]> git.saurik.com Git - apple/xnu.git/blob - libkern/zlib/trees.c
xnu-3247.1.106.tar.gz
[apple/xnu.git] / libkern / zlib / trees.c
1 /*
2 * Copyright (c) 2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* trees.c -- output deflated data using Huffman coding
29 * Copyright (C) 1995-2005 Jean-loup Gailly
30 * For conditions of distribution and use, see copyright notice in zlib.h
31 */
32
33 /*
34 * ALGORITHM
35 *
36 * The "deflation" process uses several Huffman trees. The more
37 * common source values are represented by shorter bit sequences.
38 *
39 * Each code tree is stored in a compressed form which is itself
40 * a Huffman encoding of the lengths of all the code strings (in
41 * ascending order by source values). The actual code strings are
42 * reconstructed from the lengths in the inflate process, as described
43 * in the deflate specification.
44 *
45 * REFERENCES
46 *
47 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
48 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
49 *
50 * Storer, James A.
51 * Data Compression: Methods and Theory, pp. 49-50.
52 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
53 *
54 * Sedgewick, R.
55 * Algorithms, p290.
56 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
57 */
58
59 /* @(#) $Id$ */
60
61 /* #define GEN_TREES_H */
62
63 #include "deflate.h"
64
65 #ifdef DEBUG
66 # include <ctype.h>
67 #endif
68
69 /* ===========================================================================
70 * Constants
71 */
72
73 #define MAX_BL_BITS 7
74 /* Bit length codes must not exceed MAX_BL_BITS bits */
75
76 #define END_BLOCK 256
77 /* end of block literal code */
78
79 #define REP_3_6 16
80 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
81
82 #define REPZ_3_10 17
83 /* repeat a zero length 3-10 times (3 bits of repeat count) */
84
85 #define REPZ_11_138 18
86 /* repeat a zero length 11-138 times (7 bits of repeat count) */
87
88 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
89 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
90
91 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
92 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
93
94 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
95 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
96
97 local const uch bl_order[BL_CODES]
98 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
99 /* The lengths of the bit length codes are sent in order of decreasing
100 * probability, to avoid transmitting the lengths for unused bit length codes.
101 */
102
103 #define Buf_size (8 * 2*sizeof(char))
104 /* Number of bits used within bi_buf. (bi_buf might be implemented on
105 * more than 16 bits on some systems.)
106 */
107
108 /* ===========================================================================
109 * Local data. These are initialized only once.
110 */
111
112 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
113
114 #if defined(GEN_TREES_H) || !defined(STDC)
115 /* non ANSI compilers may not accept trees.h */
116
117 local ct_data static_ltree[L_CODES+2];
118 /* The static literal tree. Since the bit lengths are imposed, there is no
119 * need for the L_CODES extra codes used during heap construction. However
120 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
121 * below).
122 */
123
124 local ct_data static_dtree[D_CODES];
125 /* The static distance tree. (Actually a trivial tree since all codes use
126 * 5 bits.)
127 */
128
129 uch _dist_code[DIST_CODE_LEN];
130 /* Distance codes. The first 256 values correspond to the distances
131 * 3 .. 258, the last 256 values correspond to the top 8 bits of
132 * the 15 bit distances.
133 */
134
135 uch _length_code[MAX_MATCH-MIN_MATCH+1];
136 /* length code for each normalized match length (0 == MIN_MATCH) */
137
138 local int base_length[LENGTH_CODES];
139 /* First normalized length for each code (0 = MIN_MATCH) */
140
141 local int base_dist[D_CODES];
142 /* First normalized distance for each code (0 = distance of 1) */
143
144 #else
145 # include "trees.h"
146 #endif /* GEN_TREES_H */
147
148 struct static_tree_desc_s {
149 const ct_data *static_tree; /* static tree or NULL */
150 const intf *extra_bits; /* extra bits for each code or NULL */
151 int extra_base; /* base index for extra_bits */
152 int elems; /* max number of elements in the tree */
153 int max_length; /* max bit length for the codes */
154 };
155
156 local static_tree_desc static_l_desc =
157 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
158
159 local static_tree_desc static_d_desc =
160 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
161
162 local static_tree_desc static_bl_desc =
163 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
164
165 /* ===========================================================================
166 * Local (static) routines in this file.
167 */
168
169 local void tr_static_init OF((void));
170 local void init_block OF((deflate_state *s));
171 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
172 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
173 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
174 local void build_tree OF((deflate_state *s, tree_desc *desc));
175 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
176 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
177 local int build_bl_tree OF((deflate_state *s));
178 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
179 int blcodes));
180 local void compress_block OF((deflate_state *s, ct_data *ltree,
181 ct_data *dtree));
182 local void set_data_type OF((deflate_state *s));
183 local unsigned bi_reverse OF((unsigned value, int length));
184 local void bi_windup OF((deflate_state *s));
185 local void bi_flush OF((deflate_state *s));
186 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
187 int header));
188
189 #ifdef GEN_TREES_H
190 local void gen_trees_header OF((void));
191 #endif
192
193 #ifndef DEBUG
194 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
195 /* Send a code of the given tree. c and tree must not have side effects */
196
197 #else /* DEBUG */
198 # define send_code(s, c, tree) \
199 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
200 send_bits(s, tree[c].Code, tree[c].Len); }
201 #endif
202
203 /* ===========================================================================
204 * Output a short LSB first on the stream.
