]> git.saurik.com Git - apple/xnu.git/blob - bsd/miscfs/nullfs/null_vnops.c
xnu-344.49.tar.gz
[apple/xnu.git] / bsd / miscfs / nullfs / null_vnops.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
26 /*
27 * Copyright (c) 1992, 1993
28 * The Regents of the University of California. All rights reserved.
29 *
30 * This code is derived from software contributed to Berkeley by
31 * John Heidemann of the UCLA Ficus project.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
62 *
63 * Ancestors:
64 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
65 * ...and...
66 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
67 */
68
69 /*
70 * Null Layer
71 *
72 * (See mount_null(8) for more information.)
73 *
74 * The null layer duplicates a portion of the file system
75 * name space under a new name. In this respect, it is
76 * similar to the loopback file system. It differs from
77 * the loopback fs in two respects: it is implemented using
78 * a stackable layers techniques, and it's "null-node"s stack above
79 * all lower-layer vnodes, not just over directory vnodes.
80 *
81 * The null layer has two purposes. First, it serves as a demonstration
82 * of layering by proving a layer which does nothing. (It actually
83 * does everything the loopback file system does, which is slightly
84 * more than nothing.) Second, the null layer can serve as a prototype
85 * layer. Since it provides all necessary layer framework,
86 * new file system layers can be created very easily be starting
87 * with a null layer.
88 *
89 * The remainder of this man page examines the null layer as a basis
90 * for constructing new layers.
91 *
92 *
93 * INSTANTIATING NEW NULL LAYERS
94 *
95 * New null layers are created with mount_null(8).
96 * Mount_null(8) takes two arguments, the pathname
97 * of the lower vfs (target-pn) and the pathname where the null
98 * layer will appear in the namespace (alias-pn). After
99 * the null layer is put into place, the contents
100 * of target-pn subtree will be aliased under alias-pn.
101 *
102 *
103 * OPERATION OF A NULL LAYER
104 *
105 * The null layer is the minimum file system layer,
106 * simply bypassing all possible operations to the lower layer
107 * for processing there. The majority of its activity centers
108 * on the bypass routine, though which nearly all vnode operations
109 * pass.
110 *
111 * The bypass routine accepts arbitrary vnode operations for
112 * handling by the lower layer. It begins by examing vnode
113 * operation arguments and replacing any null-nodes by their
114 * lower-layer equivlants. It then invokes the operation
115 * on the lower layer. Finally, it replaces the null-nodes
116 * in the arguments and, if a vnode is return by the operation,
117 * stacks a null-node on top of the returned vnode.
118 *
119 * Although bypass handles most operations, vop_getattr, vop_lock,
120 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
121 * bypassed. Vop_getattr must change the fsid being returned.
122 * Vop_lock and vop_unlock must handle any locking for the
123 * current vnode as well as pass the lock request down.
124 * Vop_inactive and vop_reclaim are not bypassed so that
125 * they can handle freeing null-layer specific data. Vop_print
126 * is not bypassed to avoid excessive debugging information.
127 * Also, certain vnode operations change the locking state within
128 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
129 * and symlink). Ideally these operations should not change the
130 * lock state, but should be changed to let the caller of the
131 * function unlock them. Otherwise all intermediate vnode layers
132 * (such as union, umapfs, etc) must catch these functions to do
133 * the necessary locking at their layer.
134 *
135 *
136 * INSTANTIATING VNODE STACKS
137 *
138 * Mounting associates the null layer with a lower layer,
139 * effect stacking two VFSes. Vnode stacks are instead
140 * created on demand as files are accessed.
141 *
142 * The initial mount creates a single vnode stack for the
143 * root of the new null layer. All other vnode stacks
144 * are created as a result of vnode operations on
145 * this or other null vnode stacks.
146 *
147 * New vnode stacks come into existance as a result of
148 * an operation which returns a vnode.
149 * The bypass routine stacks a null-node above the new
150 * vnode before returning it to the caller.
151 *
152 * For example, imagine mounting a null layer with
153 * "mount_null /usr/include /dev/layer/null".
