]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOBufferMemoryDescriptor.cpp
xnu-2422.1.72.tar.gz
[apple/xnu.git] / iokit / Kernel / IOBufferMemoryDescriptor.cpp
1 /*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #define _IOMEMORYDESCRIPTOR_INTERNAL_
30
31 #include <IOKit/assert.h>
32 #include <IOKit/system.h>
33
34 #include <IOKit/IOLib.h>
35 #include <IOKit/IOMapper.h>
36 #include <IOKit/IOBufferMemoryDescriptor.h>
37 #include <libkern/OSDebug.h>
38 #include <mach/mach_vm.h>
39
40 #include "IOKitKernelInternal.h"
41
42 #ifdef IOALLOCDEBUG
43 #include <libkern/c++/OSCPPDebug.h>
44 #endif
45 #include <IOKit/IOStatisticsPrivate.h>
46
47 #if IOKITSTATS
48 #define IOStatisticsAlloc(type, size) \
49 do { \
50 IOStatistics::countAlloc(type, size); \
51 } while (0)
52 #else
53 #define IOStatisticsAlloc(type, size)
54 #endif /* IOKITSTATS */
55
56
57 __BEGIN_DECLS
58 void ipc_port_release_send(ipc_port_t port);
59 #include <vm/pmap.h>
60
61 __END_DECLS
62
63 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
64
65 enum
66 {
67 kInternalFlagPhysical = 0x00000001,
68 kInternalFlagPageSized = 0x00000002,
69 kInternalFlagPageAllocated = 0x00000004
70 };
71
72 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
73
74 #define super IOGeneralMemoryDescriptor
75 OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor,
76 IOGeneralMemoryDescriptor);
77
78 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
79
80 static uintptr_t IOBMDPageProc(iopa_t * a)
81 {
82 kern_return_t kr;
83 vm_address_t vmaddr = 0;
84 int options = 0; // KMA_LOMEM;
85
86 kr = kernel_memory_allocate(kernel_map, &vmaddr,
87 page_size, 0, options);
88
89 if (KERN_SUCCESS != kr) vmaddr = 0;
90 else bzero((void *) vmaddr, page_size);
91
92 return ((uintptr_t) vmaddr);
93 }
94
95 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
96
97 #ifndef __LP64__
98 bool IOBufferMemoryDescriptor::initWithOptions(
99 IOOptionBits options,
100 vm_size_t capacity,
101 vm_offset_t alignment,
102 task_t inTask)
103 {
104 mach_vm_address_t physicalMask = 0;
105 return (initWithPhysicalMask(inTask, options, capacity, alignment, physicalMask));
106 }
107 #endif /* !__LP64__ */
108
109 bool IOBufferMemoryDescriptor::initWithPhysicalMask(
110 task_t inTask,
111 IOOptionBits options,
112 mach_vm_size_t capacity,
113 mach_vm_address_t alignment,
114 mach_vm_address_t physicalMask)
115 {
116 kern_return_t kr;
117 task_t mapTask = NULL;
118 vm_map_t vmmap = NULL;
119 mach_vm_address_t highestMask = 0;
120 IOOptionBits iomdOptions = kIOMemoryTypeVirtual64 | kIOMemoryAsReference;
121 IODMAMapSpecification mapSpec;
122 bool mapped = false;
123 bool needZero;
124
125 if (!capacity)
126 return false;
127
128 _options = options;
129 _capacity = capacity;
130 _internalFlags = 0;
131 _internalReserved = 0;
132 _buffer = 0;
133
134 _ranges.v64 = IONew(IOAddressRange, 1);
135 if (!_ranges.v64)