205 * IN assertion: there is enough room in pendingBuf.
206 */
207 #define put_short(s, w) { \
208 put_byte(s, (uch)((w) & 0xff)); \
209 put_byte(s, (uch)((ush)(w) >> 8)); \
210 }
211
212 /* ===========================================================================
213 * Send a value on a given number of bits.
214 * IN assertion: length <= 16 and value fits in length bits.
215 */
216 #ifdef DEBUG
217 local void send_bits OF((deflate_state *s, int value, int length));
218
219 local void send_bits(s, value, length)
220 deflate_state *s;
221 int value; /* value to send */
222 int length; /* number of bits */
223 {
224 Tracevv((stderr," l %2d v %4x ", length, value));
225 Assert(length > 0 && length <= 15, "invalid length");
226 s->bits_sent += (ulg)length;
227
228 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
229 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
230 * unused bits in value.
231 */
232 if (s->bi_valid > (int)Buf_size - length) {
233 s->bi_buf |= (value << s->bi_valid);
234 put_short(s, s->bi_buf);
235 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
236 s->bi_valid += length - Buf_size;
237 } else {
238 s->bi_buf |= value << s->bi_valid;
239 s->bi_valid += length;
240 }
241 }
242 #else /* !DEBUG */
243
244 #define send_bits(s, value, length) \
245 { int len = length;\
246 if (s->bi_valid > (int)Buf_size - len) {\
247 int val = value;\
248 s->bi_buf |= (val << s->bi_valid);\
249 put_short(s, s->bi_buf);\
250 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
251 s->bi_valid += len - Buf_size;\
252 } else {\
253 s->bi_buf |= (value) << s->bi_valid;\
254 s->bi_valid += len;\
255 }\
256 }
257 #endif /* DEBUG */
258
259
260 /* the arguments must not have side effects */
261
262 /* ===========================================================================
263 * Initialize the various 'constant' tables.
264 */
265 local void tr_static_init()
266 {
267 #if defined(GEN_TREES_H) || !defined(STDC)
268 static int static_init_done = 0;
269 int n; /* iterates over tree elements */
270 int bits; /* bit counter */
271 int length; /* length value */
272 int code; /* code value */
273 int dist; /* distance index */
274 ush bl_count[MAX_BITS+1];
275 /* number of codes at each bit length for an optimal tree */
276
277 if (static_init_done) return;
278
279 /* For some embedded targets, global variables are not initialized: */
280 static_l_desc.static_tree = static_ltree;
281 static_l_desc.extra_bits = extra_lbits;
282 static_d_desc.static_tree = static_dtree;
283 static_d_desc.extra_bits = extra_dbits;
284 static_bl_desc.extra_bits = extra_blbits;
285
286 /* Initialize the mapping length (0..255) -> length code (0..28) */
287 length = 0;
288 for (code = 0; code < LENGTH_CODES-1; code++) {
289 base_length[code] = length;
290 for (n = 0; n < (1<<extra_lbits[code]); n++) {
291 _length_code[length++] = (uch)code;
292 }
293 }
294 Assert (length == 256, "tr_static_init: length != 256");
295 /* Note that the length 255 (match length 258) can be represented
296 * in two different ways: code 284 + 5 bits or code 285, so we
297 * overwrite length_code[255] to use the best encoding:
298 */
299 _length_code[length-1] = (uch)code;
300
301 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
302 dist = 0;
303 for (code = 0 ; code < 16; code++) {
304 base_dist[code] = dist;
305 for (n = 0; n < (1<<extra_dbits[code]); n++) {
306 _dist_code[dist++] = (uch)code;
307 }
308 }
309 Assert (dist == 256, "tr_static_init: dist != 256");
310 dist >>= 7; /* from now on, all distances are divided by 128 */
311 for ( ; code < D_CODES; code++) {
312 base_dist[code] = dist << 7;
313 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
314 _dist_code[256 + dist++] = (uch)code;
315 }
316 }
317 Assert (dist == 256, "tr_static_init: 256+dist != 512");
318
319 /* Construct the codes of the static literal tree */
320 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
321 n = 0;
322 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
323 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
324 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
325 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
326 /* Codes 286 and 287 do not exist, but we must include them in the
327 * tree construction to get a canonical Huffman tree (longest code
328 * all ones)
329 */
330 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
331
332 /* The static distance tree is trivial: */
333 for (n = 0; n < D_CODES; n++) {
334 static_dtree[n].Len = 5;
335 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
336 }
337 static_init_done = 1;
338
339 # ifdef GEN_TREES_H
340 gen_trees_header();
341 # endif
342 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
343 }
344
345 /* ===========================================================================
346 * Genererate the file trees.h describing the static trees.