154 * Changing directory to /dev/layer/null will assign
155 * the root null-node (which was created when the null layer was mounted).
156 * Now consider opening "sys". A vop_lookup would be
157 * done on the root null-node. This operation would bypass through
158 * to the lower layer which would return a vnode representing
159 * the UFS "sys". Null_bypass then builds a null-node
160 * aliasing the UFS "sys" and returns this to the caller.
161 * Later operations on the null-node "sys" will repeat this
162 * process when constructing other vnode stacks.
163 *
164 *
165 * CREATING OTHER FILE SYSTEM LAYERS
166 *
167 * One of the easiest ways to construct new file system layers is to make
168 * a copy of the null layer, rename all files and variables, and
169 * then begin modifing the copy. Sed can be used to easily rename
170 * all variables.
171 *
172 * The umap layer is an example of a layer descended from the
173 * null layer.
174 *
175 *
176 * INVOKING OPERATIONS ON LOWER LAYERS
177 *
178 * There are two techniques to invoke operations on a lower layer
179 * when the operation cannot be completely bypassed. Each method
180 * is appropriate in different situations. In both cases,
181 * it is the responsibility of the aliasing layer to make
182 * the operation arguments "correct" for the lower layer
183 * by mapping an vnode arguments to the lower layer.
184 *
185 * The first approach is to call the aliasing layer's bypass routine.
186 * This method is most suitable when you wish to invoke the operation
187 * currently being hanldled on the lower layer. It has the advantage
188 * that the bypass routine already must do argument mapping.
189 * An example of this is null_getattrs in the null layer.
190 *
191 * A second approach is to directly invoked vnode operations on
192 * the lower layer with the VOP_OPERATIONNAME interface.
193 * The advantage of this method is that it is easy to invoke
194 * arbitrary operations on the lower layer. The disadvantage
195 * is that vnodes arguments must be manualy mapped.
196 *
197 */
198
199 #include <sys/param.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/time.h>
203 #include <sys/types.h>
204 #include <sys/vnode.h>
205 #include <sys/mount.h>
206 #include <sys/namei.h>
207 #include <sys/malloc.h>
208 #include <sys/buf.h>
209 #include <miscfs/nullfs/null.h>
210
211
212 int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */
213
214 /*
215 * This is the 10-Apr-92 bypass routine.
216 * This version has been optimized for speed, throwing away some
217 * safety checks. It should still always work, but it's not as
218 * robust to programmer errors.
219 * Define SAFETY to include some error checking code.
220 *
221 * In general, we map all vnodes going down and unmap them on the way back.
222 * As an exception to this, vnodes can be marked "unmapped" by setting
223 * the Nth bit in operation's vdesc_flags.
224 *
225 * Also, some BSD vnode operations have the side effect of vrele'ing
226 * their arguments. With stacking, the reference counts are held
227 * by the upper node, not the lower one, so we must handle these
228 * side-effects here. This is not of concern in Sun-derived systems
229 * since there are no such side-effects.
230 *
231 * This makes the following assumptions:
232 * - only one returned vpp
233 * - no INOUT vpp's (Sun's vop_open has one of these)
234 * - the vnode operation vector of the first vnode should be used
235 * to determine what implementation of the op should be invoked
236 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
237 * problems on rmdir'ing mount points and renaming?)
238 */
239 int
240 null_bypass(ap)
241 struct vop_generic_args /* {
242 struct vnodeop_desc *a_desc;
243 <other random data follows, presumably>
244 } */ *ap;
245 {
246 extern int (**null_vnodeop_p)(void *); /* not extern, really "forward" */
247 register struct vnode **this_vp_p;
248 int error;
249 struct vnode *old_vps[VDESC_MAX_VPS];
250 struct vnode **vps_p[VDESC_MAX_VPS];
251 struct vnode ***vppp;
252 struct vnodeop_desc *descp = ap->a_desc;
253 int reles, i;
254
255 if (null_bug_bypass)
256 printf ("null_bypass: %s\n", descp->vdesc_name);
257
258 #ifdef SAFETY
259 /*
260 * We require at least one vp.
