]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cache.c
xnu-792.6.22.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cache.c
1 /*
2 * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
23 /*
24 * Copyright (c) 1989, 1993, 1995
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * Poul-Henning Kamp of the FreeBSD Project.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 *
59 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
60 */
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/time.h>
64 #include <sys/mount_internal.h>
65 #include <sys/vnode_internal.h>
66 #include <sys/namei.h>
67 #include <sys/errno.h>
68 #include <sys/malloc.h>
69 #include <sys/kauth.h>
70 #include <sys/user.h>
71
72 /*
73 * Name caching works as follows:
74 *
75 * Names found by directory scans are retained in a cache
76 * for future reference. It is managed LRU, so frequently
77 * used names will hang around. Cache is indexed by hash value
78 * obtained from (vp, name) where vp refers to the directory
79 * containing name.
80 *
81 * If it is a "negative" entry, (i.e. for a name that is known NOT to
82 * exist) the vnode pointer will be NULL.
83 *
84 * Upon reaching the last segment of a path, if the reference
85 * is for DELETE, or NOCACHE is set (rewrite), and the
86 * name is located in the cache, it will be dropped.
87 */
88
89 /*
90 * Structures associated with name cacheing.
91 */
92
93 LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */
94 u_long nchashmask;
95 u_long nchash; /* size of hash table - 1 */
96 long numcache; /* number of cache entries allocated */
97 int desiredNodes;
98 int desiredNegNodes;
99 TAILQ_HEAD(, namecache) nchead; /* chain of all name cache entries */
100 TAILQ_HEAD(, namecache) neghead; /* chain of only negative cache entries */
101 struct nchstats nchstats; /* cache effectiveness statistics */
102
103 /* vars for name cache list lock */
104 lck_grp_t * namecache_lck_grp;
105 lck_grp_attr_t * namecache_lck_grp_attr;
106 lck_attr_t * namecache_lck_attr;
107 lck_mtx_t * namecache_mtx_lock;
108
109 static vnode_t cache_lookup_locked(vnode_t dvp, struct componentname *cnp);
110 static int remove_name_locked(const char *);
111 static char *add_name_locked(const char *, size_t, u_int, u_int);
112 static void init_string_table(void);
113 static void cache_delete(struct namecache *, int);
114 static void dump_string_table(void);
115
116 static void init_crc32(void);
117 static unsigned int crc32tab[256];
118
119
120 #define NCHHASH(dvp, hash_val) \
121 (&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
122
123
124
125 //
126 // This function builds the path to a filename in "buff". The
127 // length of the buffer *INCLUDING* the trailing zero byte is
128 // returned in outlen. NOTE: the length includes the trailing
129 // zero byte and thus the length is one greater than what strlen
130 // would return. This is important and lots of code elsewhere
131 // in the kernel assumes this behavior.
132 //
133 int
134 build_path(vnode_t first_vp, char *buff, int buflen, int *outlen)
135 {
136 vnode_t vp = first_vp;
137 char *end, *str;
138 int len, ret=0, counter=0;
139
140 end = &buff[buflen-1];
141 *end = '\0';
142
143 /*
144 * if this is the root dir of a file system...
145 */
146 if (vp && (vp->v_flag & VROOT) && vp->v_mount) {
147 /*
148 * then if it's the root fs, just put in a '/' and get out of here
149 */
150 if (vp->v_mount->mnt_flag & MNT_ROOTFS) {
151 *--end = '/';
152 goto out;
153 } else {
154 /*
155 * else just use the covered vnode to get the mount path
156 */
157 vp = vp->v_mount->mnt_vnodecovered;
158 }
159 }
160 name_cache_lock();
161
162 while (vp && vp->v_parent != vp) {
163 /*
164 * the maximum depth of a file system hierarchy is MAXPATHLEN/2
165 * (with single-char names separated by slashes). we panic if
166 * we've ever looped more than that.
167 */
168 if (counter++ > MAXPATHLEN/2) {
169 panic("build_path: vnode parent chain is too long! vp 0x%x\n", vp);
170 }
171 str = vp->v_name;
172
173 if (str == NULL) {
174 if (vp->v_parent != NULL) {
175 ret = EINVAL;
176 }
177 break;
178 }
179 len = strlen(str);
180
181 /*
182 * check that there's enough space (make sure to include space for the '/')
183 */
184 if ((end - buff) < (len + 1)) {
185 ret = ENOSPC;
186 break;
187 }
188 /*
189 * copy it backwards
190 */
191 str += len;
192
193 for (; len > 0; len--) {
194 *--end = *--str;
195 }
196 /*
197 * put in the path separator
198 */
199 *--end = '/';
200
201 /*
202 * walk up the chain (as long as we're not the root)
203 */
204 if (vp == first_vp && (vp->v_flag & VROOT)) {
205 if (vp->v_mount && vp->v_mount->mnt_vnodecovered) {
206 vp = vp->v_mount->mnt_vnodecovered->v_parent;
207 } else {
208 vp = NULLVP;
209 }
210 } else {
211 vp = vp->v_parent;
212 }
213 /*
214 * check if we're crossing a mount point and
215 * switch the vp if we are.
