2 * Copyright (c) 2004-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
70 #include <sys/domain.h>
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
75 #include <kern/zalloc.h>
77 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
85 #include <netinet6/in6_pcb.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/ip6_var.h>
89 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #include <netinet/tcp_cache.h>
98 #include <netinet/tcp_debug.h>
100 #include <sys/kdebug.h>
103 #include <netinet6/ipsec.h>
106 #include <libkern/OSAtomic.h>
109 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &tcp_do_sack
, 0,
110 "Enable/Disable TCP SACK support");
111 static int tcp_sack_maxholes
= 128;
112 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack_maxholes
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
113 &tcp_sack_maxholes
, 0,
114 "Maximum number of TCP SACK holes allowed per connection");
116 static int tcp_sack_globalmaxholes
= 65536;
117 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack_globalmaxholes
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
118 &tcp_sack_globalmaxholes
, 0,
119 "Global maximum number of TCP SACK holes");
121 static SInt32 tcp_sack_globalholes
= 0;
122 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack_globalholes
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
123 &tcp_sack_globalholes
, 0,
124 "Global number of TCP SACK holes currently allocated");
126 static int tcp_detect_reordering
= 1;
127 static int tcp_dsack_ignore_hw_duplicates
= 0;
129 #if (DEVELOPMENT || DEBUG)
130 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, detect_reordering
,
131 CTLFLAG_RW
| CTLFLAG_LOCKED
,
132 &tcp_detect_reordering
, 0, "");
134 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, ignore_hw_duplicates
,
135 CTLFLAG_RW
| CTLFLAG_LOCKED
,
136 &tcp_dsack_ignore_hw_duplicates
, 0, "");
137 #endif /* (DEVELOPMENT || DEBUG) */
139 extern struct zone
*sack_hole_zone
;
141 #define TCP_VALIDATE_SACK_SEQ_NUMBERS(_tp_, _sb_, _ack_) \
142 (SEQ_GT((_sb_)->end, (_sb_)->start) && \
143 SEQ_GT((_sb_)->start, (_tp_)->snd_una) && \
144 SEQ_GT((_sb_)->start, (_ack_)) && \
145 SEQ_LT((_sb_)->start, (_tp_)->snd_max) && \
146 SEQ_GT((_sb_)->end, (_tp_)->snd_una) && \
147 SEQ_LEQ((_sb_)->end, (_tp_)->snd_max))
150 * This function is called upon receipt of new valid data (while not in header
151 * prediction mode), and it updates the ordered list of sacks.
154 tcp_update_sack_list(struct tcpcb
*tp
, tcp_seq rcv_start
, tcp_seq rcv_end
)
157 * First reported block MUST be the most recent one. Subsequent
158 * blocks SHOULD be in the order in which they arrived at the
159 * receiver. These two conditions make the implementation fully
160 * compliant with RFC 2018.
162 struct sackblk head_blk
, saved_blks
[MAX_SACK_BLKS
];
163 int num_head
, num_saved
, i
;
165 /* SACK block for the received segment. */
166 head_blk
.start
= rcv_start
;
167 head_blk
.end
= rcv_end
;
170 * Merge updated SACK blocks into head_blk, and
171 * save unchanged SACK blocks into saved_blks[].
172 * num_saved will have the number of the saved SACK blocks.
175 for (i
= 0; i
< tp
->rcv_numsacks
; i
++) {
176 tcp_seq start
= tp
->sackblks
[i
].start
;
177 tcp_seq end
= tp
->sackblks
[i
].end
;
178 if (SEQ_GEQ(start
, end
) || SEQ_LEQ(start
, tp
->rcv_nxt
)) {
180 * Discard this SACK block.
182 } else if (SEQ_LEQ(head_blk
.start
, end
) &&
183 SEQ_GEQ(head_blk
.end
, start
)) {
185 * Merge this SACK block into head_blk.
186 * This SACK block itself will be discarded.
