: semaphore_create
79 *
80 * Creates a semaphore.
81 * The port representing the semaphore is returned as a parameter.
82 */
83 kern_return_t
84 semaphore_create(
85 task_t task,
86 semaphore_t *new_semaphore,
87 int policy,
88 int value)
89 {
90 semaphore_t s = SEMAPHORE_NULL;
91
92
93
94 if (task == TASK_NULL || value < 0 || policy > SYNC_POLICY_MAX) {
95 *new_semaphore = SEMAPHORE_NULL;
96 return KERN_INVALID_ARGUMENT;
97 }
98
99 s = (semaphore_t) zalloc (semaphore_zone);
100
101 if (s == SEMAPHORE_NULL) {
102 *new_semaphore = SEMAPHORE_NULL;
103 return KERN_RESOURCE_SHORTAGE;
104 }
105
106 wait_queue_init(&s->wait_queue, policy); /* also inits lock */
107 s->count = value;
108 s->ref_count = 1;
109
110 /*
111 * Create and initialize the semaphore port
112 */
113 s->port = ipc_port_alloc_kernel();
114 if (s->port == IP_NULL) {
115 /* This will deallocate the semaphore */
116 semaphore_dereference(s);
117 *new_semaphore = SEMAPHORE_NULL;
118 return KERN_RESOURCE_SHORTAGE;
119 }
120
121 ipc_kobject_set (s->port, (ipc_kobject_t) s, IKOT_SEMAPHORE);
122
123 /*
124 * Associate the new semaphore with the task by adding
125 * the new semaphore to the task's semaphore list.
126 *
127 * Associate the task with the new semaphore by having the
128 * semaphores task pointer point to the owning task's structure.
129 */
130 task_lock(task);
131 enqueue_head(&task->semaphore_list, (queue_entry_t) s);
132 task->semaphores_owned++;
133 s->owner = task;
134 s->active = TRUE;
135 task_unlock(task);
136
137 *new_semaphore = s;
138
139 return KERN_SUCCESS;
140 }
141
142 /*
143 * Routine: semaphore_destroy
144 *
145 * Destroys a semaphore. This call will only succeed if the
146 * specified task is the SAME task name specified at the semaphore's
147 * creation.
148 *
149 * All threads currently blocked on the semaphore are awoken. These
150 * threads will return with the KERN_TERMINATED error.
151 */
152 kern_return_t
153 semaphore_destroy(
154 task_t task,
155 semaphore_t semaphore)
156 {
157 int old_count;
158 thread_t thread;
159 spl_t spl_level;
160
161
162 if (task == TASK_NULL || semaphore == SEMAPHORE_NULL)
163 return KERN_INVALID_ARGUMENT;
164
165 /*
166 * Disown semaphore
167 */
168 task_lock(task);
169 if (semaphore->owner != task) {
170 task_unlock(task);
171 return KERN_INVALID_ARGUMENT;
172 }
173 remqueue(&task->semaphore_list, (queue_entry_t) semaphore);
174 semaphore->owner = TASK_NULL;
175 task->semaphores_owned--;
176 task_unlock(task);
177
178 spl_level = splsched();
179 semaphore_lock(semaphore);
180
181 /*
182 * Deactivate semaphore
183 */
184 assert(semaphore->active);
185 semaphore->active = FALSE;
186
187 /*
188 * Wakeup blocked threads
189 */
190 old_count = semaphore->count;
191 semaphore->count = 0;
192
193 if (old_count < 0) {
194 wait_queue_wakeup64_all_locked(&semaphore->wait_queue,
195 SEMAPHORE_EVENT,
196 THREAD_RESTART,
197 TRUE); /* unlock? */
198 } else {
199 semaphore_unlock(semaphore);
200 }
201 splx(spl_level);
202
203 /*
204 * Deallocate
205 *
206 * Drop the semaphore reference, which in turn deallocates the
207 * semaphore structure if the reference count goes to zero.
208 */
209 ipc_port_dealloc_kernel(semaphore->port);
210 semaphore_dereference(semaphore);
211 return KERN_SUCCESS;
212 }
213
214 /*
215 * Routine: semaphore_signal_internal
216 *
217 * Signals the semaphore as direct.
