]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_input.c
xnu-2422.1.72.tar.gz
[apple/xnu.git] / bsd / netinet / ip_input.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
61 */
62 /*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69 #define _IP_VHL
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/malloc.h>
75 #include <sys/domain.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/time.h>
79 #include <sys/kernel.h>
80 #include <sys/syslog.h>
81 #include <sys/sysctl.h>
82 #include <sys/mcache.h>
83 #include <sys/socketvar.h>
84 #include <sys/kdebug.h>
85 #include <mach/mach_time.h>
86 #include <mach/sdt.h>
87
88 #include <machine/endian.h>
89 #include <dev/random/randomdev.h>
90
91 #include <kern/queue.h>
92 #include <kern/locks.h>
93 #include <libkern/OSAtomic.h>
94
95 #include <pexpert/pexpert.h>
96
97 #include <net/if.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/route.h>
101 #include <net/kpi_protocol.h>
102 #include <net/ntstat.h>
103 #include <net/dlil.h>
104 #include <net/classq/classq.h>
105 #if PF
106 #include <net/pfvar.h>
107 #endif /* PF */
108
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/in_arp.h>
113 #include <netinet/ip.h>
114 #include <netinet/in_pcb.h>
115 #include <netinet/ip_var.h>
116 #include <netinet/ip_icmp.h>
117 #include <netinet/ip_fw.h>
118 #include <netinet/ip_divert.h>
119 #include <netinet/kpi_ipfilter_var.h>
120 #include <netinet/udp.h>
121 #include <netinet/udp_var.h>
122 #include <netinet/bootp.h>
123 #include <netinet/lro_ext.h>
124
125 #if DUMMYNET
126 #include <netinet/ip_dummynet.h>
127 #endif /* DUMMYNET */
128
129 #if CONFIG_MACF_NET
130 #include <security/mac_framework.h>
131 #endif /* CONFIG_MACF_NET */
132
133 #if IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netkey/key.h>
136 #endif /* IPSEC */
137
138 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
139 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
140 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
141
142 #if IPSEC
143 extern int ipsec_bypass;
144 extern lck_mtx_t *sadb_mutex;
145
146 lck_grp_t *sadb_stat_mutex_grp;
147 lck_grp_attr_t *sadb_stat_mutex_grp_attr;
148 lck_attr_t *sadb_stat_mutex_attr;
149 decl_lck_mtx_data(, sadb_stat_mutex_data);
150 lck_mtx_t *sadb_stat_mutex = &sadb_stat_mutex_data;
151 #endif /* IPSEC */
152
153 #if MROUTING
154 int rsvp_on = 0;
155 static int ip_rsvp_on;
156 struct socket *ip_rsvpd;
157 #endif /* MROUTING */
158
159 MBUFQ_HEAD(fq_head);
160
161 static int frag_timeout_run; /* frag timer is scheduled to run */
162 static void frag_timeout(void *);
163 static void frag_sched_timeout(void);
164
165 static struct ipq *ipq_alloc(int);
166 static void ipq_free(struct ipq *);
167 static void ipq_updateparams(void);
168
169 decl_lck_mtx_data(static, ipqlock);
170 static lck_attr_t *ipqlock_attr;
171 static lck_grp_t *ipqlock_grp;
172 static lck_grp_attr_t *ipqlock_grp_attr;
173
174 /* Packet reassembly stuff */
175 #define IPREASS_NHASH_LOG2 6
176 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
177 #define IPREASS_HMASK (IPREASS_NHASH - 1)
178 #define IPREASS_HASH(x, y) \
179 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
180
181 /* IP fragment reassembly queues (protected by ipqlock) */
182 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; /* ip reassembly queues */
183 static int maxnipq; /* max packets in reass queues */
184 static u_int32_t maxfragsperpacket; /* max frags/packet in reass queues */
185 static u_int32_t nipq; /* # of packets in reass queues */
186 static u_int32_t ipq_limit; /* ipq allocation limit */
187 static u_int32_t ipq_count; /* current # of allocated ipq's */
188
189 static int sysctl_ipforwarding SYSCTL_HANDLER_ARGS;
190 static int sysctl_maxnipq SYSCTL_HANDLER_ARGS;
191 static int sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS;
192
193 int ipforwarding = 0;
194 SYSCTL_PROC(_net_inet_ip, IPCTL_FORWARDING, forwarding,
195 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ipforwarding, 0,
196 sysctl_ipforwarding, "I", "Enable IP forwarding between interfaces");
197
198 static int ipsendredirects = 1; /* XXX */
199 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect,
200 CTLFLAG_RW | CTLFLAG_LOCKED, &ipsendredirects, 0,
201 "Enable sending IP redirects");
202
203 int ip_defttl = IPDEFTTL;
204 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW | CTLFLAG_LOCKED,
205 &ip_defttl, 0, "Maximum TTL on IP packets");
206
207 static int ip_dosourceroute = 0;
208 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute,
209 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_dosourceroute, 0,
210 "Enable forwarding source routed IP packets");
211
212 static int ip_acceptsourceroute = 0;
213 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
214 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_acceptsourceroute, 0,
215 "Enable accepting source routed IP packets");
216
217 static int ip_sendsourcequench = 0;
218 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench,
219 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_sendsourcequench, 0,
220 "Enable the transmission of source quench packets");
221
222 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
223 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxnipq, 0, sysctl_maxnipq,
224 "I", "Maximum number of IPv4 fragment reassembly queue entries");
225
226 SYSCTL_UINT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD | CTLFLAG_LOCKED,
227 &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
228
229 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragsperpacket,
230 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxfragsperpacket, 0,
231 sysctl_maxfragsperpacket, "I",
232 "Maximum number of IPv4 fragments allowed per packet");
233
234 int ip_doscopedroute = 1;
235 SYSCTL_INT(_net_inet_ip, OID_AUTO, scopedroute, CTLFLAG_RD | CTLFLAG_LOCKED,
236 &ip_doscopedroute, 0, "Enable IPv4 scoped routing");
237
238 static uint32_t ip_adj_clear_hwcksum = 0;
239 SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_clear_hwcksum,
240 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_clear_hwcksum, 0,
241 "Invalidate hwcksum info when adjusting length");
242
243 /*
244 * XXX - Setting ip_checkinterface mostly implements the receive side of
245 * the Strong ES model described in RFC 1122, but since the routing table
246 * and transmit implementation do not implement the Strong ES model,
247 * setting this to 1 results in an odd hybrid.
248 *
249 * XXX - ip_checkinterface currently must be disabled if you use ipnat
250 * to translate the destination address to another local interface.
251 *
252 * XXX - ip_checkinterface must be disabled if you add IP aliases
253 * to the loopback interface instead of the interface where the
254 * packets for those addresses are received.
255 */
256 static int ip_checkinterface = 0;
257 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW | CTLFLAG_LOCKED,
258 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
259
260 #if DIAGNOSTIC
261 static int ipprintfs = 0;
262 #endif
263
264 struct protosw *ip_protox[IPPROTO_MAX];
265
266 static lck_grp_attr_t *in_ifaddr_rwlock_grp_attr;
267 static lck_grp_t *in_ifaddr_rwlock_grp;
268 static lck_attr_t *in_ifaddr_rwlock_attr;
269 decl_lck_rw_data(, in_ifaddr_rwlock_data);
270 lck_rw_t *in_ifaddr_rwlock = &in_ifaddr_rwlock_data;
271
272 /* Protected by in_ifaddr_rwlock */
273 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
274 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
275
276 #define INADDR_NHASH 61
277 static u_int32_t inaddr_nhash; /* hash table size */
278 static u_int32_t inaddr_hashp; /* next largest prime */
279
280 static int ip_getstat SYSCTL_HANDLER_ARGS;
281 struct ipstat ipstat;
282 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD | CTLFLAG_LOCKED,
283 0, 0, ip_getstat, "S,ipstat",
284 "IP statistics (struct ipstat, netinet/ip_var.h)");
285
286 #if IPCTL_DEFMTU
287 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW | CTLFLAG_LOCKED,
288 &ip_mtu, 0, "Default MTU");
289 #endif /* IPCTL_DEFMTU */
290
291 #if IPSTEALTH
292 static int ipstealth = 0;
293 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW | CTLFLAG_LOCKED,
294 &ipstealth, 0, "");
295 #endif /* IPSTEALTH */
296
297 /* Firewall hooks */
298 #if IPFIREWALL
299 ip_fw_chk_t *ip_fw_chk_ptr;
300 int fw_enable = 1;
301 int fw_bypass = 1;
302 int fw_one_pass = 0;
303 #endif /* IPFIREWALL */
304
305 #if DUMMYNET
306 ip_dn_io_t *ip_dn_io_ptr;
307 #endif /* DUMMYNET */
308
309 SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal,
310 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local");
311
312 struct ip_linklocal_stat ip_linklocal_stat;
313 SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat,
314 CTLFLAG_RD | CTLFLAG_LOCKED, &ip_linklocal_stat, ip_linklocal_stat,
315 "Number of link local packets with TTL less than 255");
316
317 SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in,
318 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local input");
319
320 int ip_linklocal_in_allowbadttl = 1;
321 SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl,
322 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_linklocal_in_allowbadttl, 0,
323 "Allow incoming link local packets with TTL less than 255");
324
325
326 /*
327 * We need to save the IP options in case a protocol wants to respond
328 * to an incoming packet over the same route if the packet got here
329 * using IP source routing. This allows connection establishment and
330 * maintenance when the remote end is on a network that is not known
331 * to us.
332 */
333 static int ip_nhops = 0;
334 static struct ip_srcrt {
335 struct in_addr dst; /* final destination */
336 char nop; /* one NOP to align */
337 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
338 struct in_addr route[MAX_IPOPTLEN / sizeof (struct in_addr)];
339 } ip_srcrt;
340
341 static void in_ifaddrhashtbl_init(void);
342 static void save_rte(u_char *, struct in_addr);
343 static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *);
344 static void ip_forward(struct mbuf *, int, struct sockaddr_in *);
345 static void frag_freef(struct ipqhead *, struct ipq *);
346 #if IPDIVERT
347 #ifdef IPDIVERT_44
348 static struct mbuf *ip_reass(struct mbuf *, u_int32_t *, u_int16_t *);
349 #else /* !IPDIVERT_44 */
350 static struct mbuf *ip_reass(struct mbuf *, u_int16_t *, u_int16_t *);
351 #endif /* !IPDIVERT_44 */
352 #else /* !IPDIVERT */
353 static struct mbuf *ip_reass(struct mbuf *);
354 #endif /* !IPDIVERT */
355 static void ip_fwd_route_copyout(struct ifnet *, struct route *);
356 static void ip_fwd_route_copyin(struct ifnet *, struct route *);
357 static inline u_short ip_cksum(struct mbuf *, int);
358
359 int ip_use_randomid = 1;
360 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW | CTLFLAG_LOCKED,
361 &ip_use_randomid, 0, "Randomize IP packets IDs");
362
363 /*
364 * On platforms which require strict alignment (currently for anything but
365 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
366 * copy the contents of the mbuf chain into a new chain, and free the original
367 * one. Create some head room in the first mbuf of the new chain, in case
368 * it's needed later on.
369 */
370 #if defined(__i386__) || defined(__x86_64__)
371 #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
372 #else /* !__i386__ && !__x86_64__ */
373 #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
374 if (!IP_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
375 struct mbuf *_n; \
376 struct ifnet *__ifp = (_ifp); \
377 atomic_add_64(&(__ifp)->if_alignerrs, 1); \
378 if (((_m)->m_flags & M_PKTHDR) && \
379 (_m)->m_pkthdr.pkt_hdr != NULL) \
380 (_m)->m_pkthdr.pkt_hdr = NULL; \
381 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
382 if (_n == NULL) { \
383 atomic_add_32(&ipstat.ips_toosmall, 1); \
384 m_freem(_m); \
385 (_m) = NULL; \
386 _action; \
387 } else { \
388 VERIFY(_n != (_m)); \
389 (_m) = _n; \
390 } \
391 } \
392 } while (0)
393 #endif /* !__i386__ && !__x86_64__ */
394
395 /*
396 * GRE input handler function, settable via ip_gre_register_input() for PPTP.
397 */
398 static gre_input_func_t gre_input_func;
399
400 /*
401 * IP initialization: fill in IP protocol switch table.
402 * All protocols not implemented in kernel go to raw IP protocol handler.
403 */
404 void
405 ip_init(struct protosw *pp, struct domain *dp)
406 {
407 static int ip_initialized = 0;
408 struct protosw *pr;
409 struct timeval tv;
410 int i;
411
412 domain_proto_mtx_lock_assert_held();
413 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
414
415 /* ipq_alloc() uses mbufs for IP fragment queue structures */
416 _CASSERT(sizeof (struct ipq) <= _MLEN);
417
418 /*
419 * Some ioctls (e.g. SIOCAIFADDR) use ifaliasreq struct, which is
420 * interchangeable with in_aliasreq; they must have the same size.
421 */
422 _CASSERT(sizeof (struct ifaliasreq) == sizeof (struct in_aliasreq));
423
424 if (ip_initialized)
425 return;
426 ip_initialized = 1;
427
428 PE_parse_boot_argn("net.inet.ip.scopedroute",
429 &ip_doscopedroute, sizeof (ip_doscopedroute));
430
431 in_ifaddr_init();
432
433 in_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
434 in_ifaddr_rwlock_grp = lck_grp_alloc_init("in_ifaddr_rwlock",
435 in_ifaddr_rwlock_grp_attr);
436 in_ifaddr_rwlock_attr = lck_attr_alloc_init();
437 lck_rw_init(in_ifaddr_rwlock, in_ifaddr_rwlock_grp,
438 in_ifaddr_rwlock_attr);
439
440 TAILQ_INIT(&in_ifaddrhead);
441 in_ifaddrhashtbl_init();
442
443 ip_moptions_init();
444
445 pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW);
446 if (pr == NULL) {
447 panic("%s: Unable to find [PF_INET,IPPROTO_RAW,SOCK_RAW]\n",
448 __func__);
449 /* NOTREACHED */
450 }
451
452 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
453 for (i = 0; i < IPPROTO_MAX; i++)
454 ip_protox[i] = pr;
455 /*
456 * Cycle through IP protocols and put them into the appropriate place
457 * in ip_protox[], skipping protocols IPPROTO_{IP,RAW}.