188 if (SEQ_GT(head_blk
.start
, start
))
189 head_blk
.start
= start
;
190 if (SEQ_LT(head_blk
.end
, end
))
194 * Save this SACK block.
196 saved_blks
[num_saved
].start
= start
;
197 saved_blks
[num_saved
].end
= end
;
203 * Update SACK list in tp->sackblks[].
206 if (SEQ_GT(head_blk
.start
, tp
->rcv_nxt
)) {
208 * The received data segment is an out-of-order segment.
209 * Put head_blk at the top of SACK list.
211 tp
->sackblks
[0] = head_blk
;
214 * If the number of saved SACK blocks exceeds its limit,
215 * discard the last SACK block.
217 if (num_saved
>= MAX_SACK_BLKS
)
222 * Copy the saved SACK blocks back.
224 bcopy(saved_blks
, &tp
->sackblks
[num_head
],
225 sizeof(struct sackblk
) * num_saved
);
228 /* Save the number of SACK blocks. */
229 tp
->rcv_numsacks
= num_head
+ num_saved
;
231 /* If we are requesting SACK recovery, reset the stretch-ack state
232 * so that connection will generate more acks after recovery and
233 * sender's cwnd will open.
235 if ((tp
->t_flags
& TF_STRETCHACK
) != 0 && tp
->rcv_numsacks
> 0)
236 tcp_reset_stretch_ack(tp
);
239 if (tp
->acc_iaj
> 0 && tp
->rcv_numsacks
> 0)
241 #endif /* TRAFFIC_MGT */
245 * Delete all receiver-side SACK information.
248 tcp_clean_sackreport( struct tcpcb
*tp
)
251 tp
->rcv_numsacks
= 0;
252 bzero(&tp
->sackblks
[0], sizeof (struct sackblk
) * MAX_SACK_BLKS
);
256 * Allocate struct sackhole.
258 static struct sackhole
*
259 tcp_sackhole_alloc(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
261 struct sackhole
*hole
;
263 if (tp
->snd_numholes
>= tcp_sack_maxholes
||
264 tcp_sack_globalholes
>= tcp_sack_globalmaxholes
) {
265 tcpstat
.tcps_sack_sboverflow
++;
269 hole
= (struct sackhole
*)zalloc(sack_hole_zone
);
278 OSIncrementAtomic(&tcp_sack_globalholes
);
284 * Free struct sackhole.
287 tcp_sackhole_free(struct tcpcb
*tp
, struct sackhole
*hole
)
289 zfree(sack_hole_zone
, hole
);
292 OSDecrementAtomic(&tcp_sack_globalholes
);
296 * Insert new SACK hole into scoreboard.
298 static struct sackhole
*
299 tcp_sackhole_insert(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
,
300 struct sackhole
*after
)
302 struct sackhole
*hole
;
304 /* Allocate a new SACK hole. */
305 hole
= tcp_sackhole_alloc(tp
, start
, end
);
308 hole
->rxmit_start
= tcp_now
;
309 /* Insert the new SACK hole into scoreboard */
311 TAILQ_INSERT_AFTER(&tp
->snd_holes
, after
, hole
, scblink
);
313 TAILQ_INSERT_TAIL(&tp
->snd_holes
, hole
, scblink
);
315 /* Update SACK hint. */
316 if (tp
->sackhint
.nexthole
== NULL
)
317 tp
->sackhint
.nexthole
= hole
;
323 * Remove SACK hole from scoreboard.
326 tcp_sackhole_remove(struct tcpcb
*tp
, struct sackhole
*hole
)
328 /* Update SACK hint. */
329 if (tp
->sackhint
.nexthole
== hole
)
330 tp
->sackhint
.nexthole
= TAILQ_NEXT(hole
, scblink
);
332 /* Remove this SACK hole. */
333 TAILQ_REMOVE(&tp
->snd_holes
, hole
, scblink
);
335 /* Free this SACK hole. */
336 tcp_sackhole_free(tp
, hole
);
339 * When a new ack with SACK is received, check if it indicates packet
340 * reordering. If there is packet reordering, the socket is marked and
341 * the late time offset by which the packet was reordered with
342 * respect to its closest neighboring packets is computed.