347 */
348 #ifdef GEN_TREES_H
349 # ifndef DEBUG
350 # include <stdio.h>
351 # endif
352
353 # define SEPARATOR(i, last, width) \
354 ((i) == (last)? "\n};\n\n" : \
355 ((i) % (width) == (width)-1 ? ",\n" : ", "))
356
357 void gen_trees_header()
358 {
359 FILE *header = fopen("trees.h", "w");
360 int i;
361
362 Assert (header != NULL, "Can't open trees.h");
363 fprintf(header,
364 "/* header created automatically with -DGEN_TREES_H */\n\n");
365
366 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
367 for (i = 0; i < L_CODES+2; i++) {
368 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
369 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
370 }
371
372 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
373 for (i = 0; i < D_CODES; i++) {
374 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
375 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
376 }
377
378 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
379 for (i = 0; i < DIST_CODE_LEN; i++) {
380 fprintf(header, "%2u%s", _dist_code[i],
381 SEPARATOR(i, DIST_CODE_LEN-1, 20));
382 }
383
384 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
385 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
386 fprintf(header, "%2u%s", _length_code[i],
387 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
388 }
389
390 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
391 for (i = 0; i < LENGTH_CODES; i++) {
392 fprintf(header, "%1u%s", base_length[i],
393 SEPARATOR(i, LENGTH_CODES-1, 20));
394 }
395
396 fprintf(header, "local const int base_dist[D_CODES] = {\n");
397 for (i = 0; i < D_CODES; i++) {
398 fprintf(header, "%5u%s", base_dist[i],
399 SEPARATOR(i, D_CODES-1, 10));
400 }
401
402 fclose(header);
403 }
404 #endif /* GEN_TREES_H */
405
406 /* ===========================================================================
407 * Initialize the tree data structures for a new zlib stream.
408 */
409 void _tr_init(s)
410 deflate_state *s;
411 {
412 tr_static_init();
413
414 s->l_desc.dyn_tree = s->dyn_ltree;
415 s->l_desc.stat_desc = &static_l_desc;
416
417 s->d_desc.dyn_tree = s->dyn_dtree;
418 s->d_desc.stat_desc = &static_d_desc;
419
420 s->bl_desc.dyn_tree = s->bl_tree;
421 s->bl_desc.stat_desc = &static_bl_desc;
422
423 s->bi_buf = 0;
424 s->bi_valid = 0;
425 s->last_eob_len = 8; /* enough lookahead for inflate */
426 #ifdef DEBUG
427 s->compressed_len = 0L;
428 s->bits_sent = 0L;
429 #endif
430
431 /* Initialize the first block of the first file: */
432 init_block(s);
433 }
434
435 /* ===========================================================================
436 * Initialize a new block.
437 */
438 local void init_block(s)
439 deflate_state *s;
440 {
441 int n; /* iterates over tree elements */
442
443 /* Initialize the trees. */
444 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
445 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
446 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
447
448 s->dyn_ltree[END_BLOCK].Freq = 1;
449 s->opt_len = s->static_len = 0L;
450 s->last_lit = s->matches = 0;
451 }
452
453 #define SMALLEST 1
454 /* Index within the heap array of least frequent node in the Huffman tree */
455
456
457 /* ===========================================================================
458 * Remove the smallest element from the heap and recreate the heap with
459 * one less element. Updates heap and heap_len.
460 */
461 #define pqremove(s, tree, top) \
462 {\
463 top = s->heap[SMALLEST]; \
464 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
465 pqdownheap(s, tree, SMALLEST); \
466 }
467
468 /* ===========================================================================
469 * Compares to subtrees, using the tree depth as tie breaker when
470 * the subtrees have equal frequency. This minimizes the worst case length.
471 */
472 #define smaller(tree, n, m, depth) \
473 (tree[n].Freq < tree[m].Freq || \
474 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
475
476 /* ===========================================================================
477 * Restore the heap property by moving down the tree starting at node k,
478 * exchanging a node with the smallest of its two sons if necessary, stopping
479 * when the heap property is re-established (each father smaller than its
480 * two sons).
481 */
482 local void pqdownheap(s, tree, k)
483 deflate_state *s;
484 ct_data *tree; /* the tree to restore */
485 int k; /* node to move down */
486 {
487 int v = s->heap[k];
488 int j = k << 1; /* left son of k */
489 while (j <= s->heap_len) {
490 /* Set j to the smallest of the two sons: */
491 if (j < s->heap_len &&
492 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
493 j++;
494 }
495 /* Exit if v is smaller than both sons */
496 if (smaller(tree, v, s->heap[j], s->depth)) break;
497
498 /* Exchange v with the smallest son */
499 s->heap[k] = s->heap[j]; k = j;
500
501 /* And continue down the tree, setting j to the left son of k */
502 j <<= 1;
503 }
504 s->heap[k] = v;
505 }
506
507 /* ===========================================================================
508 * Compute the optimal bit lengths for a tree and update the total bit length
509 * for the current block.