218 * Assumptions:
219 * Semaphore is locked.
220 */
221 kern_return_t
222 semaphore_signal_internal(
223 semaphore_t semaphore,
224 thread_act_t thread_act,
225 int options)
226 {
227 kern_return_t kr;
228 spl_t spl_level;
229
230 spl_level = splsched();
231 semaphore_lock(semaphore);
232
233 if (!semaphore->active) {
234 semaphore_unlock(semaphore);
235 splx(spl_level);
236 return KERN_TERMINATED;
237 }
238
239 if (thread_act != THR_ACT_NULL) {
240 if (semaphore->count < 0) {
241 kr = wait_queue_wakeup64_thread_locked(
242 &semaphore->wait_queue,
243 SEMAPHORE_EVENT,
244 thread_act->thread,
245 THREAD_AWAKENED,
246 TRUE); /* unlock? */
247 } else {
248 semaphore_unlock(semaphore);
249 kr = KERN_NOT_WAITING;
250 }
251 splx(spl_level);
252 return kr;
253 }
254
255 if (options & SEMAPHORE_SIGNAL_ALL) {
256 int old_count = semaphore->count;
257
258 if (old_count < 0) {
259 semaphore->count = 0; /* always reset */
260 kr = wait_queue_wakeup64_all_locked(
261 &semaphore->wait_queue,
262 SEMAPHORE_EVENT,
263 THREAD_AWAKENED,
264 TRUE); /* unlock? */
265 } else {
266 if (options & SEMAPHORE_SIGNAL_PREPOST)
267 semaphore->count++;
268 semaphore_unlock(semaphore);
269 kr = KERN_SUCCESS;
270 }
271 splx(spl_level);
272 return kr;
273 }
274
275 if (semaphore->count < 0) {
276 if (wait_queue_wakeup64_one_locked(
277 &semaphore->wait_queue,
278 SEMAPHORE_EVENT,
279 THREAD_AWAKENED,
280 FALSE) == KERN_SUCCESS) {
281 semaphore_unlock(semaphore);
282 splx(spl_level);
283 return KERN_SUCCESS;
284 } else
285 semaphore->count = 0; /* all waiters gone */
286 }
287
288 if (options & SEMAPHORE_SIGNAL_PREPOST) {
289 semaphore->count++;
290 }
291
292 semaphore_unlock(semaphore);
293 splx(spl_level);
294 return KERN_NOT_WAITING;
295 }
296
297 /*
298 * Routine: semaphore_signal_thread
299 *
300 * If the specified thread_act is blocked on the semaphore, it is
301 * woken up. If a NULL thread_act was supplied, then any one
302 * thread is woken up. Otherwise the caller gets KERN_NOT_WAITING
303 * and the semaphore is unchanged.
304 */
305 kern_return_t
306 semaphore_signal_thread(
307 semaphore_t semaphore,
308 thread_act_t thread_act)
309 {
310 kern_return_t ret;
311
312 if (semaphore == SEMAPHORE_NULL)
313 return KERN_INVALID_ARGUMENT;
314
315 ret = semaphore_signal_internal(semaphore,
316 thread_act,
317 SEMAPHORE_OPTION_NONE);
318 return ret;
319 }
320
321 /*
322 * Routine: semaphore_signal_thread_trap
323 *
324 * Trap interface to the semaphore_signal_thread function.
325 */
326 kern_return_t
327 semaphore_signal_thread_trap(
328 mach_port_name_t sema_name,
329 mach_port_name_t thread_name)
330 {
331
332 semaphore_t semaphore;
333 thread_act_t thread_act;
334 kern_return_t kr;
335
336 /*
337 * MACH_PORT_NULL is not an error. It means that we want to
338 * select any one thread that is already waiting, but not to
339 * pre-post the semaphore.