216 */
217 if (vp && (vp->v_flag & VROOT) && vp->v_mount) {
218 vp = vp->v_mount->mnt_vnodecovered;
219 }
220 }
221 name_cache_unlock();
222 out:
223 /*
224 * slide it down to the beginning of the buffer
225 */
226 memmove(buff, end, &buff[buflen] - end);
227
228 *outlen = &buff[buflen] - end; // length includes the trailing zero byte
229
230 return ret;
231 }
232
233
234 /*
235 * return NULLVP if vp's parent doesn't
236 * exist, or we can't get a valid iocount
237 * else return the parent of vp
238 */
239 vnode_t
240 vnode_getparent(vnode_t vp)
241 {
242 vnode_t pvp = NULLVP;
243 int pvid;
244
245 name_cache_lock();
246 /*
247 * v_parent is stable behind the name_cache lock
248 * however, the only thing we can really guarantee
249 * is that we've grabbed a valid iocount on the
250 * parent of 'vp' at the time we took the name_cache lock...
251 * once we drop the lock, vp could get re-parented
252 */
253 if ( (pvp = vp->v_parent) != NULLVP ) {
254 pvid = pvp->v_id;
255
256 name_cache_unlock();
257
258 if (vnode_getwithvid(pvp, pvid) != 0)
259 pvp = NULL;
260 } else
261 name_cache_unlock();
262
263 return (pvp);
264 }
265
266 char *
267 vnode_getname(vnode_t vp)
268 {
269 char *name = NULL;
270
271 name_cache_lock();
272
273 if (vp->v_name)
274 name = add_name_locked(vp->v_name, strlen(vp->v_name), 0, 0);
275 name_cache_unlock();
276
277 return (name);
278 }
279
280 void
281 vnode_putname(char *name)
282 {
283 name_cache_lock();
284
285 remove_name_locked(name);
286
287 name_cache_unlock();
288 }
289
290
291 /*
292 * if VNODE_UPDATE_PARENT, and we can take
293 * a reference on dvp, then update vp with
294 * it's new parent... if vp already has a parent,
295 * then drop the reference vp held on it
296 *
297 * if VNODE_UPDATE_NAME,
298 * then drop string ref on v_name if it exists, and if name is non-NULL
299 * then pick up a string reference on name and record it in v_name...
300 * optionally pass in the length and hashval of name if known
301 *
302 * if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
303 */
304 void
305 vnode_update_identity(vnode_t vp, vnode_t dvp, char *name, int name_len, int name_hashval, int flags)
306 {
307 struct namecache *ncp;
308 vnode_t old_parentvp = NULLVP;
309
310
311 if (flags & VNODE_UPDATE_PARENT) {
312 if (dvp && vnode_ref(dvp) != 0)
313 dvp = NULLVP;
314 } else
315 dvp = NULLVP;
316 name_cache_lock();
317
318 if ( (flags & VNODE_UPDATE_NAME) && (name != vp->v_name) ) {
319 if (vp->v_name != NULL) {
320 remove_name_locked(vp->v_name);
321 vp->v_name = NULL;
322 }
323 if (name && *name) {
324 if (name_len == 0)
325 name_len = strlen(name);
326 vp->v_name = add_name_locked(name, name_len, name_hashval, 0);
327 }
328 }
329 if (flags & VNODE_UPDATE_PARENT) {
330 if (dvp != vp && dvp != vp->v_parent) {
331 old_parentvp = vp->v_parent;
332 vp->v_parent = dvp;
333 dvp = NULLVP;
334
335 if (old_parentvp)
336 flags |= VNODE_UPDATE_CACHE;
337 }
338 }
339 if (flags & VNODE_UPDATE_CACHE) {
340 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
341 cache_delete(ncp, 1);
342 }
343 name_cache_unlock();
344
345 if (dvp != NULLVP)
346 vnode_rele(dvp);
347
348 if (old_parentvp) {
349 struct uthread *ut;
350
351 ut = get_bsdthread_info(current_thread());
352
353 /*
354 * indicated to vnode_rele that it shouldn't do a
355 * vnode_reclaim at this time... instead it will
356 * chain the vnode to the uu_vreclaims list...
357 * we'll be responsible for calling vnode_reclaim
358 * on each of the vnodes in this list...
359 */
360 ut->uu_defer_reclaims = 1;
361 ut->uu_vreclaims = NULLVP;
362
363 while ( (vp = old_parentvp) != NULLVP ) {
364
365 vnode_lock(vp);
366
367 vnode_rele_internal(vp, 0, 0, 1);
368
369 /*
370 * check to see if the vnode is now in the state
371 * that would have triggered a vnode_reclaim in vnode_rele
372 * if it is, we save it's parent pointer and then NULL
373 * out the v_parent field... we'll drop the reference
374 * that was held on the next iteration of this loop...
375 * this short circuits a potential deep recursion if we
376 * have a long chain of parents in this state...
377 * we'll sit in this loop until we run into
378 * a parent in this chain that is not in this state
379 *
380 * make our check and the node_rele atomic
381 * with respect to the current vnode we're working on
382 * by holding the vnode lock
383 * if vnode_rele deferred the vnode_reclaim and has put
384 * this vnode on the list to be reaped by us, than
385 * it has left this vnode with an iocount == 1
386 */
387 if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
388 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
389 /*
390 * vnode_rele wanted to do a vnode_reclaim on this vnode
391 * it should be sitting on the head of the uu_vreclaims chain
392 * pull the parent pointer now so that when we do the
393 * vnode_reclaim for each of the vnodes in the uu_vreclaims
394 * list, we won't recurse back through here
395 */
396 name_cache_lock();
397 old_parentvp = vp->v_parent;
398 vp->v_parent = NULLVP;
399 name_cache_unlock();
400 } else {
401 /*
402 * we're done... we ran into a vnode that isn't
403 * being terminated
404 */
405 old_parentvp = NULLVP;
406 }
407 vnode_unlock(vp);
408 }
409 ut->uu_defer_reclaims = 0;
410
411 while ( (vp = ut->uu_vreclaims) != NULLVP) {
412 ut->uu_vreclaims = vp->v_defer_reclaimlist;
413
414 /*
415 * vnode_put will drive the vnode_reclaim if
416 * we are still the only reference on this vnode
417 */
418 vnode_put(vp);
419 }
420 }
421 }
422
423
424 /*
425 * Mark a vnode as having multiple hard links. HFS makes use of this
426 * because it keeps track of each link separately, and wants to know
427 * which link was actually used.