345 tcp_sack_detect_reordering(struct tcpcb
*tp
, struct sackhole
*s
,
346 tcp_seq sacked_seq
, tcp_seq snd_fack
)
348 int32_t rext
= 0, reordered
= 0;
351 * If the SACK hole is past snd_fack, this is from new SACK
352 * information, so we can ignore it.
354 if (SEQ_GT(s
->end
, snd_fack
))
357 * If there has been a retransmit timeout, then the timestamp on
358 * the SACK segment will be newer. This might lead to a
359 * false-positive. Avoid re-ordering detection in this case.
361 if (tp
->t_rxtshift
> 0)
365 * Detect reordering from SACK information by checking
366 * if recently sacked data was never retransmitted from this hole.
368 if (SEQ_LT(s
->rxmit
, sacked_seq
)) {
370 tcpstat
.tcps_avoid_rxmt
++;
374 if (tcp_detect_reordering
== 1 &&
375 !(tp
->t_flagsext
& TF_PKTS_REORDERED
)) {
376 tp
->t_flagsext
|= TF_PKTS_REORDERED
;
377 tcpstat
.tcps_detect_reordering
++;
380 tcpstat
.tcps_reordered_pkts
++;
381 tp
->t_reordered_pkts
++;
384 * If reordering is seen on a connection wth ECN enabled,
385 * increment the heuristic
387 if (TCP_ECN_ENABLED(tp
)) {
388 INP_INC_IFNET_STAT(tp
->t_inpcb
, ecn_fallback_reorder
);
389 tcpstat
.tcps_ecn_fallback_reorder
++;
390 tcp_heuristic_ecn_aggressive(tp
);
393 VERIFY(SEQ_GEQ(snd_fack
, s
->rxmit
));
395 if (s
->rxmit_start
> 0) {
396 rext
= timer_diff(tcp_now
, 0, s
->rxmit_start
, 0);
401 * We take the maximum reorder window to schedule
402 * DELAYFR timer as that will take care of jitter
403 * on the network path.
405 * Computing average and standard deviation seems
406 * to cause unnecessary retransmissions when there
409 * We set a maximum of SRTT/2 and a minimum of
410 * 10 ms on the reorder window.
412 tp
->t_reorderwin
= max(tp
->t_reorderwin
, rext
);
413 tp
->t_reorderwin
= min(tp
->t_reorderwin
,
414 (tp
->t_srtt
>> (TCP_RTT_SHIFT
- 1)));
415 tp
->t_reorderwin
= max(tp
->t_reorderwin
, 10);
421 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
422 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
423 * the sequence space).
426 tcp_sack_doack(struct tcpcb
*tp
, struct tcpopt
*to
, struct tcphdr
*th
,
427 u_int32_t
*newbytes_acked
)
429 struct sackhole
*cur
, *temp
;
430 struct sackblk sack
, sack_blocks
[TCP_MAX_SACK
+ 1], *sblkp
;
431 int i
, j
, num_sack_blks
;
432 tcp_seq old_snd_fack
= 0, th_ack
= th
->th_ack
;
436 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
437 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
439 if (SEQ_LT(tp
->snd_una
, th_ack
) && !TAILQ_EMPTY(&tp
->snd_holes
)) {
440 sack_blocks
[num_sack_blks
].start
= tp
->snd_una
;
441 sack_blocks
[num_sack_blks
++].end
= th_ack
;
444 * Append received valid SACK blocks to sack_blocks[].
445 * Check that the SACK block range is valid.