340 */
341 if (thread_name != MACH_PORT_NULL) {
342 thread_act = port_name_to_act(thread_name);
343 if (thread_act == THR_ACT_NULL)
344 return KERN_INVALID_ARGUMENT;
345 } else
346 thread_act = THR_ACT_NULL;
347
348 kr = port_name_to_semaphore(sema_name, &semaphore);
349 if (kr != KERN_SUCCESS) {
350 act_deallocate(thread_act);
351 return kr;
352 }
353 kr = semaphore_signal_internal(semaphore,
354 thread_act,
355 SEMAPHORE_OPTION_NONE);
356 semaphore_dereference(semaphore);
357 act_deallocate(thread_act);
358 return kr;
359 }
360
361
362
363 /*
364 * Routine: semaphore_signal
365 *
366 * Traditional (in-kernel client and MIG interface) semaphore
367 * signal routine. Most users will access the trap version.
368 *
369 * This interface in not defined to return info about whether
370 * this call found a thread waiting or not. The internal
371 * routines (and future external routines) do. We have to
372 * convert those into plain KERN_SUCCESS returns.
373 */
374 kern_return_t
375 semaphore_signal(
376 semaphore_t semaphore)
377 {
378 kern_return_t kr;
379
380 if (semaphore == SEMAPHORE_NULL)
381 return KERN_INVALID_ARGUMENT;
382
383 kr = semaphore_signal_internal(semaphore,
384 THR_ACT_NULL,
385 SEMAPHORE_SIGNAL_PREPOST);
386 if (kr == KERN_NOT_WAITING)
387 return KERN_SUCCESS;
388 return kr;
389 }
390
391 /*
392 * Routine: semaphore_signal_trap
393 *
394 * Trap interface to the semaphore_signal function.
395 */
396 kern_return_t
397 semaphore_signal_trap(
398 mach_port_name_t sema_name)
399 {
400
401 semaphore_t semaphore;
402 kern_return_t kr;
403
404 kr = port_name_to_semaphore(sema_name, &semaphore);
405 if (kr != KERN_SUCCESS) {
406 return kr;
407 }
408 kr = semaphore_signal_internal(semaphore,
409 THR_ACT_NULL,
410 SEMAPHORE_SIGNAL_PREPOST);
411 semaphore_dereference(semaphore);
412 if (kr == KERN_NOT_WAITING)
413 return KERN_SUCCESS;
414 return kr;
415 }
416
417 /*
418 * Routine: semaphore_signal_all
419 *
420 * Awakens ALL threads currently blocked on the semaphore.
421 * The semaphore count returns to zero.
422 */
423 kern_return_t
424 semaphore_signal_all(
425 semaphore_t semaphore)
426 {
427 kern_return_t kr;
428
429 if (semaphore == SEMAPHORE_NULL)
430 return KERN_INVALID_ARGUMENT;
431
432 kr = semaphore_signal_internal(semaphore,
433 THR_ACT_NULL,
434 SEMAPHORE_SIGNAL_ALL);
435 if (kr == KERN_NOT_WAITING)
436 return KERN_SUCCESS;
437 return kr;
438 }
439
440 /*
441 * Routine: semaphore_signal_all_trap
442 *
443 * Trap interface to the semaphore_signal_all function.
444 */
445 kern_return_t
446 semaphore_signal_all_trap(
447 mach_port_name_t sema_name)
448 {
449
450 semaphore_t semaphore;
451 kern_return_t kr;
452
453 kr = port_name_to_semaphore(sema_name, &semaphore);
454 if (kr != KERN_SUCCESS) {
455 return kr;
456 }
457 kr = semaphore_signal_internal(semaphore,
458 THR_ACT_NULL,
459 SEMAPHORE_SIGNAL_ALL);
460 semaphore_dereference(semaphore);
461 if (kr == KERN_NOT_WAITING)
462 return KERN_SUCCESS;
463 return kr;
464 }
465
466 /*
467 * Routine: semaphore_convert_wait_result
468 *
469 * Generate the return code after a semaphore wait/block. It
470 * takes the wait result as an input and coverts that to an
471 * appropriate result.
