2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1982, 1986, 1988, 1993
24 * The Regents of the University of California. All rights reserved.
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
55 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $
60 #include <sys/param.h>
61 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/domain.h>
65 #include <sys/protosw.h>
66 #include <sys/socket.h>
68 #include <sys/kernel.h>
69 #include <sys/syslog.h>
70 #include <sys/sysctl.h>
72 #include <kern/queue.h>
73 #include <kern/locks.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/route.h>
79 #include <net/kpi_protocol.h>
81 #include <netinet/in.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/ip_icmp.h>
88 #include <sys/socketvar.h>
90 #include <netinet/ip_fw.h>
91 #include <netinet/ip_divert.h>
93 #include <netinet/kpi_ipfilter_var.h>
95 /* needed for AUTOCONFIGURING: */
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/bootp.h>
100 #include <sys/kdebug.h>
102 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
103 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
104 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
108 #include <netinet6/ipsec.h>
109 #include <netkey/key.h>
113 #if defined(NFAITH) && NFAITH > 0
114 #include <net/if_types.h>
118 #include <netinet/ip_dummynet.h>
122 extern int ipsec_bypass
;
123 extern lck_mtx_t
*sadb_mutex
;
127 static int ip_rsvp_on
;
128 struct socket
*ip_rsvpd
;
130 int ipforwarding
= 0;
131 SYSCTL_INT(_net_inet_ip
, IPCTL_FORWARDING
, forwarding
, CTLFLAG_RW
,
132 &ipforwarding
, 0, "Enable IP forwarding between interfaces");
134 static int ipsendredirects
= 1; /* XXX */
135 SYSCTL_INT(_net_inet_ip
, IPCTL_SENDREDIRECTS
, redirect
, CTLFLAG_RW
,
136 &ipsendredirects
, 0, "Enable sending IP redirects");
138 int ip_defttl
= IPDEFTTL
;
139 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFTTL
, ttl
, CTLFLAG_RW
,
140 &ip_defttl
, 0, "Maximum TTL on IP packets");
142 static int ip_dosourceroute
= 0;
143 SYSCTL_INT(_net_inet_ip
, IPCTL_SOURCEROUTE
, sourceroute
, CTLFLAG_RW
,
144 &ip_dosourceroute
, 0, "Enable forwarding source routed IP packets");
146 static int ip_acceptsourceroute
= 0;
147 SYSCTL_INT(_net_inet_ip
, IPCTL_ACCEPTSOURCEROUTE
, accept_sourceroute
,
148 CTLFLAG_RW
, &ip_acceptsourceroute
, 0,
149 "Enable accepting source routed IP packets");
151 static int ip_keepfaith
= 0;
152 SYSCTL_INT(_net_inet_ip
, IPCTL_KEEPFAITH
, keepfaith
, CTLFLAG_RW
,
154 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
156 static int nipq
= 0; /* total # of reass queues */
158 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragpackets
, CTLFLAG_RW
,
160 "Maximum number of IPv4 fragment reassembly queue entries");
162 static int maxfragsperpacket
;
163 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragsperpacket
, CTLFLAG_RW
,
164 &maxfragsperpacket
, 0,
165 "Maximum number of IPv4 fragments allowed per packet");
168 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfrags
, CTLFLAG_RW
,
169 &maxfrags
, 0, "Maximum number of IPv4 fragments allowed");
171 static int currentfrags
= 0;
174 * XXX - Setting ip_checkinterface mostly implements the receive side of
175 * the Strong ES model described in RFC 1122, but since the routing table
176 * and transmit implementation do not implement the Strong ES model,
177 * setting this to 1 results in an odd hybrid.
179 * XXX - ip_checkinterface currently must be disabled if you use ipnat
180 * to translate the destination address to another local interface.
182 * XXX - ip_checkinterface must be disabled if you add IP aliases
183 * to the loopback interface instead of the interface where the
184 * packets for those addresses are received.
186 static int ip_checkinterface
= 0;
187 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, check_interface
, CTLFLAG_RW
,
188 &ip_checkinterface
, 0, "Verify packet arrives on correct interface");
191 static int ipprintfs
= 0;
194 extern struct domain inetdomain
;
195 extern struct protosw inetsw
[];
196 struct protosw
*ip_protox
[IPPROTO_MAX
];
197 static int ipqmaxlen
= IFQ_MAXLEN
;
198 struct in_ifaddrhead in_ifaddrhead
; /* first inet address */
199 struct ifqueue ipintrq
;
200 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQMAXLEN
, intr_queue_maxlen
, CTLFLAG_RW
,
201 &ipintrq
.ifq_maxlen
, 0, "Maximum size of the IP input queue");
202 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQDROPS
, intr_queue_drops
, CTLFLAG_RD
,
203 &ipintrq
.ifq_drops
, 0, "Number of packets dropped from the IP input queue");
205 struct ipstat ipstat
;
206 SYSCTL_STRUCT(_net_inet_ip
, IPCTL_STATS
, stats
, CTLFLAG_RD
,
207 &ipstat
, ipstat
, "IP statistics (struct ipstat, netinet/ip_var.h)");
209 /* Packet reassembly stuff */
210 #define IPREASS_NHASH_LOG2 6
211 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
212 #define IPREASS_HMASK (IPREASS_NHASH - 1)
213 #define IPREASS_HASH(x,y) \
214 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
216 static struct ipq ipq
[IPREASS_NHASH
];
217 static TAILQ_HEAD(ipq_list
, ipq
) ipq_list
=
218 TAILQ_HEAD_INITIALIZER(ipq_list
);
219 const int ipintrq_present
= 1;
221 lck_attr_t
*ip_mutex_attr
;
222 lck_grp_t
*ip_mutex_grp
;
223 lck_grp_attr_t
*ip_mutex_grp_attr
;
224 lck_mtx_t
*inet_domain_mutex
;
225 extern lck_mtx_t
*domain_proto_mtx
;
228 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFMTU
, mtu
, CTLFLAG_RW
,
229 &ip_mtu
, 0, "Default MTU");
233 static int ipstealth
= 0;
234 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, stealth
, CTLFLAG_RW
,
240 ip_fw_chk_t
*ip_fw_chk_ptr
;
245 ip_dn_io_t
*ip_dn_io_ptr
;
248 int (*fr_checkp
)(struct ip
*, int, struct ifnet
*, int, struct mbuf
**) = NULL
;
250 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, linklocal
, CTLFLAG_RW
, 0, "link local");
252 struct ip_linklocal_stat ip_linklocal_stat
;
253 SYSCTL_STRUCT(_net_inet_ip_linklocal
, OID_AUTO
, stat
, CTLFLAG_RD
,
254 &ip_linklocal_stat
, ip_linklocal_stat
,
255 "Number of link local packets with TTL less than 255");
257 SYSCTL_NODE(_net_inet_ip_linklocal
, OID_AUTO
, in
, CTLFLAG_RW
, 0, "link local input");
259 int ip_linklocal_in_allowbadttl
= 1;
260 SYSCTL_INT(_net_inet_ip_linklocal_in
, OID_AUTO
, allowbadttl
, CTLFLAG_RW
,
261 &ip_linklocal_in_allowbadttl
, 0,
262 "Allow incoming link local packets with TTL less than 255");
266 * We need to save the IP options in case a protocol wants to respond
267 * to an incoming packet over the same route if the packet got here
268 * using IP source routing. This allows connection establishment and
269 * maintenance when the remote end is on a network that is not known
272 static int ip_nhops
= 0;
273 static struct ip_srcrt
{
274 struct in_addr dst
; /* final destination */
275 char nop
; /* one NOP to align */
276 char srcopt
[IPOPT_OFFSET
+ 1]; /* OPTVAL, OLEN and OFFSET */
277 struct in_addr route
[MAX_IPOPTLEN
/sizeof(struct in_addr
)];
281 extern struct mbuf
* m_dup(register struct mbuf
*m
, int how
);
284 static void save_rte(u_char
*, struct in_addr
);
285 static int ip_dooptions(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
286 static void ip_forward(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
287 static void ip_freef(struct ipq
*);
290 static struct mbuf
*ip_reass(struct mbuf
*,
291 struct ipq
*, struct ipq
*, u_int32_t
*, u_int16_t
*);
293 static struct mbuf
*ip_reass(struct mbuf
*,
294 struct ipq
*, struct ipq
*, u_int16_t
*, u_int16_t
*);
297 static struct mbuf
*ip_reass(struct mbuf
*, struct ipq
*, struct ipq
*);
302 extern u_short ip_id
;
305 extern u_long route_generation
;
306 extern int apple_hwcksum_rx
;
309 * IP initialization: fill in IP protocol switch table.