458 */
459 VERIFY(dp == inetdomain && dp->dom_family == PF_INET);
460 TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
461 VERIFY(pr->pr_domain == dp);
462 if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
463 /* Be careful to only index valid IP protocols. */
464 if (pr->pr_protocol < IPPROTO_MAX)
465 ip_protox[pr->pr_protocol] = pr;
466 }
467 }
468
469 /* IP fragment reassembly queue lock */
470 ipqlock_grp_attr = lck_grp_attr_alloc_init();
471 ipqlock_grp = lck_grp_alloc_init("ipqlock", ipqlock_grp_attr);
472 ipqlock_attr = lck_attr_alloc_init();
473 lck_mtx_init(&ipqlock, ipqlock_grp, ipqlock_attr);
474
475 lck_mtx_lock(&ipqlock);
476 /* Initialize IP reassembly queue. */
477 for (i = 0; i < IPREASS_NHASH; i++)
478 TAILQ_INIT(&ipq[i]);
479
480 maxnipq = nmbclusters / 32;
481 maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */
482 ipq_updateparams();
483 lck_mtx_unlock(&ipqlock);
484
485 getmicrotime(&tv);
486 ip_id = RandomULong() ^ tv.tv_usec;
487 ip_initid();
488
489 ipf_init();
490
491 #if IPSEC
492 sadb_stat_mutex_grp_attr = lck_grp_attr_alloc_init();
493 sadb_stat_mutex_grp = lck_grp_alloc_init("sadb_stat",
494 sadb_stat_mutex_grp_attr);
495 sadb_stat_mutex_attr = lck_attr_alloc_init();
496 lck_mtx_init(sadb_stat_mutex, sadb_stat_mutex_grp,
497 sadb_stat_mutex_attr);
498
499 #endif
500 arp_init();
501 }
502
503 /*
504 * Initialize IPv4 source address hash table.
505 */
506 static void
507 in_ifaddrhashtbl_init(void)
508 {
509 int i, k, p;
510
511 if (in_ifaddrhashtbl != NULL)
512 return;
513
514 PE_parse_boot_argn("inaddr_nhash", &inaddr_nhash,
515 sizeof (inaddr_nhash));
516 if (inaddr_nhash == 0)
517 inaddr_nhash = INADDR_NHASH;
518
519 MALLOC(in_ifaddrhashtbl, struct in_ifaddrhashhead *,
520 inaddr_nhash * sizeof (*in_ifaddrhashtbl),
521 M_IFADDR, M_WAITOK | M_ZERO);
522 if (in_ifaddrhashtbl == NULL)
523 panic("in_ifaddrhashtbl_init allocation failed");
524
525 /*
526 * Generate the next largest prime greater than inaddr_nhash.
527 */
528 k = (inaddr_nhash % 2 == 0) ? inaddr_nhash + 1 : inaddr_nhash + 2;
529 for (;;) {
530 p = 1;
531 for (i = 3; i * i <= k; i += 2) {
532 if (k % i == 0)
533 p = 0;
534 }
535 if (p == 1)
536 break;
537 k += 2;
538 }
539 inaddr_hashp = k;
540 }
541
542 u_int32_t
543 inaddr_hashval(u_int32_t key)
544 {
545 /*
546 * The hash index is the computed prime times the key modulo
547 * the hash size, as documented in "Introduction to Algorithms"
548 * (Cormen, Leiserson, Rivest).
549 */
550 if (inaddr_nhash > 1)
551 return ((key * inaddr_hashp) % inaddr_nhash);
552 else
553 return (0);
554 }
555
556 void
557 ip_proto_dispatch_in_wrapper(struct mbuf *m, int hlen, u_int8_t proto)
558 {
559 ip_proto_dispatch_in(m, hlen, proto, 0);
560 }
561
562 __private_extern__ void
563 ip_proto_dispatch_in(struct mbuf *m, int hlen, u_int8_t proto,
564 ipfilter_t inject_ipfref)
565 {
566 struct ipfilter *filter;
567 int seen = (inject_ipfref == NULL);
568 int changed_header = 0;
569 struct ip *ip;
570 void (*pr_input)(struct mbuf *, int len);
571
572 if (!TAILQ_EMPTY(&ipv4_filters)) {
573 ipf_ref();
574 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
575 if (seen == 0) {
576 if ((struct ipfilter *)inject_ipfref == filter)
577 seen = 1;
578 } else if (filter->ipf_filter.ipf_input) {
579 errno_t result;
580
581 if (changed_header == 0) {
582 /*
583 * Perform IP header alignment fixup,
584 * if needed, before passing packet
585 * into filter(s).
586 */
587 IP_HDR_ALIGNMENT_FIXUP(m,
588 m->m_pkthdr.rcvif, ipf_unref());
589
590 /* ipf_unref() already called */
591 if (m == NULL)
592 return;
593
594 changed_header = 1;
595 ip = mtod(m, struct ip *);
596 ip->ip_len = htons(ip->ip_len + hlen);
597 ip->ip_off = htons(ip->ip_off);
598 ip->ip_sum = 0;
599 ip->ip_sum = ip_cksum_hdr_in(m, hlen);
600 }
601 result = filter->ipf_filter.ipf_input(
602 filter->ipf_filter.cookie, (mbuf_t *)&m,
603 hlen, proto);
604 if (result == EJUSTRETURN) {
605 ipf_unref();
606 return;
607 }
608 if (result != 0) {
609 ipf_unref();
610 m_freem(m);
611 return;
612 }
613 }
614 }
615 ipf_unref();
616 }
617
618 /* Perform IP header alignment fixup (post-filters), if needed */
619 IP_HDR_ALIGNMENT_FIXUP(m, m->m_pkthdr.rcvif, return);
620
621 /*
622 * If there isn't a specific lock for the protocol
623 * we're about to call, use the generic lock for AF_INET.
624 * otherwise let the protocol deal with its own locking
625 */
626 ip = mtod(m, struct ip *);
627
628 if (changed_header) {
629 ip->ip_len = ntohs(ip->ip_len) - hlen;
630 ip->ip_off = ntohs(ip->ip_off);
631 }
632
633 if ((pr_input = ip_protox[ip->ip_p]->pr_input) == NULL) {
634 m_freem(m);
635 } else if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) {
636 lck_mtx_lock(inet_domain_mutex);
637 pr_input(m, hlen);
638 lck_mtx_unlock(inet_domain_mutex);
639 } else {
640 pr_input(m, hlen);
641 }
642 }
643
644 /*
645 * Ip input routine. Checksum and byte swap header. If fragmented
646 * try to reassemble. Process options. Pass to next level.
647 */
648 void
649 ip_input(struct mbuf *m)
650 {
651 struct ip *ip;
652 struct in_ifaddr *ia = NULL;
653 unsigned int hlen, checkif;
654 u_short sum = 0;
655 struct in_addr pkt_dst;
656 #if IPFIREWALL
657 int i;
658 u_int32_t div_info = 0; /* packet divert/tee info */
659 #endif
660 #if IPFIREWALL || DUMMYNET
661 struct ip_fw_args args;
662 struct m_tag *tag;
663 #endif
664 ipfilter_t inject_filter_ref = NULL;
665 struct ifnet *inifp;
666
667 /* Check if the mbuf is still valid after interface filter processing */
668 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
669 inifp = m->m_pkthdr.rcvif;
670 VERIFY(inifp != NULL);
671
672 /* Perform IP header alignment fixup, if needed */
673 IP_HDR_ALIGNMENT_FIXUP(m, inifp, goto bad);
674
675 m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
676
677 #if IPFIREWALL || DUMMYNET
678 bzero(&args, sizeof (struct ip_fw_args));
679
680 /*
681 * Don't bother searching for tag(s) if there's none.
682 */
683 if (SLIST_EMPTY(&m->m_pkthdr.tags))
684 goto ipfw_tags_done;
685
686 /* Grab info from mtags prepended to the chain */
687 #if DUMMYNET
688 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
689 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
690 struct dn_pkt_tag *dn_tag;
691
692 dn_tag = (struct dn_pkt_tag *)(tag+1);
693 args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule;
694 args.fwa_pf_rule = dn_tag->dn_pf_rule;
695
696 m_tag_delete(m, tag);
697 }
698 #endif /* DUMMYNET */
699
700 #if IPDIVERT
701 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
702 KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) {
703 struct divert_tag *div_tag;
704
705 div_tag = (struct divert_tag *)(tag+1);
706 args.fwa_divert_rule = div_tag->cookie;
707
708 m_tag_delete(m, tag);
709 }
710 #endif
711
712 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
713 KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) {
714 struct ip_fwd_tag *ipfwd_tag;
715
716 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
717 args.fwa_next_hop = ipfwd_tag->next_hop;
718
719 m_tag_delete(m, tag);
720 }
721
722 #if DIAGNOSTIC
723 if (m == NULL || !(m->m_flags & M_PKTHDR))
724 panic("ip_input no HDR");
725 #endif
726
727 #if DUMMYNET
728 if (args.fwa_ipfw_rule || args.fwa_pf_rule) {
729 /* dummynet already filtered us */
730 ip = mtod(m, struct ip *);
731 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
732 inject_filter_ref = ipf_get_inject_filter(m);
733 #if IPFIREWALL
734 if (args.fwa_ipfw_rule)
735 goto iphack;
736 #endif /* IPFIREWALL */
737 if (args.fwa_pf_rule)
738 goto check_with_pf;
739 }
740 #endif /* DUMMYNET */
741 ipfw_tags_done:
742 #endif /* IPFIREWALL || DUMMYNET */
743
744 /*
745 * No need to process packet twice if we've already seen it.
746 */
747 if (!SLIST_EMPTY(&m->m_pkthdr.tags))
748 inject_filter_ref = ipf_get_inject_filter(m);
749 if (inject_filter_ref != NULL) {
750 ip = mtod(m, struct ip *);
751 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
752
753 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
754 struct ip *, ip, struct ifnet *, inifp,
755 struct ip *, ip, struct ip6_hdr *, NULL);
756
757 ip->ip_len = ntohs(ip->ip_len) - hlen;
758 ip->ip_off = ntohs(ip->ip_off);
759 ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
760 return;
761 }
762
763 OSAddAtomic(1, &ipstat.ips_total);
764 if (m->m_pkthdr.len < sizeof (struct ip))
765 goto tooshort;
766
767 if (m->m_len < sizeof (struct ip) &&
768 (m = m_pullup(m, sizeof (struct ip))) == NULL) {
769 OSAddAtomic(1, &ipstat.ips_toosmall);
770 return;
771 }
772 ip = mtod(m, struct ip *);
773
774 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
775 ip->ip_p, ip->ip_off, ip->ip_len);
776
777 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
778 OSAddAtomic(1, &ipstat.ips_badvers);
779 goto bad;
780 }
781
782 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
783 if (hlen < sizeof (struct ip)) { /* minimum header length */
784 OSAddAtomic(1, &ipstat.ips_badhlen);
785 goto bad;
786 }
787 if (hlen > m->m_len) {
788 if ((m = m_pullup(m, hlen)) == NULL) {
789 OSAddAtomic(1, &ipstat.ips_badhlen);
790 return;
791 }
792 ip = mtod(m, struct ip *);
793 }
794
795 /* 127/8 must not appear on wire - RFC1122 */
796 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
797 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
798 /*
799 * Allow for the following exceptions:
800 *
801 * 1. If the packet was sent to loopback (i.e. rcvif
802 * would have been set earlier at output time.)
803 *
804 * 2. If the packet was sent out on loopback from a local
805 * source address which belongs to a non-loopback
806 * interface (i.e. rcvif may not necessarily be a
807 * loopback interface, hence the test for PKTF_LOOP.)
808 * Unlike IPv6, there is no interface scope ID, and
809 * therefore we don't care so much about PKTF_IFINFO.
810 */
811 if (!(inifp->if_flags & IFF_LOOPBACK) &&
812 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
813 OSAddAtomic(1, &ipstat.ips_badaddr);
814 goto bad;
815 }
816 }
817
818 /* IPv4 Link-Local Addresses as defined in RFC3927 */
819 if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
820 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
821 ip_linklocal_stat.iplls_in_total++;
822 if (ip->ip_ttl != MAXTTL) {
823 OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
824 /* Silently drop link local traffic with bad TTL */
825 if (!ip_linklocal_in_allowbadttl)
826 goto bad;
827 }
828 }
829
830 sum = ip_cksum(m, hlen);
831 if (sum) {
832 goto bad;
833 }
834
835 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
836 struct ip *, ip, struct ifnet *, inifp,
837 struct ip *, ip, struct ip6_hdr *, NULL);
838
839 /*
840 * Naively assume we can attribute inbound data to the route we would
841 * use to send to this destination. Asymetric routing breaks this
842 * assumption, but it still allows us to account for traffic from
843 * a remote node in the routing table.
844 * this has a very significant performance impact so we bypass
845 * if nstat_collect is disabled. We may also bypass if the
846 * protocol is tcp in the future because tcp will have a route that
847 * we can use to attribute the data to. That does mean we would not
848 * account for forwarded tcp traffic.
849 */
850 if (nstat_collect) {
851 struct rtentry *rt =
852 ifnet_cached_rtlookup_inet(inifp, ip->ip_src);
853 if (rt != NULL) {
854 nstat_route_rx(rt, 1, m->m_pkthdr.len, 0);
855 rtfree(rt);
856 }
857 }
858
859 /*
860 * Convert fields to host representation.
861 */
862 #if BYTE_ORDER != BIG_ENDIAN
863 NTOHS(ip->ip_len);
864 #endif
865
866 if (ip->ip_len < hlen) {
867 OSAddAtomic(1, &ipstat.ips_badlen);
868 goto bad;
869 }
870
871 #if BYTE_ORDER != BIG_ENDIAN
872 NTOHS(ip->ip_off);
873 #endif
874 /*
875 * Check that the amount of data in the buffers
876 * is as at least much as the IP header would have us expect.
877 * Trim mbufs if longer than we expect.
878 * Drop packet if shorter than we expect.