510 * IN assertion: the fields freq and dad are set, heap[heap_max] and
511 * above are the tree nodes sorted by increasing frequency.
512 * OUT assertions: the field len is set to the optimal bit length, the
513 * array bl_count contains the frequencies for each bit length.
514 * The length opt_len is updated; static_len is also updated if stree is
515 * not null.
516 */
517 local void gen_bitlen(s, desc)
518 deflate_state *s;
519 tree_desc *desc; /* the tree descriptor */
520 {
521 ct_data *tree = desc->dyn_tree;
522 int max_code = desc->max_code;
523 const ct_data *stree = desc->stat_desc->static_tree;
524 const intf *extra = desc->stat_desc->extra_bits;
525 int base = desc->stat_desc->extra_base;
526 int max_length = desc->stat_desc->max_length;
527 int h; /* heap index */
528 int n, m; /* iterate over the tree elements */
529 int bits; /* bit length */
530 int xbits; /* extra bits */
531 ush f; /* frequency */
532 int overflow = 0; /* number of elements with bit length too large */
533
534 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
535
536 /* In a first pass, compute the optimal bit lengths (which may
537 * overflow in the case of the bit length tree).
538 */
539 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
540
541 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
542 n = s->heap[h];
543 bits = tree[tree[n].Dad].Len + 1;
544 if (bits > max_length) bits = max_length, overflow++;
545 tree[n].Len = (ush)bits;
546 /* We overwrite tree[n].Dad which is no longer needed */
547
548 if (n > max_code) continue; /* not a leaf node */
549
550 s->bl_count[bits]++;
551 xbits = 0;
552 if (n >= base) xbits = extra[n-base];
553 f = tree[n].Freq;
554 s->opt_len += (ulg)f * (bits + xbits);
555 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
556 }
557 if (overflow == 0) return;
558
559 Trace((stderr,"\nbit length overflow\n"));
560 /* This happens for example on obj2 and pic of the Calgary corpus */
561
562 /* Find the first bit length which could increase: */
563 do {
564 bits = max_length-1;
565 while (s->bl_count[bits] == 0) bits--;
566 s->bl_count[bits]--; /* move one leaf down the tree */
567 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
568 s->bl_count[max_length]--;
569 /* The brother of the overflow item also moves one step up,
570 * but this does not affect bl_count[max_length]
571 */
572 overflow -= 2;
573 } while (overflow > 0);
574
575 /* Now recompute all bit lengths, scanning in increasing frequency.
576 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
577 * lengths instead of fixing only the wrong ones. This idea is taken
578 * from 'ar' written by Haruhiko Okumura.)
579 */
580 for (bits = max_length; bits != 0; bits--) {
581 n = s->bl_count[bits];
582 while (n != 0) {
583 m = s->heap[--h];
584 if (m > max_code) continue;
585 if ((unsigned) tree[m].Len != (unsigned) bits) {
586 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
587 s->opt_len += ((long)bits - (long)tree[m].Len)
588 *(long)tree[m].Freq;
589 tree[m].Len = (ush)bits;
590 }
591 n--;
592 }
593 }
594 }
595
596 /* ===========================================================================
597 * Generate the codes for a given tree and bit counts (which need not be
598 * optimal).
599 * IN assertion: the array bl_count contains the bit length statistics for
600 * the given tree and the field len is set for all tree elements.
601 * OUT assertion: the field code is set for all tree elements of non
602 * zero code length.
603 */
604 local void gen_codes (tree, max_code, bl_count)
605 ct_data *tree; /* the tree to decorate */
606 int max_code; /* largest code with non zero frequency */
607 ushf *bl_count; /* number of codes at each bit length */
608 {
609 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
610 ush code = 0; /* running code value */
611 int bits; /* bit index */
612 int n; /* code index */
613
614 /* The distribution counts are first used to generate the code values
615 * without bit reversal.
616 */
617 for (bits = 1; bits <= MAX_BITS; bits++) {
618 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
619 }
620 /* Check that the bit counts in bl_count are consistent. The last code
621 * must be all ones.
622 */
623 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
624 "inconsistent bit counts");
625 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
626
627 for (n = 0; n <= max_code; n++) {
628 int len = tree[n].Len;
629 if (len == 0) continue;
630 /* Now reverse the bits */
631 tree[n].Code = bi_reverse(next_code[len]++, len);
632
633 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
634 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
635 }
636 }
637
638 /* ===========================================================================
639 * Construct one Huffman tree and assigns the code bit strings and lengths.
640 * Update the total bit length for the current block.
641 * IN assertion: the field freq is set for all tree elements.
642 * OUT assertions: the fields len and code are set to the optimal bit length
643 * and corresponding code. The length opt_len is updated; static_len is
644 * also updated if stree is not null. The field max_code is set.