428 *
429 * This will cause the name cache to force a VNOP_LOOKUP on the vnode
430 * so that HFS can post-process the lookup. Also, volfs will call
431 * VNOP_GETATTR2 to determine the parent, instead of using v_parent.
432 */
433 void vnode_set_hard_link(vnode_t vp)
434 {
435 vnode_lock(vp);
436
437 /*
438 * In theory, we're changing the vnode's identity as far as the
439 * name cache is concerned, so we ought to grab the name cache lock
440 * here. However, there is already a race, and grabbing the name
441 * cache lock only makes the race window slightly smaller.
442 *
443 * The race happens because the vnode already exists in the name
444 * cache, and could be found by one thread before another thread
445 * can set the hard link flag.
446 */
447
448 vp->v_flag |= VISHARDLINK;
449
450 vnode_unlock(vp);
451 }
452
453
454 void vnode_uncache_credentials(vnode_t vp)
455 {
456 kauth_cred_t ucred = NULL;
457
458 if (vp->v_cred) {
459 vnode_lock(vp);
460
461 ucred = vp->v_cred;
462 vp->v_cred = NULL;
463
464 vnode_unlock(vp);
465
466 if (ucred)
467 kauth_cred_rele(ucred);
468 }
469 }
470
471
472 void vnode_cache_credentials(vnode_t vp, vfs_context_t context)
473 {
474 kauth_cred_t ucred;
475 kauth_cred_t tcred = NOCRED;
476 struct timeval tv;
477
478 ucred = vfs_context_ucred(context);
479
480 if (vp->v_cred != ucred || (vp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE)) {
481 vnode_lock(vp);
482
483 microuptime(&tv);
484 vp->v_cred_timestamp = tv.tv_sec;
485
486 if (vp->v_cred != ucred) {
487 kauth_cred_ref(ucred);
488
489 tcred = vp->v_cred;
490 vp->v_cred = ucred;
491 }
492 vnode_unlock(vp);
493
494 if (tcred)
495 kauth_cred_rele(tcred);
496 }
497 }
498
499 /* reverse_lookup - lookup by walking back up the parent chain while leveraging
500 * use of the name cache lock in order to protect our starting vnode.
501 * NOTE - assumes you already have search access to starting point.
502 * returns 0 when we have reached the root, current working dir, or chroot root
503 *
504 */
505 int
506 reverse_lookup(vnode_t start_vp, vnode_t *lookup_vpp, struct filedesc *fdp, vfs_context_t context, int *dp_authorized)
507 {
508 int vid, done = 0;
509 int auth_opaque = 0;
510 vnode_t dp = start_vp;
511 vnode_t vp = NULLVP;
512 kauth_cred_t ucred;
513 struct timeval tv;
514
515 ucred = vfs_context_ucred(context);
516 *lookup_vpp = start_vp;
517
518 name_cache_lock();
519
520 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) ) {
521 auth_opaque = 1;
522 microuptime(&tv);
523 }
524 for (;;) {
525 *dp_authorized = 0;
526
527 if (auth_opaque && ((tv.tv_sec - dp->v_cred_timestamp) > VCRED_EXPIRED))
528 break;
529 if (dp->v_cred != ucred)
530 break;
531 /*
532 * indicate that we're allowed to traverse this directory...
533 * even if we bail for some reason, this information is valid and is used
534 * to avoid doing a vnode_authorize
535 */
536 *dp_authorized = 1;
537
538 if ((dp->v_flag & VROOT) != 0 || /* Hit "/" */
539 (dp == fdp->fd_cdir) || /* Hit process's working directory */
540 (dp == fdp->fd_rdir)) { /* Hit process chroot()-ed root */
541 done = 1;
542 break;
543 }
544
545 if ( (vp = dp->v_parent) == NULLVP)
546 break;
547
548 dp = vp;
549 *lookup_vpp = dp;
550 } /* for (;;) */
551
552 vid = dp->v_id;
553
554 name_cache_unlock();
555
556 if (done == 0 && dp != start_vp) {
557 if (vnode_getwithvid(dp, vid) != 0) {
558 *lookup_vpp = start_vp;
559 }
560 }
561
562 return((done == 1) ? 0 : -1);
563 }
564
565 int
566 cache_lookup_path(struct nameidata *ndp, struct componentname *cnp, vnode_t dp, vfs_context_t context, int *trailing_slash, int *dp_authorized)
567 {
568 char *cp; /* pointer into pathname argument */
569 int vid, vvid;
570 int auth_opaque = 0;
571 vnode_t vp = NULLVP;
572 vnode_t tdp = NULLVP;
573 kauth_cred_t ucred;
574 struct timeval tv;
575 unsigned int hash;
576
577 ucred = vfs_context_ucred(context);
578 *trailing_slash = 0;
579
580 name_cache_lock();
581
582
583 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) ) {
584 auth_opaque = 1;
585 microuptime(&tv);
586 }
587 for (;;) {
588 /*
589 * Search a directory.
590 *
591 * The cn_hash value is for use by cache_lookup
592 * The last component of the filename is left accessible via
593 * cnp->cn_nameptr for callers that need the name.