879 */
880 if (m->m_pkthdr.len < ip->ip_len) {
881 tooshort:
882 OSAddAtomic(1, &ipstat.ips_tooshort);
883 goto bad;
884 }
885 if (m->m_pkthdr.len > ip->ip_len) {
886 /*
887 * Invalidate hardware checksum info if ip_adj_clear_hwcksum
888 * is set; useful to handle buggy drivers. Note that this
889 * should not be enabled by default, as we may get here due
890 * to link-layer padding.
891 */
892 if (ip_adj_clear_hwcksum &&
893 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
894 !(inifp->if_flags & IFF_LOOPBACK) &&
895 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
896 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
897 m->m_pkthdr.csum_data = 0;
898 ipstat.ips_adj_hwcsum_clr++;
899 }
900
901 ipstat.ips_adj++;
902 if (m->m_len == m->m_pkthdr.len) {
903 m->m_len = ip->ip_len;
904 m->m_pkthdr.len = ip->ip_len;
905 } else
906 m_adj(m, ip->ip_len - m->m_pkthdr.len);
907 }
908
909 /* for consistency */
910 m->m_pkthdr.pkt_proto = ip->ip_p;
911
912 #if DUMMYNET
913 check_with_pf:
914 #endif
915 #if PF
916 /* Invoke inbound packet filter */
917 if (PF_IS_ENABLED) {
918 int error;
919 #if DUMMYNET
920 error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args);
921 #else
922 error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL);
923 #endif /* DUMMYNET */
924 if (error != 0 || m == NULL) {
925 if (m != NULL) {
926 panic("%s: unexpected packet %p\n",
927 __func__, m);
928 /* NOTREACHED */
929 }
930 /* Already freed by callee */
931 return;
932 }
933 ip = mtod(m, struct ip *);
934 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
935 }
936 #endif /* PF */
937
938 #if IPSEC
939 if (ipsec_bypass == 0 && ipsec_gethist(m, NULL))
940 goto pass;
941 #endif
942
943 #if IPFIREWALL
944 #if DUMMYNET
945 iphack:
946 #endif /* DUMMYNET */
947 /*
948 * Check if we want to allow this packet to be processed.
949 * Consider it to be bad if not.
950 */
951 if (fw_enable && IPFW_LOADED) {
952 #if IPFIREWALL_FORWARD
953 /*
954 * If we've been forwarded from the output side, then
955 * skip the firewall a second time
956 */
957 if (args.fwa_next_hop)
958 goto ours;
959 #endif /* IPFIREWALL_FORWARD */
960
961 args.fwa_m = m;
962
963 i = ip_fw_chk_ptr(&args);
964 m = args.fwa_m;
965
966 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
967 if (m)
968 m_freem(m);
969 return;
970 }
971 ip = mtod(m, struct ip *); /* just in case m changed */
972
973 if (i == 0 && args.fwa_next_hop == NULL) { /* common case */
974 goto pass;
975 }
976 #if DUMMYNET
977 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
978 /* Send packet to the appropriate pipe */
979 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args,
980 DN_CLIENT_IPFW);
981 return;
982 }
983 #endif /* DUMMYNET */
984 #if IPDIVERT
985 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
986 /* Divert or tee packet */
987 div_info = i;
988 goto ours;
989 }
990 #endif
991 #if IPFIREWALL_FORWARD
992 if (i == 0 && args.fwa_next_hop != NULL) {
993 goto pass;
994 }
995 #endif
996 /*
997 * if we get here, the packet must be dropped
998 */
999 m_freem(m);
1000 return;
1001 }
1002 #endif /* IPFIREWALL */
1003 #if IPSEC | IPFIREWALL
1004 pass:
1005 #endif
1006 /*
1007 * Process options and, if not destined for us,
1008 * ship it on. ip_dooptions returns 1 when an
1009 * error was detected (causing an icmp message
1010 * to be sent and the original packet to be freed).
1011 */
1012 ip_nhops = 0; /* for source routed packets */
1013 #if IPFIREWALL
1014 if (hlen > sizeof (struct ip) &&
1015 ip_dooptions(m, 0, args.fwa_next_hop)) {
1016 #else /* !IPFIREWALL */
1017 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, NULL)) {
1018 #endif /* !IPFIREWALL */
1019 return;
1020 }
1021
1022 #if MROUTING
1023 /*
1024 * greedy RSVP, snatches any PATH packet of the RSVP protocol and no
1025 * matter if it is destined to another node, or whether it is
1026 * a multicast one, RSVP wants it! and prevents it from being forwarded
1027 * anywhere else. Also checks if the rsvp daemon is running before
1028 * grabbing the packet.
1029 */
1030 if (rsvp_on && ip->ip_p == IPPROTO_RSVP) {
1031 ip_setdstifaddr_info(m, inifp->if_index, NULL);
1032 goto ours;
1033 }
1034 #endif /* MROUTING */
1035
1036 /*
1037 * Check our list of addresses, to see if the packet is for us.
1038 * If we don't have any addresses, assume any unicast packet
1039 * we receive might be for us (and let the upper layers deal
1040 * with it).
1041 */
1042 if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST|M_BCAST))) {
1043 ip_setdstifaddr_info(m, inifp->if_index, NULL);
1044 goto ours;
1045 }
1046
1047 /*
1048 * Cache the destination address of the packet; this may be
1049 * changed by use of 'ipfw fwd'.
1050 */
1051 #if IPFIREWALL
1052 pkt_dst = args.fwa_next_hop == NULL ?
1053 ip->ip_dst : args.fwa_next_hop->sin_addr;
1054 #else /* !IPFIREWALL */
1055 pkt_dst = ip->ip_dst;
1056 #endif /* !IPFIREWALL */
1057
1058 /*
1059 * Enable a consistency check between the destination address
1060 * and the arrival interface for a unicast packet (the RFC 1122
1061 * strong ES model) if IP forwarding is disabled and the packet
1062 * is not locally generated and the packet is not subject to
1063 * 'ipfw fwd'.
1064 *
1065 * XXX - Checking also should be disabled if the destination
1066 * address is ipnat'ed to a different interface.
1067 *
1068 * XXX - Checking is incompatible with IP aliases added
1069 * to the loopback interface instead of the interface where
1070 * the packets are received.
1071 */
1072 checkif = ip_checkinterface && (ipforwarding == 0) &&
1073 !(inifp->if_flags & IFF_LOOPBACK) &&
1074 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)
1075 #if IPFIREWALL
1076 && (args.fwa_next_hop == NULL);
1077 #else /* !IPFIREWALL */
1078 ;
1079 #endif /* !IPFIREWALL */
1080
1081 /*
1082 * Check for exact addresses in the hash bucket.
1083 */
1084 lck_rw_lock_shared(in_ifaddr_rwlock);
1085 TAILQ_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
1086 /*
1087 * If the address matches, verify that the packet
1088 * arrived via the correct interface if checking is
1089 * enabled.
1090 */
1091 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
1092 (!checkif || ia->ia_ifp == inifp)) {
1093 ip_setdstifaddr_info(m, 0, ia);
1094 lck_rw_done(in_ifaddr_rwlock);
1095 goto ours;
1096 }
1097 }
1098 lck_rw_done(in_ifaddr_rwlock);
1099
1100 /*
1101 * Check for broadcast addresses.
1102 *
1103 * Only accept broadcast packets that arrive via the matching
1104 * interface. Reception of forwarded directed broadcasts would be
1105 * handled via ip_forward() and ether_frameout() with the loopback
1106 * into the stack for SIMPLEX interfaces handled by ether_frameout().
1107 */
1108 if (inifp->if_flags & IFF_BROADCAST) {
1109 struct ifaddr *ifa;
1110
1111 ifnet_lock_shared(inifp);
1112 TAILQ_FOREACH(ifa, &inifp->if_addrhead, ifa_link) {
1113 if (ifa->ifa_addr->sa_family != AF_INET) {
1114 continue;
1115 }
1116 ia = ifatoia(ifa);
1117 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
1118 pkt_dst.s_addr || ia->ia_netbroadcast.s_addr ==
1119 pkt_dst.s_addr) {
1120 ip_setdstifaddr_info(m, 0, ia);
1121 ifnet_lock_done(inifp);
1122 goto ours;
1123 }
1124 }
1125 ifnet_lock_done(inifp);
1126 }
1127
1128 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
1129 struct in_multi *inm;
1130 #if MROUTING
1131 if (ip_mrouter) {
1132 /*
1133 * If we are acting as a multicast router, all
1134 * incoming multicast packets are passed to the
1135 * kernel-level multicast forwarding function.
1136 * The packet is returned (relatively) intact; if
1137 * ip_mforward() returns a non-zero value, the packet
1138 * must be discarded, else it may be accepted below.
1139 */
1140 if (ip_mforward && ip_mforward(ip, inifp, m, 0) != 0) {
1141 OSAddAtomic(1, &ipstat.ips_cantforward);
1142 m_freem(m);
1143 return;
1144 }
1145
1146 /*
1147 * The process-level routing daemon needs to receive
1148 * all multicast IGMP packets, whether or not this
1149 * host belongs to their destination groups.
1150 */
1151 if (ip->ip_p == IPPROTO_IGMP) {
1152 ip_setdstifaddr_info(m, inifp->if_index, NULL);
1153 goto ours;
1154 }
1155 OSAddAtomic(1, &ipstat.ips_forward);
1156 }
1157 #endif /* MROUTING */
1158 /*
1159 * See if we belong to the destination multicast group on the
1160 * arrival interface.
1161 */
1162 in_multihead_lock_shared();
1163 IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm);
1164 in_multihead_lock_done();
1165 if (inm == NULL) {
1166 OSAddAtomic(1, &ipstat.ips_notmember);
1167 m_freem(m);
1168 return;
1169 }
1170 ip_setdstifaddr_info(m, inifp->if_index, NULL);
1171 INM_REMREF(inm);
1172 goto ours;
1173 }
1174 if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST ||
1175 ip->ip_dst.s_addr == INADDR_ANY) {
1176 ip_setdstifaddr_info(m, inifp->if_index, NULL);
1177 goto ours;
1178 }
1179
1180 /* Allow DHCP/BootP responses through */
1181 if ((inifp->if_eflags & IFEF_AUTOCONFIGURING) &&
1182 hlen == sizeof (struct ip) && ip->ip_p == IPPROTO_UDP) {
1183 struct udpiphdr *ui;
1184
1185 if (m->m_len < sizeof (struct udpiphdr) &&
1186 (m = m_pullup(m, sizeof (struct udpiphdr))) == NULL) {
1187 OSAddAtomic(1, &udpstat.udps_hdrops);
1188 return;
1189 }
1190 ui = mtod(m, struct udpiphdr *);
1191 if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
1192 ip_setdstifaddr_info(m, inifp->if_index, NULL);
1193 goto ours;
1194 }
1195 ip = mtod(m, struct ip *); /* in case it changed */
1196 }
1197
1198 /*
1199 * Not for us; forward if possible and desirable.
1200 */
1201 if (ipforwarding == 0) {
1202 OSAddAtomic(1, &ipstat.ips_cantforward);
1203 m_freem(m);
1204 } else {
1205 #if IPFIREWALL
1206 ip_forward(m, 0, args.fwa_next_hop);
1207 #else
1208 ip_forward(m, 0, NULL);
1209 #endif
1210 }
1211 return;
1212
1213 ours:
1214 /*
1215 * If offset or IP_MF are set, must reassemble.
1216 */
1217 if (ip->ip_off & ~(IP_DF | IP_RF)) {
1218 /*
1219 * ip_reass() will return a different mbuf, and update
1220 * the divert info in div_info and args.fwa_divert_rule.
1221 */
1222 #if IPDIVERT
1223 m = ip_reass(m, (u_int16_t *)&div_info, &args.fwa_divert_rule);
1224 #else
1225 m = ip_reass(m);
1226 #endif
1227 if (m == NULL)
1228 return;
1229 ip = mtod(m, struct ip *);
1230 /* Get the header length of the reassembled packet */
1231 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1232 #if IPDIVERT
1233 /* Restore original checksum before diverting packet */
1234 if (div_info != 0) {
1235 #if BYTE_ORDER != BIG_ENDIAN
1236 HTONS(ip->ip_len);
1237 HTONS(ip->ip_off);
1238 #endif
1239 ip->ip_sum = 0;
1240 ip->ip_sum = ip_cksum_hdr_in(m, hlen);
1241 #if BYTE_ORDER != BIG_ENDIAN
1242 NTOHS(ip->ip_off);
1243 NTOHS(ip->ip_len);
1244 #endif
1245 }
1246 #endif
1247 }
1248
1249 /*
1250 * Further protocols expect the packet length to be w/o the
1251 * IP header.
1252 */
1253 ip->ip_len -= hlen;
1254
1255 #if IPDIVERT
1256 /*
1257 * Divert or tee packet to the divert protocol if required.
1258 *
1259 * If div_info is zero then cookie should be too, so we shouldn't
1260 * need to clear them here. Assume divert_packet() does so also.
1261 */
1262 if (div_info != 0) {
1263 struct mbuf *clone = NULL;
1264
1265 /* Clone packet if we're doing a 'tee' */
1266 if (div_info & IP_FW_PORT_TEE_FLAG)
1267 clone = m_dup(m, M_DONTWAIT);
1268
1269 /* Restore packet header fields to original values */
1270 ip->ip_len += hlen;
1271
1272 #if BYTE_ORDER != BIG_ENDIAN
1273 HTONS(ip->ip_len);
1274 HTONS(ip->ip_off);
1275 #endif
1276 /* Deliver packet to divert input routine */
1277 OSAddAtomic(1, &ipstat.ips_delivered);
1278 divert_packet(m, 1, div_info & 0xffff, args.fwa_divert_rule);
1279
1280 /* If 'tee', continue with original packet */
1281 if (clone == NULL) {
1282 return;
1283 }
1284 m = clone;
1285 ip = mtod(m, struct ip *);
1286 }
1287 #endif
1288
1289 #if IPSEC
1290 /*
1291 * enforce IPsec policy checking if we are seeing last header.
1292 * note that we do not visit this with protocols with pcb layer
1293 * code - like udp/tcp/raw ip.