261 */
262 if (descp->vdesc_vp_offsets == NULL ||
263 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
264 panic ("null_bypass: no vp's in map.\n");
265 #endif
266
267 /*
268 * Map the vnodes going in.
269 * Later, we'll invoke the operation based on
270 * the first mapped vnode's operation vector.
271 */
272 reles = descp->vdesc_flags;
273 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
274 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
275 break; /* bail out at end of list */
276 vps_p[i] = this_vp_p =
277 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
278 /*
279 * We're not guaranteed that any but the first vnode
280 * are of our type. Check for and don't map any
281 * that aren't. (We must always map first vp or vclean fails.)
282 */
283 if (i && (*this_vp_p == NULL ||
284 (*this_vp_p)->v_op != null_vnodeop_p)) {
285 old_vps[i] = NULL;
286 } else {
287 old_vps[i] = *this_vp_p;
288 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
289 /*
290 * XXX - Several operations have the side effect
291 * of vrele'ing their vp's. We must account for
292 * that. (This should go away in the future.)
293 */
294 if (reles & 1)
295 VREF(*this_vp_p);
296 }
297
298 }
299
300 /*
301 * Call the operation on the lower layer
302 * with the modified argument structure.
303 */
304 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
305
306 /*
307 * Maintain the illusion of call-by-value
308 * by restoring vnodes in the argument structure
309 * to their original value.
310 */
311 reles = descp->vdesc_flags;
312 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
313 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
314 break; /* bail out at end of list */
315 if (old_vps[i]) {
316 *(vps_p[i]) = old_vps[i];
317 if (reles & 1)
318 vrele(*(vps_p[i]));
319 }
320 }
321
322 /*
323 * Map the possible out-going vpp
324 * (Assumes that the lower layer always returns
325 * a VREF'ed vpp unless it gets an error.)
326 */
327 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
328 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
329 !error) {
330 /*
331 * XXX - even though some ops have vpp returned vp's,
332 * several ops actually vrele this before returning.
333 * We must avoid these ops.
334 * (This should go away when these ops are regularized.)
335 */
336 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
337 goto out;
338 vppp = VOPARG_OFFSETTO(struct vnode***,
339 descp->vdesc_vpp_offset,ap);
340 error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
341 }
342
343 out:
344 return (error);
345 }
346
347 /*
348 * We have to carry on the locking protocol on the null layer vnodes
349 * as we progress through the tree. We also have to enforce read-only
350 * if this layer is mounted read-only.
351 */
352 null_lookup(ap)
353 struct vop_lookup_args /* {
354 struct vnode * a_dvp;
355 struct vnode ** a_vpp;
356 struct componentname * a_cnp;
357 } */ *ap;
358 {
359 struct componentname *cnp = ap->a_cnp;
360 struct proc *p = cnp->cn_proc;
361 int flags = cnp->cn_flags;
362 struct vop_lock_args lockargs;
363 struct vop_unlock_args unlockargs;
364 struct vnode *dvp, *vp;
365 int error;
366
367 if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
368 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
369 return (EROFS);
370 error = null_bypass(ap);
371 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
372 (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
373 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
374 error = EROFS;
375 /*
376 * We must do the same locking and unlocking at this layer as
377 * is done in the layers below us. We could figure this out
378 * based on the error return and the LASTCN, LOCKPARENT, and
379 * LOCKLEAF flags. However, it is more expidient to just find
380 * out the state of the lower level vnodes and set ours to the
381 * same state.
382 */
383 dvp = ap->a_dvp;
384 vp = *ap->a_vpp;
385 if (dvp == vp)
386 return (error);
387 if (!VOP_ISLOCKED(dvp)) {
388 unlockargs.a_vp = dvp;
389 unlockargs.a_flags = 0;
390 unlockargs.a_p = p;
391 vop_nounlock(&unlockargs);
392 }
393 if (vp != NULL && VOP_ISLOCKED(vp)) {
394 lockargs.a_vp = vp;
395 lockargs.a_flags = LK_SHARED;
396 lockargs.a_p = p;
397 vop_nolock(&lockargs);
398 }
399 return (error);
400 }
401
402 /*
403 * Setattr call. Disallow write attempts if the layer is mounted read-only.