447 for (i
= 0; i
< to
->to_nsacks
; i
++) {
448 bcopy((to
->to_sacks
+ i
* TCPOLEN_SACK
),
449 &sack
, sizeof(sack
));
450 sack
.start
= ntohl(sack
.start
);
451 sack
.end
= ntohl(sack
.end
);
452 if (TCP_VALIDATE_SACK_SEQ_NUMBERS(tp
, &sack
, th_ack
))
453 sack_blocks
[num_sack_blks
++] = sack
;
457 * Return if SND.UNA is not advanced and no valid SACK block
460 if (num_sack_blks
== 0)
463 VERIFY(num_sack_blks
<= (TCP_MAX_SACK
+ 1));
465 * Sort the SACK blocks so we can update the scoreboard
466 * with just one pass. The overhead of sorting upto 4+1 elements
467 * is less than making upto 4+1 passes over the scoreboard.
469 for (i
= 0; i
< num_sack_blks
; i
++) {
470 for (j
= i
+ 1; j
< num_sack_blks
; j
++) {
471 if (SEQ_GT(sack_blocks
[i
].end
, sack_blocks
[j
].end
)) {
472 sack
= sack_blocks
[i
];
473 sack_blocks
[i
] = sack_blocks
[j
];
474 sack_blocks
[j
] = sack
;
478 if (TAILQ_EMPTY(&tp
->snd_holes
)) {
480 * Empty scoreboard. Need to initialize snd_fack (it may be
481 * uninitialized or have a bogus value). Scoreboard holes
482 * (from the sack blocks received) are created later below (in
483 * the logic that adds holes to the tail of the scoreboard).
485 tp
->snd_fack
= SEQ_MAX(tp
->snd_una
, th_ack
);
486 *newbytes_acked
+= (tp
->snd_fack
- tp
->snd_una
);
489 old_snd_fack
= tp
->snd_fack
;
491 * In the while-loop below, incoming SACK blocks (sack_blocks[])
492 * and SACK holes (snd_holes) are traversed from their tails with
493 * just one pass in order to reduce the number of compares especially
494 * when the bandwidth-delay product is large.
495 * Note: Typically, in the first RTT of SACK recovery, the highest
496 * three or four SACK blocks with the same ack number are received.
497 * In the second RTT, if retransmitted data segments are not lost,
498 * the highest three or four SACK blocks with ack number advancing
501 sblkp
= &sack_blocks
[num_sack_blks
- 1]; /* Last SACK block */
502 if (SEQ_LT(tp
->snd_fack
, sblkp
->start
)) {
504 * The highest SACK block is beyond fack.
505 * Append new SACK hole at the tail.
506 * If the second or later highest SACK blocks are also
507 * beyond the current fack, they will be inserted by
508 * way of hole splitting in the while-loop below.
510 temp
= tcp_sackhole_insert(tp
, tp
->snd_fack
,sblkp
->start
,NULL
);
512 tp
->snd_fack
= sblkp
->end
;
513 *newbytes_acked
+= (sblkp
->end
- sblkp
->start
);
515 /* Go to the previous sack block. */
519 * We failed to add a new hole based on the current
520 * sack block. Skip over all the sack blocks that
521 * fall completely to the right of snd_fack and proceed
522 * to trim the scoreboard based on the remaining sack
523 * blocks. This also trims the scoreboard for th_ack
524 * (which is sack_blocks[0]).
526 while (sblkp
>= sack_blocks
&&
527 SEQ_LT(tp
->snd_fack
, sblkp
->start
))
529 if (sblkp
>= sack_blocks
&&
530 SEQ_LT(tp
->snd_fack
, sblkp
->end
)) {
531 *newbytes_acked
+= (sblkp
->end
- tp
->snd_fack
);
532 tp
->snd_fack
= sblkp
->end
;
535 } else if (SEQ_LT(tp
->snd_fack
, sblkp
->end
)) {
536 /* fack is advanced. */
537 *newbytes_acked
+= (sblkp
->end
- tp
->snd_fack
);
538 tp
->snd_fack
= sblkp
->end
;
540 /* We must have at least one SACK hole in scoreboard */
541 cur
= TAILQ_LAST(&tp
->snd_holes
, sackhole_head
); /* Last SACK hole */
543 * Since the incoming sack blocks are sorted, we can process them
544 * making one sweep of the scoreboard.