472 */
473 kern_return_t
474 semaphore_convert_wait_result(int wait_result)
475 {
476 switch (wait_result) {
477 case THREAD_AWAKENED:
478 return KERN_SUCCESS;
479
480 case THREAD_TIMED_OUT:
481 return KERN_OPERATION_TIMED_OUT;
482
483 case THREAD_INTERRUPTED:
484 return KERN_ABORTED;
485
486 case THREAD_RESTART:
487 return KERN_TERMINATED;
488
489 default:
490 panic("semaphore_block\n");
491 return KERN_FAILURE;
492 }
493 }
494
495 /*
496 * Routine: semaphore_wait_continue
497 *
498 * Common continuation routine after waiting on a semphore.
499 * It returns directly to user space.
500 */
501 void
502 semaphore_wait_continue(void)
503 {
504 thread_t self = current_thread();
505 int wait_result = self->wait_result;
506 void (*caller_cont)(kern_return_t) = self->sth_continuation;
507
508 assert(self->sth_waitsemaphore != SEMAPHORE_NULL);
509 semaphore_dereference(self->sth_waitsemaphore);
510 if (self->sth_signalsemaphore != SEMAPHORE_NULL)
511 semaphore_dereference(self->sth_signalsemaphore);
512
513 assert(caller_cont != (void (*)(kern_return_t))0);
514 (*caller_cont)(semaphore_convert_wait_result(wait_result));
515 }
516
517 /*
518 * Routine: semaphore_timedwait_continue
519 *
520 * Common continuation routine after doing a timed wait on a
521 * semaphore. It clears the timer before calling the semaphore
522 * routine saved in the thread struct.
523 */
524 void
525 semaphore_timedwait_continue(void)
526 {
527 thread_t self = current_thread();
528 int wait_result = self->wait_result;
529 void (*caller_cont)(kern_return_t) = self->sth_continuation;
530
531 if (wait_result != THREAD_TIMED_OUT)
532 thread_cancel_timer();
533
534 assert(self->sth_waitsemaphore != SEMAPHORE_NULL);
535 semaphore_dereference(self->sth_waitsemaphore);
536 if (self->sth_signalsemaphore != SEMAPHORE_NULL)
537 semaphore_dereference(self->sth_signalsemaphore);
538
539 assert(caller_cont != (void (*)(kern_return_t))0);
540 (*caller_cont)(semaphore_convert_wait_result(wait_result));
541 }
542
543
544 /*
545 * Routine: semaphore_wait_internal
546 *
547 * Decrements the semaphore count by one. If the count is
548 * negative after the decrement, the calling thread blocks
549 * (possibly at a continuation and/or with a timeout).
550 *
551 * Assumptions:
552 * The reference
553 * A reference is held on the signal semaphore.
554 */
555 kern_return_t
556 semaphore_wait_internal(
557 semaphore_t wait_semaphore,
558 semaphore_t signal_semaphore,
559 mach_timespec_t *wait_timep,
560 void (*caller_cont)(kern_return_t))
561 {
562 void (*continuation)(void);
563 uint64_t abstime, nsinterval;
564 boolean_t nonblocking;
565 int wait_result;
566 spl_t spl_level;
567 kern_return_t kr = KERN_ALREADY_WAITING;
568
569 spl_level = splsched();
570 semaphore_lock(wait_semaphore);
571
572 /*
573 * Decide if we really have to wait.
574 */
575 nonblocking = (wait_timep != (mach_timespec_t *)0) ?
576 (wait_timep->tv_sec == 0 && wait_timep->tv_nsec == 0) :
577 FALSE;
578
579 if (!wait_semaphore->active) {
580 kr = KERN_TERMINATED;
581 } else if (wait_semaphore->count > 0) {
582 wait_semaphore->count--;
583 kr = KERN_SUCCESS;
584 } else if (nonblocking) {
585 kr = KERN_OPERATION_TIMED_OUT;
586 } else {
587 wait_semaphore->count = -1; /* we don't keep an actual count */
588 (void)wait_queue_assert_wait64_locked(
589 &wait_semaphore->wait_queue,
590 SEMAPHORE_EVENT,
591 THREAD_ABORTSAFE,
592 FALSE); /* unlock? */
593 }
594 semaphore_unlock(wait_semaphore);
595 splx(spl_level);
596
597 /*
598 * wait_semaphore is unlocked so we are free to go ahead and
599 * signal the signal_semaphore (if one was provided).