1294 */
1295 if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) {
1296 if (ipsec4_in_reject(m, NULL)) {
1297 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
1298 goto bad;
1299 }
1300 }
1301 #endif /* IPSEC */
1302
1303 /*
1304 * Switch out to protocol's input routine.
1305 */
1306 OSAddAtomic(1, &ipstat.ips_delivered);
1307
1308 #if IPFIREWALL
1309 if (args.fwa_next_hop && ip->ip_p == IPPROTO_TCP) {
1310 /* TCP needs IPFORWARD info if available */
1311 struct m_tag *fwd_tag;
1312 struct ip_fwd_tag *ipfwd_tag;
1313
1314 fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID,
1315 KERNEL_TAG_TYPE_IPFORWARD, sizeof (*ipfwd_tag),
1316 M_NOWAIT, m);
1317 if (fwd_tag == NULL)
1318 goto bad;
1319
1320 ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
1321 ipfwd_tag->next_hop = args.fwa_next_hop;
1322
1323 m_tag_prepend(m, fwd_tag);
1324
1325 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1326 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1327
1328 /* TCP deals with its own locking */
1329 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1330 } else {
1331 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1332 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1333
1334 if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) {
1335 m = tcp_lro(m, hlen);
1336 if (m == NULL)
1337 return;
1338 }
1339
1340 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1341 }
1342 #else /* !IPFIREWALL */
1343 if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) {
1344 m = tcp_lro(m, hlen);
1345 if (m == NULL)
1346 return;
1347 }
1348 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1349 #endif /* !IPFIREWALL */
1350 return;
1351
1352 bad:
1353 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1354 m_freem(m);
1355 }
1356
1357 static void
1358 ipq_updateparams(void)
1359 {
1360 lck_mtx_assert(&ipqlock, LCK_MTX_ASSERT_OWNED);
1361 /*
1362 * -1 for unlimited allocation.
1363 */
1364 if (maxnipq < 0)
1365 ipq_limit = 0;
1366 /*
1367 * Positive number for specific bound.
1368 */
1369 if (maxnipq > 0)
1370 ipq_limit = maxnipq;
1371 /*
1372 * Zero specifies no further fragment queue allocation -- set the
1373 * bound very low, but rely on implementation elsewhere to actually
1374 * prevent allocation and reclaim current queues.
1375 */
1376 if (maxnipq == 0)
1377 ipq_limit = 1;
1378 /*
1379 * Arm the purge timer if not already and if there's work to do
1380 */
1381 frag_sched_timeout();
1382 }
1383
1384 static int
1385 sysctl_maxnipq SYSCTL_HANDLER_ARGS
1386 {
1387 #pragma unused(arg1, arg2)
1388 int error, i;
1389
1390 lck_mtx_lock(&ipqlock);
1391 i = maxnipq;
1392 error = sysctl_handle_int(oidp, &i, 0, req);
1393 if (error || req->newptr == USER_ADDR_NULL)
1394 goto done;
1395 /* impose bounds */
1396 if (i < -1 || i > (nmbclusters / 4)) {
1397 error = EINVAL;
1398 goto done;
1399 }
1400 maxnipq = i;
1401 ipq_updateparams();
1402 done:
1403 lck_mtx_unlock(&ipqlock);
1404 return (error);
1405 }
1406
1407 static int
1408 sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS
1409 {
1410 #pragma unused(arg1, arg2)
1411 int error, i;
1412
1413 lck_mtx_lock(&ipqlock);
1414 i = maxfragsperpacket;
1415 error = sysctl_handle_int(oidp, &i, 0, req);
1416 if (error || req->newptr == USER_ADDR_NULL)
1417 goto done;
1418 maxfragsperpacket = i;
1419 ipq_updateparams(); /* see if we need to arm timer */
1420 done:
1421 lck_mtx_unlock(&ipqlock);
1422 return (error);
1423 }
1424
1425 /*
1426 * Take incoming datagram fragment and try to reassemble it into
1427 * whole datagram. If a chain for reassembly of this datagram already
1428 * exists, then it is given as fp; otherwise have to make a chain.
1429 *
1430 * When IPDIVERT enabled, keep additional state with each packet that
1431 * tells us if we need to divert or tee the packet we're building.
1432 *
1433 * The IP header is *NOT* adjusted out of iplen.
1434 */
1435 static struct mbuf *
1436 #if IPDIVERT
1437 ip_reass(struct mbuf *m,
1438 #ifdef IPDIVERT_44
1439 u_int32_t *divinfo,
1440 #else /* IPDIVERT_44 */
1441 u_int16_t *divinfo,
1442 #endif /* IPDIVERT_44 */
1443 u_int16_t *divcookie)
1444 #else /* IPDIVERT */
1445 ip_reass(struct mbuf *m)
1446 #endif /* IPDIVERT */
1447 {
1448 struct ip *ip;
1449 struct mbuf *p, *q, *nq, *t;
1450 struct ipq *fp = NULL;
1451 struct ipqhead *head;
1452 int i, hlen, next;
1453 u_int8_t ecn, ecn0;
1454 uint32_t csum, csum_flags;
1455 uint16_t hash;
1456 struct fq_head dfq;
1457
1458 MBUFQ_INIT(&dfq); /* for deferred frees */
1459
1460 /* If maxnipq or maxfragsperpacket is 0, never accept fragments. */
1461 if (maxnipq == 0 || maxfragsperpacket == 0) {
1462 ipstat.ips_fragments++;
1463 ipstat.ips_fragdropped++;
1464 m_freem(m);
1465 if (nipq > 0) {
1466 lck_mtx_lock(&ipqlock);
1467 frag_sched_timeout(); /* purge stale fragments */
1468 lck_mtx_unlock(&ipqlock);
1469 }
1470 return (NULL);
1471 }
1472
1473 ip = mtod(m, struct ip *);
1474 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1475
1476 lck_mtx_lock(&ipqlock);
1477
1478 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1479 head = &ipq[hash];
1480
1481 /*
1482 * Look for queue of fragments
1483 * of this datagram.
1484 */
1485 TAILQ_FOREACH(fp, head, ipq_list) {
1486 if (ip->ip_id == fp->ipq_id &&
1487 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1488 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1489 #if CONFIG_MACF_NET
1490 mac_ipq_label_compare(m, fp) &&
1491 #endif
1492 ip->ip_p == fp->ipq_p)
1493 goto found;
1494 }
1495
1496 fp = NULL;
1497
1498 /*
1499 * Attempt to trim the number of allocated fragment queues if it
1500 * exceeds the administrative limit.
1501 */
1502 if ((nipq > (unsigned)maxnipq) && (maxnipq > 0)) {
1503 /*
1504 * drop something from the tail of the current queue
1505 * before proceeding further
1506 */
1507 struct ipq *fq = TAILQ_LAST(head, ipqhead);
1508 if (fq == NULL) { /* gak */
1509 for (i = 0; i < IPREASS_NHASH; i++) {
1510 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
1511 if (r) {
1512 ipstat.ips_fragtimeout += r->ipq_nfrags;
1513 frag_freef(&ipq[i], r);
1514 break;
1515 }
1516 }
1517 } else {
1518 ipstat.ips_fragtimeout += fq->ipq_nfrags;
1519 frag_freef(head, fq);
1520 }
1521 }
1522
1523 found:
1524 /*
1525 * Leverage partial checksum offload for IP fragments. Narrow down
1526 * the scope to cover only UDP without IP options, as that is the
1527 * most common case.
1528 *
1529 * Perform 1's complement adjustment of octets that got included/
1530 * excluded in the hardware-calculated checksum value. Ignore cases
1531 * where the value includes or excludes the IP header span, as the
1532 * sum for those octets would already be 0xffff and thus no-op.
1533 */
1534 if (ip->ip_p == IPPROTO_UDP && hlen == sizeof (struct ip) &&
1535 (m->m_pkthdr.csum_flags &
1536 (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
1537 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
1538 uint32_t start;
1539
1540 start = m->m_pkthdr.csum_rx_start;
1541 csum = m->m_pkthdr.csum_rx_val;
1542
1543 if (start != 0 && start != hlen) {
1544 #if BYTE_ORDER != BIG_ENDIAN
1545 if (start < hlen) {
1546 HTONS(ip->ip_len);
1547 HTONS(ip->ip_off);
1548 }
1549 #endif
1550 /* callee folds in sum */
1551 csum = m_adj_sum16(m, start, hlen, csum);
1552 #if BYTE_ORDER != BIG_ENDIAN
1553 if (start < hlen) {
1554 NTOHS(ip->ip_off);
1555 NTOHS(ip->ip_len);
1556 }
1557 #endif
1558 }
1559 csum_flags = m->m_pkthdr.csum_flags;
1560 } else {
1561 csum = 0;
1562 csum_flags = 0;
1563 }
1564
1565 /* Invalidate checksum */
1566 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
1567
1568 ipstat.ips_fragments++;
1569
1570 /*
1571 * Adjust ip_len to not reflect header,
1572 * convert offset of this to bytes.
1573 */
1574 ip->ip_len -= hlen;
1575 if (ip->ip_off & IP_MF) {
1576 /*
1577 * Make sure that fragments have a data length
1578 * that's a non-zero multiple of 8 bytes.
1579 */
1580 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1581 OSAddAtomic(1, &ipstat.ips_toosmall);
1582 /*
1583 * Reassembly queue may have been found if previous
1584 * fragments were valid; given that this one is bad,
1585 * we need to drop it. Make sure to set fp to NULL
1586 * if not already, since we don't want to decrement
1587 * ipq_nfrags as it doesn't include this packet.
1588 */
1589 fp = NULL;
1590 goto dropfrag;
1591 }
1592 m->m_flags |= M_FRAG;
1593 } else {
1594 /* Clear the flag in case packet comes from loopback */
1595 m->m_flags &= ~M_FRAG;
1596 }
1597 ip->ip_off <<= 3;
1598
1599 m->m_pkthdr.pkt_hdr = ip;
1600
1601 /* Previous ip_reass() started here. */
1602 /*
1603 * Presence of header sizes in mbufs
1604 * would confuse code below.
1605 */
1606 m->m_data += hlen;
1607 m->m_len -= hlen;
1608
1609 /*
1610 * If first fragment to arrive, create a reassembly queue.
1611 */
1612 if (fp == NULL) {
1613 fp = ipq_alloc(M_DONTWAIT);
1614 if (fp == NULL)
1615 goto dropfrag;
1616 #if CONFIG_MACF_NET
1617 if (mac_ipq_label_init(fp, M_NOWAIT) != 0) {
1618 ipq_free(fp);
1619 fp = NULL;
1620 goto dropfrag;
1621 }
1622 mac_ipq_label_associate(m, fp);
1623 #endif
1624 TAILQ_INSERT_HEAD(head, fp, ipq_list);
1625 nipq++;
1626 fp->ipq_nfrags = 1;
1627 fp->ipq_ttl = IPFRAGTTL;
1628 fp->ipq_p = ip->ip_p;
1629 fp->ipq_id = ip->ip_id;
1630 fp->ipq_src = ip->ip_src;
1631 fp->ipq_dst = ip->ip_dst;
1632 fp->ipq_frags = m;
1633 m->m_nextpkt = NULL;
1634 /*
1635 * If the first fragment has valid checksum offload
1636 * info, the rest of fragments are eligible as well.
1637 */
1638 if (csum_flags != 0) {
1639 fp->ipq_csum = csum;
1640 fp->ipq_csum_flags = csum_flags;
1641 }
1642 #if IPDIVERT
1643 /*
1644 * Transfer firewall instructions to the fragment structure.
1645 * Only trust info in the fragment at offset 0.
1646 */
1647 if (ip->ip_off == 0) {
1648 #ifdef IPDIVERT_44
1649 fp->ipq_div_info = *divinfo;
1650 #else
1651 fp->ipq_divert = *divinfo;
1652 #endif
1653 fp->ipq_div_cookie = *divcookie;
1654 }
1655 *divinfo = 0;
1656 *divcookie = 0;
1657 #endif /* IPDIVERT */
1658 m = NULL; /* nothing to return */
1659 goto done;
1660 } else {
1661 fp->ipq_nfrags++;
1662 #if CONFIG_MACF_NET
1663 mac_ipq_label_update(m, fp);
1664 #endif
1665 }
1666
1667 #define GETIP(m) ((struct ip *)((m)->m_pkthdr.pkt_hdr))
1668
1669 /*
1670 * Handle ECN by comparing this segment with the first one;
1671 * if CE is set, do not lose CE.
1672 * drop if CE and not-ECT are mixed for the same packet.
1673 */
1674 ecn = ip->ip_tos & IPTOS_ECN_MASK;
1675 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1676 if (ecn == IPTOS_ECN_CE) {
1677 if (ecn0 == IPTOS_ECN_NOTECT)
1678 goto dropfrag;
1679 if (ecn0 != IPTOS_ECN_CE)
1680 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1681 }
1682 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1683 goto dropfrag;
1684
1685 /*
1686 * Find a segment which begins after this one does.
1687 */
1688 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1689 if (GETIP(q)->ip_off > ip->ip_off)
1690 break;
1691
1692 /*
1693 * If there is a preceding segment, it may provide some of
1694 * our data already. If so, drop the data from the incoming
1695 * segment. If it provides all of our data, drop us, otherwise
1696 * stick new segment in the proper place.
1697 *
1698 * If some of the data is dropped from the preceding
1699 * segment, then it's checksum is invalidated.
1700 */
1701 if (p) {
1702 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1703 if (i > 0) {
1704 if (i >= ip->ip_len)
1705 goto dropfrag;
1706 m_adj(m, i);
1707 fp->ipq_csum_flags = 0;
1708 ip->ip_off += i;
1709 ip->ip_len -= i;
1710 }
1711 m->m_nextpkt = p->m_nextpkt;
1712 p->m_nextpkt = m;
1713 } else {
1714 m->m_nextpkt = fp->ipq_frags;
1715 fp->ipq_frags = m;
1716 }
1717
1718 /*
1719 * While we overlap succeeding segments trim them or,
1720 * if they are completely covered, dequeue them.