546 while (sblkp
>= sack_blocks
&& cur
!= NULL
) {
547 if (SEQ_GEQ(sblkp
->start
, cur
->end
)) {
549 * SACKs data beyond the current hole.
550 * Go to the previous sack block.
555 if (SEQ_LEQ(sblkp
->end
, cur
->start
)) {
557 * SACKs data before the current hole.
558 * Go to the previous hole.
560 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
563 tp
->sackhint
.sack_bytes_rexmit
-= (cur
->rxmit
- cur
->start
);
564 if (SEQ_LEQ(sblkp
->start
, cur
->start
)) {
565 /* Data acks at least the beginning of hole */
566 if (SEQ_GEQ(sblkp
->end
, cur
->end
)) {
567 /* Acks entire hole, so delete hole */
568 *newbytes_acked
+= (cur
->end
- cur
->start
);
570 tcp_sack_detect_reordering(tp
, cur
,
571 cur
->end
, old_snd_fack
);
573 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
574 tcp_sackhole_remove(tp
, temp
);
576 * The sack block may ack all or part of the next
577 * hole too, so continue onto the next hole.
581 /* Move start of hole forward */
582 *newbytes_acked
+= (sblkp
->end
- cur
->start
);
583 tcp_sack_detect_reordering(tp
, cur
,
584 sblkp
->end
, old_snd_fack
);
585 cur
->start
= sblkp
->end
;
586 cur
->rxmit
= SEQ_MAX(cur
->rxmit
, cur
->start
);
589 /* Data acks at least the end of hole */
590 if (SEQ_GEQ(sblkp
->end
, cur
->end
)) {
591 /* Move end of hole backward */
592 *newbytes_acked
+= (cur
->end
- sblkp
->start
);
593 tcp_sack_detect_reordering(tp
, cur
,
594 cur
->end
, old_snd_fack
);
595 cur
->end
= sblkp
->start
;
596 cur
->rxmit
= SEQ_MIN(cur
->rxmit
, cur
->end
);
599 * ACKs some data in the middle of a hole;
600 * need to split current hole
602 *newbytes_acked
+= (sblkp
->end
- sblkp
->start
);
603 tcp_sack_detect_reordering(tp
, cur
,
604 sblkp
->end
, old_snd_fack
);
605 temp
= tcp_sackhole_insert(tp
, sblkp
->end
,
608 if (SEQ_GT(cur
->rxmit
, temp
->rxmit
)) {
609 temp
->rxmit
= cur
->rxmit
;
610 tp
->sackhint
.sack_bytes_rexmit
614 cur
->end
= sblkp
->start
;
615 cur
->rxmit
= SEQ_MIN(cur
->rxmit
,
618 * Reset the rxmit_start to that of
619 * the current hole as that will
620 * help to compute the reorder
623 temp
->rxmit_start
= cur
->rxmit_start
;
627 tp
->sackhint
.sack_bytes_rexmit
+= (cur
->rxmit
- cur
->start
);
629 * Testing sblkp->start against cur->start tells us whether
630 * we're done with the sack block or the sack hole.
631 * Accordingly, we advance one or the other.
633 if (SEQ_LEQ(sblkp
->start
, cur
->start
))
634 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
641 * Free all SACK holes to clear the scoreboard.
644 tcp_free_sackholes(struct tcpcb
*tp
)
648 while ((q
= TAILQ_FIRST(&tp
->snd_holes
)) != NULL
)
649 tcp_sackhole_remove(tp
, q
);
650 tp
->sackhint
.sack_bytes_rexmit
= 0;
651 tp
->sackhint
.nexthole
= NULL
;
652 tp
->sack_newdata
= 0;
657 * Partial ack handling within a sack recovery episode.