600 */
601 if (signal_semaphore != SEMAPHORE_NULL) {
602 kern_return_t signal_kr;
603
604 /*
605 * lock the signal semaphore reference we got and signal it.
606 * This will NOT block (we cannot block after having asserted
607 * our intention to wait above).
608 */
609 signal_kr = semaphore_signal_internal(signal_semaphore,
610 THR_ACT_NULL,
611 SEMAPHORE_SIGNAL_PREPOST);
612
613 if (signal_kr == KERN_NOT_WAITING)
614 signal_kr = KERN_SUCCESS;
615 else if (signal_kr == KERN_TERMINATED) {
616 /*
617 * Uh!Oh! The semaphore we were to signal died.
618 * We have to get ourselves out of the wait in
619 * case we get stuck here forever (it is assumed
620 * that the semaphore we were posting is gating
621 * the decision by someone else to post the
622 * semaphore we are waiting on). People will
623 * discover the other dead semaphore soon enough.
624 * If we got out of the wait cleanly (someone
625 * already posted a wakeup to us) then return that
626 * (most important) result. Otherwise,
627 * return the KERN_TERMINATED status.
628 */
629 thread_t self = current_thread();
630
631 clear_wait(self, THREAD_INTERRUPTED);
632 kr = semaphore_convert_wait_result(self->wait_result);
633 if (kr == KERN_ABORTED)
634 kr = KERN_TERMINATED;
635 }
636 }
637
638 /*
639 * If we had an error, or we didn't really need to wait we can
640 * return now that we have signalled the signal semaphore.
641 */
642 if (kr != KERN_ALREADY_WAITING)
643 return kr;
644
645 /*
646 * If it is a timed wait, go ahead and set up the timer.
647 */
648 if (wait_timep != (mach_timespec_t *)0) {
649 clock_interval_to_absolutetime_interval(wait_timep->tv_sec,
650 NSEC_PER_SEC,
651 &abstime);
652 clock_interval_to_absolutetime_interval(wait_timep->tv_nsec,
653 1,
654 &nsinterval);
655 abstime += nsinterval;
656 clock_absolutetime_interval_to_deadline(abstime, &abstime);
657 thread_set_timer_deadline(abstime);
658 continuation = semaphore_timedwait_continue;
659 } else {
660 continuation = semaphore_wait_continue;
661 }
662
663 /*
664 * Now, we can block. If the caller supplied a continuation
665 * pointer of his own for after the block, block with the
666 * appropriate semaphore continuation. Thiswill gather the
667 * semaphore results, release references on the semaphore(s),
668 * and then call the caller's continuation.
669 */
670 if (caller_cont) {
671 thread_t self = current_thread();
672
673 self->sth_continuation = caller_cont;
674 self->sth_waitsemaphore = wait_semaphore;
675 self->sth_signalsemaphore = signal_semaphore;
676 wait_result = thread_block(continuation);
677 } else {
678 wait_result = thread_block(THREAD_CONTINUE_NULL);
679 }
680
681 /*
682 * If we came back here (not continuation case) cancel
683 * any pending timers, convert the wait result to an
684 * appropriate semaphore return value, and then return
685 * that.
686 */
687 if (wait_timep && (wait_result != THREAD_TIMED_OUT))
688 thread_cancel_timer();
689
690 return (semaphore_convert_wait_result(wait_result));
691 }
692
693
694 /*
695 * Routine: semaphore_wait
696 *
697 * Traditional (non-continuation) interface presented to
698 * in-kernel clients to wait on a semaphore.