594 */
595 hash = 0;
596 cp = cnp->cn_nameptr;
597
598 while (*cp && (*cp != '/')) {
599 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
600 }
601 /*
602 * the crc generator can legitimately generate
603 * a 0... however, 0 for us means that we
604 * haven't computed a hash, so use 1 instead
605 */
606 if (hash == 0)
607 hash = 1;
608 cnp->cn_hash = hash;
609 cnp->cn_namelen = cp - cnp->cn_nameptr;
610
611 ndp->ni_pathlen -= cnp->cn_namelen;
612 ndp->ni_next = cp;
613
614 /*
615 * Replace multiple slashes by a single slash and trailing slashes
616 * by a null. This must be done before VNOP_LOOKUP() because some
617 * fs's don't know about trailing slashes. Remember if there were
618 * trailing slashes to handle symlinks, existing non-directories
619 * and non-existing files that won't be directories specially later.
620 */
621 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
622 cp++;
623 ndp->ni_pathlen--;
624
625 if (*cp == '\0') {
626 *trailing_slash = 1;
627 *ndp->ni_next = '\0';
628 }
629 }
630 ndp->ni_next = cp;
631
632 cnp->cn_flags &= ~(MAKEENTRY | ISLASTCN | ISDOTDOT);
633
634 if (*cp == '\0')
635 cnp->cn_flags |= ISLASTCN;
636
637 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
638 cnp->cn_flags |= ISDOTDOT;
639
640 *dp_authorized = 0;
641
642 if (auth_opaque && ((tv.tv_sec - dp->v_cred_timestamp) > VCRED_EXPIRED))
643 break;
644
645 if (dp->v_cred != ucred)
646 break;
647 /*
648 * indicate that we're allowed to traverse this directory...
649 * even if we fail the cache lookup or decide to bail for
650 * some other reason, this information is valid and is used
651 * to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
652 */
653 *dp_authorized = 1;
654
655 if ( (cnp->cn_flags & (ISLASTCN | ISDOTDOT)) ) {
656 if (cnp->cn_nameiop != LOOKUP)
657 break;
658 if (cnp->cn_flags & (LOCKPARENT | NOCACHE | ISDOTDOT))
659 break;
660 }
661 if ( (vp = cache_lookup_locked(dp, cnp)) == NULLVP)
662 break;
663
664 if ( (cnp->cn_flags & ISLASTCN) )
665 break;
666
667 if (vp->v_type != VDIR) {
668 if (vp->v_type != VLNK)
669 vp = NULL;
670 break;
671 }
672 if (vp->v_mountedhere && ((cnp->cn_flags & NOCROSSMOUNT) == 0))
673 break;
674
675 dp = vp;
676 vp = NULLVP;
677
678 cnp->cn_nameptr = ndp->ni_next + 1;
679 ndp->ni_pathlen--;
680 while (*cnp->cn_nameptr == '/') {
681 cnp->cn_nameptr++;
682 ndp->ni_pathlen--;
683 }
684 }
685 if (vp != NULLVP)
686 vvid = vp->v_id;
687 vid = dp->v_id;
688
689 name_cache_unlock();
690
691
692 if ((vp != NULLVP) && (vp->v_type != VLNK) &&
693 ((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
694 /*
695 * if we've got a child and it's the last component, and
696 * the lookup doesn't need to return the parent then we
697 * can skip grabbing an iocount on the parent, since all
698 * we're going to do with it is a vnode_put just before
699 * we return from 'lookup'. If it's a symbolic link,
700 * we need the parent in case the link happens to be
701 * a relative pathname.
702 */
703 tdp = dp;
704 dp = NULLVP;
705 } else {
706 need_dp:
707 /*
708 * return the last directory we looked at
709 * with an io reference held
710 */
711 if (dp == ndp->ni_usedvp) {
712 /*
713 * if this vnode matches the one passed in via USEDVP
714 * than this context already holds an io_count... just
715 * use vnode_get to get an extra ref for lookup to play
716 * with... can't use the getwithvid variant here because
717 * it will block behind a vnode_drain which would result
718 * in a deadlock (since we already own an io_count that the
719 * vnode_drain is waiting on)... vnode_get grabs the io_count
720 * immediately w/o waiting... it always succeeds
721 */
722 vnode_get(dp);
723 } else if ( (vnode_getwithvid(dp, vid)) ) {
724 /*
725 * failure indicates the vnode
726 * changed identity or is being
727 * TERMINATED... in either case
728 * punt this lookup
729 */
730 return (ENOENT);
731 }
732 }
733 if (vp != NULLVP) {
734 if ( (vnode_getwithvid(vp, vvid)) ) {
735 vp = NULLVP;
736
737 /*
738 * can't get reference on the vp we'd like
739 * to return... if we didn't grab a reference
740 * on the directory (due to fast path bypass),
741 * then we need to do it now... we can't return
742 * with both ni_dvp and ni_vp NULL, and no
743 * error condition
744 */
745 if (dp == NULLVP) {
746 dp = tdp;
747 goto need_dp;
748 }
749 }
750 }
751 ndp->ni_dvp = dp;
752 ndp->ni_vp = vp;
753
754 return (0);
755 }
756
757
758 static vnode_t
759 cache_lookup_locked(vnode_t dvp, struct componentname *cnp)
760 {
761 register struct namecache *ncp;
762 register struct nchashhead *ncpp;
763 register long namelen = cnp->cn_namelen;
764 char *nameptr = cnp->cn_nameptr;
765 unsigned int hashval = (cnp->cn_hash & NCHASHMASK);
766 vnode_t vp;
767
768 ncpp = NCHHASH(dvp, cnp->cn_hash);
769 LIST_FOREACH(ncp, ncpp, nc_hash) {
770 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
771 if (memcmp(ncp->nc_name, nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
772 break;
773 }
774 }
775 if (ncp == 0)
776 /*
777 * We failed to find an entry
778 */
779 return (NULL);
780
781 vp = ncp->nc_vp;
782 if (vp && (vp->v_flag & VISHARDLINK)) {
783 /*
784 * The file system wants a VNOP_LOOKUP on this vnode
785 */
786 vp = NULL;
787 }
788
789 return (vp);
790 }
791
792
793 //
794 // Have to take a len argument because we may only need to
795 // hash part of a componentname.