658 * Keeping this very simple for now. When a partial ack
659 * is received, force snd_cwnd to a value that will allow
660 * the sender to transmit no more than 2 segments.
661 * If necessary, a better scheme can be adopted at a
662 * later point, but for now, the goal is to prevent the
663 * sender from bursting a large amount of data in the midst
667 tcp_sack_partialack(struct tcpcb
*tp
, struct tcphdr
*th
)
671 tp
->t_timer
[TCPT_REXMT
] = 0;
673 /* send one or 2 segments based on how much new data was acked */
674 if (((BYTES_ACKED(th
, tp
)) / tp
->t_maxseg
) > 2)
676 tp
->snd_cwnd
= (tp
->sackhint
.sack_bytes_rexmit
+
677 (tp
->snd_nxt
- tp
->sack_newdata
) +
678 num_segs
* tp
->t_maxseg
);
679 if (tp
->snd_cwnd
> tp
->snd_ssthresh
)
680 tp
->snd_cwnd
= tp
->snd_ssthresh
;
681 if (SEQ_LT(tp
->snd_fack
, tp
->snd_recover
) &&
682 tp
->snd_fack
== th
->th_ack
&& TAILQ_EMPTY(&tp
->snd_holes
)) {
683 struct sackhole
*temp
;
685 * we received a partial ack but there is no sack_hole
686 * that will cover the remaining seq space. In this case,
687 * create a hole from snd_fack to snd_recover so that
688 * the sack recovery will continue.
690 temp
= tcp_sackhole_insert(tp
, tp
->snd_fack
,
691 tp
->snd_recover
, NULL
);
693 tp
->snd_fack
= tp
->snd_recover
;
695 (void) tcp_output(tp
);
699 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
700 * now to sanity check the hint.
702 static struct sackhole
*
703 tcp_sack_output_debug(struct tcpcb
*tp
, int *sack_bytes_rexmt
)
707 *sack_bytes_rexmt
= 0;
708 TAILQ_FOREACH(p
, &tp
->snd_holes
, scblink
) {
709 if (SEQ_LT(p
->rxmit
, p
->end
)) {
710 if (SEQ_LT(p
->rxmit
, tp
->snd_una
)) {/* old SACK hole */
713 *sack_bytes_rexmt
+= (p
->rxmit
- p
->start
);
716 *sack_bytes_rexmt
+= (p
->rxmit
- p
->start
);
722 * Returns the next hole to retransmit and the number of retransmitted bytes
723 * from the scoreboard. We store both the next hole and the number of
724 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
725 * reception). This avoids scoreboard traversals completely.
727 * The loop here will traverse *at most* one link. Here's the argument.
728 * For the loop to traverse more than 1 link before finding the next hole to
729 * retransmit, we would need to have at least 1 node following the current hint
730 * with (rxmit == end). But, for all holes following the current hint,
731 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
732 * in order to traverse more 1 link in the loop below, we need to have at least
733 * one node following the current hint with (start == rxmit == end).
734 * But that can't happen, (start == end) means that all the data in that hole
735 * has been sacked, in which case, the hole would have been removed from the
739 tcp_sack_output(struct tcpcb
*tp
, int *sack_bytes_rexmt
)
741 struct sackhole
*hole
= NULL
, *dbg_hole
= NULL
;
744 dbg_hole
= tcp_sack_output_debug(tp
, &dbg_bytes_rexmt
);
745 *sack_bytes_rexmt
= tp
->sackhint
.sack_bytes_rexmit
;
746 hole
= tp
->sackhint
.nexthole
;
747 if (hole
== NULL
|| SEQ_LT(hole
->rxmit
, hole
->end
))
749 while ((hole
= TAILQ_NEXT(hole
, scblink
)) != NULL
) {
750 if (SEQ_LT(hole
->rxmit
, hole
->end
)) {
751 tp
->sackhint
.nexthole
= hole
;
756 if (dbg_hole
!= hole
) {
757 printf("%s: Computed sack hole not the same as cached value\n", __func__
);
760 if (*sack_bytes_rexmt
!= dbg_bytes_rexmt
) {
761 printf("%s: Computed sack_bytes_retransmitted (%d) not "
762 "the same as cached value (%d)\n",
763 __func__
, dbg_bytes_rexmt
, *sack_bytes_rexmt
);
764 *sack_bytes_rexmt
= dbg_bytes_rexmt
;
770 * After a timeout, the SACK list may be rebuilt. This SACK information
771 * should be used to avoid retransmitting SACKed data. This function
772 * traverses the SACK list to see if snd_nxt should be moved forward.