310 * All protocols not implemented in kernel go to raw IP protocol handler.
315 register struct protosw
*pr
;
317 static ip_initialized
= 0;
318 struct timeval timenow
;
323 TAILQ_INIT(&in_ifaddrhead
);
324 pr
= pffindproto_locked(PF_INET
, IPPROTO_RAW
, SOCK_RAW
);
327 for (i
= 0; i
< IPPROTO_MAX
; i
++)
329 for (pr
= inetdomain
.dom_protosw
; pr
; pr
= pr
->pr_next
)
330 { if(!((unsigned int)pr
->pr_domain
)) continue; /* If uninitialized, skip */
331 if (pr
->pr_domain
->dom_family
== PF_INET
&&
332 pr
->pr_protocol
&& pr
->pr_protocol
!= IPPROTO_RAW
)
333 ip_protox
[pr
->pr_protocol
] = pr
;
335 for (i
= 0; i
< IPREASS_NHASH
; i
++)
336 ipq
[i
].next
= ipq
[i
].prev
= &ipq
[i
];
338 maxnipq
= nmbclusters
/ 32;
339 maxfrags
= maxnipq
* 2;
340 maxfragsperpacket
= 128; /* enough for 64k in 512 byte fragments */
343 getmicrouptime(&timenow
);
344 ip_id
= timenow
.tv_sec
& 0xffff;
346 ipintrq
.ifq_maxlen
= ipqmaxlen
;
350 ip_mutex_grp_attr
= lck_grp_attr_alloc_init();
351 lck_grp_attr_setdefault(ip_mutex_grp_attr
);
353 ip_mutex_grp
= lck_grp_alloc_init("ip", ip_mutex_grp_attr
);
355 ip_mutex_attr
= lck_attr_alloc_init();
357 lck_attr_setdefault(ip_mutex_attr
);
359 if ((ip_mutex
= lck_mtx_alloc_init(ip_mutex_grp
, ip_mutex_attr
)) == NULL
) {
360 printf("ip_init: can't alloc ip_mutex\n");
370 protocol_family_t protocol
,
376 /* Initialize the PF_INET domain, and add in the pre-defined protos */
380 register struct protosw
*pr
;
381 register struct domain
*dp
;
382 static inetdomain_initted
= 0;
383 extern int in_proto_count
;
385 if (!inetdomain_initted
)
387 kprintf("Initing %d protosw entries\n", in_proto_count
);
389 dp
->dom_flags
= DOM_REENTRANT
;
391 for (i
=0, pr
= &inetsw
[0]; i
<in_proto_count
; i
++, pr
++)
392 net_add_proto(pr
, dp
);
393 inet_domain_mutex
= dp
->dom_mtx
;
394 inetdomain_initted
= 1;
396 lck_mtx_unlock(domain_proto_mtx
);
397 proto_register_input(PF_INET
, ip_proto_input
, NULL
);
398 lck_mtx_lock(domain_proto_mtx
);
402 __private_extern__
void
403 ip_proto_dispatch_in(
407 ipfilter_t inject_ipfref
)
409 struct ipfilter
*filter
;
410 int seen
= (inject_ipfref
== 0);
411 int changed_header
= 0;
414 if (!TAILQ_EMPTY(&ipv4_filters
)) {
416 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
418 if ((struct ipfilter
*)inject_ipfref
== filter
)
420 } else if (filter
->ipf_filter
.ipf_input
) {
423 if (changed_header
== 0) {
425 ip
= mtod(m
, struct ip
*);
426 ip
->ip_len
= htons(ip
->ip_len
+ hlen
);
427 ip
->ip_off
= htons(ip
->ip_off
);
429 ip
->ip_sum
= in_cksum(m
, hlen
);
431 result
= filter
->ipf_filter
.ipf_input(
432 filter
->ipf_filter
.cookie
, (mbuf_t
*)&m
, hlen
, proto
);
433 if (result
== EJUSTRETURN
) {
447 * If there isn't a specific lock for the protocol
448 * we're about to call, use the generic lock for AF_INET.
449 * otherwise let the protocol deal with its own locking
451 ip
= mtod(m
, struct ip
*);
453 if (changed_header
) {
454 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
455 ip
->ip_off
= ntohs(ip
->ip_off
);
458 if (!(ip_protox
[ip
->ip_p
]->pr_flags
& PR_PROTOLOCK
)) {
459 lck_mtx_lock(inet_domain_mutex
);
460 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
461 lck_mtx_unlock(inet_domain_mutex
);
464 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
469 * ipforward_rt cleared in in_addroute()
470 * when a new route is successfully created.
472 static struct sockaddr_in ipaddr
= { sizeof(ipaddr
), AF_INET
};
475 * Ip input routine. Checksum and byte swap header. If fragmented
476 * try to reassemble. Process options. Pass to next level.
479 ip_input(struct mbuf
*m
)
483 struct in_ifaddr
*ia
= NULL
;
484 int i
, hlen
, mff
, checkif
;
486 struct in_addr pkt_dst
;
487 u_int32_t div_info
= 0; /* packet divert/tee info */
488 struct ip_fw_args args
;
489 ipfilter_t inject_filter_ref
= 0;
491 struct route ipforward_rt
= { 0 };
493 lck_mtx_lock(ip_mutex
);
498 args
.divert_rule
= 0; /* divert cookie */
499 args
.next_hop
= NULL
;
501 /* Grab info from mtags prepended to the chain */
503 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
504 struct dn_pkt_tag
*dn_tag
;
506 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
507 args
.rule
= dn_tag
->rule
;
509 m_tag_delete(m
, tag
);
511 #endif /* DUMMYNET */
513 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
514 struct divert_tag
*div_tag
;
516 div_tag
= (struct divert_tag
*)(tag
+1);
517 args
.divert_rule
= div_tag
->cookie
;
519 m_tag_delete(m
, tag
);
521 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
522 struct ip_fwd_tag
*ipfwd_tag
;
524 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
525 args
.next_hop
= ipfwd_tag
->next_hop
;
527 m_tag_delete(m
, tag
);
531 if (m
== NULL
|| (m
->m_flags
& M_PKTHDR
) == 0)
532 panic("ip_input no HDR");
535 if (args
.rule
) { /* dummynet already filtered us */
536 ip
= mtod(m
, struct ip
*);
537 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
538 inject_filter_ref
= ipf_get_inject_filter(m
);
543 * No need to proccess packet twice if we've
546 inject_filter_ref
= ipf_get_inject_filter(m
);
547 if (inject_filter_ref
!= 0) {
548 lck_mtx_unlock(ip_mutex
);
549 ip
= mtod(m
, struct ip
*);
550 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
551 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
552 ip
->ip_off
= ntohs(ip
->ip_off
);
553 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, inject_filter_ref
);
559 if (m
->m_pkthdr
.len
< sizeof(struct ip
))
562 if (m
->m_len
< sizeof (struct ip
) &&
563 (m
= m_pullup(m
, sizeof (struct ip
))) == 0) {
564 ipstat
.ips_toosmall
++;
565 lck_mtx_unlock(ip_mutex
);
568 ip
= mtod(m
, struct ip
*);
570 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
,
571 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
573 if (IP_VHL_V(ip
->ip_vhl
) != IPVERSION
) {
574 ipstat
.ips_badvers
++;
578 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
579 if (hlen
< sizeof(struct ip
)) { /* minimum header length */
580 ipstat
.ips_badhlen
++;
583 if (hlen
> m
->m_len
) {
584 if ((m
= m_pullup(m
, hlen
)) == 0) {
585 ipstat
.ips_badhlen
++;
586 lck_mtx_unlock(ip_mutex
);
589 ip
= mtod(m
, struct ip
*);
592 /* 127/8 must not appear on wire - RFC1122 */
593 if ((ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
594 (ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
) {
595 if ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) {
596 ipstat
.ips_badaddr
++;
601 /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */
602 if ((IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
)) ||
603 IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)))) {
604 ip_linklocal_stat
.iplls_in_total
++;
605 if (ip
->ip_ttl
!= MAXTTL
) {
606 ip_linklocal_stat
.iplls_in_badttl
++;
607 /* Silently drop link local traffic with bad TTL */
608 if (!ip_linklocal_in_allowbadttl
)
612 if ((IF_HWASSIST_CSUM_FLAGS(m
->m_pkthdr
.rcvif
->if_hwassist
) == 0)
613 || (apple_hwcksum_rx
== 0) ||
614 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
) && ip
->ip_p
!= IPPROTO_TCP
)) {
615 m
->m_pkthdr
.csum_flags
= 0; /* invalidate HW generated checksum flags */
618 if (m
->m_pkthdr
.csum_flags
& CSUM_IP_CHECKED
) {
619 sum
= !(m
->m_pkthdr
.csum_flags
& CSUM_IP_VALID
);
621 sum
= in_cksum(m
, hlen
);
629 * Convert fields to host representation.