699 */
700 kern_return_t
701 semaphore_wait(
702 semaphore_t semaphore)
703 {
704
705 if (semaphore == SEMAPHORE_NULL)
706 return KERN_INVALID_ARGUMENT;
707
708 return(semaphore_wait_internal(semaphore,
709 SEMAPHORE_NULL,
710 (mach_timespec_t *)0,
711 (void (*)(kern_return_t))0));
712 }
713
714 /*
715 * Trap: semaphore_wait_trap
716 *
717 * Trap version of semaphore wait. Called on behalf of user-level
718 * clients.
719 */
720 kern_return_t
721 semaphore_wait_trap(
722 mach_port_name_t name)
723 {
724 semaphore_t semaphore;
725 kern_return_t kr;
726
727 kr = port_name_to_semaphore(name, &semaphore);
728 if (kr != KERN_SUCCESS)
729 return kr;
730
731 kr = semaphore_wait_internal(semaphore,
732 SEMAPHORE_NULL,
733 (mach_timespec_t *)0,
734 thread_syscall_return);
735 semaphore_dereference(semaphore);
736 return kr;
737 }
738
739 /*
740 * Routine: semaphore_timedwait
741 *
742 * Traditional (non-continuation) interface presented to
743 * in-kernel clients to wait on a semaphore with a timeout.
744 *
745 * A timeout of {0,0} is considered non-blocking.
746 */
747 kern_return_t
748 semaphore_timedwait(
749 semaphore_t semaphore,
750 mach_timespec_t wait_time)
751 {
752 if (semaphore == SEMAPHORE_NULL)
753 return KERN_INVALID_ARGUMENT;
754
755 if(BAD_MACH_TIMESPEC(&wait_time))
756 return KERN_INVALID_VALUE;
757
758 return (semaphore_wait_internal(semaphore,
759 SEMAPHORE_NULL,
760 &wait_time,
761 (void(*)(kern_return_t))0));
762
763 }
764
765 /*
766 * Trap: semaphore_timedwait_trap
767 *
768 * Trap version of a semaphore_timedwait. The timeout parameter
769 * is passed in two distinct parts and re-assembled on this side
770 * of the trap interface (to accomodate calling conventions that
771 * pass structures as pointers instead of inline in registers without
772 * having to add a copyin).
773 *
774 * A timeout of {0,0} is considered non-blocking.
775 */
776 kern_return_t
777 semaphore_timedwait_trap(
778 mach_port_name_t name,
779 unsigned int sec,
780 clock_res_t nsec)
781 {
782 semaphore_t semaphore;
783 mach_timespec_t wait_time;
784 kern_return_t kr;
785
786 wait_time.tv_sec = sec;
787 wait_time.tv_nsec = nsec;
788 if(BAD_MACH_TIMESPEC(&wait_time))
789 return KERN_INVALID_VALUE;
790
791 kr = port_name_to_semaphore(name, &semaphore);
792 if (kr != KERN_SUCCESS)
793 return kr;
794
795 kr = semaphore_wait_internal(semaphore,
796 SEMAPHORE_NULL,
797 &wait_time,
798 thread_syscall_return);
799 semaphore_dereference(semaphore);
800 return kr;
801 }
802
803 /*
804 * Routine: semaphore_wait_signal
805 *
806 * Atomically register a wait on a semaphore and THEN signal
807 * another. This is the in-kernel entry point that does not
808 * block at a continuation and does not free a signal_semaphore
809 * reference.
810 */
811 kern_return_t
812 semaphore_wait_signal(
813 semaphore_t wait_semaphore,
814 semaphore_t signal_semaphore)
815 {
816 if (wait_semaphore == SEMAPHORE_NULL)
817 return KERN_INVALID_ARGUMENT;
818
819 return(semaphore_wait_internal(wait_semaphore,
820 signal_semaphore,
821 (mach_timespec_t *)0,
822 (void(*)(kern_return_t))0));
823 }
824
825 /*
826 * Trap: semaphore_wait_signal_trap
827 *
828 * Atomically register a wait on a semaphore and THEN signal
829 * another. This is the trap version from user space.