775 tcp_sack_adjust(struct tcpcb
*tp
)
777 struct sackhole
*p
, *cur
= TAILQ_FIRST(&tp
->snd_holes
);
780 return; /* No holes */
781 if (SEQ_GEQ(tp
->snd_nxt
, tp
->snd_fack
))
782 return; /* We're already beyond any SACKed blocks */
784 * Two cases for which we want to advance snd_nxt:
785 * i) snd_nxt lies between end of one hole and beginning of another
786 * ii) snd_nxt lies between end of last hole and snd_fack
788 while ((p
= TAILQ_NEXT(cur
, scblink
)) != NULL
) {
789 if (SEQ_LT(tp
->snd_nxt
, cur
->end
))
791 if (SEQ_GEQ(tp
->snd_nxt
, p
->start
))
794 tp
->snd_nxt
= p
->start
;
798 if (SEQ_LT(tp
->snd_nxt
, cur
->end
))
800 tp
->snd_nxt
= tp
->snd_fack
;
805 * This function returns TRUE if more than (tcprexmtthresh - 1) * SMSS
806 * bytes with sequence numbers greater than snd_una have been SACKed.
809 tcp_sack_byte_islost(struct tcpcb
*tp
)
811 u_int32_t unacked_bytes
, sndhole_bytes
= 0;
812 struct sackhole
*sndhole
;
813 if (!SACK_ENABLED(tp
) || IN_FASTRECOVERY(tp
) ||
814 TAILQ_EMPTY(&tp
->snd_holes
) ||
815 (tp
->t_flagsext
& TF_PKTS_REORDERED
))
818 unacked_bytes
= tp
->snd_max
- tp
->snd_una
;
820 TAILQ_FOREACH(sndhole
, &tp
->snd_holes
, scblink
) {
821 sndhole_bytes
+= (sndhole
->end
- sndhole
->start
);
824 VERIFY(unacked_bytes
>= sndhole_bytes
);
825 return ((unacked_bytes
- sndhole_bytes
) >
826 ((tcprexmtthresh
- 1) * tp
->t_maxseg
));
830 * Process any DSACK options that might be present on an input packet
834 tcp_sack_process_dsack(struct tcpcb
*tp
, struct tcpopt
*to
,
837 struct sackblk first_sack
, second_sack
;
838 struct tcp_rxt_seg
*rxseg
;
840 bcopy(to
->to_sacks
, &first_sack
, sizeof(first_sack
));
841 first_sack
.start
= ntohl(first_sack
.start
);
842 first_sack
.end
= ntohl(first_sack
.end
);
844 if (to
->to_nsacks
> 1) {
845 bcopy((to
->to_sacks
+ TCPOLEN_SACK
), &second_sack
,
846 sizeof(second_sack
));
847 second_sack
.start
= ntohl(second_sack
.start
);
848 second_sack
.end
= ntohl(second_sack
.end
);
851 if (SEQ_LT(first_sack
.start
, th
->th_ack
) &&
852 SEQ_LEQ(first_sack
.end
, th
->th_ack
)) {
854 * There is a dsack option reporting a duplicate segment
855 * also covered by cumulative acknowledgement.