632 if (ip
->ip_len
< hlen
) {
639 * Check that the amount of data in the buffers
640 * is as at least much as the IP header would have us expect.
641 * Trim mbufs if longer than we expect.
642 * Drop packet if shorter than we expect.
644 if (m
->m_pkthdr
.len
< ip
->ip_len
) {
646 ipstat
.ips_tooshort
++;
649 if (m
->m_pkthdr
.len
> ip
->ip_len
) {
650 /* Invalidate hwcksuming */
651 m
->m_pkthdr
.csum_flags
= 0;
652 m
->m_pkthdr
.csum_data
= 0;
654 if (m
->m_len
== m
->m_pkthdr
.len
) {
655 m
->m_len
= ip
->ip_len
;
656 m
->m_pkthdr
.len
= ip
->ip_len
;
658 m_adj(m
, ip
->ip_len
- m
->m_pkthdr
.len
);
662 if (ipsec_bypass
== 0 && ipsec_gethist(m
, NULL
))
668 * Right now when no processing on packet has done
669 * and it is still fresh out of network we do our black
671 * - Firewall: deny/allow/divert
672 * - Xlate: translate packet's addr/port (NAT).
673 * - Pipe: pass pkt through dummynet.
674 * - Wrap: fake packet's addr/port <unimpl.>
675 * - Encapsulate: put it in another IP and send out. <unimp.>
678 #if defined(IPFIREWALL) && defined(DUMMYNET)
682 * Check if we want to allow this packet to be processed.
683 * Consider it to be bad if not.
688 if (fr_checkp(ip
, hlen
, m
->m_pkthdr
.rcvif
, 0, &m1
) || !m1
) {
689 lck_mtx_unlock(ip_mutex
);
692 ip
= mtod(m
= m1
, struct ip
*);
694 if (fw_enable
&& IPFW_LOADED
) {
695 #if IPFIREWALL_FORWARD
697 * If we've been forwarded from the output side, then
698 * skip the firewall a second time
702 #endif /* IPFIREWALL_FORWARD */
705 lck_mtx_unlock(ip_mutex
);
707 i
= ip_fw_chk_ptr(&args
);
710 if ( (i
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) { /* drop */
715 ip
= mtod(m
, struct ip
*); /* just in case m changed */
716 if (i
== 0 && args
.next_hop
== NULL
) { /* common case */
717 lck_mtx_lock(ip_mutex
);
721 if (DUMMYNET_LOADED
&& (i
& IP_FW_PORT_DYNT_FLAG
) != 0) {
722 /* Send packet to the appropriate pipe */
723 ip_dn_io_ptr(m
, i
&0xffff, DN_TO_IP_IN
, &args
);
726 #endif /* DUMMYNET */
728 if (i
!= 0 && (i
& IP_FW_PORT_DYNT_FLAG
) == 0) {
729 /* Divert or tee packet */
730 lck_mtx_lock(ip_mutex
);
735 #if IPFIREWALL_FORWARD
736 if (i
== 0 && args
.next_hop
!= NULL
) {
737 lck_mtx_lock(ip_mutex
);
742 * if we get here, the packet must be dropped
750 * Process options and, if not destined for us,
751 * ship it on. ip_dooptions returns 1 when an
752 * error was detected (causing an icmp message
753 * to be sent and the original packet to be freed).
755 ip_nhops
= 0; /* for source routed packets */
756 if (hlen
> sizeof (struct ip
) && ip_dooptions(m
, 0, args
.next_hop
, &ipforward_rt
)) {
757 lck_mtx_unlock(ip_mutex
);
761 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
762 * matter if it is destined to another node, or whether it is
763 * a multicast one, RSVP wants it! and prevents it from being forwarded
764 * anywhere else. Also checks if the rsvp daemon is running before
765 * grabbing the packet.
767 if (rsvp_on
&& ip
->ip_p
==IPPROTO_RSVP
)
771 * Check our list of addresses, to see if the packet is for us.
772 * If we don't have any addresses, assume any unicast packet
773 * we receive might be for us (and let the upper layers deal
776 if (TAILQ_EMPTY(&in_ifaddrhead
) &&
777 (m
->m_flags
& (M_MCAST
|M_BCAST
)) == 0)
781 * Cache the destination address of the packet; this may be
782 * changed by use of 'ipfw fwd'.
784 pkt_dst
= args
.next_hop
== NULL
?
785 ip
->ip_dst
: args
.next_hop
->sin_addr
;
788 * Enable a consistency check between the destination address
789 * and the arrival interface for a unicast packet (the RFC 1122
790 * strong ES model) if IP forwarding is disabled and the packet
791 * is not locally generated and the packet is not subject to
794 * XXX - Checking also should be disabled if the destination
795 * address is ipnat'ed to a different interface.
797 * XXX - Checking is incompatible with IP aliases added
798 * to the loopback interface instead of the interface where
799 * the packets are received.
801 checkif
= ip_checkinterface
&& (ipforwarding
== 0) &&
802 ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) &&
803 (args
.next_hop
== NULL
);
805 lck_mtx_lock(rt_mtx
);
806 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
807 #define satosin(sa) ((struct sockaddr_in *)(sa))
809 if (IA_SIN(ia
)->sin_addr
.s_addr
== INADDR_ANY
) {
810 lck_mtx_unlock(rt_mtx
);
815 * If the address matches, verify that the packet
816 * arrived via the correct interface if checking is
819 if (IA_SIN(ia
)->sin_addr
.s_addr
== pkt_dst
.s_addr
&&
820 (!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
)) {
821 lck_mtx_unlock(rt_mtx
);
825 * Only accept broadcast packets that arrive via the
826 * matching interface. Reception of forwarded directed
827 * broadcasts would be handled via ip_forward() and
828 * ether_output() with the loopback into the stack for
829 * SIMPLEX interfaces handled by ether_output().
831 if ((!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
) &&
832 ia
->ia_ifp
&& ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
833 if (satosin(&ia
->ia_broadaddr
)->sin_addr
.s_addr
==
835 lck_mtx_unlock(rt_mtx
);
838 if (ia
->ia_netbroadcast
.s_addr
== pkt_dst
.s_addr
) {
839 lck_mtx_unlock(rt_mtx
);
844 lck_mtx_unlock(rt_mtx
);
845 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
))) {
846 struct in_multi
*inm
;
849 * If we are acting as a multicast router, all
850 * incoming multicast packets are passed to the
851 * kernel-level multicast forwarding function.