404 */
405 int
406 null_setattr(ap)
407 struct vop_setattr_args /* {
408 struct vnodeop_desc *a_desc;
409 struct vnode *a_vp;
410 struct vattr *a_vap;
411 struct ucred *a_cred;
412 struct proc *a_p;
413 } */ *ap;
414 {
415 struct vnode *vp = ap->a_vp;
416 struct vattr *vap = ap->a_vap;
417
418 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
419 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
420 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
421 (vp->v_mount->mnt_flag & MNT_RDONLY))
422 return (EROFS);
423 if (vap->va_size != VNOVAL) {
424 switch (vp->v_type) {
425 case VDIR:
426 return (EISDIR);
427 case VCHR:
428 case VBLK:
429 case VSOCK:
430 case VFIFO:
431 return (0);
432 case VREG:
433 case VLNK:
434 default:
435 /*
436 * Disallow write attempts if the filesystem is
437 * mounted read-only.
438 */
439 if (vp->v_mount->mnt_flag & MNT_RDONLY)
440 return (EROFS);
441 }
442 }
443 return (null_bypass(ap));
444 }
445
446 /*
447 * We handle getattr only to change the fsid.
448 */
449 int
450 null_getattr(ap)
451 struct vop_getattr_args /* {
452 struct vnode *a_vp;
453 struct vattr *a_vap;
454 struct ucred *a_cred;
455 struct proc *a_p;
456 } */ *ap;
457 {
458 int error;
459
460 if (error = null_bypass(ap))
461 return (error);
462 /* Requires that arguments be restored. */
463 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
464 return (0);
465 }
466
467 int
468 null_access(ap)
469 struct vop_access_args /* {
470 struct vnode *a_vp;
471 int a_mode;
472 struct ucred *a_cred;
473 struct proc *a_p;
474 } */ *ap;
475 {
476 struct vnode *vp = ap->a_vp;
477 mode_t mode = ap->a_mode;
478
479 /*
480 * Disallow write attempts on read-only layers;
481 * unless the file is a socket, fifo, or a block or
482 * character device resident on the file system.
483 */
484 if (mode & VWRITE) {
485 switch (vp->v_type) {
486 case VDIR:
487 case VLNK:
488 case VREG:
489 if (vp->v_mount->mnt_flag & MNT_RDONLY)
490 return (EROFS);
491 break;
492 }
493 }
494 return (null_bypass(ap));
495 }
496
497 /*
498 * We need to process our own vnode lock and then clear the
499 * interlock flag as it applies only to our vnode, not the
500 * vnodes below us on the stack.
501 */
502 int
503 null_lock(ap)
504 struct vop_lock_args /* {
505 struct vnode *a_vp;
506 int a_flags;
507 struct proc *a_p;
508 } */ *ap;
509 {
510
511 vop_nolock(ap);
512 if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
513 return (0);
514 ap->a_flags &= ~LK_INTERLOCK;
515 return (null_bypass(ap));
516 }
517
518 /*
519 * We need to process our own vnode unlock and then clear the
520 * interlock flag as it applies only to our vnode, not the
521 * vnodes below us on the stack.
522 */
523 int
524 null_unlock(ap)
525 struct vop_unlock_args /* {
526 struct vnode *a_vp;
527 int a_flags;
528 struct proc *a_p;
529 } */ *ap;
530 {
531 struct vnode *vp = ap->a_vp;
532
533 vop_nounlock(ap);
534 ap->a_flags &= ~LK_INTERLOCK;
535 return (null_bypass(ap));
536 }
537
538 int
539 null_inactive(ap)
540 struct vop_inactive_args /* {
541 struct vnode *a_vp;
542 struct proc *a_p;
543 } */ *ap;
544 {
545 /*
546 * Do nothing (and _don't_ bypass).