136 return (false);
137 _ranges.v64->address = 0;
138 _ranges.v64->length = 0;
139 // make sure super::free doesn't dealloc _ranges before super::init
140 _flags = kIOMemoryAsReference;
141
142 // Grab IOMD bits from the Buffer MD options
143 iomdOptions |= (options & kIOBufferDescriptorMemoryFlags);
144
145 if (!(kIOMemoryMapperNone & options))
146 {
147 IOMapper::checkForSystemMapper();
148 mapped = (0 != IOMapper::gSystem);
149 }
150 needZero = mapped;
151
152 if (physicalMask && (alignment <= 1))
153 {
154 alignment = ((physicalMask ^ (-1ULL)) & (physicalMask - 1));
155 highestMask = (physicalMask | alignment);
156 alignment++;
157 if (alignment < page_size)
158 alignment = page_size;
159 }
160
161 if ((options & (kIOMemorySharingTypeMask | kIOMapCacheMask | kIOMemoryClearEncrypt)) && (alignment < page_size))
162 alignment = page_size;
163
164 if (alignment >= page_size)
165 capacity = round_page(capacity);
166
167 if (alignment > page_size)
168 options |= kIOMemoryPhysicallyContiguous;
169
170 _alignment = alignment;
171
172 if ((inTask != kernel_task) && !(options & kIOMemoryPageable))
173 return false;
174
175 bzero(&mapSpec, sizeof(mapSpec));
176 mapSpec.alignment = _alignment;
177 mapSpec.numAddressBits = 64;
178 if (highestMask && mapped)
179 {
180 if (highestMask <= 0xFFFFFFFF)
181 mapSpec.numAddressBits = (32 - __builtin_clz((unsigned int) highestMask));
182 else
183 mapSpec.numAddressBits = (64 - __builtin_clz((unsigned int) (highestMask >> 32)));
184 highestMask = 0;
185 }
186
187 // set flags for entry + object create
188 vm_prot_t memEntryCacheMode = VM_PROT_READ | VM_PROT_WRITE;
189
190 // set memory entry cache mode
191 switch (options & kIOMapCacheMask)
192 {
193 case kIOMapInhibitCache:
194 SET_MAP_MEM(MAP_MEM_IO, memEntryCacheMode);
195 break;
196
197 case kIOMapWriteThruCache:
198 SET_MAP_MEM(MAP_MEM_WTHRU, memEntryCacheMode);
199 break;
200
201 case kIOMapWriteCombineCache:
202 SET_MAP_MEM(MAP_MEM_WCOMB, memEntryCacheMode);
203 break;
204
205 case kIOMapCopybackCache:
206 SET_MAP_MEM(MAP_MEM_COPYBACK, memEntryCacheMode);
207 break;
208
209 case kIOMapCopybackInnerCache:
210 SET_MAP_MEM(MAP_MEM_INNERWBACK, memEntryCacheMode);
211 break;
212
213 case kIOMapDefaultCache:
214 default:
215 SET_MAP_MEM(MAP_MEM_NOOP, memEntryCacheMode);
216 break;
217 }
218
219 if (options & kIOMemoryPageable)
220 {
221 iomdOptions |= kIOMemoryBufferPageable;
222
223 // must create the entry before any pages are allocated
224
225 // set flags for entry + object create
226 memEntryCacheMode |= MAP_MEM_NAMED_CREATE;
227
228 if (options & kIOMemoryPurgeable)
229 memEntryCacheMode |= MAP_MEM_PURGABLE;
230 }
231 else
232 {
233 memEntryCacheMode |= MAP_MEM_NAMED_REUSE;
234 vmmap = kernel_map;
235
236 // Buffer shouldn't auto prepare they should be prepared explicitly
237 // But it never was enforced so what are you going to do?