852 * The packet is returned (relatively) intact; if
853 * ip_mforward() returns a non-zero value, the packet
854 * must be discarded, else it may be accepted below.
857 ip_mforward(ip
, m
->m_pkthdr
.rcvif
, m
, 0) != 0) {
858 ipstat
.ips_cantforward
++;
860 lck_mtx_unlock(ip_mutex
);
865 * The process-level routing daemon needs to receive
866 * all multicast IGMP packets, whether or not this
867 * host belongs to their destination groups.
869 if (ip
->ip_p
== IPPROTO_IGMP
)
871 ipstat
.ips_forward
++;
874 * See if we belong to the destination multicast group on the
877 IN_LOOKUP_MULTI(ip
->ip_dst
, m
->m_pkthdr
.rcvif
, inm
);
879 ipstat
.ips_notmember
++;
881 lck_mtx_unlock(ip_mutex
);
886 if (ip
->ip_dst
.s_addr
== (u_long
)INADDR_BROADCAST
)
888 if (ip
->ip_dst
.s_addr
== INADDR_ANY
)
891 /* Allow DHCP/BootP responses through */
892 if (m
->m_pkthdr
.rcvif
!= NULL
893 && (m
->m_pkthdr
.rcvif
->if_eflags
& IFEF_AUTOCONFIGURING
)
894 && hlen
== sizeof(struct ip
)
895 && ip
->ip_p
== IPPROTO_UDP
) {
897 if (m
->m_len
< sizeof(struct udpiphdr
)
898 && (m
= m_pullup(m
, sizeof(struct udpiphdr
))) == 0) {
899 udpstat
.udps_hdrops
++;
900 lck_mtx_unlock(ip_mutex
);
903 ui
= mtod(m
, struct udpiphdr
*);
904 if (ntohs(ui
->ui_dport
) == IPPORT_BOOTPC
) {
907 ip
= mtod(m
, struct ip
*); /* in case it changed */
910 #if defined(NFAITH) && 0 < NFAITH
912 * FAITH(Firewall Aided Internet Translator)
914 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
== IFT_FAITH
) {
916 if (ip
->ip_p
== IPPROTO_TCP
|| ip
->ip_p
== IPPROTO_ICMP
)
920 lck_mtx_unlock(ip_mutex
);
924 lck_mtx_unlock(ip_mutex
);
926 * Not for us; forward if possible and desirable.
928 if (ipforwarding
== 0) {
929 ipstat
.ips_cantforward
++;
932 ip_forward(m
, 0, args
.next_hop
, &ipforward_rt
);
938 /* Darwin does not have an if_data in ifaddr */
939 /* Count the packet in the ip address stats */
941 ia
->ia_ifa
.if_ipackets
++;
942 ia
->ia_ifa
.if_ibytes
+= m
->m_pkthdr
.len
;
947 * If offset or IP_MF are set, must reassemble.
948 * Otherwise, nothing need be done.
949 * (We could look in the reassembly queue to see
950 * if the packet was previously fragmented,
951 * but it's not worth the time; just let them time out.)
953 if (ip
->ip_off
& (IP_MF
| IP_OFFMASK
| IP_RF
)) {
955 /* If maxnipq is 0, never accept fragments. */
957 ipstat
.ips_fragments
++;
958 ipstat
.ips_fragdropped
++;
963 * If we will exceed the number of fragments in queues, timeout the
964 * oldest fragemented packet to make space.
966 if (currentfrags
>= maxfrags
) {
967 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
968 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
970 if (ip
->ip_id
== fp
->ipq_id
&&
971 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
972 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
973 ip
->ip_p
== fp
->ipq_p
) {
975 * If we match the fragment queue we were going to
976 * discard, drop this packet too.
978 ipstat
.ips_fragdropped
++;
986 sum
= IPREASS_HASH(ip
->ip_src
.s_addr
, ip
->ip_id
);
988 * Look for queue of fragments
991 for (fp
= ipq
[sum
].next
; fp
!= &ipq
[sum
]; fp
= fp
->next
)
992 if (ip
->ip_id
== fp
->ipq_id
&&
993 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
994 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
995 ip
->ip_p
== fp
->ipq_p
)
999 * Enforce upper bound on number of fragmented packets
1000 * for which we attempt reassembly;
1001 * If maxnipq is -1, accept all fragments without limitation.
1003 if ((nipq
> maxnipq
) && (maxnipq
> 0)) {
1005 * drop the oldest fragment before proceeding further
1007 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
1008 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
1016 * Adjust ip_len to not reflect header,
1017 * convert offset of this to bytes.
1020 if (ip
->ip_off
& IP_MF
) {
1022 * Make sure that fragments have a data length
1023 * that's a non-zero multiple of 8 bytes.
1025 if (ip
->ip_len
== 0 || (ip
->ip_len
& 0x7) != 0) {
1026 ipstat
.ips_toosmall
++; /* XXX */
1029 m
->m_flags
|= M_FRAG
;
1031 /* Clear the flag in case packet comes from loopback */
1032 m
->m_flags
&= ~M_FRAG
;
1037 * Attempt reassembly; if it succeeds, proceed.
1038 * ip_reass() will return a different mbuf, and update
1039 * the divert info in div_info and args.divert_rule.
1041 ipstat
.ips_fragments
++;
1042 m
->m_pkthdr
.header
= ip
;
1045 fp
, &ipq
[sum
], &div_info
, &args
.divert_rule
);
1047 m
= ip_reass(m
, fp
, &ipq
[sum
]);
1050 lck_mtx_unlock(ip_mutex
);
1053 ipstat
.ips_reassembled
++;
1054 ip
= mtod(m
, struct ip
*);
1055 /* Get the header length of the reassembled packet */
1056 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1058 /* Restore original checksum before diverting packet */
1059 if (div_info
!= 0) {
1064 ip
->ip_sum
= in_cksum(m
, hlen
);
1075 * Divert or tee packet to the divert protocol if required.
1077 * If div_info is zero then cookie should be too, so we shouldn't
1078 * need to clear them here. Assume divert_packet() does so also.
1080 if (div_info
!= 0) {
1081 struct mbuf
*clone
= NULL
;
1083 /* Clone packet if we're doing a 'tee' */
1084 if ((div_info
& IP_FW_PORT_TEE_FLAG
) != 0)
1085 clone
= m_dup(m
, M_DONTWAIT
);
1087 /* Restore packet header fields to original values */
1092 /* Deliver packet to divert input routine */
1093 ipstat
.ips_delivered
++;
1094 lck_mtx_unlock(ip_mutex
);
1095 divert_packet(m
, 1, div_info
& 0xffff, args
.divert_rule
);
1097 /* If 'tee', continue with original packet */
1098 if (clone
== NULL
) {
1101 lck_mtx_lock(ip_mutex
);
1103 ip
= mtod(m
, struct ip
*);
1109 * enforce IPsec policy checking if we are seeing last header.
1110 * note that we do not visit this with protocols with pcb layer
1111 * code - like udp/tcp/raw ip.
1113 if (ipsec_bypass
== 0 && (ip_protox
[ip
->ip_p
]->pr_flags
& PR_LASTHDR
) != 0) {
1114 lck_mtx_lock(sadb_mutex
);
1115 if (ipsec4_in_reject(m
, NULL
)) {
1116 ipsecstat
.in_polvio
++;
1117 lck_mtx_unlock(sadb_mutex
);
1120 lck_mtx_unlock(sadb_mutex
);
1125 * Switch out to protocol's input routine.