857 * Validate the sequence numbers before looking at dsack
858 * option. The duplicate notification can come after
859 * snd_una moves forward. In order to set a window of valid
860 * sequence numbers to look for, we set a maximum send
861 * window within which the DSACK option will be processed.
863 if (!(TCP_DSACK_SEQ_IN_WINDOW(tp
, first_sack
.start
, th
->th_ack
) &&
864 TCP_DSACK_SEQ_IN_WINDOW(tp
, first_sack
.end
, th
->th_ack
))) {
866 to
->to_sacks
+= TCPOLEN_SACK
;
867 tcpstat
.tcps_dsack_recvd_old
++;
870 * returning true here so that the ack will not be
871 * treated as duplicate ack.
875 } else if (to
->to_nsacks
> 1 &&
876 SEQ_LEQ(second_sack
.start
, first_sack
.start
) &&
877 SEQ_GEQ(second_sack
.end
, first_sack
.end
)) {
879 * there is a dsack option in the first block not
880 * covered by the cumulative acknowledgement but covered
881 * by the second sack block.
883 * verify the sequence numbes on the second sack block
884 * before processing the DSACK option. Returning false
885 * here will treat the ack as a duplicate ack.
887 if (!TCP_VALIDATE_SACK_SEQ_NUMBERS(tp
, &second_sack
,
890 to
->to_sacks
+= TCPOLEN_SACK
;
891 tcpstat
.tcps_dsack_recvd_old
++;
895 /* no dsack options, proceed with processing the sack */
899 /* Update the tcpopt pointer to exclude dsack block */
901 to
->to_sacks
+= TCPOLEN_SACK
;
902 tcpstat
.tcps_dsack_recvd
++;
905 /* ignore DSACK option, if DSACK is disabled */
906 if (tp
->t_flagsext
& TF_DISABLE_DSACK
)
909 /* If the DSACK is for TLP mark it as such */
910 if ((tp
->t_flagsext
& TF_SENT_TLPROBE
) &&
911 first_sack
.end
== tp
->t_tlphighrxt
) {
912 if ((rxseg
= tcp_rxtseg_find(tp
, first_sack
.start
,
913 (first_sack
.end
- 1))) != NULL
)
914 rxseg
->rx_flags
|= TCP_RXT_DSACK_FOR_TLP
;
916 /* Update the sender's retransmit segment state */
917 if (((tp
->t_rxtshift
== 1 && first_sack
.start
== tp
->snd_una
) ||
918 ((tp
->t_flagsext
& TF_SENT_TLPROBE
) &&
919 first_sack
.end
== tp
->t_tlphighrxt
)) &&
920 TAILQ_EMPTY(&tp
->snd_holes
) &&
921 SEQ_GT(th
->th_ack
, tp
->snd_una
)) {
923 * If the dsack is for a retransmitted packet and one of
924 * the two cases is true, it indicates ack loss:
925 * - retransmit timeout and first_sack.start == snd_una
926 * - TLP probe and first_sack.end == tlphighrxt
928 * Ignore dsack and do not update state when there is
931 tcpstat
.tcps_dsack_ackloss
++;
934 } else if ((rxseg
= tcp_rxtseg_find(tp
, first_sack
.start
,
935 (first_sack
.end
- 1))) == NULL
) {
937 * Duplicate notification was not triggered by a
938 * retransmission. This might be due to network duplication,
939 * disable further DSACK processing.
941 if (!tcp_dsack_ignore_hw_duplicates
) {
942 tp
->t_flagsext
|= TF_DISABLE_DSACK
;
943 tcpstat
.tcps_dsack_disable
++;
947 * If the segment was retransmitted only once, mark it as
948 * spurious. Otherwise ignore the duplicate notification.
950 if (rxseg
->rx_count
== 1)
951 rxseg
->rx_flags
|= TCP_RXT_SPURIOUS
;
953 rxseg
->rx_flags
&= ~TCP_RXT_SPURIOUS
;