238 iomdOptions |= kIOMemoryAutoPrepare;
239
240 /* Allocate a wired-down buffer inside kernel space. */
241
242 bool contig = (0 != (options & kIOMemoryHostPhysicallyContiguous));
243
244 if (!contig && (0 != (options & kIOMemoryPhysicallyContiguous)))
245 {
246 contig |= (!mapped);
247 contig |= (0 != (kIOMemoryMapperNone & options));
248 #if 0
249 // treat kIOMemoryPhysicallyContiguous as kIOMemoryHostPhysicallyContiguous for now
250 contig |= true;
251 #endif
252 }
253
254 if (contig || highestMask || (alignment > page_size))
255 {
256 _internalFlags |= kInternalFlagPhysical;
257 if (highestMask)
258 {
259 _internalFlags |= kInternalFlagPageSized;
260 capacity = round_page(capacity);
261 }
262 _buffer = (void *) IOKernelAllocateWithPhysicalRestrict(
263 capacity, highestMask, alignment, contig);
264 }
265 else if (needZero
266 && ((capacity + alignment) <= (page_size - kIOPageAllocChunkBytes)))
267 {
268 _internalFlags |= kInternalFlagPageAllocated;
269 needZero = false;
270 _buffer = (void *) iopa_alloc(&gIOBMDPageAllocator, &IOBMDPageProc, capacity, alignment);
271 if (_buffer)
272 {
273 IOStatisticsAlloc(kIOStatisticsMallocAligned, capacity);
274 #if IOALLOCDEBUG
275 debug_iomalloc_size += capacity;
276 #endif
277 }
278 }
279 else if (alignment > 1)
280 {
281 _buffer = IOMallocAligned(capacity, alignment);
282 }
283 else
284 {
285 _buffer = IOMalloc(capacity);
286 }
287 if (!_buffer)
288 {
289 return false;
290 }
291 if (needZero) bzero(_buffer, capacity);
292 }
293
294 if( (options & (kIOMemoryPageable | kIOMapCacheMask))) {
295 ipc_port_t sharedMem;
296 vm_size_t size = round_page(capacity);
297
298 kr = mach_make_memory_entry(vmmap,
299 &size, (vm_offset_t)_buffer,
300 memEntryCacheMode, &sharedMem,
301 NULL );
302
303 if( (KERN_SUCCESS == kr) && (size != round_page(capacity))) {
304 ipc_port_release_send( sharedMem );
305 kr = kIOReturnVMError;
306 }
307 if( KERN_SUCCESS != kr)
308 return( false );
309
310 _memEntry = (void *) sharedMem;
311
312 if( options & kIOMemoryPageable) {
313 #if IOALLOCDEBUG
314 debug_iomallocpageable_size += size;
315 #endif
316 mapTask = inTask;
317 if (NULL == inTask)
318 inTask = kernel_task;
319 }
320 else if (options & kIOMapCacheMask)
321 {
322 // Prefetch each page to put entries into the pmap
323 volatile UInt8 * startAddr = (UInt8 *)_buffer;
324 volatile UInt8 * endAddr = (UInt8 *)_buffer + capacity;
325
326 while (startAddr < endAddr)
327 {
328 UInt8 dummyVar = *startAddr;
329 (void) dummyVar;
330 startAddr += page_size;
331 }
332 }
333 }
334
335 _ranges.v64->address = (mach_vm_address_t) _buffer;;
336 _ranges.v64->length = _capacity;
337
338 if (!super::initWithOptions(_ranges.v64, 1, 0,
339 inTask, iomdOptions, /* System mapper */ 0))
340 return false;
341
342 // give any system mapper the allocation params
343 if (kIOReturnSuccess != dmaCommandOperation(kIOMDAddDMAMapSpec,
344 &mapSpec, sizeof(mapSpec)))
345 return false;
346
347 if (mapTask)
348 {
349 if (!reserved) {
350 reserved = IONew( ExpansionData, 1 );
351 if( !reserved)
352 return( false );
353 }
354 reserved->map = createMappingInTask(mapTask, 0,
355 kIOMapAnywhere | (options & kIOMapCacheMask), 0, 0);
356 if (!reserved->map)
357 {
358 _buffer = 0;
359 return( false );
360 }
361 release(); // map took a retain on this
362 reserved->map->retain();
363 removeMapping(reserved->map);
364 mach_vm_address_t buffer = reserved->map->getAddress();
365 _buffer = (void *) buffer;
366 if (kIOMemoryTypeVirtual64 == (kIOMemoryTypeMask & iomdOptions))
367 _ranges.v64->address = buffer;
368 }
369
370 setLength(_capacity);
371
372 return true;
373 }
374
375 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithOptions(
376 task_t inTask,
377 IOOptionBits options,
378 vm_size_t capacity,
379 vm_offset_t alignment)
380 {
381 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
382
383 if (me && !me->initWithPhysicalMask(inTask, options, capacity, alignment, 0)) {
384 me->release();
385 me = 0;
386 }
387 return me;
388 }
389
390 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithPhysicalMask(
391 task_t inTask,
392 IOOptionBits options,
393 mach_vm_size_t capacity,
394 mach_vm_address_t physicalMask)
395 {
396 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
397
398 if (me && !me->initWithPhysicalMask(inTask, options, capacity, 1, physicalMask))
399 {
400 me->release();
401 me = 0;
402 }
403 return me;
404 }
405
406 #ifndef __LP64__
407 bool IOBufferMemoryDescriptor::initWithOptions(
408 IOOptionBits options,
409 vm_size_t capacity,
410 vm_offset_t alignment)
411 {
412 return (initWithPhysicalMask(kernel_task, options, capacity, alignment, (mach_vm_address_t)0));
413 }
414 #endif /* !__LP64__ */
415
416 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withOptions(
417 IOOptionBits options,
418 vm_size_t capacity,
419 vm_offset_t alignment)
420 {
421 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
422
423 if (me && !me->initWithPhysicalMask(kernel_task, options, capacity, alignment, 0)) {
424 me->release();
425 me = 0;
426 }
427 return me;
428 }
429
430
431 /*
432 * withCapacity:
433 *
434 * Returns a new IOBufferMemoryDescriptor with a buffer large enough to
435 * hold capacity bytes. The descriptor's length is initially set to the capacity.