1127 ipstat
.ips_delivered
++;
1129 if (args
.next_hop
&& ip
->ip_p
== IPPROTO_TCP
) {
1130 /* TCP needs IPFORWARD info if available */
1131 struct m_tag
*fwd_tag
;
1132 struct ip_fwd_tag
*ipfwd_tag
;
1134 fwd_tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
1135 sizeof(struct sockaddr_in
), M_NOWAIT
);
1136 if (fwd_tag
== NULL
) {
1140 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+1);
1141 ipfwd_tag
->next_hop
= args
.next_hop
;
1143 m_tag_prepend(m
, fwd_tag
);
1145 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1146 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1148 lck_mtx_unlock(ip_mutex
);
1150 /* TCP deals with its own locking */
1151 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1153 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1154 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1156 lck_mtx_unlock(ip_mutex
);
1157 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1163 KERNEL_DEBUG(DBG_LAYER_END
, 0,0,0,0,0);
1164 lck_mtx_unlock(ip_mutex
);
1169 * Take incoming datagram fragment and try to reassemble it into
1170 * whole datagram. If a chain for reassembly of this datagram already
1171 * exists, then it is given as fp; otherwise have to make a chain.
1173 * When IPDIVERT enabled, keep additional state with each packet that
1174 * tells us if we need to divert or tee the packet we're building.
1177 static struct mbuf
*
1179 ip_reass(m
, fp
, where
, divinfo
, divcookie
)
1181 ip_reass(m
, fp
, where
)
1183 register struct mbuf
*m
;
1184 register struct ipq
*fp
;
1192 u_int16_t
*divcookie
;
1195 struct ip
*ip
= mtod(m
, struct ip
*);
1196 register struct mbuf
*p
= 0, *q
, *nq
;
1198 int hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1202 * Presence of header sizes in mbufs
1203 * would confuse code below.
1208 if (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1209 m
->m_pkthdr
.csum_flags
= 0;
1211 * If first fragment to arrive, create a reassembly queue.
1214 if ((t
= m_get(M_DONTWAIT
, MT_FTABLE
)) == NULL
)
1216 fp
= mtod(t
, struct ipq
*);
1217 insque((void*)fp
, (void*)where
);
1220 fp
->ipq_ttl
= IPFRAGTTL
;
1221 fp
->ipq_p
= ip
->ip_p
;
1222 fp
->ipq_id
= ip
->ip_id
;
1223 fp
->ipq_src
= ip
->ip_src
;
1224 fp
->ipq_dst
= ip
->ip_dst
;
1226 m
->m_nextpkt
= NULL
;
1229 fp
->ipq_div_info
= 0;
1233 fp
->ipq_div_cookie
= 0;
1235 TAILQ_INSERT_HEAD(&ipq_list
, fp
, ipq_list
);
1241 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1244 * Find a segment which begins after this one does.
1246 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
)
1247 if (GETIP(q
)->ip_off
> ip
->ip_off
)
1251 * If there is a preceding segment, it may provide some of
1252 * our data already. If so, drop the data from the incoming
1253 * segment. If it provides all of our data, drop us, otherwise
1254 * stick new segment in the proper place.
1256 * If some of the data is dropped from the the preceding
1257 * segment, then it's checksum is invalidated.
1260 i
= GETIP(p
)->ip_off
+ GETIP(p
)->ip_len
- ip
->ip_off
;
1262 if (i
>= ip
->ip_len
)
1265 m
->m_pkthdr
.csum_flags
= 0;
1269 m
->m_nextpkt
= p
->m_nextpkt
;
1272 m
->m_nextpkt
= fp
->ipq_frags
;
1277 * While we overlap succeeding segments trim them or,
1278 * if they are completely covered, dequeue them.
1280 for (; q
!= NULL
&& ip
->ip_off
+ ip
->ip_len
> GETIP(q
)->ip_off
;
1282 i
= (ip
->ip_off
+ ip
->ip_len
) -
1284 if (i
< GETIP(q
)->ip_len
) {
1285 GETIP(q
)->ip_len
-= i
;
1286 GETIP(q
)->ip_off
+= i
;
1288 q
->m_pkthdr
.csum_flags
= 0;
1293 ipstat
.ips_fragdropped
++;
1303 * Transfer firewall instructions to the fragment structure.
1304 * Only trust info in the fragment at offset 0.
1306 if (ip
->ip_off
== 0) {
1308 fp
->ipq_div_info
= *divinfo
;
1310 fp
->ipq_divert
= *divinfo
;
1312 fp
->ipq_div_cookie
= *divcookie
;
1319 * Check for complete reassembly and perform frag per packet
1322 * Frag limiting is performed here so that the nth frag has
1323 * a chance to complete the packet before we drop the packet.
1324 * As a result, n+1 frags are actually allowed per packet, but
1325 * only n will ever be stored. (n = maxfragsperpacket.)
1329 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1330 if (GETIP(q
)->ip_off
!= next
) {
1331 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1332 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1337 next
+= GETIP(q
)->ip_len
;
1339 /* Make sure the last packet didn't have the IP_MF flag */
1340 if (p
->m_flags
& M_FRAG
) {
1341 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1342 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1349 * Reassembly is complete. Make sure the packet is a sane size.
1353 if (next
+ (IP_VHL_HL(ip
->ip_vhl
) << 2) > IP_MAXPACKET
) {
1354 ipstat
.ips_toolong
++;
1355 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1361 * Concatenate fragments.
1369 for (q
= nq
; q
!= NULL
; q
= nq
) {
1371 q
->m_nextpkt
= NULL
;
1372 if (q
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1373 m
->m_pkthdr
.csum_flags
= 0;
1375 m
->m_pkthdr
.csum_flags
&= q
->m_pkthdr
.csum_flags
;
1376 m
->m_pkthdr
.csum_data
+= q
->m_pkthdr
.csum_data
;
1383 * Extract firewall instructions from the fragment structure.
1386 *divinfo
= fp
->ipq_div_info
;
1388 *divinfo
= fp
->ipq_divert
;
1390 *divcookie
= fp
->ipq_div_cookie
;
1394 * Create header for new ip packet by
1395 * modifying header of first packet;
1396 * dequeue and discard fragment reassembly header.
1397 * Make header visible.
1400 ip
->ip_src
= fp
->ipq_src
;
1401 ip
->ip_dst
= fp
->ipq_dst
;
1403 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1404 currentfrags
-= fp
->ipq_nfrags
;
1406 (void) m_free(dtom(fp
));
1407 m
->m_len
+= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1408 m
->m_data
-= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1409 /* some debugging cruft by sklower, below, will go away soon */
1410 if (m
->m_flags
& M_PKTHDR
) { /* XXX this should be done elsewhere */
1411 register int plen
= 0;
1412 for (t
= m
; t
; t
= t
->m_next
)
1414 m
->m_pkthdr
.len
= plen
;
1423 ipstat
.ips_fragdropped
++;
1433 * Free a fragment reassembly header and all
1434 * associated datagrams.
1440 currentfrags
-= fp
->ipq_nfrags
;
1441 m_freem_list(fp
->ipq_frags
);
1443 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1444 (void) m_free(dtom(fp
));
1449 * IP timer processing;
1450 * if a timer expires on a reassembly
1451 * queue, discard it.
1456 register struct ipq
*fp
;
1458 lck_mtx_lock(ip_mutex
);
1459 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1463 while (fp
!= &ipq
[i
]) {
1466 if (fp
->prev
->ipq_ttl
== 0) {
1467 ipstat
.ips_fragtimeout
+= fp
->prev
->ipq_nfrags
;
1473 * If we are over the maximum number of fragments
1474 * (due to the limit being lowered), drain off
1475 * enough to get down to the new limit.
1477 if (maxnipq
>= 0 && nipq
> maxnipq
) {
1478 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1479 while (nipq
> maxnipq
&&
1480 (ipq
[i
].next
!= &ipq
[i
])) {
1481 ipstat
.ips_fragdropped
+=
1482 ipq
[i
].next
->ipq_nfrags
;
1483 ip_freef(ipq
[i
].next
);
1488 lck_mtx_unlock(ip_mutex
);
1492 * Drain off all datagram fragments.