645 */
646 local void build_tree(s, desc)
647 deflate_state *s;
648 tree_desc *desc; /* the tree descriptor */
649 {
650 ct_data *tree = desc->dyn_tree;
651 const ct_data *stree = desc->stat_desc->static_tree;
652 int elems = desc->stat_desc->elems;
653 int n, m; /* iterate over heap elements */
654 int max_code = -1; /* largest code with non zero frequency */
655 int node; /* new node being created */
656
657 /* Construct the initial heap, with least frequent element in
658 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
659 * heap[0] is not used.
660 */
661 s->heap_len = 0, s->heap_max = HEAP_SIZE;
662
663 for (n = 0; n < elems; n++) {
664 if (tree[n].Freq != 0) {
665 s->heap[++(s->heap_len)] = max_code = n;
666 s->depth[n] = 0;
667 } else {
668 tree[n].Len = 0;
669 }
670 }
671
672 /* The pkzip format requires that at least one distance code exists,
673 * and that at least one bit should be sent even if there is only one
674 * possible code. So to avoid special checks later on we force at least
675 * two codes of non zero frequency.
676 */
677 while (s->heap_len < 2) {
678 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
679 tree[node].Freq = 1;
680 s->depth[node] = 0;
681 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
682 /* node is 0 or 1 so it does not have extra bits */
683 }
684 desc->max_code = max_code;
685
686 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
687 * establish sub-heaps of increasing lengths:
688 */
689 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
690
691 /* Construct the Huffman tree by repeatedly combining the least two
692 * frequent nodes.
693 */
694 node = elems; /* next internal node of the tree */
695 do {
696 pqremove(s, tree, n); /* n = node of least frequency */
697 m = s->heap[SMALLEST]; /* m = node of next least frequency */
698
699 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
700 s->heap[--(s->heap_max)] = m;
701
702 /* Create a new node father of n and m */
703 tree[node].Freq = tree[n].Freq + tree[m].Freq;
704 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
705 s->depth[n] : s->depth[m]) + 1);
706 tree[n].Dad = tree[m].Dad = (ush)node;
707 #ifdef DUMP_BL_TREE
708 if (tree == s->bl_tree) {
709 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
710 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
711 }
712 #endif
713 /* and insert the new node in the heap */
714 s->heap[SMALLEST] = node++;
715 pqdownheap(s, tree, SMALLEST);
716
717 } while (s->heap_len >= 2);
718
719 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
720
721 /* At this point, the fields freq and dad are set. We can now
722 * generate the bit lengths.
723 */
724 gen_bitlen(s, (tree_desc *)desc);
725
726 /* The field len is now set, we can generate the bit codes */
727 gen_codes ((ct_data *)tree, max_code, s->bl_count);
728 }
729
730 /* ===========================================================================
731 * Scan a literal or distance tree to determine the frequencies of the codes
732 * in the bit length tree.
733 */
734 local void scan_tree (s, tree, max_code)
735 deflate_state *s;
736 ct_data *tree; /* the tree to be scanned */
737 int max_code; /* and its largest code of non zero frequency */
738 {
739 int n; /* iterates over all tree elements */
740 int prevlen = -1; /* last emitted length */
741 int curlen; /* length of current code */
742 int nextlen = tree[0].Len; /* length of next code */
743 int count = 0; /* repeat count of the current code */
744 int max_count = 7; /* max repeat count */
745 int min_count = 4; /* min repeat count */
746
747 if (nextlen == 0) max_count = 138, min_count = 3;
748 tree[max_code+1].Len = (ush)0xffff; /* guard */
749
750 for (n = 0; n <= max_code; n++) {
751 curlen = nextlen; nextlen = tree[n+1].Len;
752 if (++count < max_count && curlen == nextlen) {
753 continue;
754 } else if (count < min_count) {
755 s->bl_tree[curlen].Freq += count;
756 } else if (curlen != 0) {
757 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
758 s->bl_tree[REP_3_6].Freq++;
759 } else if (count <= 10) {
760 s->bl_tree[REPZ_3_10].Freq++;
761 } else {
762 s->bl_tree[REPZ_11_138].Freq++;
763 }
764 count = 0; prevlen = curlen;
765 if (nextlen == 0) {
766 max_count = 138, min_count = 3;
767 } else if (curlen == nextlen) {
768 max_count = 6, min_count = 3;
769 } else {
770 max_count = 7, min_count = 4;
771 }
772 }
773 }
774
775 /* ===========================================================================
776 * Send a literal or distance tree in compressed form, using the codes in
777 * bl_tree.