436 */
437 IOBufferMemoryDescriptor *
438 IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity,
439 IODirection inDirection,
440 bool inContiguous)
441 {
442 return( IOBufferMemoryDescriptor::withOptions(
443 inDirection | kIOMemoryUnshared
444 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
445 inCapacity, inContiguous ? inCapacity : 1 ));
446 }
447
448 #ifndef __LP64__
449 /*
450 * initWithBytes:
451 *
452 * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied).
453 * The descriptor's length and capacity are set to the input buffer's size.
454 */
455 bool IOBufferMemoryDescriptor::initWithBytes(const void * inBytes,
456 vm_size_t inLength,
457 IODirection inDirection,
458 bool inContiguous)
459 {
460 if (!initWithPhysicalMask(kernel_task, inDirection | kIOMemoryUnshared
461 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
462 inLength, inLength, (mach_vm_address_t)0))
463 return false;
464
465 // start out with no data
466 setLength(0);
467
468 if (!appendBytes(inBytes, inLength))
469 return false;
470
471 return true;
472 }
473 #endif /* !__LP64__ */
474
475 /*
476 * withBytes:
477 *
478 * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied).
479 * The descriptor's length and capacity are set to the input buffer's size.
480 */
481 IOBufferMemoryDescriptor *
482 IOBufferMemoryDescriptor::withBytes(const void * inBytes,
483 vm_size_t inLength,
484 IODirection inDirection,
485 bool inContiguous)
486 {
487 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
488
489 if (me && !me->initWithPhysicalMask(
490 kernel_task, inDirection | kIOMemoryUnshared
491 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
492 inLength, inLength, 0 ))
493 {
494 me->release();
495 me = 0;
496 }
497
498 if (me)
499 {
500 // start out with no data
501 me->setLength(0);
502
503 if (!me->appendBytes(inBytes, inLength))
504 {
505 me->release();
506 me = 0;
507 }
508 }
509 return me;
510 }
511
512 /*
513 * free:
514 *
515 * Free resources
516 */
517 void IOBufferMemoryDescriptor::free()
518 {
519 // Cache all of the relevant information on the stack for use
520 // after we call super::free()!
521 IOOptionBits flags = _flags;
522 IOOptionBits internalFlags = _internalFlags;
523 IOOptionBits options = _options;
524 vm_size_t size = _capacity;
525 void * buffer = _buffer;
526 IOMemoryMap * map = 0;
527 IOAddressRange * range = _ranges.v64;
528 vm_offset_t alignment = _alignment;
529
530 if (alignment >= page_size)
531 size = round_page(size);
532
533 if (reserved)
534 {
535 map = reserved->map;
536 IODelete( reserved, ExpansionData, 1 );
537 if (map)
538 map->release();
539 }
540
541 /* super::free may unwire - deallocate buffer afterwards */
542 super::free();
543
544 if (options & kIOMemoryPageable)
545 {
546 #if IOALLOCDEBUG
547 debug_iomallocpageable_size -= round_page(size);
548 #endif
549 }
550 else if (buffer)
551 {
552 if (kInternalFlagPageSized & internalFlags) size = round_page(size);
553
554 if (kInternalFlagPhysical & internalFlags)
555 {
556 IOKernelFreePhysical((mach_vm_address_t) buffer, size);
557 }
558 else if (kInternalFlagPageAllocated & internalFlags)
559 {
560 uintptr_t page;
561 page = iopa_free(&gIOBMDPageAllocator, (uintptr_t) buffer, size);
562 if (page)
563 {
564 kmem_free(kernel_map, page, page_size);
565 }
566 #if IOALLOCDEBUG
567 debug_iomalloc_size -= size;
568 #endif
569 IOStatisticsAlloc(kIOStatisticsFreeAligned, size);
570 }
571 else if (alignment > 1)
572 {
573 IOFreeAligned(buffer, size);
574 }
575 else
576 {
577 IOFree(buffer, size);
578 }
579 }
580 if (range && (kIOMemoryAsReference & flags))
581 IODelete(range, IOAddressRange, 1);
582 }
583
584 /*
585 * getCapacity:
586 *
587 * Get the buffer capacity
588 */
589 vm_size_t IOBufferMemoryDescriptor::getCapacity() const
590 {
591 return _capacity;
592 }
593
594 /*
595 * setLength:
596 *
597 * Change the buffer length of the memory descriptor. When a new buffer
598 * is created, the initial length of the buffer is set to be the same as
599 * the capacity. The length can be adjusted via setLength for a shorter
600 * transfer (there is no need to create more buffer descriptors when you
601 * can reuse an existing one, even for different transfer sizes). Note
602 * that the specified length must not exceed the capacity of the buffer.