1499 lck_mtx_lock(ip_mutex
);
1500 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1501 while (ipq
[i
].next
!= &ipq
[i
]) {
1502 ipstat
.ips_fragdropped
+= ipq
[i
].next
->ipq_nfrags
;
1503 ip_freef(ipq
[i
].next
);
1506 lck_mtx_unlock(ip_mutex
);
1511 * Do option processing on a datagram,
1512 * possibly discarding it if bad options are encountered,
1513 * or forwarding it if source-routed.
1514 * The pass argument is used when operating in the IPSTEALTH
1515 * mode to tell what options to process:
1516 * [LS]SRR (pass 0) or the others (pass 1).
1517 * The reason for as many as two passes is that when doing IPSTEALTH,
1518 * non-routing options should be processed only if the packet is for us.
1519 * Returns 1 if packet has been forwarded/freed,
1520 * 0 if the packet should be processed further.
1523 ip_dooptions(struct mbuf
*m
, int pass
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1525 register struct ip
*ip
= mtod(m
, struct ip
*);
1526 register u_char
*cp
;
1527 register struct ip_timestamp
*ipt
;
1528 register struct in_ifaddr
*ia
;
1529 int opt
, optlen
, cnt
, off
, code
, type
= ICMP_PARAMPROB
, forward
= 0;
1530 struct in_addr
*sin
, dst
;
1534 cp
= (u_char
*)(ip
+ 1);
1535 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1536 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
1537 opt
= cp
[IPOPT_OPTVAL
];
1538 if (opt
== IPOPT_EOL
)
1540 if (opt
== IPOPT_NOP
)
1543 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
1544 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1547 optlen
= cp
[IPOPT_OLEN
];
1548 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
1549 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1559 * Source routing with record.
1560 * Find interface with current destination address.
1561 * If none on this machine then drop if strictly routed,
1562 * or do nothing if loosely routed.
1563 * Record interface address and bring up next address
1564 * component. If strictly routed make sure next
1565 * address is on directly accessible net.
1569 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1570 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1573 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1574 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1577 ipaddr
.sin_addr
= ip
->ip_dst
;
1578 ia
= (struct in_ifaddr
*)
1579 ifa_ifwithaddr((struct sockaddr
*)&ipaddr
);
1581 if (opt
== IPOPT_SSRR
) {
1582 type
= ICMP_UNREACH
;
1583 code
= ICMP_UNREACH_SRCFAIL
;
1586 if (!ip_dosourceroute
)
1587 goto nosourcerouting
;
1589 * Loose routing, and not at next destination
1590 * yet; nothing to do except forward.
1595 ifafree(&ia
->ia_ifa
);
1598 off
--; /* 0 origin */
1599 if (off
> optlen
- (int)sizeof(struct in_addr
)) {
1601 * End of source route. Should be for us.
1603 if (!ip_acceptsourceroute
)
1604 goto nosourcerouting
;
1605 save_rte(cp
, ip
->ip_src
);
1609 if (!ip_dosourceroute
) {
1611 char buf
[MAX_IPv4_STR_LEN
];
1612 char buf2
[MAX_IPv4_STR_LEN
];
1614 * Acting as a router, so generate ICMP
1618 "attempted source route from %s to %s\n",
1619 inet_ntop(AF_INET
, &ip
->ip_src
, buf
, sizeof(buf
)),
1620 inet_ntop(AF_INET
, &ip
->ip_dst
, buf2
, sizeof(buf2
)));
1621 type
= ICMP_UNREACH
;
1622 code
= ICMP_UNREACH_SRCFAIL
;
1626 * Not acting as a router, so silently drop.
1628 ipstat
.ips_cantforward
++;
1635 * locate outgoing interface
1637 (void)memcpy(&ipaddr
.sin_addr
, cp
+ off
,
1638 sizeof(ipaddr
.sin_addr
));
1640 if (opt
== IPOPT_SSRR
) {
1641 #define INA struct in_ifaddr *
1642 #define SA struct sockaddr *
1643 if ((ia
= (INA
)ifa_ifwithdstaddr((SA
)&ipaddr
)) == 0) {
1644 ia
= (INA
)ifa_ifwithnet((SA
)&ipaddr
);
1647 ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
);
1650 type
= ICMP_UNREACH
;
1651 code
= ICMP_UNREACH_SRCFAIL
;
1654 ip
->ip_dst
= ipaddr
.sin_addr
;
1655 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1656 sizeof(struct in_addr
));
1657 ifafree(&ia
->ia_ifa
);
1659 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1661 * Let ip_intr's mcast routing check handle mcast pkts
1663 forward
= !IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
));
1667 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1668 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1671 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1672 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1676 * If no space remains, ignore.
1678 off
--; /* 0 origin */
1679 if (off
> optlen
- (int)sizeof(struct in_addr
))
1681 (void)memcpy(&ipaddr
.sin_addr
, &ip
->ip_dst
,
1682 sizeof(ipaddr
.sin_addr
));
1684 * locate outgoing interface; if we're the destination,
1685 * use the incoming interface (should be same).
1687 if ((ia
= (INA
)ifa_ifwithaddr((SA
)&ipaddr
)) == 0) {
1688 if ((ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
)) == 0) {
1689 type
= ICMP_UNREACH
;
1690 code
= ICMP_UNREACH_HOST
;
1694 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1695 sizeof(struct in_addr
));
1696 ifafree(&ia
->ia_ifa
);
1698 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1702 code
= cp
- (u_char
*)ip
;
1703 ipt
= (struct ip_timestamp
*)cp
;
1704 if (ipt
->ipt_len
< 4 || ipt
->ipt_len
> 40) {
1705 code
= (u_char
*)&ipt
->ipt_len
- (u_char
*)ip
;
1708 if (ipt
->ipt_ptr
< 5) {
1709 code
= (u_char
*)&ipt
->ipt_ptr
- (u_char
*)ip
;
1713 ipt
->ipt_len
- (int)sizeof(int32_t)) {
1714 if (++ipt
->ipt_oflw
== 0) {
1715 code
= (u_char
*)&ipt
->ipt_ptr
-
1721 sin
= (struct in_addr
*)(cp
+ ipt
->ipt_ptr
- 1);
1722 switch (ipt
->ipt_flg
) {
1724 case IPOPT_TS_TSONLY
:
1727 case IPOPT_TS_TSANDADDR
:
1728 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1729 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1730 code
= (u_char
*)&ipt
->ipt_ptr
-
1734 ipaddr
.sin_addr
= dst
;
1735 ia
= (INA
)ifaof_ifpforaddr((SA
)&ipaddr
,
1739 (void)memcpy(sin
, &IA_SIN(ia
)->sin_addr
,
1740 sizeof(struct in_addr
));
1741 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1742 ifafree(&ia
->ia_ifa
);
1746 case IPOPT_TS_PRESPEC
:
1747 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1748 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1749 code
= (u_char
*)&ipt
->ipt_ptr
-
1753 (void)memcpy(&ipaddr
.sin_addr
, sin
,
1754 sizeof(struct in_addr
));
1755 if ((ia
= (struct in_ifaddr
*)ifa_ifwithaddr((SA
)&ipaddr
)) == 0)
1757 ifafree(&ia
->ia_ifa
);
1759 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1763 /* XXX can't take &ipt->ipt_flg */
1764 code
= (u_char
*)&ipt
->ipt_ptr
-
1769 (void)memcpy(cp
+ ipt
->ipt_ptr
- 1, &ntime
,
1771 ipt
->ipt_ptr
+= sizeof(n_time
);
1774 if (forward
&& ipforwarding
) {
1775 ip_forward(m
, 1, next_hop
, ipforward_rt
);
1780 ip
->ip_len
-= IP_VHL_HL(ip
->ip_vhl
) << 2; /* XXX icmp_error adds in hdr length */
1781 lck_mtx_unlock(ip_mutex
);
1782 icmp_error(m
, type
, code
, 0, 0);
1783 lck_mtx_lock(ip_mutex
);
1784 ipstat
.ips_badoptions
++;
1789 * Given address of next destination (final or next hop),
1790 * return internet address info of interface to be used to get there.