796 //
797 static unsigned int
798 hash_string(const char *cp, int len)
799 {
800 unsigned hash = 0;
801
802 if (len) {
803 while (len--) {
804 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
805 }
806 } else {
807 while (*cp != '\0') {
808 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
809 }
810 }
811 /*
812 * the crc generator can legitimately generate
813 * a 0... however, 0 for us means that we
814 * haven't computed a hash, so use 1 instead
815 */
816 if (hash == 0)
817 hash = 1;
818 return hash;
819 }
820
821
822 /*
823 * Lookup an entry in the cache
824 *
825 * We don't do this if the segment name is long, simply so the cache
826 * can avoid holding long names (which would either waste space, or
827 * add greatly to the complexity).
828 *
829 * Lookup is called with dvp pointing to the directory to search,
830 * cnp pointing to the name of the entry being sought. If the lookup
831 * succeeds, the vnode is returned in *vpp, and a status of -1 is
832 * returned. If the lookup determines that the name does not exist
833 * (negative cacheing), a status of ENOENT is returned. If the lookup
834 * fails, a status of zero is returned.
835 */
836
837 int
838 cache_lookup(dvp, vpp, cnp)
839 struct vnode *dvp;
840 struct vnode **vpp;
841 struct componentname *cnp;
842 {
843 register struct namecache *ncp;
844 register struct nchashhead *ncpp;
845 register long namelen = cnp->cn_namelen;
846 char *nameptr = cnp->cn_nameptr;
847 unsigned int hashval = (cnp->cn_hash & NCHASHMASK);
848 uint32_t vid;
849 vnode_t vp;
850
851 name_cache_lock();
852
853 ncpp = NCHHASH(dvp, cnp->cn_hash);
854 LIST_FOREACH(ncp, ncpp, nc_hash) {
855 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
856 if (memcmp(ncp->nc_name, nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
857 break;
858 }
859 }
860 /* We failed to find an entry */
861 if (ncp == 0) {
862 nchstats.ncs_miss++;
863 name_cache_unlock();
864 return (0);
865 }
866
867 /* We don't want to have an entry, so dump it */
868 if ((cnp->cn_flags & MAKEENTRY) == 0) {
869 nchstats.ncs_badhits++;
870 cache_delete(ncp, 1);
871 name_cache_unlock();
872 return (0);
873 }
874 vp = ncp->nc_vp;
875
876 /* We found a "positive" match, return the vnode */
877 if (vp) {
878 nchstats.ncs_goodhits++;
879
880 vid = vp->v_id;
881 name_cache_unlock();
882
883 if (vnode_getwithvid(vp, vid)) {
884 name_cache_lock();
885 nchstats.ncs_badvid++;
886 name_cache_unlock();
887 return (0);
888 }
889 *vpp = vp;
890 return (-1);
891 }
892
893 /* We found a negative match, and want to create it, so purge */
894 if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
895 nchstats.ncs_badhits++;
896 cache_delete(ncp, 1);
897 name_cache_unlock();
898 return (0);
899 }
900
901 /*
902 * We found a "negative" match, ENOENT notifies client of this match.
903 * The nc_whiteout field records whether this is a whiteout.
904 */
905 nchstats.ncs_neghits++;
906
907 if (ncp->nc_whiteout)
908 cnp->cn_flags |= ISWHITEOUT;
909 name_cache_unlock();
910 return (ENOENT);
911 }
912
913 /*
914 * Add an entry to the cache.
915 */
916 void
917 cache_enter(dvp, vp, cnp)
918 struct vnode *dvp;
919 struct vnode *vp;
920 struct componentname *cnp;
921 {
922 register struct namecache *ncp, *negp;
923 register struct nchashhead *ncpp;
924
925 if (cnp->cn_hash == 0)
926 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
927
928 name_cache_lock();
929
930 /* if the entry is for -ve caching vp is null */
931 if ((vp != NULLVP) && (LIST_FIRST(&vp->v_nclinks))) {
932 /*
933 * someone beat us to the punch..
934 * this vnode is already in the cache
935 */
936 name_cache_unlock();
937 return;
938 }
939 /*
940 * We allocate a new entry if we are less than the maximum
941 * allowed and the one at the front of the list is in use.
942 * Otherwise we use the one at the front of the list.
943 */
944 if (numcache < desiredNodes &&
945 ((ncp = nchead.tqh_first) == NULL ||
946 ncp->nc_hash.le_prev != 0)) {
947 /*
948 * Allocate one more entry
949 */
950 ncp = (struct namecache *)_MALLOC_ZONE((u_long)sizeof *ncp, M_CACHE, M_WAITOK);
951 numcache++;
952 } else {
953 /*
954 * reuse an old entry
955 */
956 ncp = TAILQ_FIRST(&nchead);
957 TAILQ_REMOVE(&nchead, ncp, nc_entry);
958
959 if (ncp->nc_hash.le_prev != 0) {
960 /*
961 * still in use... we need to
962 * delete it before re-using it
963 */
964 nchstats.ncs_stolen++;
965 cache_delete(ncp, 0);
966 }
967 }
968 nchstats.ncs_enters++;
969
970 /*
971 * Fill in cache info, if vp is NULL this is a "negative" cache entry.