603 */
604 void IOBufferMemoryDescriptor::setLength(vm_size_t length)
605 {
606 assert(length <= _capacity);
607
608 _length = length;
609 _ranges.v64->length = length;
610 }
611
612 /*
613 * setDirection:
614 *
615 * Change the direction of the transfer. This method allows one to redirect
616 * the descriptor's transfer direction. This eliminates the need to destroy
617 * and create new buffers when different transfer directions are needed.
618 */
619 void IOBufferMemoryDescriptor::setDirection(IODirection direction)
620 {
621 _flags = (_flags & ~kIOMemoryDirectionMask) | direction;
622 #ifndef __LP64__
623 _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
624 #endif /* !__LP64__ */
625 }
626
627 /*
628 * appendBytes:
629 *
630 * Add some data to the end of the buffer. This method automatically
631 * maintains the memory descriptor buffer length. Note that appendBytes
632 * will not copy past the end of the memory descriptor's current capacity.
633 */
634 bool
635 IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength)
636 {
637 vm_size_t actualBytesToCopy = min(withLength, _capacity - _length);
638 IOByteCount offset;
639
640 assert(_length <= _capacity);
641
642 offset = _length;
643 _length += actualBytesToCopy;
644 _ranges.v64->length += actualBytesToCopy;
645
646 if (_task == kernel_task)
647 bcopy(/* from */ bytes, (void *)(_ranges.v64->address + offset),
648 actualBytesToCopy);
649 else
650 writeBytes(offset, bytes, actualBytesToCopy);
651
652 return true;
653 }
654
655 /*
656 * getBytesNoCopy:
657 *
658 * Return the virtual address of the beginning of the buffer
659 */
660 void * IOBufferMemoryDescriptor::getBytesNoCopy()
661 {
662 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask))
663 return _buffer;
664 else
665 return (void *)_ranges.v64->address;
666 }
667
668
669 /*
670 * getBytesNoCopy:
671 *
672 * Return the virtual address of an offset from the beginning of the buffer
673 */
674 void *
675 IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength)
676 {
677 IOVirtualAddress address;
678 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask))
679 address = (IOVirtualAddress) _buffer;
680 else
681 address = _ranges.v64->address;
682
683 if (start < _length && (start + withLength) <= _length)
684 return (void *)(address + start);
685 return 0;
686 }
687
688 #ifndef __LP64__
689 void * IOBufferMemoryDescriptor::getVirtualSegment(IOByteCount offset,
690 IOByteCount * lengthOfSegment)
691 {
692 void * bytes = getBytesNoCopy(offset, 0);
693
694 if (bytes && lengthOfSegment)
695 *lengthOfSegment = _length - offset;
696
697 return bytes;
698 }
699 #endif /* !__LP64__ */
700
701 #ifdef __LP64__
702 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 0);
703 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 1);
704 #else /* !__LP64__ */
705 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 0);
706 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 1);
707 #endif /* !__LP64__ */
708 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2);
709 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3);
710 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4);
711 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5);
712 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6);
713 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7);
714 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8);
715 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9);
716 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10);
717 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11);
718 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12);
719 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13);
720 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14);
721 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15);