1797 register struct sockaddr_in
*sin
;
1799 sin
= (struct sockaddr_in
*)&rt
->ro_dst
;
1801 lck_mtx_lock(rt_mtx
);
1802 if (rt
->ro_rt
== 0 || dst
.s_addr
!= sin
->sin_addr
.s_addr
||
1803 rt
->ro_rt
->generation_id
!= route_generation
) {
1805 rtfree_locked(rt
->ro_rt
);
1808 sin
->sin_family
= AF_INET
;
1809 sin
->sin_len
= sizeof(*sin
);
1810 sin
->sin_addr
= dst
;
1812 rtalloc_ign_locked(rt
, RTF_PRCLONING
);
1814 if (rt
->ro_rt
== 0) {
1815 lck_mtx_unlock(rt_mtx
);
1816 return ((struct in_ifaddr
*)0);
1819 if (rt
->ro_rt
->rt_ifa
)
1820 ifaref(rt
->ro_rt
->rt_ifa
);
1821 lck_mtx_unlock(rt_mtx
);
1822 return ((struct in_ifaddr
*) rt
->ro_rt
->rt_ifa
);
1826 * Save incoming source route for use in replies,
1827 * to be picked up later by ip_srcroute if the receiver is interested.
1830 save_rte(option
, dst
)
1836 olen
= option
[IPOPT_OLEN
];
1839 printf("save_rte: olen %d\n", olen
);
1841 if (olen
> sizeof(ip_srcrt
) - (1 + sizeof(dst
)))
1843 bcopy(option
, ip_srcrt
.srcopt
, olen
);
1844 ip_nhops
= (olen
- IPOPT_OFFSET
- 1) / sizeof(struct in_addr
);
1849 * Retrieve incoming source route for use in replies,
1850 * in the same form used by setsockopt.
1851 * The first hop is placed before the options, will be removed later.
1856 register struct in_addr
*p
, *q
;
1857 register struct mbuf
*m
;
1860 return ((struct mbuf
*)0);
1861 m
= m_get(M_DONTWAIT
, MT_HEADER
);
1863 return ((struct mbuf
*)0);
1865 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1867 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1868 m
->m_len
= ip_nhops
* sizeof(struct in_addr
) + sizeof(struct in_addr
) +
1872 printf("ip_srcroute: nhops %d mlen %d", ip_nhops
, m
->m_len
);
1876 * First save first hop for return route
1878 p
= &ip_srcrt
.route
[ip_nhops
- 1];
1879 *(mtod(m
, struct in_addr
*)) = *p
--;
1882 printf(" hops %lx", (u_long
)ntohl(mtod(m
, struct in_addr
*)->s_addr
));
1886 * Copy option fields and padding (nop) to mbuf.
1888 ip_srcrt
.nop
= IPOPT_NOP
;
1889 ip_srcrt
.srcopt
[IPOPT_OFFSET
] = IPOPT_MINOFF
;
1890 (void)memcpy(mtod(m
, caddr_t
) + sizeof(struct in_addr
),
1891 &ip_srcrt
.nop
, OPTSIZ
);
1892 q
= (struct in_addr
*)(mtod(m
, caddr_t
) +
1893 sizeof(struct in_addr
) + OPTSIZ
);
1896 * Record return path as an IP source route,
1897 * reversing the path (pointers are now aligned).
1899 while (p
>= ip_srcrt
.route
) {
1902 printf(" %lx", (u_long
)ntohl(q
->s_addr
));
1907 * Last hop goes to final destination.
1912 printf(" %lx\n", (u_long
)ntohl(q
->s_addr
));
1918 * Strip out IP options, at higher
1919 * level protocol in the kernel.
1920 * Second argument is buffer to which options
1921 * will be moved, and return value is their length.
1922 * XXX should be deleted; last arg currently ignored.
1925 ip_stripoptions(m
, mopt
)
1926 register struct mbuf
*m
;
1930 struct ip
*ip
= mtod(m
, struct ip
*);
1931 register caddr_t opts
;
1934 olen
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1935 opts
= (caddr_t
)(ip
+ 1);
1936 i
= m
->m_len
- (sizeof (struct ip
) + olen
);
1937 bcopy(opts
+ olen
, opts
, (unsigned)i
);
1939 if (m
->m_flags
& M_PKTHDR
)
1940 m
->m_pkthdr
.len
-= olen
;
1941 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, sizeof(struct ip
) >> 2);
1944 u_char inetctlerrmap
[PRC_NCMDS
] = {
1946 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
1947 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
1948 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
1950 ENOPROTOOPT
, ECONNREFUSED
1954 * Forward a packet. If some error occurs return the sender
1955 * an icmp packet. Note we can't always generate a meaningful
1956 * icmp message because icmp doesn't have a large enough repertoire
1957 * of codes and types.
1959 * If not forwarding, just drop the packet. This could be confusing
1960 * if ipforwarding was zero but some routing protocol was advancing
1961 * us as a gateway to somewhere. However, we must let the routing
1962 * protocol deal with that.
1964 * The srcrt parameter indicates whether the packet is being forwarded
1965 * via a source route.
1968 ip_forward(struct mbuf
*m
, int srcrt
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1970 register struct ip
*ip
= mtod(m
, struct ip
*);
1971 register struct sockaddr_in
*sin
;
1972 register struct rtentry
*rt
;
1973 int error
, type
= 0, code
= 0;
1976 struct in_addr pkt_dst
;
1977 struct ifnet
*destifp
;
1979 struct ifnet dummyifp
;
1984 * Cache the destination address of the packet; this may be
1985 * changed by use of 'ipfw fwd'.
1987 pkt_dst
= next_hop
? next_hop
->sin_addr
: ip
->ip_dst
;
1991 printf("forward: src %lx dst %lx ttl %x\n",
1992 (u_long
)ip
->ip_src
.s_addr
, (u_long
)pkt_dst
.s_addr
,
1997 if (m
->m_flags
& (M_BCAST
|M_MCAST
) || in_canforward(pkt_dst
) == 0) {
1998 ipstat
.ips_cantforward
++;
2005 if (ip
->ip_ttl
<= IPTTLDEC
) {
2006 icmp_error(m
, ICMP_TIMXCEED
, ICMP_TIMXCEED_INTRANS
,
2014 sin
= (struct sockaddr_in
*)&ipforward_rt
->ro_dst
;
2015 if ((rt
= ipforward_rt
->ro_rt
) == 0 ||
2016 pkt_dst
.s_addr
!= sin
->sin_addr
.s_addr
||
2017 ipforward_rt
->ro_rt
->generation_id
!= route_generation
) {
2018 if (ipforward_rt
->ro_rt
) {
2019 rtfree(ipforward_rt
->ro_rt
);
2020 ipforward_rt
->ro_rt
= 0;
2022 sin
->sin_family
= AF_INET
;
2023 sin
->sin_len
= sizeof(*sin
);
2024 sin
->sin_addr
= pkt_dst
;
2026 rtalloc_ign(ipforward_rt
, RTF_PRCLONING
);
2027 if (ipforward_rt
->ro_rt
== 0) {
2028 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_HOST
, dest
, 0);
2031 rt
= ipforward_rt
->ro_rt
;
2035 * Save the IP header and at most 8 bytes of the payload,
2036 * in case we need to generate an ICMP message to the src.
2038 * We don't use m_copy() because it might return a reference
2039 * to a shared cluster. Both this function and ip_output()
2040 * assume exclusive access to the IP header in `m', so any
2041 * data in a cluster may change before we reach icmp_error().