972 */
973 ncp->nc_vp = vp;
974 ncp->nc_dvp = dvp;
975 ncp->nc_hashval = cnp->cn_hash;
976 ncp->nc_whiteout = FALSE;
977 ncp->nc_name = add_name_locked(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, 0);
978
979 /*
980 * make us the newest entry in the cache
981 * i.e. we'll be the last to be stolen
982 */
983 TAILQ_INSERT_TAIL(&nchead, ncp, nc_entry);
984
985 ncpp = NCHHASH(dvp, cnp->cn_hash);
986 #if DIAGNOSTIC
987 {
988 register struct namecache *p;
989
990 for (p = ncpp->lh_first; p != 0; p = p->nc_hash.le_next)
991 if (p == ncp)
992 panic("cache_enter: duplicate");
993 }
994 #endif
995 /*
996 * make us available to be found via lookup
997 */
998 LIST_INSERT_HEAD(ncpp, ncp, nc_hash);
999
1000 if (vp) {
1001 /*
1002 * add to the list of name cache entries
1003 * that point at vp
1004 */
1005 LIST_INSERT_HEAD(&vp->v_nclinks, ncp, nc_un.nc_link);
1006 } else {
1007 /*
1008 * this is a negative cache entry (vp == NULL)
1009 * stick it on the negative cache list
1010 * and record the whiteout state
1011 */
1012 TAILQ_INSERT_TAIL(&neghead, ncp, nc_un.nc_negentry);
1013
1014 if (cnp->cn_flags & ISWHITEOUT)
1015 ncp->nc_whiteout = TRUE;
1016 nchstats.ncs_negtotal++;
1017
1018 if (nchstats.ncs_negtotal > desiredNegNodes) {
1019 /*
1020 * if we've reached our desired limit
1021 * of negative cache entries, delete
1022 * the oldest
1023 */
1024 negp = TAILQ_FIRST(&neghead);
1025 TAILQ_REMOVE(&neghead, negp, nc_un.nc_negentry);
1026
1027 cache_delete(negp, 1);
1028 }
1029 }
1030 /*
1031 * add us to the list of name cache entries that
1032 * are children of dvp
1033 */
1034 LIST_INSERT_HEAD(&dvp->v_ncchildren, ncp, nc_child);
1035
1036 name_cache_unlock();
1037 }
1038
1039
1040 /*
1041 * Initialize CRC-32 remainder table.
1042 */
1043 static void init_crc32(void)
1044 {
1045 /*
1046 * the CRC-32 generator polynomial is:
1047 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
1048 * + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
1049 */
1050 unsigned int crc32_polynomial = 0x04c11db7;
1051 unsigned int i,j;
1052
1053 /*
1054 * pre-calculate the CRC-32 remainder for each possible octet encoding
1055 */
1056 for (i = 0; i < 256; i++) {
1057 unsigned int crc_rem = i << 24;
1058
1059 for (j = 0; j < 8; j++) {
1060 if (crc_rem & 0x80000000)
1061 crc_rem = (crc_rem << 1) ^ crc32_polynomial;
1062 else
1063 crc_rem = (crc_rem << 1);
1064 }
1065 crc32tab[i] = crc_rem;
1066 }
1067 }
1068
1069
1070 /*
1071 * Name cache initialization, from vfs_init() when we are booting
1072 */
1073 void
1074 nchinit(void)
1075 {
1076 desiredNegNodes = (desiredvnodes / 10);
1077 desiredNodes = desiredvnodes + desiredNegNodes;
1078
1079 TAILQ_INIT(&nchead);
1080 TAILQ_INIT(&neghead);
1081
1082 init_crc32();
1083
1084 nchashtbl = hashinit(MAX(4096, (2 *desiredNodes)), M_CACHE, &nchash);
1085 nchashmask = nchash;
1086 nchash++;
1087
1088 init_string_table();
1089
1090 /* Allocate mount list lock group attribute and group */
1091 namecache_lck_grp_attr= lck_grp_attr_alloc_init();
1092 lck_grp_attr_setstat(namecache_lck_grp_attr);
1093
1094 namecache_lck_grp = lck_grp_alloc_init("Name Cache", namecache_lck_grp_attr);
1095
1096 /* Allocate mount list lock attribute */
1097 namecache_lck_attr = lck_attr_alloc_init();
1098 //lck_attr_setdebug(namecache_lck_attr);
1099
1100 /* Allocate mount list lock */
1101 namecache_mtx_lock = lck_mtx_alloc_init(namecache_lck_grp, namecache_lck_attr);
1102
1103
1104 }
1105
1106 void
1107 name_cache_lock(void)
1108 {
1109 lck_mtx_lock(namecache_mtx_lock);
1110 }
1111
1112 void
1113 name_cache_unlock(void)
1114 {
1115 lck_mtx_unlock(namecache_mtx_lock);
1116
1117 }
1118
1119
1120 int
1121 resize_namecache(u_int newsize)
1122 {
1123 struct nchashhead *new_table;
1124 struct nchashhead *old_table;
1125 struct nchashhead *old_head, *head;
1126 struct namecache *entry, *next;
1127 uint32_t i, hashval;
1128 int dNodes, dNegNodes;
1129 u_long new_size, old_size;
1130
1131 dNegNodes = (newsize / 10);
1132 dNodes = newsize + dNegNodes;
1133
1134 // we don't support shrinking yet
1135 if (dNodes < desiredNodes) {
1136 return 0;
1137 }
1138 new_table = hashinit(2 * dNodes, M_CACHE, &nchashmask);
1139 new_size = nchashmask + 1;
1140
1141 if (new_table == NULL) {
1142 return ENOMEM;
1143 }
1144
1145 name_cache_lock();
1146 // do the switch!