778 */
779 local void send_tree (s, tree, max_code)
780 deflate_state *s;
781 ct_data *tree; /* the tree to be scanned */
782 int max_code; /* and its largest code of non zero frequency */
783 {
784 int n; /* iterates over all tree elements */
785 int prevlen = -1; /* last emitted length */
786 int curlen; /* length of current code */
787 int nextlen = tree[0].Len; /* length of next code */
788 int count = 0; /* repeat count of the current code */
789 int max_count = 7; /* max repeat count */
790 int min_count = 4; /* min repeat count */
791
792 /* tree[max_code+1].Len = -1; */ /* guard already set */
793 if (nextlen == 0) max_count = 138, min_count = 3;
794
795 for (n = 0; n <= max_code; n++) {
796 curlen = nextlen; nextlen = tree[n+1].Len;
797 if (++count < max_count && curlen == nextlen) {
798 continue;
799 } else if (count < min_count) {
800 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
801
802 } else if (curlen != 0) {
803 if (curlen != prevlen) {
804 send_code(s, curlen, s->bl_tree); count--;
805 }
806 Assert(count >= 3 && count <= 6, " 3_6?");
807 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
808
809 } else if (count <= 10) {
810 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
811
812 } else {
813 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
814 }
815 count = 0; prevlen = curlen;
816 if (nextlen == 0) {
817 max_count = 138, min_count = 3;
818 } else if (curlen == nextlen) {
819 max_count = 6, min_count = 3;
820 } else {
821 max_count = 7, min_count = 4;
822 }
823 }
824 }
825
826 /* ===========================================================================
827 * Construct the Huffman tree for the bit lengths and return the index in
828 * bl_order of the last bit length code to send.
829 */
830 local int build_bl_tree(s)
831 deflate_state *s;
832 {
833 int max_blindex; /* index of last bit length code of non zero freq */
834
835 /* Determine the bit length frequencies for literal and distance trees */
836 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
837 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
838
839 /* Build the bit length tree: */
840 build_tree(s, (tree_desc *)(&(s->bl_desc)));
841 /* opt_len now includes the length of the tree representations, except
842 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
843 */
844
845 /* Determine the number of bit length codes to send. The pkzip format
846 * requires that at least 4 bit length codes be sent. (appnote.txt says
847 * 3 but the actual value used is 4.)
848 */
849 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
850 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
851 }
852 /* Update opt_len to include the bit length tree and counts */
853 s->opt_len += 3*(max_blindex+1) + 5+5+4;
854 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
855 s->opt_len, s->static_len));
856
857 return max_blindex;
858 }
859
860 /* ===========================================================================
861 * Send the header for a block using dynamic Huffman trees: the counts, the
862 * lengths of the bit length codes, the literal tree and the distance tree.
863 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
864 */
865 local void send_all_trees(s, lcodes, dcodes, blcodes)
866 deflate_state *s;
867 int lcodes, dcodes, blcodes; /* number of codes for each tree */
868 {
869 int rank; /* index in bl_order */
870
871 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
872 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
873 "too many codes");
874 Tracev((stderr, "\nbl counts: "));
875 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
876 send_bits(s, dcodes-1, 5);
877 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
878 for (rank = 0; rank < blcodes; rank++) {
879 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
880 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
881 }
882 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
883
884 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
885 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
886
887 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
888 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
889 }
890
891 /* ===========================================================================
892 * Send a stored block
893 */
894 void _tr_stored_block(s, buf, stored_len, eof)
895 deflate_state *s;
896 charf *buf; /* input block */
897 ulg stored_len; /* length of input block */
898 int eof; /* true if this is the last block for a file */
899 {
900 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
901 #ifdef DEBUG
902 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
903 s->compressed_len += (stored_len + 4) << 3;
904 #endif
905 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
906 }
907
908 /* ===========================================================================
909 * Send one empty static block to give enough lookahead for inflate.
910 * This takes 10 bits, of which 7 may remain in the bit buffer.
911 * The current inflate code requires 9 bits of lookahead. If the
912 * last two codes for the previous block (real code plus EOB) were coded
913 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
914 * the last real code. In this case we send two empty static blocks instead
915 * of one. (There are no problems if the previous block is stored or fixed.)
916 * To simplify the code, we assume the worst case of last real code encoded
917 * on one bit only.
918 */
919 void _tr_align(s)
920 deflate_state *s;
921 {
922 send_bits(s, STATIC_TREES<<1, 3);
923 send_code(s, END_BLOCK, static_ltree);
924 #ifdef DEBUG
925 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
926 #endif
927 bi_flush(s);
928 /* Of the 10 bits for the empty block, we have already sent
929 * (10 - bi_valid) bits. The lookahead for the last real code (before
930 * the EOB of the previous block) was thus at least one plus the length
931 * of the EOB plus what we have just sent of the empty static block.
932 */
933 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
934 send_bits(s, STATIC_TREES<<1, 3);
935 send_code(s, END_BLOCK, static_ltree);
936 #ifdef DEBUG
937 s->compressed_len += 10L;
938 #endif
939 bi_flush(s);
940 }
941 s->last_eob_len = 7;
942 }
943
944 /* ===========================================================================
945 * Determine the best encoding for the current block: dynamic trees, static
946 * trees or store, and output the encoded block to the zip file.