1721 */
1722 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1723 q = nq) {
1724 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1725 if (i < GETIP(q)->ip_len) {
1726 GETIP(q)->ip_len -= i;
1727 GETIP(q)->ip_off += i;
1728 m_adj(q, i);
1729 fp->ipq_csum_flags = 0;
1730 break;
1731 }
1732 nq = q->m_nextpkt;
1733 m->m_nextpkt = nq;
1734 ipstat.ips_fragdropped++;
1735 fp->ipq_nfrags--;
1736 /* defer freeing until after lock is dropped */
1737 MBUFQ_ENQUEUE(&dfq, q);
1738 }
1739
1740 /*
1741 * If this fragment contains similar checksum offload info
1742 * as that of the existing ones, accumulate checksum. Otherwise,
1743 * invalidate checksum offload info for the entire datagram.
1744 */
1745 if (csum_flags != 0 && csum_flags == fp->ipq_csum_flags)
1746 fp->ipq_csum += csum;
1747 else if (fp->ipq_csum_flags != 0)
1748 fp->ipq_csum_flags = 0;
1749
1750 #if IPDIVERT
1751 /*
1752 * Transfer firewall instructions to the fragment structure.
1753 * Only trust info in the fragment at offset 0.
1754 */
1755 if (ip->ip_off == 0) {
1756 #ifdef IPDIVERT_44
1757 fp->ipq_div_info = *divinfo;
1758 #else
1759 fp->ipq_divert = *divinfo;
1760 #endif
1761 fp->ipq_div_cookie = *divcookie;
1762 }
1763 *divinfo = 0;
1764 *divcookie = 0;
1765 #endif /* IPDIVERT */
1766
1767 /*
1768 * Check for complete reassembly and perform frag per packet
1769 * limiting.
1770 *
1771 * Frag limiting is performed here so that the nth frag has
1772 * a chance to complete the packet before we drop the packet.
1773 * As a result, n+1 frags are actually allowed per packet, but
1774 * only n will ever be stored. (n = maxfragsperpacket.)
1775 *
1776 */
1777 next = 0;
1778 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1779 if (GETIP(q)->ip_off != next) {
1780 if (fp->ipq_nfrags > maxfragsperpacket) {
1781 ipstat.ips_fragdropped += fp->ipq_nfrags;
1782 frag_freef(head, fp);
1783 }
1784 m = NULL; /* nothing to return */
1785 goto done;
1786 }
1787 next += GETIP(q)->ip_len;
1788 }
1789 /* Make sure the last packet didn't have the IP_MF flag */
1790 if (p->m_flags & M_FRAG) {
1791 if (fp->ipq_nfrags > maxfragsperpacket) {
1792 ipstat.ips_fragdropped += fp->ipq_nfrags;
1793 frag_freef(head, fp);
1794 }
1795 m = NULL; /* nothing to return */
1796 goto done;
1797 }
1798
1799 /*
1800 * Reassembly is complete. Make sure the packet is a sane size.
1801 */
1802 q = fp->ipq_frags;
1803 ip = GETIP(q);
1804 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1805 ipstat.ips_toolong++;
1806 ipstat.ips_fragdropped += fp->ipq_nfrags;
1807 frag_freef(head, fp);
1808 m = NULL; /* nothing to return */
1809 goto done;
1810 }
1811
1812 /*
1813 * Concatenate fragments.
1814 */
1815 m = q;
1816 t = m->m_next;
1817 m->m_next = NULL;
1818 m_cat(m, t);
1819 nq = q->m_nextpkt;
1820 q->m_nextpkt = NULL;
1821 for (q = nq; q != NULL; q = nq) {
1822 nq = q->m_nextpkt;
1823 q->m_nextpkt = NULL;
1824 m_cat(m, q);
1825 }
1826
1827 /*
1828 * Store partial hardware checksum info from the fragment queue;
1829 * the receive start offset is set to 20 bytes (see code at the
1830 * top of this routine.)
1831 */
1832 if (fp->ipq_csum_flags != 0) {
1833 csum = fp->ipq_csum;
1834
1835 ADDCARRY(csum);
1836
1837 m->m_pkthdr.csum_rx_val = csum;
1838 m->m_pkthdr.csum_rx_start = sizeof (struct ip);
1839 m->m_pkthdr.csum_flags = fp->ipq_csum_flags;
1840 } else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
1841 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1842 /* loopback checksums are always OK */
1843 m->m_pkthdr.csum_data = 0xffff;
1844 m->m_pkthdr.csum_flags &= ~CSUM_PARTIAL;
1845 m->m_pkthdr.csum_flags =
1846 CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
1847 CSUM_IP_CHECKED | CSUM_IP_VALID;
1848 }
1849
1850 #if IPDIVERT
1851 /*
1852 * Extract firewall instructions from the fragment structure.
1853 */
1854 #ifdef IPDIVERT_44
1855 *divinfo = fp->ipq_div_info;
1856 #else
1857 *divinfo = fp->ipq_divert;
1858 #endif
1859 *divcookie = fp->ipq_div_cookie;
1860 #endif /* IPDIVERT */
1861
1862 #if CONFIG_MACF_NET
1863 mac_mbuf_label_associate_ipq(fp, m);
1864 mac_ipq_label_destroy(fp);
1865 #endif
1866 /*
1867 * Create header for new ip packet by modifying header of first
1868 * packet; dequeue and discard fragment reassembly header.
1869 * Make header visible.
1870 */
1871 ip->ip_len = (IP_VHL_HL(ip->ip_vhl) << 2) + next;
1872 ip->ip_src = fp->ipq_src;
1873 ip->ip_dst = fp->ipq_dst;
1874
1875 fp->ipq_frags = NULL; /* return to caller as 'm' */
1876 frag_freef(head, fp);
1877 fp = NULL;
1878
1879 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1880 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1881 /* some debugging cruft by sklower, below, will go away soon */
1882 if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */
1883 m_fixhdr(m);
1884 ipstat.ips_reassembled++;
1885
1886 /* arm the purge timer if not already and if there's work to do */
1887 frag_sched_timeout();
1888 lck_mtx_unlock(&ipqlock);
1889 /* perform deferred free (if needed) now that lock is dropped */
1890 if (!MBUFQ_EMPTY(&dfq))
1891 MBUFQ_DRAIN(&dfq);
1892 VERIFY(MBUFQ_EMPTY(&dfq));
1893 return (m);
1894
1895 done:
1896 VERIFY(m == NULL);
1897 /* arm the purge timer if not already and if there's work to do */
1898 frag_sched_timeout();
1899 lck_mtx_unlock(&ipqlock);
1900 /* perform deferred free (if needed) */
1901 if (!MBUFQ_EMPTY(&dfq))
1902 MBUFQ_DRAIN(&dfq);
1903 VERIFY(MBUFQ_EMPTY(&dfq));
1904 return (NULL);
1905
1906 dropfrag:
1907 #if IPDIVERT
1908 *divinfo = 0;
1909 *divcookie = 0;
1910 #endif /* IPDIVERT */
1911 ipstat.ips_fragdropped++;
1912 if (fp != NULL)
1913 fp->ipq_nfrags--;
1914 /* arm the purge timer if not already and if there's work to do */
1915 frag_sched_timeout();
1916 lck_mtx_unlock(&ipqlock);
1917 m_freem(m);
1918 /* perform deferred free (if needed) */
1919 if (!MBUFQ_EMPTY(&dfq))
1920 MBUFQ_DRAIN(&dfq);
1921 VERIFY(MBUFQ_EMPTY(&dfq));
1922 return (NULL);
1923 #undef GETIP
1924 }
1925
1926 /*
1927 * Free a fragment reassembly header and all
1928 * associated datagrams.
1929 */
1930 static void
1931 frag_freef(struct ipqhead *fhp, struct ipq *fp)
1932 {
1933 lck_mtx_assert(&ipqlock, LCK_MTX_ASSERT_OWNED);
1934
1935 fp->ipq_nfrags = 0;
1936 if (fp->ipq_frags != NULL) {
1937 m_freem_list(fp->ipq_frags);
1938 fp->ipq_frags = NULL;
1939 }
1940 TAILQ_REMOVE(fhp, fp, ipq_list);
1941 nipq--;
1942 ipq_free(fp);
1943 }
1944
1945 /*
1946 * IP reassembly timer processing
1947 */
1948 static void
1949 frag_timeout(void *arg)
1950 {
1951 #pragma unused(arg)
1952 struct ipq *fp;
1953 int i;
1954
1955 /*
1956 * Update coarse-grained networking timestamp (in sec.); the idea
1957 * is to piggy-back on the timeout callout to update the counter
1958 * returnable via net_uptime().
1959 */
1960 net_update_uptime();
1961
1962 lck_mtx_lock(&ipqlock);
1963 for (i = 0; i < IPREASS_NHASH; i++) {
1964 for (fp = TAILQ_FIRST(&ipq[i]); fp; ) {
1965 struct ipq *fpp;
1966
1967 fpp = fp;
1968 fp = TAILQ_NEXT(fp, ipq_list);
1969 if (--fpp->ipq_ttl == 0) {
1970 ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1971 frag_freef(&ipq[i], fpp);
1972 }
1973 }
1974 }
1975 /*
1976 * If we are over the maximum number of fragments
1977 * (due to the limit being lowered), drain off
1978 * enough to get down to the new limit.
1979 */
1980 if (maxnipq >= 0 && nipq > (unsigned)maxnipq) {
1981 for (i = 0; i < IPREASS_NHASH; i++) {
1982 while (nipq > (unsigned)maxnipq &&
1983 !TAILQ_EMPTY(&ipq[i])) {
1984 ipstat.ips_fragdropped +=
1985 TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1986 frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1987 }
1988 }
1989 }
1990 /* re-arm the purge timer if there's work to do */
1991 frag_timeout_run = 0;
1992 frag_sched_timeout();
1993 lck_mtx_unlock(&ipqlock);
1994 }
1995
1996 static void
1997 frag_sched_timeout(void)
1998 {
1999 lck_mtx_assert(&ipqlock, LCK_MTX_ASSERT_OWNED);
2000
2001 if (!frag_timeout_run && nipq > 0) {
2002 frag_timeout_run = 1;
2003 timeout(frag_timeout, NULL, hz);
2004 }
2005 }
2006
2007 /*
2008 * Drain off all datagram fragments.
2009 */
2010 static void
2011 frag_drain(void)
2012 {
2013 int i;
2014
2015 lck_mtx_lock(&ipqlock);
2016 for (i = 0; i < IPREASS_NHASH; i++) {
2017 while (!TAILQ_EMPTY(&ipq[i])) {
2018 ipstat.ips_fragdropped +=
2019 TAILQ_FIRST(&ipq[i])->ipq_nfrags;
2020 frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
2021 }
2022 }
2023 lck_mtx_unlock(&ipqlock);
2024 }
2025
2026 static struct ipq *
2027 ipq_alloc(int how)
2028 {
2029 struct mbuf *t;
2030 struct ipq *fp;
2031
2032 /*
2033 * See comments in ipq_updateparams(). Keep the count separate
2034 * from nipq since the latter represents the elements already
2035 * in the reassembly queues.
2036 */
2037 if (ipq_limit > 0 && ipq_count > ipq_limit)
2038 return (NULL);
2039
2040 t = m_get(how, MT_FTABLE);
2041 if (t != NULL) {
2042 atomic_add_32(&ipq_count, 1);
2043 fp = mtod(t, struct ipq *);
2044 bzero(fp, sizeof (*fp));
2045 } else {
2046 fp = NULL;
2047 }
2048 return (fp);
2049 }
2050
2051 static void
2052 ipq_free(struct ipq *fp)
2053 {
2054 (void) m_free(dtom(fp));
2055 atomic_add_32(&ipq_count, -1);
2056 }
2057
2058 /*
2059 * Drain callback
2060 */
2061 void
2062 ip_drain(void)
2063 {
2064 frag_drain(); /* fragments */
2065 in_rtqdrain(); /* protocol cloned routes */
2066 in_arpdrain(NULL); /* cloned routes: ARP */
2067 }
2068
2069 /*
2070 * Do option processing on a datagram,
2071 * possibly discarding it if bad options are encountered,
2072 * or forwarding it if source-routed.
2073 * The pass argument is used when operating in the IPSTEALTH
2074 * mode to tell what options to process:
2075 * [LS]SRR (pass 0) or the others (pass 1).
2076 * The reason for as many as two passes is that when doing IPSTEALTH,
2077 * non-routing options should be processed only if the packet is for us.
2078 * Returns 1 if packet has been forwarded/freed,
2079 * 0 if the packet should be processed further.
2080 */
2081 static int
2082 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
2083 {
2084 #pragma unused(pass)
2085 struct ip *ip = mtod(m, struct ip *);
2086 u_char *cp;
2087 struct ip_timestamp *ipt;
2088 struct in_ifaddr *ia;
2089 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
2090 struct in_addr *sin, dst;
2091 n_time ntime;
2092 struct sockaddr_in ipaddr = {
2093 sizeof (ipaddr), AF_INET, 0, { 0 }, { 0, } };
2094
2095 /* Expect 32-bit aligned data pointer on strict-align platforms */
2096 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
2097
2098 dst = ip->ip_dst;
2099 cp = (u_char *)(ip + 1);
2100 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2101 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2102 opt = cp[IPOPT_OPTVAL];
2103 if (opt == IPOPT_EOL)
2104 break;
2105 if (opt == IPOPT_NOP)
2106 optlen = 1;
2107 else {
2108 if (cnt < IPOPT_OLEN + sizeof (*cp)) {
2109 code = &cp[IPOPT_OLEN] - (u_char *)ip;
2110 goto bad;
2111 }
2112 optlen = cp[IPOPT_OLEN];
2113 if (optlen < IPOPT_OLEN + sizeof (*cp) ||
2114 optlen > cnt) {
2115 code = &cp[IPOPT_OLEN] - (u_char *)ip;
2116 goto bad;
2117 }
2118 }
2119 switch (opt) {
2120
2121 default:
2122 break;
2123
2124 /*
2125 * Source routing with record.
2126 * Find interface with current destination address.
2127 * If none on this machine then drop if strictly routed,
2128 * or do nothing if loosely routed.
2129 * Record interface address and bring up next address
2130 * component. If strictly routed make sure next
2131 * address is on directly accessible net.