1147 old_table = nchashtbl;
1148 nchashtbl = new_table;
1149 old_size = nchash;
1150 nchash = new_size;
1151
1152 // walk the old table and insert all the entries into
1153 // the new table
1154 //
1155 for(i=0; i < old_size; i++) {
1156 old_head = &old_table[i];
1157 for (entry=old_head->lh_first; entry != NULL; entry=next) {
1158 //
1159 // XXXdbg - Beware: this assumes that hash_string() does
1160 // the same thing as what happens in
1161 // lookup() over in vfs_lookup.c
1162 hashval = hash_string(entry->nc_name, 0);
1163 entry->nc_hashval = hashval;
1164 head = NCHHASH(entry->nc_dvp, hashval);
1165
1166 next = entry->nc_hash.le_next;
1167 LIST_INSERT_HEAD(head, entry, nc_hash);
1168 }
1169 }
1170 desiredNodes = dNodes;
1171 desiredNegNodes = dNegNodes;
1172
1173 name_cache_unlock();
1174 FREE(old_table, M_CACHE);
1175
1176 return 0;
1177 }
1178
1179 static void
1180 cache_delete(struct namecache *ncp, int age_entry)
1181 {
1182 nchstats.ncs_deletes++;
1183
1184 if (ncp->nc_vp) {
1185 LIST_REMOVE(ncp, nc_un.nc_link);
1186 } else {
1187 TAILQ_REMOVE(&neghead, ncp, nc_un.nc_negentry);
1188 nchstats.ncs_negtotal--;
1189 }
1190 LIST_REMOVE(ncp, nc_child);
1191
1192 LIST_REMOVE(ncp, nc_hash);
1193 /*
1194 * this field is used to indicate
1195 * that the entry is in use and
1196 * must be deleted before it can
1197 * be reused...
1198 */
1199 ncp->nc_hash.le_prev = NULL;
1200
1201 if (age_entry) {
1202 /*
1203 * make it the next one available
1204 * for cache_enter's use
1205 */
1206 TAILQ_REMOVE(&nchead, ncp, nc_entry);
1207 TAILQ_INSERT_HEAD(&nchead, ncp, nc_entry);
1208 }
1209 remove_name_locked(ncp->nc_name);
1210 ncp->nc_name = NULL;
1211 }
1212
1213
1214 /*
1215 * purge the entry associated with the
1216 * specified vnode from the name cache
1217 */
1218 void
1219 cache_purge(vnode_t vp)
1220 {
1221 struct namecache *ncp;
1222
1223 if ((LIST_FIRST(&vp->v_nclinks) == NULL) && (LIST_FIRST(&vp->v_ncchildren) == NULL))
1224 return;
1225
1226 name_cache_lock();
1227
1228 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
1229 cache_delete(ncp, 1);
1230
1231 while ( (ncp = LIST_FIRST(&vp->v_ncchildren)) )
1232 cache_delete(ncp, 1);
1233
1234 name_cache_unlock();
1235 }
1236
1237 /*
1238 * Purge all negative cache entries that are children of the
1239 * given vnode. A case-insensitive file system (or any file
1240 * system that has multiple equivalent names for the same
1241 * directory entry) can use this when creating or renaming
1242 * to remove negative entries that may no longer apply.
1243 */
1244 void
1245 cache_purge_negatives(vnode_t vp)
1246 {
1247 struct namecache *ncp;
1248
1249 name_cache_lock();
1250
1251 LIST_FOREACH(ncp, &vp->v_ncchildren, nc_child)
1252 if (ncp->nc_vp == NULL)
1253 cache_delete(ncp , 1);
1254
1255 name_cache_unlock();
1256 }
1257
1258 /*
1259 * Flush all entries referencing a particular filesystem.
1260 *
1261 * Since we need to check it anyway, we will flush all the invalid
1262 * entries at the same time.
1263 */
1264 void
1265 cache_purgevfs(mp)
1266 struct mount *mp;
1267 {
1268 struct nchashhead *ncpp;
1269 struct namecache *ncp;
1270
1271 name_cache_lock();
1272 /* Scan hash tables for applicable entries */
1273 for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) {
1274 restart:
1275 for (ncp = ncpp->lh_first; ncp != 0; ncp = ncp->nc_hash.le_next) {
1276 if (ncp->nc_dvp->v_mount == mp) {
1277 cache_delete(ncp, 0);
1278 goto restart;
1279 }
1280 }
1281 }
1282 name_cache_unlock();
1283 }
1284
1285
1286
1287 //
1288 // String ref routines
1289 //
1290 static LIST_HEAD(stringhead, string_t) *string_ref_table;
1291 static u_long string_table_mask;
1292 static uint32_t max_chain_len=0;
1293 static struct stringhead *long_chain_head=NULL;
1294 static uint32_t filled_buckets=0;
1295 static uint32_t num_dups=0;
1296 static uint32_t nstrings=0;
1297
1298 typedef struct string_t {
1299 LIST_ENTRY(string_t) hash_chain;
1300 unsigned char *str;
1301 uint32_t refcount;
1302 } string_t;
1303
1304
1305
1306 static int
1307 resize_string_ref_table(void)
1308 {
1309 struct stringhead *new_table;
1310 struct stringhead *old_table;
1311 struct stringhead *old_head, *head;
1312 string_t *entry, *next;
1313 uint32_t i, hashval;
1314 u_long new_mask, old_mask;
1315
1316 new_table = hashinit((string_table_mask + 1) * 2, M_CACHE, &new_mask);
1317 if (new_table == NULL) {
1318 return ENOMEM;
1319 }
1320
1321 // do the switch!