2043 MGET(mcopy
, M_DONTWAIT
, m
->m_type
);
2044 if (mcopy
!= NULL
) {
2045 M_COPY_PKTHDR(mcopy
, m
);
2046 mcopy
->m_len
= imin((IP_VHL_HL(ip
->ip_vhl
) << 2) + 8,
2048 m_copydata(m
, 0, mcopy
->m_len
, mtod(mcopy
, caddr_t
));
2054 ip
->ip_ttl
-= IPTTLDEC
;
2060 * If forwarding packet using same interface that it came in on,
2061 * perhaps should send a redirect to sender to shortcut a hop.
2062 * Only send redirect if source is sending directly to us,
2063 * and if packet was not source routed (or has any options).
2064 * Also, don't send redirect if forwarding using a default route
2065 * or a route modified by a redirect.
2067 #define satosin(sa) ((struct sockaddr_in *)(sa))
2068 if (rt
->rt_ifp
== m
->m_pkthdr
.rcvif
&&
2069 (rt
->rt_flags
& (RTF_DYNAMIC
|RTF_MODIFIED
)) == 0 &&
2070 satosin(rt_key(rt
))->sin_addr
.s_addr
!= 0 &&
2071 ipsendredirects
&& !srcrt
) {
2072 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
2073 u_long src
= ntohl(ip
->ip_src
.s_addr
);
2076 (src
& RTA(rt
)->ia_subnetmask
) == RTA(rt
)->ia_subnet
) {
2077 if (rt
->rt_flags
& RTF_GATEWAY
)
2078 dest
= satosin(rt
->rt_gateway
)->sin_addr
.s_addr
;
2080 dest
= pkt_dst
.s_addr
;
2081 /* Router requirements says to only send host redirects */
2082 type
= ICMP_REDIRECT
;
2083 code
= ICMP_REDIRECT_HOST
;
2086 printf("redirect (%d) to %lx\n", code
, (u_long
)dest
);
2093 /* Pass IPFORWARD info if available */
2095 struct ip_fwd_tag
*ipfwd_tag
;
2097 tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
2098 sizeof(struct sockaddr_in
), M_NOWAIT
);
2105 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
2106 ipfwd_tag
->next_hop
= next_hop
;
2108 m_tag_prepend(m
, tag
);
2110 error
= ip_output_list(m
, 0, (struct mbuf
*)0, ipforward_rt
,
2114 ipstat
.ips_cantforward
++;
2116 ipstat
.ips_forward
++;
2118 ipstat
.ips_redirectsent
++;
2121 ipflow_create(ipforward_rt
, mcopy
);
2133 case 0: /* forwarded, but need redirect */
2134 /* type, code set above */
2137 case ENETUNREACH
: /* shouldn't happen, checked above */
2142 type
= ICMP_UNREACH
;
2143 code
= ICMP_UNREACH_HOST
;
2147 type
= ICMP_UNREACH
;
2148 code
= ICMP_UNREACH_NEEDFRAG
;
2150 if (ipforward_rt
->ro_rt
)
2151 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2154 * If the packet is routed over IPsec tunnel, tell the
2155 * originator the tunnel MTU.
2156 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2159 if (ipforward_rt
->ro_rt
) {
2160 struct secpolicy
*sp
= NULL
;
2166 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2167 ipstat
.ips_cantfrag
++;
2170 lck_mtx_lock(sadb_mutex
);
2171 sp
= ipsec4_getpolicybyaddr(mcopy
,
2177 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2179 /* count IPsec header size */
2180 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2185 * find the correct route for outer IPv4
2186 * header, compute tunnel MTU.
2189 * The "dummyifp" code relies upon the fact
2190 * that icmp_error() touches only ifp->if_mtu.
2195 && sp
->req
->sav
!= NULL
2196 && sp
->req
->sav
->sah
!= NULL
) {
2197 ro
= &sp
->req
->sav
->sah
->sa_route
;
2198 if (ro
->ro_rt
&& ro
->ro_rt
->rt_ifp
) {
2200 ro
->ro_rt
->rt_ifp
->if_mtu
;
2201 dummyifp
.if_mtu
-= ipsechdr
;
2202 destifp
= &dummyifp
;
2208 lck_mtx_unlock(sadb_mutex
);
2211 ipstat
.ips_cantfrag
++;
2215 type
= ICMP_SOURCEQUENCH
;
2219 case EACCES
: /* ipfw denied packet */
2223 icmp_error(mcopy
, type
, code
, dest
, destifp
);
2228 register struct inpcb
*inp
,
2229 register struct mbuf
**mp
,
2230 register struct ip
*ip
,
2231 register struct mbuf
*m
)
2233 if (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) {
2237 *mp
= sbcreatecontrol((caddr_t
) &tv
, sizeof(tv
),
2238 SCM_TIMESTAMP
, SOL_SOCKET
);
2240 mp
= &(*mp
)->m_next
;
2242 if (inp
->inp_flags
& INP_RECVDSTADDR
) {
2243 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_dst
,
2244 sizeof(struct in_addr
), IP_RECVDSTADDR
, IPPROTO_IP
);
2246 mp
= &(*mp
)->m_next
;
2250 * Moving these out of udp_input() made them even more broken
2251 * than they already were.
2253 /* options were tossed already */
2254 if (inp
->inp_flags
& INP_RECVOPTS
) {
2255 *mp
= sbcreatecontrol((caddr_t
) opts_deleted_above
,
2256 sizeof(struct in_addr
), IP_RECVOPTS
, IPPROTO_IP
);
2258 mp
= &(*mp
)->m_next
;
2260 /* ip_srcroute doesn't do what we want here, need to fix */
2261 if (inp
->inp_flags
& INP_RECVRETOPTS
) {
2262 *mp
= sbcreatecontrol((caddr_t
) ip_srcroute(),
2263 sizeof(struct in_addr
), IP_RECVRETOPTS
, IPPROTO_IP
);
2265 mp
= &(*mp
)->m_next
;
2268 if (inp
->inp_flags
& INP_RECVIF
) {
2271 struct sockaddr_dl sdl
;
2274 struct sockaddr_dl
*sdp
;
2275 struct sockaddr_dl
*sdl2
= &sdlbuf
.sdl
;
2277 ifnet_head_lock_shared();
2278 if (((ifp
= m
->m_pkthdr
.rcvif
))
2279 && ( ifp
->if_index
&& (ifp
->if_index
<= if_index
))) {
2280 sdp
= (struct sockaddr_dl
*)(ifnet_addrs
2281 [ifp
->if_index
- 1]->ifa_addr
);
2283 * Change our mind and don't try copy.
2285 if ((sdp
->sdl_family
!= AF_LINK
)
2286 || (sdp
->sdl_len
> sizeof(sdlbuf
))) {
2289 bcopy(sdp
, sdl2
, sdp
->sdl_len
);
2293 = offsetof(struct sockaddr_dl
, sdl_data
[0]);
2294 sdl2
->sdl_family
= AF_LINK
;
2295 sdl2
->sdl_index
= 0;
2296 sdl2
->sdl_nlen
= sdl2
->sdl_alen
= sdl2
->sdl_slen
= 0;
2299 *mp
= sbcreatecontrol((caddr_t
) sdl2
, sdl2
->sdl_len
,
2300 IP_RECVIF
, IPPROTO_IP
);
2302 mp
= &(*mp
)->m_next
;
2304 if (inp
->inp_flags
& INP_RECVTTL
) {
2305 *mp
= sbcreatecontrol((caddr_t
)&ip
->ip_ttl
, sizeof(ip
->ip_ttl
), IP_RECVTTL
, IPPROTO_IP
);
2306 if (*mp
) mp
= &(*mp
)->m_next
;
2311 ip_rsvp_init(struct socket
*so
)
2313 if (so
->so_type
!= SOCK_RAW
||
2314 so
->so_proto
->pr_protocol
!= IPPROTO_RSVP
)
2317 if (ip_rsvpd
!= NULL
)
2322 * This may seem silly, but we need to be sure we don't over-increment
2323 * the RSVP counter, in case something slips up.
2338 * This may seem silly, but we need to be sure we don't over-decrement
2339 * the RSVP counter, in case something slips up.