2132 */
2133 case IPOPT_LSRR:
2134 case IPOPT_SSRR:
2135 if (optlen < IPOPT_OFFSET + sizeof (*cp)) {
2136 code = &cp[IPOPT_OLEN] - (u_char *)ip;
2137 goto bad;
2138 }
2139 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
2140 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
2141 goto bad;
2142 }
2143 ipaddr.sin_addr = ip->ip_dst;
2144 ia = (struct in_ifaddr *)ifa_ifwithaddr(SA(&ipaddr));
2145 if (ia == NULL) {
2146 if (opt == IPOPT_SSRR) {
2147 type = ICMP_UNREACH;
2148 code = ICMP_UNREACH_SRCFAIL;
2149 goto bad;
2150 }
2151 if (!ip_dosourceroute)
2152 goto nosourcerouting;
2153 /*
2154 * Loose routing, and not at next destination
2155 * yet; nothing to do except forward.
2156 */
2157 break;
2158 } else {
2159 IFA_REMREF(&ia->ia_ifa);
2160 ia = NULL;
2161 }
2162 off--; /* 0 origin */
2163 if (off > optlen - (int)sizeof (struct in_addr)) {
2164 /*
2165 * End of source route. Should be for us.
2166 */
2167 if (!ip_acceptsourceroute)
2168 goto nosourcerouting;
2169 save_rte(cp, ip->ip_src);
2170 break;
2171 }
2172
2173 if (!ip_dosourceroute) {
2174 if (ipforwarding) {
2175 char buf[MAX_IPv4_STR_LEN];
2176 char buf2[MAX_IPv4_STR_LEN];
2177 /*
2178 * Acting as a router, so generate ICMP
2179 */
2180 nosourcerouting:
2181 log(LOG_WARNING,
2182 "attempted source route from %s "
2183 "to %s\n",
2184 inet_ntop(AF_INET, &ip->ip_src,
2185 buf, sizeof (buf)),
2186 inet_ntop(AF_INET, &ip->ip_dst,
2187 buf2, sizeof (buf2)));
2188 type = ICMP_UNREACH;
2189 code = ICMP_UNREACH_SRCFAIL;
2190 goto bad;
2191 } else {
2192 /*
2193 * Not acting as a router,
2194 * so silently drop.
2195 */
2196 OSAddAtomic(1, &ipstat.ips_cantforward);
2197 m_freem(m);
2198 return (1);
2199 }
2200 }
2201
2202 /*
2203 * locate outgoing interface
2204 */
2205 (void) memcpy(&ipaddr.sin_addr, cp + off,
2206 sizeof (ipaddr.sin_addr));
2207
2208 if (opt == IPOPT_SSRR) {
2209 #define INA struct in_ifaddr *
2210 if ((ia = (INA)ifa_ifwithdstaddr(
2211 SA(&ipaddr))) == NULL) {
2212 ia = (INA)ifa_ifwithnet(SA(&ipaddr));
2213 }
2214 } else {
2215 ia = ip_rtaddr(ipaddr.sin_addr);
2216 }
2217 if (ia == NULL) {
2218 type = ICMP_UNREACH;
2219 code = ICMP_UNREACH_SRCFAIL;
2220 goto bad;
2221 }
2222 ip->ip_dst = ipaddr.sin_addr;
2223 IFA_LOCK(&ia->ia_ifa);
2224 (void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
2225 sizeof (struct in_addr));
2226 IFA_UNLOCK(&ia->ia_ifa);
2227 IFA_REMREF(&ia->ia_ifa);
2228 ia = NULL;
2229 cp[IPOPT_OFFSET] += sizeof (struct in_addr);
2230 /*
2231 * Let ip_intr's mcast routing check handle mcast pkts
2232 */
2233 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
2234 break;
2235
2236 case IPOPT_RR:
2237 if (optlen < IPOPT_OFFSET + sizeof (*cp)) {
2238 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
2239 goto bad;
2240 }
2241 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
2242 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
2243 goto bad;
2244 }
2245 /*
2246 * If no space remains, ignore.
2247 */
2248 off--; /* 0 origin */
2249 if (off > optlen - (int)sizeof (struct in_addr))
2250 break;
2251 (void) memcpy(&ipaddr.sin_addr, &ip->ip_dst,
2252 sizeof (ipaddr.sin_addr));
2253 /*
2254 * locate outgoing interface; if we're the destination,
2255 * use the incoming interface (should be same).
2256 */
2257 if ((ia = (INA)ifa_ifwithaddr(SA(&ipaddr))) == NULL) {
2258 if ((ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
2259 type = ICMP_UNREACH;
2260 code = ICMP_UNREACH_HOST;
2261 goto bad;
2262 }
2263 }
2264 IFA_LOCK(&ia->ia_ifa);
2265 (void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
2266 sizeof (struct in_addr));
2267 IFA_UNLOCK(&ia->ia_ifa);
2268 IFA_REMREF(&ia->ia_ifa);
2269 ia = NULL;
2270 cp[IPOPT_OFFSET] += sizeof (struct in_addr);
2271 break;
2272
2273 case IPOPT_TS:
2274 code = cp - (u_char *)ip;
2275 ipt = (struct ip_timestamp *)(void *)cp;
2276 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
2277 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
2278 goto bad;
2279 }
2280 if (ipt->ipt_ptr < 5) {
2281 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
2282 goto bad;
2283 }
2284 if (ipt->ipt_ptr >
2285 ipt->ipt_len - (int)sizeof (int32_t)) {
2286 if (++ipt->ipt_oflw == 0) {
2287 code = (u_char *)&ipt->ipt_ptr -
2288 (u_char *)ip;
2289 goto bad;
2290 }
2291 break;
2292 }
2293 sin = (struct in_addr *)(void *)(cp + ipt->ipt_ptr - 1);
2294 switch (ipt->ipt_flg) {
2295
2296 case IPOPT_TS_TSONLY:
2297 break;
2298
2299 case IPOPT_TS_TSANDADDR:
2300 if (ipt->ipt_ptr - 1 + sizeof (n_time) +
2301 sizeof (struct in_addr) > ipt->ipt_len) {
2302 code = (u_char *)&ipt->ipt_ptr -
2303 (u_char *)ip;
2304 goto bad;
2305 }
2306 ipaddr.sin_addr = dst;
2307 ia = (INA)ifaof_ifpforaddr(SA(&ipaddr),
2308 m->m_pkthdr.rcvif);
2309 if (ia == NULL)
2310 continue;
2311 IFA_LOCK(&ia->ia_ifa);
2312 (void) memcpy(sin, &IA_SIN(ia)->sin_addr,
2313 sizeof (struct in_addr));
2314 IFA_UNLOCK(&ia->ia_ifa);
2315 ipt->ipt_ptr += sizeof (struct in_addr);
2316 IFA_REMREF(&ia->ia_ifa);
2317 ia = NULL;
2318 break;
2319
2320 case IPOPT_TS_PRESPEC:
2321 if (ipt->ipt_ptr - 1 + sizeof (n_time) +
2322 sizeof (struct in_addr) > ipt->ipt_len) {
2323 code = (u_char *)&ipt->ipt_ptr -
2324 (u_char *)ip;
2325 goto bad;
2326 }
2327 (void) memcpy(&ipaddr.sin_addr, sin,
2328 sizeof (struct in_addr));
2329 if ((ia = (struct in_ifaddr *)ifa_ifwithaddr(
2330 SA(&ipaddr))) == NULL)
2331 continue;
2332 IFA_REMREF(&ia->ia_ifa);
2333 ia = NULL;
2334 ipt->ipt_ptr += sizeof (struct in_addr);
2335 break;
2336
2337 default:
2338 /* XXX can't take &ipt->ipt_flg */
2339 code = (u_char *)&ipt->ipt_ptr -
2340 (u_char *)ip + 1;
2341 goto bad;
2342 }
2343 ntime = iptime();
2344 (void) memcpy(cp + ipt->ipt_ptr - 1, &ntime,
2345 sizeof (n_time));
2346 ipt->ipt_ptr += sizeof (n_time);
2347 }
2348 }
2349 if (forward && ipforwarding) {
2350 ip_forward(m, 1, next_hop);
2351 return (1);
2352 }
2353 return (0);
2354 bad:
2355 /* XXX icmp_error adds in hdr length */
2356 ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2;
2357 icmp_error(m, type, code, 0, 0);
2358 OSAddAtomic(1, &ipstat.ips_badoptions);
2359 return (1);
2360 }
2361
2362 /*
2363 * Check for the presence of the IP Router Alert option [RFC2113]
2364 * in the header of an IPv4 datagram.
2365 *
2366 * This call is not intended for use from the forwarding path; it is here
2367 * so that protocol domains may check for the presence of the option.
2368 * Given how FreeBSD's IPv4 stack is currently structured, the Router Alert
2369 * option does not have much relevance to the implementation, though this
2370 * may change in future.
2371 * Router alert options SHOULD be passed if running in IPSTEALTH mode and
2372 * we are not the endpoint.
2373 * Length checks on individual options should already have been peformed
2374 * by ip_dooptions() therefore they are folded under DIAGNOSTIC here.
2375 *
2376 * Return zero if not present or options are invalid, non-zero if present.
2377 */
2378 int
2379 ip_checkrouteralert(struct mbuf *m)
2380 {
2381 struct ip *ip = mtod(m, struct ip *);
2382 u_char *cp;
2383 int opt, optlen, cnt, found_ra;
2384
2385 found_ra = 0;
2386 cp = (u_char *)(ip + 1);
2387 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2388 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2389 opt = cp[IPOPT_OPTVAL];
2390 if (opt == IPOPT_EOL)
2391 break;
2392 if (opt == IPOPT_NOP)
2393 optlen = 1;
2394 else {
2395 #ifdef DIAGNOSTIC
2396 if (cnt < IPOPT_OLEN + sizeof (*cp))
2397 break;
2398 #endif
2399 optlen = cp[IPOPT_OLEN];
2400 #ifdef DIAGNOSTIC
2401 if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt)
2402 break;
2403 #endif
2404 }
2405 switch (opt) {
2406 case IPOPT_RA:
2407 #ifdef DIAGNOSTIC
2408 if (optlen != IPOPT_OFFSET + sizeof (uint16_t) ||
2409 (*((uint16_t *)(void *)&cp[IPOPT_OFFSET]) != 0))
2410 break;
2411 else
2412 #endif
2413 found_ra = 1;
2414 break;
2415 default:
2416 break;
2417 }
2418 }
2419
2420 return (found_ra);
2421 }
2422
2423 /*
2424 * Given address of next destination (final or next hop),
2425 * return internet address info of interface to be used to get there.
2426 */
2427 struct in_ifaddr *
2428 ip_rtaddr(struct in_addr dst)
2429 {
2430 struct sockaddr_in *sin;
2431 struct ifaddr *rt_ifa;
2432 struct route ro;
2433
2434 bzero(&ro, sizeof (ro));
2435 sin = SIN(&ro.ro_dst);
2436 sin->sin_family = AF_INET;
2437 sin->sin_len = sizeof (*sin);
2438 sin->sin_addr = dst;
2439
2440 rtalloc_ign(&ro, RTF_PRCLONING);
2441 if (ro.ro_rt == NULL) {
2442 ROUTE_RELEASE(&ro);
2443 return (NULL);
2444 }
2445
2446 RT_LOCK(ro.ro_rt);
2447 if ((rt_ifa = ro.ro_rt->rt_ifa) != NULL)
2448 IFA_ADDREF(rt_ifa);
2449 RT_UNLOCK(ro.ro_rt);
2450 ROUTE_RELEASE(&ro);
2451
2452 return ((struct in_ifaddr *)rt_ifa);
2453 }
2454
2455 /*
2456 * Save incoming source route for use in replies,
2457 * to be picked up later by ip_srcroute if the receiver is interested.
2458 */
2459 void
2460 save_rte(u_char *option, struct in_addr dst)
2461 {
2462 unsigned olen;
2463
2464 olen = option[IPOPT_OLEN];
2465 #if DIAGNOSTIC
2466 if (ipprintfs)
2467 printf("save_rte: olen %d\n", olen);
2468 #endif
2469 if (olen > sizeof (ip_srcrt) - (1 + sizeof (dst)))
2470 return;
2471 bcopy(option, ip_srcrt.srcopt, olen);
2472 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof (struct in_addr);
2473 ip_srcrt.dst = dst;
2474 }
2475
2476 /*
2477 * Retrieve incoming source route for use in replies,
2478 * in the same form used by setsockopt.
2479 * The first hop is placed before the options, will be removed later.
2480 */
2481 struct mbuf *
2482 ip_srcroute(void)
2483 {
2484 struct in_addr *p, *q;
2485 struct mbuf *m;
2486
2487 if (ip_nhops == 0)
2488 return (NULL);
2489
2490 m = m_get(M_DONTWAIT, MT_HEADER);
2491 if (m == NULL)
2492 return (NULL);
2493
2494 #define OPTSIZ (sizeof (ip_srcrt.nop) + sizeof (ip_srcrt.srcopt))
2495
2496 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
2497 m->m_len = ip_nhops * sizeof (struct in_addr) +
2498 sizeof (struct in_addr) + OPTSIZ;
2499 #if DIAGNOSTIC
2500 if (ipprintfs)
2501 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
2502 #endif
2503
2504 /*
2505 * First save first hop for return route
2506 */
2507 p = &ip_srcrt.route[ip_nhops - 1];
2508 *(mtod(m, struct in_addr *)) = *p--;
2509 #if DIAGNOSTIC
2510 if (ipprintfs)
2511 printf(" hops %lx",
2512 (u_int32_t)ntohl(mtod(m, struct in_addr *)->s_addr));
2513 #endif
2514
2515 /*
2516 * Copy option fields and padding (nop) to mbuf.
2517 */
2518 ip_srcrt.nop = IPOPT_NOP;
2519 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
2520 (void) memcpy(mtod(m, caddr_t) + sizeof (struct in_addr),
2521 &ip_srcrt.nop, OPTSIZ);
2522 q = (struct in_addr *)(void *)(mtod(m, caddr_t) +
2523 sizeof (struct in_addr) + OPTSIZ);
2524 #undef OPTSIZ
2525 /*
2526 * Record return path as an IP source route,
2527 * reversing the path (pointers are now aligned).