1322 old_table = string_ref_table;
1323 string_ref_table = new_table;
1324 old_mask = string_table_mask;
1325 string_table_mask = new_mask;
1326
1327 printf("resize: max chain len %d, new table size %d\n",
1328 max_chain_len, new_mask + 1);
1329 max_chain_len = 0;
1330 long_chain_head = NULL;
1331 filled_buckets = 0;
1332
1333 // walk the old table and insert all the entries into
1334 // the new table
1335 //
1336 for(i=0; i <= old_mask; i++) {
1337 old_head = &old_table[i];
1338 for (entry=old_head->lh_first; entry != NULL; entry=next) {
1339 hashval = hash_string(entry->str, 0);
1340 head = &string_ref_table[hashval & string_table_mask];
1341 if (head->lh_first == NULL) {
1342 filled_buckets++;
1343 }
1344
1345 next = entry->hash_chain.le_next;
1346 LIST_INSERT_HEAD(head, entry, hash_chain);
1347 }
1348 }
1349
1350 FREE(old_table, M_CACHE);
1351
1352 return 0;
1353 }
1354
1355
1356 static void
1357 init_string_table(void)
1358 {
1359 string_ref_table = hashinit(4096, M_CACHE, &string_table_mask);
1360 }
1361
1362
1363 char *
1364 vfs_addname(const char *name, size_t len, u_int hashval, u_int flags)
1365 {
1366 char * ptr;
1367
1368 name_cache_lock();
1369 ptr = add_name_locked(name, len, hashval, flags);
1370 name_cache_unlock();
1371
1372 return(ptr);
1373 }
1374
1375 static char *
1376 add_name_locked(const char *name, size_t len, u_int hashval, __unused u_int flags)
1377 {
1378 struct stringhead *head;
1379 string_t *entry;
1380 uint32_t chain_len = 0;
1381
1382 //
1383 // If the table gets more than 3/4 full, resize it
1384 //
1385 if (4*filled_buckets >= ((string_table_mask + 1) * 3)) {
1386 if (resize_string_ref_table() != 0) {
1387 printf("failed to resize the hash table.\n");
1388 }
1389 }
1390 if (hashval == 0) {
1391 hashval = hash_string(name, 0);
1392 }
1393
1394 head = &string_ref_table[hashval & string_table_mask];
1395 for (entry=head->lh_first; entry != NULL; chain_len++, entry=entry->hash_chain.le_next) {
1396 if (memcmp(entry->str, name, len) == 0 && entry->str[len] == '\0') {
1397 entry->refcount++;
1398 num_dups++;
1399 break;
1400 }
1401 }
1402
1403 if (entry == NULL) {
1404 // it wasn't already there so add it.
1405 MALLOC(entry, string_t *, sizeof(string_t) + len + 1, M_TEMP, M_WAITOK);
1406
1407 // have to get "head" again because we could have blocked
1408 // in malloc and thus head could have changed.
1409 //
1410 head = &string_ref_table[hashval & string_table_mask];
1411 if (head->lh_first == NULL) {
1412 filled_buckets++;
1413 }
1414
1415 entry->str = (char *)((char *)entry + sizeof(string_t));
1416 strncpy(entry->str, name, len);
1417 entry->str[len] = '\0';
1418 entry->refcount = 1;
1419 LIST_INSERT_HEAD(head, entry, hash_chain);
1420
1421 if (chain_len > max_chain_len) {
1422 max_chain_len = chain_len;
1423 long_chain_head = head;
1424 }
1425
1426 nstrings++;
1427 }
1428
1429 return entry->str;
1430 }
1431
1432 int
1433 vfs_removename(const char *nameref)
1434 {
1435 int i;
1436
1437 name_cache_lock();
1438 i = remove_name_locked(nameref);
1439 name_cache_unlock();
1440
1441 return(i);
1442
1443 }
1444
1445
1446 static int
1447 remove_name_locked(const char *nameref)
1448 {
1449 struct stringhead *head;
1450 string_t *entry;
1451 uint32_t hashval;
1452 char * ptr;
1453
1454 hashval = hash_string(nameref, 0);
1455 head = &string_ref_table[hashval & string_table_mask];
1456 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
1457 if (entry->str == (unsigned char *)nameref) {
1458 entry->refcount--;
1459 if (entry->refcount == 0) {
1460 LIST_REMOVE(entry, hash_chain);
1461 if (head->lh_first == NULL) {
1462 filled_buckets--;
1463 }
1464 ptr = entry->str;
1465 entry->str = NULL;
1466 nstrings--;
1467
1468 FREE(entry, M_TEMP);
1469 } else {
1470 num_dups--;
1471 }
1472
1473 return 0;
1474 }
1475 }
1476
1477 return ENOENT;
1478 }
1479
1480
1481 void
1482 dump_string_table(void)
1483 {
1484 struct stringhead *head;
1485 string_t *entry;
1486 u_long i;
1487
1488 name_cache_lock();
1489 for (i = 0; i <= string_table_mask; i++) {
1490 head = &string_ref_table[i];
1491 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
1492 printf("%6d - %s\n", entry->refcount, entry->str);
1493 }
1494 }
1495 name_cache_unlock();
1496 }