830 */
831 kern_return_t
832 semaphore_wait_signal_trap(
833 mach_port_name_t wait_name,
834 mach_port_name_t signal_name)
835 {
836 semaphore_t wait_semaphore;
837 semaphore_t signal_semaphore;
838 kern_return_t kr;
839
840 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
841 if (kr != KERN_SUCCESS)
842 return kr;
843
844 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
845 if (kr != KERN_SUCCESS) {
846 semaphore_dereference(signal_semaphore);
847 return kr;
848 }
849
850 kr = semaphore_wait_internal(wait_semaphore,
851 signal_semaphore,
852 (mach_timespec_t *)0,
853 thread_syscall_return);
854
855 semaphore_dereference(wait_semaphore);
856 semaphore_dereference(signal_semaphore);
857 return kr;
858 }
859
860
861 /*
862 * Routine: semaphore_timedwait_signal
863 *
864 * Atomically register a wait on a semaphore and THEN signal
865 * another. This is the in-kernel entry point that does not
866 * block at a continuation.
867 *
868 * A timeout of {0,0} is considered non-blocking.
869 */
870 kern_return_t
871 semaphore_timedwait_signal(
872 semaphore_t wait_semaphore,
873 semaphore_t signal_semaphore,
874 mach_timespec_t wait_time)
875 {
876 if (wait_semaphore == SEMAPHORE_NULL)
877 return KERN_INVALID_ARGUMENT;
878
879 if(BAD_MACH_TIMESPEC(&wait_time))
880 return KERN_INVALID_VALUE;
881
882 return(semaphore_wait_internal(wait_semaphore,
883 signal_semaphore,
884 &wait_time,
885 (void(*)(kern_return_t))0));
886 }
887
888 /*
889 * Trap: semaphore_timedwait_signal_trap
890 *
891 * Atomically register a timed wait on a semaphore and THEN signal
892 * another. This is the trap version from user space.
893 */
894 kern_return_t
895 semaphore_timedwait_signal_trap(
896 mach_port_name_t wait_name,
897 mach_port_name_t signal_name,
898 unsigned int sec,
899 clock_res_t nsec)
900 {
901 semaphore_t wait_semaphore;
902 semaphore_t signal_semaphore;
903 mach_timespec_t wait_time;
904 kern_return_t kr;
905
906 wait_time.tv_sec = sec;
907 wait_time.tv_nsec = nsec;
908 if(BAD_MACH_TIMESPEC(&wait_time))
909 return KERN_INVALID_VALUE;
910
911 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
912 if (kr != KERN_SUCCESS)
913 return kr;
914
915 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
916 if (kr != KERN_SUCCESS) {
917 semaphore_dereference(signal_semaphore);
918 return kr;
919 }
920
921 kr = semaphore_wait_internal(wait_semaphore,
922 signal_semaphore,
923 &wait_time,
924 thread_syscall_return);
925
926 semaphore_dereference(wait_semaphore);
927 semaphore_dereference(signal_semaphore);
928 return kr;
929 }
930
931
932 /*
933 * Routine: semaphore_reference
934 *
935 * Take out a reference on a semaphore. This keeps the data structure
936 * in existence (but the semaphore may be deactivated).
937 */
938 void
939 semaphore_reference(
940 semaphore_t semaphore)
941 {
942 spl_t spl_level;
943
944 spl_level = splsched();
945 semaphore_lock(semaphore);
946
947 semaphore->ref_count++;
948
949 semaphore_unlock(semaphore);
950 splx(spl_level);
951 }
952
953 /*
954 * Routine: semaphore_dereference
955 *
956 * Release a reference on a semaphore. If this is the last reference,
957 * the semaphore data structure is deallocated.
958 */
959 void
960 semaphore_dereference(
961 semaphore_t semaphore)
962 {
963 int ref_count;
964 spl_t spl_level;
965
966 if (semaphore != NULL) {
967 spl_level = splsched();
968 semaphore_lock(semaphore);
969
970 ref_count = --(semaphore->ref_count);
971
972 semaphore_unlock(semaphore);
973 splx(spl_level);
974
975 if (ref_count == 0) {
976 assert(wait_queue_empty(&semaphore->wait_queue));
977 zfree(semaphore_zone, (vm_offset_t)semaphore);
978 }
979 }
980 }