547 * Wait to vrele lowervp until reclaim,
548 * so that until then our null_node is in the
549 * cache and reusable.
550 *
551 * NEEDSWORK: Someday, consider inactive'ing
552 * the lowervp and then trying to reactivate it
553 * with capabilities (v_id)
554 * like they do in the name lookup cache code.
555 * That's too much work for now.
556 */
557 VOP_UNLOCK(ap->a_vp, 0, ap->a_p);
558 return (0);
559 }
560
561 int
562 null_reclaim(ap)
563 struct vop_reclaim_args /* {
564 struct vnode *a_vp;
565 struct proc *a_p;
566 } */ *ap;
567 {
568 struct vnode *vp = ap->a_vp;
569 struct null_node *xp = VTONULL(vp);
570 struct vnode *lowervp = xp->null_lowervp;
571
572 /*
573 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
574 * so we can't call VOPs on ourself.
575 */
576 /* After this assignment, this node will not be re-used. */
577 xp->null_lowervp = NULL;
578 LIST_REMOVE(xp, null_hash);
579 FREE(vp->v_data, M_TEMP);
580 vp->v_data = NULL;
581 vrele (lowervp);
582 return (0);
583 }
584
585 int
586 null_print(ap)
587 struct vop_print_args /* {
588 struct vnode *a_vp;
589 } */ *ap;
590 {
591 register struct vnode *vp = ap->a_vp;
592 printf ("\ttag VT_NULLFS, vp=%x, lowervp=%x\n", vp, NULLVPTOLOWERVP(vp));
593 return (0);
594 }
595
596 /*
597 * XXX - vop_strategy must be hand coded because it has no
598 * vnode in its arguments.
599 * This goes away with a merged VM/buffer cache.
600 */
601 int
602 null_strategy(ap)
603 struct vop_strategy_args /* {
604 struct buf *a_bp;
605 } */ *ap;
606 {
607 struct buf *bp = ap->a_bp;
608 int error;
609 struct vnode *savedvp;
610
611 savedvp = bp->b_vp;
612 bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
613
614 error = VOP_STRATEGY(bp);
615
616 bp->b_vp = savedvp;
617
618 return (error);
619 }
620
621 /*
622 * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
623 * vnode in its arguments.
624 * This goes away with a merged VM/buffer cache.
625 */
626 int
627 null_bwrite(ap)
628 struct vop_bwrite_args /* {
629 struct buf *a_bp;
630 } */ *ap;
631 {
632 struct buf *bp = ap->a_bp;
633 int error;
634 struct vnode *savedvp;
635
636 savedvp = bp->b_vp;
637 bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
638
639 error = VOP_BWRITE(bp);
640
641 bp->b_vp = savedvp;
642
643 return (error);
644 }
645
646 /*
647 * Global vfs data structures
648 */
649
650 #define VOPFUNC int (*)(void *)
651
652 int (**null_vnodeop_p)(void *);
653 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
654 { &vop_default_desc, (VOPFUNC)null_bypass },
655
656 { &vop_lookup_desc, (VOPFUNC)null_lookup },
657 { &vop_setattr_desc, (VOPFUNC)null_setattr },
658 { &vop_getattr_desc, (VOPFUNC)null_getattr },
659 { &vop_access_desc, (VOPFUNC)null_access },
660 { &vop_lock_desc, (VOPFUNC)null_lock },
661 { &vop_unlock_desc, (VOPFUNC)null_unlock },
662 { &vop_inactive_desc, (VOPFUNC)null_inactive },
663 { &vop_reclaim_desc, (VOPFUNC)null_reclaim },
664 { &vop_print_desc, (VOPFUNC)null_print },
665
666 { &vop_strategy_desc, (VOPFUNC)null_strategy },
667 { &vop_bwrite_desc, (VOPFUNC)null_bwrite },
668
669 { (struct vnodeop_desc*)NULL, (int(*)())NULL }
670 };
671 struct vnodeopv_desc null_vnodeop_opv_desc =
672 { &null_vnodeop_p, null_vnodeop_entries };