947 */
948 void _tr_flush_block(s, buf, stored_len, eof)
949 deflate_state *s;
950 charf *buf; /* input block, or NULL if too old */
951 ulg stored_len; /* length of input block */
952 int eof; /* true if this is the last block for a file */
953 {
954 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
955 int max_blindex = 0; /* index of last bit length code of non zero freq */
956
957 /* Build the Huffman trees unless a stored block is forced */
958 if (s->level > 0) {
959
960 /* Check if the file is binary or text */
961 if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
962 set_data_type(s);
963
964 /* Construct the literal and distance trees */
965 build_tree(s, (tree_desc *)(&(s->l_desc)));
966 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
967 s->static_len));
968
969 build_tree(s, (tree_desc *)(&(s->d_desc)));
970 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
971 s->static_len));
972 /* At this point, opt_len and static_len are the total bit lengths of
973 * the compressed block data, excluding the tree representations.
974 */
975
976 /* Build the bit length tree for the above two trees, and get the index
977 * in bl_order of the last bit length code to send.
978 */
979 max_blindex = build_bl_tree(s);
980
981 /* Determine the best encoding. Compute the block lengths in bytes. */
982 opt_lenb = (s->opt_len+3+7)>>3;
983 static_lenb = (s->static_len+3+7)>>3;
984
985 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
986 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
987 s->last_lit));
988
989 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
990
991 } else {
992 Assert(buf != (char*)0, "lost buf");
993 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
994 }
995
996 #ifdef FORCE_STORED
997 if (buf != (char*)0) { /* force stored block */
998 #else
999 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
1000 /* 4: two words for the lengths */
1001 #endif
1002 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1003 * Otherwise we can't have processed more than WSIZE input bytes since
1004 * the last block flush, because compression would have been
1005 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1006 * transform a block into a stored block.
1007 */
1008 _tr_stored_block(s, buf, stored_len, eof);
1009
1010 #ifdef FORCE_STATIC
1011 } else if (static_lenb >= 0) { /* force static trees */
1012 #else
1013 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
1014 #endif
1015 send_bits(s, (STATIC_TREES<<1)+eof, 3);
1016 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
1017 #ifdef DEBUG
1018 s->compressed_len += 3 + s->static_len;
1019 #endif
1020 } else {
1021 send_bits(s, (DYN_TREES<<1)+eof, 3);
1022 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1023 max_blindex+1);
1024 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1025 #ifdef DEBUG
1026 s->compressed_len += 3 + s->opt_len;
1027 #endif
1028 }
1029 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1030 /* The above check is made mod 2^32, for files larger than 512 MB
1031 * and uLong implemented on 32 bits.
1032 */
1033 init_block(s);
1034
1035 if (eof) {
1036 bi_windup(s);
1037 #ifdef DEBUG
1038 s->compressed_len += 7; /* align on byte boundary */
1039 #endif
1040 }
1041 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1042 s->compressed_len-7*eof));
1043 }
1044
1045 /* ===========================================================================
1046 * Save the match info and tally the frequency counts. Return true if
1047 * the current block must be flushed.
1048 */
1049 int _tr_tally (s, dist, lc)
1050 deflate_state *s;
1051 unsigned dist; /* distance of matched string */
1052 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1053 {
1054 s->d_buf[s->last_lit] = (ush)dist;
1055 s->l_buf[s->last_lit++] = (uch)lc;
1056 if (dist == 0) {
1057 /* lc is the unmatched char */
1058 s->dyn_ltree[lc].Freq++;
1059 } else {
1060 s->matches++;
1061 /* Here, lc is the match length - MIN_MATCH */
1062 dist--; /* dist = match distance - 1 */
1063 Assert((ush)dist < (ush)MAX_DIST(s) &&
1064 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1065 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1066
1067 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1068 s->dyn_dtree[d_code(dist)].Freq++;
1069 }
1070
1071 #ifdef TRUNCATE_BLOCK
1072 /* Try to guess if it is profitable to stop the current block here */
1073 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1074 /* Compute an upper bound for the compressed length */
1075 ulg out_length = (ulg)s->last_lit*8L;
1076 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1077 int dcode;
1078 for (dcode = 0; dcode < D_CODES; dcode++) {
1079 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1080 (5L+extra_dbits[dcode]);
1081 }
1082 out_length >>= 3;
1083 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1084 s->last_lit, in_length, out_length,
1085 100L - out_length*100L/in_length));
1086 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1087 }
1088 #endif
1089 return (s->last_lit == s->lit_bufsize-1);
1090 /* We avoid equality with lit_bufsize because of wraparound at 64K
1091 * on 16 bit machines and because stored blocks are restricted to
1092 * 64K-1 bytes.