2528 */
2529 while (p >= ip_srcrt.route) {
2530 #if DIAGNOSTIC
2531 if (ipprintfs)
2532 printf(" %lx", (u_int32_t)ntohl(q->s_addr));
2533 #endif
2534 *q++ = *p--;
2535 }
2536 /*
2537 * Last hop goes to final destination.
2538 */
2539 *q = ip_srcrt.dst;
2540 #if DIAGNOSTIC
2541 if (ipprintfs)
2542 printf(" %lx\n", (u_int32_t)ntohl(q->s_addr));
2543 #endif
2544 return (m);
2545 }
2546
2547 /*
2548 * Strip out IP options, at higher
2549 * level protocol in the kernel.
2550 * Second argument is buffer to which options
2551 * will be moved, and return value is their length.
2552 * XXX should be deleted; last arg currently ignored.
2553 */
2554 void
2555 ip_stripoptions(struct mbuf *m, struct mbuf *mopt)
2556 {
2557 #pragma unused(mopt)
2558 int i;
2559 struct ip *ip = mtod(m, struct ip *);
2560 caddr_t opts;
2561 int olen;
2562
2563 /* Expect 32-bit aligned data pointer on strict-align platforms */
2564 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
2565
2566 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2567 opts = (caddr_t)(ip + 1);
2568 i = m->m_len - (sizeof (struct ip) + olen);
2569 bcopy(opts + olen, opts, (unsigned)i);
2570 m->m_len -= olen;
2571 if (m->m_flags & M_PKTHDR)
2572 m->m_pkthdr.len -= olen;
2573 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof (struct ip) >> 2);
2574 }
2575
2576 u_char inetctlerrmap[PRC_NCMDS] = {
2577 0, 0, 0, 0,
2578 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
2579 ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
2580 EMSGSIZE, EHOSTUNREACH, 0, 0,
2581 0, 0, 0, 0,
2582 ENOPROTOOPT, ECONNREFUSED
2583 };
2584
2585 static int
2586 sysctl_ipforwarding SYSCTL_HANDLER_ARGS
2587 {
2588 #pragma unused(arg1, arg2)
2589 int i, was_ipforwarding = ipforwarding;
2590
2591 i = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
2592 if (i != 0 || req->newptr == USER_ADDR_NULL)
2593 return (i);
2594
2595 if (was_ipforwarding && !ipforwarding) {
2596 /* clean up IPv4 forwarding cached routes */
2597 ifnet_head_lock_shared();
2598 for (i = 0; i <= if_index; i++) {
2599 struct ifnet *ifp = ifindex2ifnet[i];
2600 if (ifp != NULL) {
2601 lck_mtx_lock(&ifp->if_cached_route_lock);
2602 ROUTE_RELEASE(&ifp->if_fwd_route);
2603 bzero(&ifp->if_fwd_route,
2604 sizeof (ifp->if_fwd_route));
2605 lck_mtx_unlock(&ifp->if_cached_route_lock);
2606 }
2607 }
2608 ifnet_head_done();
2609 }
2610
2611 return (0);
2612 }
2613
2614 /*
2615 * Similar to inp_route_{copyout,copyin} routines except that these copy
2616 * out the cached IPv4 forwarding route from struct ifnet instead of the
2617 * inpcb. See comments for those routines for explanations.
2618 */
2619 static void
2620 ip_fwd_route_copyout(struct ifnet *ifp, struct route *dst)
2621 {
2622 struct route *src = &ifp->if_fwd_route;
2623
2624 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2625 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2626
2627 /* Minor sanity check */
2628 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2629 panic("%s: wrong or corrupted route: %p", __func__, src);
2630
2631 route_copyout(dst, src, sizeof (*dst));
2632
2633 lck_mtx_unlock(&ifp->if_cached_route_lock);
2634 }
2635
2636 static void
2637 ip_fwd_route_copyin(struct ifnet *ifp, struct route *src)
2638 {
2639 struct route *dst = &ifp->if_fwd_route;
2640
2641 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2642 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2643
2644 /* Minor sanity check */
2645 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2646 panic("%s: wrong or corrupted route: %p", __func__, src);
2647
2648 if (ifp->if_fwd_cacheok)
2649 route_copyin(src, dst, sizeof (*src));
2650
2651 lck_mtx_unlock(&ifp->if_cached_route_lock);
2652 }
2653
2654 /*
2655 * Forward a packet. If some error occurs return the sender
2656 * an icmp packet. Note we can't always generate a meaningful
2657 * icmp message because icmp doesn't have a large enough repertoire
2658 * of codes and types.
2659 *
2660 * If not forwarding, just drop the packet. This could be confusing
2661 * if ipforwarding was zero but some routing protocol was advancing
2662 * us as a gateway to somewhere. However, we must let the routing
2663 * protocol deal with that.
2664 *
2665 * The srcrt parameter indicates whether the packet is being forwarded
2666 * via a source route.
2667 */
2668 static void
2669 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
2670 {
2671 #if !IPFIREWALL
2672 #pragma unused(next_hop)
2673 #endif
2674 struct ip *ip = mtod(m, struct ip *);
2675 struct sockaddr_in *sin;
2676 struct rtentry *rt;
2677 struct route fwd_rt;
2678 int error, type = 0, code = 0;
2679 struct mbuf *mcopy;
2680 n_long dest;
2681 struct in_addr pkt_dst;
2682 u_int32_t nextmtu = 0, len;
2683 struct ip_out_args ipoa = { IFSCOPE_NONE, { 0 }, 0, 0 };
2684 struct ifnet *rcvifp = m->m_pkthdr.rcvif;
2685 #if IPSEC
2686 struct secpolicy *sp = NULL;
2687 int ipsecerror;
2688 #endif /* IPSEC */
2689 #if PF
2690 struct pf_mtag *pf_mtag;
2691 #endif /* PF */
2692
2693 dest = 0;
2694 #if IPFIREWALL
2695 /*
2696 * Cache the destination address of the packet; this may be
2697 * changed by use of 'ipfw fwd'.
2698 */
2699 pkt_dst = ((next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst);
2700 #else /* !IPFIREWALL */
2701 pkt_dst = ip->ip_dst;
2702 #endif /* !IPFIREWALL */
2703
2704 #if DIAGNOSTIC
2705 if (ipprintfs)
2706 printf("forward: src %lx dst %lx ttl %x\n",
2707 (u_int32_t)ip->ip_src.s_addr, (u_int32_t)pkt_dst.s_addr,
2708 ip->ip_ttl);
2709 #endif
2710
2711 if (m->m_flags & (M_BCAST|M_MCAST) || !in_canforward(pkt_dst)) {
2712 OSAddAtomic(1, &ipstat.ips_cantforward);
2713 m_freem(m);
2714 return;
2715 }
2716 #if IPSTEALTH
2717 if (!ipstealth) {
2718 #endif /* IPSTEALTH */
2719 if (ip->ip_ttl <= IPTTLDEC) {
2720 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
2721 dest, 0);
2722 return;
2723 }
2724 #if IPSTEALTH
2725 }
2726 #endif /* IPSTEALTH */
2727
2728 #if PF
2729 pf_mtag = pf_find_mtag(m);
2730 if (pf_mtag != NULL && pf_mtag->pftag_rtableid != IFSCOPE_NONE) {
2731 ipoa.ipoa_boundif = pf_mtag->pftag_rtableid;
2732 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
2733 }
2734 #endif /* PF */
2735
2736 ip_fwd_route_copyout(rcvifp, &fwd_rt);
2737
2738 sin = SIN(&fwd_rt.ro_dst);
2739 if (ROUTE_UNUSABLE(&fwd_rt) || pkt_dst.s_addr != sin->sin_addr.s_addr) {
2740 ROUTE_RELEASE(&fwd_rt);
2741
2742 sin->sin_family = AF_INET;
2743 sin->sin_len = sizeof (*sin);
2744 sin->sin_addr = pkt_dst;
2745
2746 rtalloc_scoped_ign(&fwd_rt, RTF_PRCLONING, ipoa.ipoa_boundif);
2747 if (fwd_rt.ro_rt == NULL) {
2748 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2749 goto done;
2750 }
2751 }
2752 rt = fwd_rt.ro_rt;
2753
2754 /*
2755 * Save the IP header and at most 8 bytes of the payload,
2756 * in case we need to generate an ICMP message to the src.
2757 *
2758 * We don't use m_copy() because it might return a reference
2759 * to a shared cluster. Both this function and ip_output()
2760 * assume exclusive access to the IP header in `m', so any
2761 * data in a cluster may change before we reach icmp_error().
2762 */
2763 MGET(mcopy, M_DONTWAIT, m->m_type);
2764 if (mcopy != NULL) {
2765 M_COPY_PKTHDR(mcopy, m);
2766 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2767 (int)ip->ip_len);
2768 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
2769 }
2770
2771 #if IPSTEALTH
2772 if (!ipstealth) {
2773 #endif /* IPSTEALTH */
2774 ip->ip_ttl -= IPTTLDEC;
2775 #if IPSTEALTH
2776 }
2777 #endif /* IPSTEALTH */
2778
2779 /*
2780 * If forwarding packet using same interface that it came in on,
2781 * perhaps should send a redirect to sender to shortcut a hop.
2782 * Only send redirect if source is sending directly to us,
2783 * and if packet was not source routed (or has any options).
2784 * Also, don't send redirect if forwarding using a default route
2785 * or a route modified by a redirect.
2786 */
2787 RT_LOCK_SPIN(rt);
2788 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2789 !(rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) &&
2790 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2791 ipsendredirects && !srcrt && rt->rt_ifa != NULL) {
2792 struct in_ifaddr *ia = (struct in_ifaddr *)rt->rt_ifa;
2793 u_int32_t src = ntohl(ip->ip_src.s_addr);
2794
2795 /* Become a regular mutex */
2796 RT_CONVERT_LOCK(rt);
2797 IFA_LOCK_SPIN(&ia->ia_ifa);
2798 if ((src & ia->ia_subnetmask) == ia->ia_subnet) {
2799 if (rt->rt_flags & RTF_GATEWAY)
2800 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2801 else
2802 dest = pkt_dst.s_addr;
2803 /*
2804 * Router requirements says to only send
2805 * host redirects.
2806 */
2807 type = ICMP_REDIRECT;
2808 code = ICMP_REDIRECT_HOST;
2809 #if DIAGNOSTIC
2810 if (ipprintfs)
2811 printf("redirect (%d) to %lx\n", code,
2812 (u_int32_t)dest);
2813 #endif
2814 }
2815 IFA_UNLOCK(&ia->ia_ifa);
2816 }
2817 RT_UNLOCK(rt);
2818
2819 #if IPFIREWALL
2820 if (next_hop != NULL) {
2821 /* Pass IPFORWARD info if available */
2822 struct m_tag *tag;
2823 struct ip_fwd_tag *ipfwd_tag;
2824
2825 tag = m_tag_create(KERNEL_MODULE_TAG_ID,
2826 KERNEL_TAG_TYPE_IPFORWARD,
2827 sizeof (*ipfwd_tag), M_NOWAIT, m);
2828 if (tag == NULL) {
2829 error = ENOBUFS;
2830 m_freem(m);
2831 goto done;
2832 }
2833
2834 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
2835 ipfwd_tag->next_hop = next_hop;
2836
2837 m_tag_prepend(m, tag);
2838 }
2839 #endif /* IPFIREWALL */
2840
2841 /* Mark this packet as being forwarded from another interface */
2842 m->m_pkthdr.pkt_flags |= PKTF_FORWARDED;
2843 len = m_pktlen(m);
2844
2845 error = ip_output(m, NULL, &fwd_rt, IP_FORWARDING | IP_OUTARGS,
2846 NULL, &ipoa);
2847
2848 /* Refresh rt since the route could have changed while in IP */
2849 rt = fwd_rt.ro_rt;
2850
2851 if (error != 0) {
2852 OSAddAtomic(1, &ipstat.ips_cantforward);
2853 } else {
2854 /*
2855 * Increment stats on the source interface; the ones
2856 * for destination interface has been taken care of
2857 * during output above by virtue of PKTF_FORWARDED.
2858 */
2859 rcvifp->if_fpackets++;
2860 rcvifp->if_fbytes += len;
2861
2862 OSAddAtomic(1, &ipstat.ips_forward);
2863 if (type != 0) {
2864 OSAddAtomic(1, &ipstat.ips_redirectsent);
2865 } else {
2866 if (mcopy != NULL) {
2867 /*
2868 * If we didn't have to go thru ipflow and
2869 * the packet was successfully consumed by
2870 * ip_output, the mcopy is rather a waste;
2871 * this could be further optimized.
2872 */
2873 m_freem(mcopy);
2874 }
2875 goto done;
2876 }
2877 }
2878 if (mcopy == NULL)
2879 goto done;
2880
2881 switch (error) {
2882 case 0: /* forwarded, but need redirect */
2883 /* type, code set above */
2884 break;
2885
2886 case ENETUNREACH: /* shouldn't happen, checked above */
2887 case EHOSTUNREACH:
2888 case ENETDOWN:
2889 case EHOSTDOWN:
2890 default:
2891 type = ICMP_UNREACH;
2892 code = ICMP_UNREACH_HOST;
2893 break;
2894
2895 case EMSGSIZE:
2896 type = ICMP_UNREACH;
2897 code = ICMP_UNREACH_NEEDFRAG;
2898
2899 if (rt == NULL) {
2900 break;
2901 } else {
2902 RT_LOCK_SPIN(rt);
2903 if (rt->rt_ifp != NULL)
2904 nextmtu = rt->rt_ifp->if_mtu;
2905 RT_UNLOCK(rt);
2906 }
2907 #ifdef IPSEC
2908 if (ipsec_bypass)
2909 break;
2910
2911 /*
2912 * If the packet is routed over IPsec tunnel, tell the
2913 * originator the tunnel MTU.
2914 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2915 * XXX quickhack!!!
2916 */
2917 sp = ipsec4_getpolicybyaddr(mcopy, IPSEC_DIR_OUTBOUND,
2918 IP_FORWARDING, &ipsecerror);
2919
2920 if (sp == NULL)
2921 break;
2922
2923 /*
2924 * find the correct route for outer IPv4
2925 * header, compute tunnel MTU.