1093 */
1094 }
1095
1096 /* ===========================================================================
1097 * Send the block data compressed using the given Huffman trees
1098 */
1099 local void compress_block(s, ltree, dtree)
1100 deflate_state *s;
1101 ct_data *ltree; /* literal tree */
1102 ct_data *dtree; /* distance tree */
1103 {
1104 unsigned dist; /* distance of matched string */
1105 int lc; /* match length or unmatched char (if dist == 0) */
1106 unsigned lx = 0; /* running index in l_buf */
1107 unsigned code; /* the code to send */
1108 int extra; /* number of extra bits to send */
1109
1110 if (s->last_lit != 0) do {
1111 dist = s->d_buf[lx];
1112 lc = s->l_buf[lx++];
1113 if (dist == 0) {
1114 send_code(s, lc, ltree); /* send a literal byte */
1115 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1116 } else {
1117 /* Here, lc is the match length - MIN_MATCH */
1118 code = _length_code[lc];
1119 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1120 extra = extra_lbits[code];
1121 if (extra != 0) {
1122 lc -= base_length[code];
1123 send_bits(s, lc, extra); /* send the extra length bits */
1124 }
1125 dist--; /* dist is now the match distance - 1 */
1126 code = d_code(dist);
1127 Assert (code < D_CODES, "bad d_code");
1128
1129 send_code(s, code, dtree); /* send the distance code */
1130 extra = extra_dbits[code];
1131 if (extra != 0) {
1132 dist -= base_dist[code];
1133 send_bits(s, dist, extra); /* send the extra distance bits */
1134 }
1135 } /* literal or match pair ? */
1136
1137 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1138 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1139 "pendingBuf overflow");
1140
1141 } while (lx < s->last_lit);
1142
1143 send_code(s, END_BLOCK, ltree);
1144 s->last_eob_len = ltree[END_BLOCK].Len;
1145 }
1146
1147 /* ===========================================================================
1148 * Set the data type to BINARY or TEXT, using a crude approximation:
1149 * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1150 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1151 * IN assertion: the fields Freq of dyn_ltree are set.
1152 */
1153 local void set_data_type(s)
1154 deflate_state *s;
1155 {
1156 int n;
1157
1158 for (n = 0; n < 9; n++)
1159 if (s->dyn_ltree[n].Freq != 0)
1160 break;
1161 if (n == 9)
1162 for (n = 14; n < 32; n++)
1163 if (s->dyn_ltree[n].Freq != 0)
1164 break;
1165 s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1166 }
1167
1168 /* ===========================================================================
1169 * Reverse the first len bits of a code, using straightforward code (a faster
1170 * method would use a table)
1171 * IN assertion: 1 <= len <= 15
1172 */
1173 local unsigned bi_reverse(code, len)
1174 unsigned code; /* the value to invert */
1175 int len; /* its bit length */
1176 {
1177 register unsigned res = 0;
1178 do {
1179 res |= code & 1;
1180 code >>= 1, res <<= 1;
1181 } while (--len > 0);
1182 return res >> 1;
1183 }
1184
1185 /* ===========================================================================
1186 * Flush the bit buffer, keeping at most 7 bits in it.
1187 */
1188 local void bi_flush(s)
1189 deflate_state *s;
1190 {
1191 if (s->bi_valid == 16) {
1192 put_short(s, s->bi_buf);
1193 s->bi_buf = 0;
1194 s->bi_valid = 0;
1195 } else if (s->bi_valid >= 8) {
1196 put_byte(s, (Byte)s->bi_buf);
1197 s->bi_buf >>= 8;
1198 s->bi_valid -= 8;
1199 }
1200 }
1201
1202 /* ===========================================================================
1203 * Flush the bit buffer and align the output on a byte boundary
1204 */
1205 local void bi_windup(s)
1206 deflate_state *s;
1207 {
1208 if (s->bi_valid > 8) {
1209 put_short(s, s->bi_buf);
1210 } else if (s->bi_valid > 0) {
1211 put_byte(s, (Byte)s->bi_buf);
1212 }
1213 s->bi_buf = 0;
1214 s->bi_valid = 0;
1215 #ifdef DEBUG
1216 s->bits_sent = (s->bits_sent+7) & ~7;
1217 #endif
1218 }
1219
1220 /* ===========================================================================
1221 * Copy a stored block, storing first the length and its
1222 * one's complement if requested.
1223 */
1224 local void copy_block(s, buf, len, header)
1225 deflate_state *s;
1226 charf *buf; /* the input data */
1227 unsigned len; /* its length */
1228 int header; /* true if block header must be written */
1229 {
1230 bi_windup(s); /* align on byte boundary */
1231 s->last_eob_len = 8; /* enough lookahead for inflate */
1232
1233 if (header) {
1234 put_short(s, (ush)len);
1235 put_short(s, (ush)~len);
1236 #ifdef DEBUG
1237 s->bits_sent += 2*16;
1238 #endif
1239 }
1240 #ifdef DEBUG
1241 s->bits_sent += (ulg)len<<3;
1242 #endif
1243 while (len--) {
1244 put_byte(s, *buf++);
1245 }
1246 }