2926 */
2927 nextmtu = 0;
2928
2929 if (sp->req != NULL &&
2930 sp->req->saidx.mode == IPSEC_MODE_TUNNEL) {
2931 struct secasindex saidx;
2932 struct secasvar *sav;
2933 struct route *ro;
2934 struct ip *ipm;
2935 int ipsechdr;
2936
2937 /* count IPsec header size */
2938 ipsechdr = ipsec_hdrsiz(sp);
2939
2940 ipm = mtod(mcopy, struct ip *);
2941 bcopy(&sp->req->saidx, &saidx, sizeof (saidx));
2942 saidx.mode = sp->req->saidx.mode;
2943 saidx.reqid = sp->req->saidx.reqid;
2944 sin = SIN(&saidx.src);
2945 if (sin->sin_len == 0) {
2946 sin->sin_len = sizeof (*sin);
2947 sin->sin_family = AF_INET;
2948 sin->sin_port = IPSEC_PORT_ANY;
2949 bcopy(&ipm->ip_src, &sin->sin_addr,
2950 sizeof (sin->sin_addr));
2951 }
2952 sin = SIN(&saidx.dst);
2953 if (sin->sin_len == 0) {
2954 sin->sin_len = sizeof (*sin);
2955 sin->sin_family = AF_INET;
2956 sin->sin_port = IPSEC_PORT_ANY;
2957 bcopy(&ipm->ip_dst, &sin->sin_addr,
2958 sizeof (sin->sin_addr));
2959 }
2960 sav = key_allocsa_policy(&saidx);
2961 if (sav != NULL) {
2962 lck_mtx_lock(sadb_mutex);
2963 if (sav->sah != NULL) {
2964 ro = &sav->sah->sa_route;
2965 if (ro->ro_rt != NULL) {
2966 RT_LOCK(ro->ro_rt);
2967 if (ro->ro_rt->rt_ifp != NULL) {
2968 nextmtu = ro->ro_rt->
2969 rt_ifp->if_mtu;
2970 nextmtu -= ipsechdr;
2971 }
2972 RT_UNLOCK(ro->ro_rt);
2973 }
2974 }
2975 key_freesav(sav, KEY_SADB_LOCKED);
2976 lck_mtx_unlock(sadb_mutex);
2977 }
2978 }
2979 key_freesp(sp, KEY_SADB_UNLOCKED);
2980 #endif /* IPSEC */
2981 break;
2982
2983 case ENOBUFS:
2984 /*
2985 * A router should not generate ICMP_SOURCEQUENCH as
2986 * required in RFC1812 Requirements for IP Version 4 Routers.
2987 * Source quench could be a big problem under DoS attacks,
2988 * or if the underlying interface is rate-limited.
2989 * Those who need source quench packets may re-enable them
2990 * via the net.inet.ip.sendsourcequench sysctl.
2991 */
2992 if (ip_sendsourcequench == 0) {
2993 m_freem(mcopy);
2994 goto done;
2995 } else {
2996 type = ICMP_SOURCEQUENCH;
2997 code = 0;
2998 }
2999 break;
3000
3001 case EACCES: /* ipfw denied packet */
3002 m_freem(mcopy);
3003 goto done;
3004 }
3005
3006 if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG)
3007 OSAddAtomic(1, &ipstat.ips_cantfrag);
3008
3009 icmp_error(mcopy, type, code, dest, nextmtu);
3010 done:
3011 ip_fwd_route_copyin(rcvifp, &fwd_rt);
3012 }
3013
3014 int
3015 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
3016 struct mbuf *m)
3017 {
3018 *mp = NULL;
3019 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
3020 struct timeval tv;
3021
3022 getmicrotime(&tv);
3023 mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv),
3024 SCM_TIMESTAMP, SOL_SOCKET, mp);
3025 if (*mp == NULL) {
3026 goto no_mbufs;
3027 }
3028 }
3029 if (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) {
3030 uint64_t time;
3031
3032 time = mach_absolute_time();
3033 mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time),
3034 SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
3035 if (*mp == NULL) {
3036 goto no_mbufs;
3037 }
3038 }
3039 if (inp->inp_flags & INP_RECVDSTADDR) {
3040 mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_dst,
3041 sizeof (struct in_addr), IP_RECVDSTADDR, IPPROTO_IP, mp);
3042 if (*mp == NULL) {
3043 goto no_mbufs;
3044 }
3045 }
3046 #ifdef notyet
3047 /*
3048 * XXX
3049 * Moving these out of udp_input() made them even more broken
3050 * than they already were.
3051 */
3052 /* options were tossed already */
3053 if (inp->inp_flags & INP_RECVOPTS) {
3054 mp = sbcreatecontrol_mbuf((caddr_t)opts_deleted_above,
3055 sizeof (struct in_addr), IP_RECVOPTS, IPPROTO_IP, mp);
3056 if (*mp == NULL) {
3057 goto no_mbufs;
3058 }
3059 }
3060 /* ip_srcroute doesn't do what we want here, need to fix */
3061 if (inp->inp_flags & INP_RECVRETOPTS) {
3062 mp = sbcreatecontrol_mbuf((caddr_t)ip_srcroute(),
3063 sizeof (struct in_addr), IP_RECVRETOPTS, IPPROTO_IP, mp);
3064 if (*mp == NULL) {
3065 goto no_mbufs;
3066 }
3067 }
3068 #endif /* notyet */
3069 if (inp->inp_flags & INP_RECVIF) {
3070 struct ifnet *ifp;
3071 uint8_t sdlbuf[SOCK_MAXADDRLEN + 1];
3072 struct sockaddr_dl *sdl2 = SDL(&sdlbuf);
3073
3074 /*
3075 * Make sure to accomodate the largest possible
3076 * size of SA(if_lladdr)->sa_len.
3077 */
3078 _CASSERT(sizeof (sdlbuf) == (SOCK_MAXADDRLEN + 1));
3079
3080 ifnet_head_lock_shared();
3081 if ((ifp = m->m_pkthdr.rcvif) != NULL &&
3082 ifp->if_index && (ifp->if_index <= if_index)) {
3083 struct ifaddr *ifa = ifnet_addrs[ifp->if_index - 1];
3084 struct sockaddr_dl *sdp;
3085
3086 if (!ifa || !ifa->ifa_addr)
3087 goto makedummy;
3088
3089 IFA_LOCK_SPIN(ifa);
3090 sdp = SDL(ifa->ifa_addr);
3091 /*
3092 * Change our mind and don't try copy.
3093 */
3094 if (sdp->sdl_family != AF_LINK) {
3095 IFA_UNLOCK(ifa);
3096 goto makedummy;
3097 }
3098 /* the above _CASSERT ensures sdl_len fits in sdlbuf */
3099 bcopy(sdp, sdl2, sdp->sdl_len);
3100 IFA_UNLOCK(ifa);
3101 } else {
3102 makedummy:
3103 sdl2->sdl_len =
3104 offsetof(struct sockaddr_dl, sdl_data[0]);
3105 sdl2->sdl_family = AF_LINK;
3106 sdl2->sdl_index = 0;
3107 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
3108 }
3109 ifnet_head_done();
3110 mp = sbcreatecontrol_mbuf((caddr_t)sdl2, sdl2->sdl_len,
3111 IP_RECVIF, IPPROTO_IP, mp);
3112 if (*mp == NULL) {
3113 goto no_mbufs;
3114 }
3115 }
3116 if (inp->inp_flags & INP_RECVTTL) {
3117 mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_ttl,
3118 sizeof (ip->ip_ttl), IP_RECVTTL, IPPROTO_IP, mp);
3119 if (*mp == NULL) {
3120 goto no_mbufs;
3121 }
3122 }
3123 if (inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) {
3124 int tc = m_get_traffic_class(m);
3125
3126 mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc),
3127 SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
3128 if (*mp == NULL) {
3129 goto no_mbufs;
3130 }
3131 }
3132 if (inp->inp_flags & INP_PKTINFO) {
3133 struct in_pktinfo pi;
3134
3135 bzero(&pi, sizeof (struct in_pktinfo));
3136 bcopy(&ip->ip_dst, &pi.ipi_addr, sizeof (struct in_addr));
3137 pi.ipi_ifindex = (m != NULL && m->m_pkthdr.rcvif != NULL) ?
3138 m->m_pkthdr.rcvif->if_index : 0;
3139
3140 mp = sbcreatecontrol_mbuf((caddr_t)&pi,
3141 sizeof (struct in_pktinfo), IP_RECVPKTINFO, IPPROTO_IP, mp);
3142 if (*mp == NULL) {
3143 goto no_mbufs;
3144 }
3145 }
3146 return (0);
3147
3148 no_mbufs:
3149 ipstat.ips_pktdropcntrl++;
3150 return (ENOBUFS);
3151 }
3152
3153 #if MROUTING
3154 int
3155 ip_rsvp_init(struct socket *so)
3156 {
3157 if (so->so_type != SOCK_RAW || SOCK_PROTO(so) != IPPROTO_RSVP)
3158 return (EOPNOTSUPP);
3159
3160 if (ip_rsvpd != NULL)
3161 return (EADDRINUSE);
3162
3163 ip_rsvpd = so;
3164 /*
3165 * This may seem silly, but we need to be sure we don't over-increment
3166 * the RSVP counter, in case something slips up.
3167 */
3168 if (!ip_rsvp_on) {
3169 ip_rsvp_on = 1;
3170 rsvp_on++;
3171 }
3172
3173 return (0);
3174 }
3175
3176 int
3177 ip_rsvp_done(void)
3178 {
3179 ip_rsvpd = NULL;
3180 /*
3181 * This may seem silly, but we need to be sure we don't over-decrement
3182 * the RSVP counter, in case something slips up.
3183 */
3184 if (ip_rsvp_on) {
3185 ip_rsvp_on = 0;
3186 rsvp_on--;
3187 }
3188 return (0);
3189 }
3190 #endif /* MROUTING */
3191
3192 static inline u_short
3193 ip_cksum(struct mbuf *m, int hlen)
3194 {
3195 u_short sum;
3196
3197 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
3198 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
3199 } else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
3200 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
3201 /*
3202 * The packet arrived on an interface which isn't capable
3203 * of performing IP header checksum; compute it now.
3204 */
3205 sum = ip_cksum_hdr_in(m, hlen);
3206 } else {
3207 sum = 0;
3208 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3209 CSUM_IP_CHECKED | CSUM_IP_VALID);
3210 m->m_pkthdr.csum_data = 0xffff;
3211 }
3212
3213 if (sum != 0)
3214 OSAddAtomic(1, &ipstat.ips_badsum);
3215
3216 return (sum);
3217 }
3218
3219 static int
3220 ip_getstat SYSCTL_HANDLER_ARGS
3221 {
3222 #pragma unused(oidp, arg1, arg2)
3223 if (req->oldptr == USER_ADDR_NULL)
3224 req->oldlen = (size_t)sizeof (struct ipstat);
3225
3226 return (SYSCTL_OUT(req, &ipstat, MIN(sizeof (ipstat), req->oldlen)));
3227 }
3228
3229 void
3230 ip_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in_ifaddr *ia)
3231 {
3232 VERIFY(m->m_flags & M_PKTHDR);
3233
3234 /*
3235 * If the source ifaddr is specified, pick up the information
3236 * from there; otherwise just grab the passed-in ifindex as the
3237 * caller may not have the ifaddr available.
3238 */
3239 if (ia != NULL) {
3240 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3241 m->m_pkthdr.src_ifindex = ia->ia_ifp->if_index;
3242 } else {
3243 m->m_pkthdr.src_ifindex = src_idx;
3244 if (src_idx != 0)
3245 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3246 }
3247 }
3248
3249 void
3250 ip_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in_ifaddr *ia)
3251 {
3252 VERIFY(m->m_flags & M_PKTHDR);
3253
3254 /*
3255 * If the destination ifaddr is specified, pick up the information
3256 * from there; otherwise just grab the passed-in ifindex as the
3257 * caller may not have the ifaddr available.
3258 */
3259 if (ia != NULL) {
3260 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3261 m->m_pkthdr.dst_ifindex = ia->ia_ifp->if_index;
3262 } else {
3263 m->m_pkthdr.dst_ifindex = dst_idx;
3264 if (dst_idx != 0)
3265 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3266 }
3267 }
3268
3269 int
3270 ip_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *iaf)
3271 {
3272 VERIFY(m->m_flags & M_PKTHDR);
3273
3274 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
3275 return (-1);
3276
3277 if (src_idx != NULL)
3278 *src_idx = m->m_pkthdr.src_ifindex;
3279
3280 if (iaf != NULL)
3281 *iaf = 0;
3282
3283 return (0);
3284 }
3285
3286 int
3287 ip_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *iaf)
3288 {
3289 VERIFY(m->m_flags & M_PKTHDR);
3290
3291 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
3292 return (-1);
3293
3294 if (dst_idx != NULL)
3295 *dst_idx = m->m_pkthdr.dst_ifindex;
3296
3297 if (iaf != NULL)
3298 *iaf = 0;
3299
3300 return (0);
3301 }
3302
3303 /*
3304 * Protocol input handler for IPPROTO_GRE.
3305 */
3306 void
3307 gre_input(struct mbuf *m, int off)
3308 {
3309 gre_input_func_t fn = gre_input_func;
3310
3311 /*
3312 * If there is a registered GRE input handler, pass mbuf to it.
3313 */
3314 if (fn != NULL) {
3315 lck_mtx_unlock(inet_domain_mutex);
3316 m = fn(m, off, (mtod(m, struct ip *))->ip_p);
3317 lck_mtx_lock(inet_domain_mutex);
3318 }
3319
3320 /*
3321 * If no matching tunnel that is up is found, we inject
3322 * the mbuf to raw ip socket to see if anyone picks it up.
3323 */
3324 if (m != NULL)
3325 rip_input(m, off);
3326 }
3327
3328 /*
3329 * Private KPI for PPP/PPTP.
3330 */
3331 int
3332 ip_gre_register_input(gre_input_func_t fn)
3333 {
3334 lck_mtx_lock(inet_domain_mutex);
3335 gre_input_func = fn;
3336 lck_mtx_unlock(inet_domain_mutex);
3337
3338 return (0);
3339 }