]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/i386_vm_init.c
xnu-1228.0.2.tar.gz
[apple/xnu.git] / osfmk / i386 / i386_vm_init.c
1 /*
2 * Copyright (c) 2003-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 #include <platforms.h>
58 #include <mach_kdb.h>
59
60 #include <mach/i386/vm_param.h>
61
62 #include <string.h>
63 #include <mach/vm_param.h>
64 #include <mach/vm_prot.h>
65 #include <mach/machine.h>
66 #include <mach/time_value.h>
67 #include <kern/spl.h>
68 #include <kern/assert.h>
69 #include <kern/debug.h>
70 #include <kern/misc_protos.h>
71 #include <kern/cpu_data.h>
72 #include <kern/processor.h>
73 #include <vm/vm_page.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_kern.h>
76 #include <i386/pmap.h>
77 #include <i386/ipl.h>
78 #include <i386/misc_protos.h>
79 #include <i386/mp_slave_boot.h>
80 #include <i386/cpuid.h>
81 #include <mach/thread_status.h>
82 #include <pexpert/i386/efi.h>
83 #include "i386_lowmem.h"
84
85 vm_size_t mem_size = 0;
86 vm_offset_t first_avail = 0;/* first after page tables */
87
88 uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */
89 uint64_t mem_actual;
90 uint64_t sane_size = 0; /* Memory size to use for defaults calculations */
91
92 #define MAXBOUNCEPOOL (128 * 1024 * 1024)
93 #define MAXLORESERVE ( 32 * 1024 * 1024)
94
95 extern int bsd_mbuf_cluster_reserve(void);
96
97
98 uint32_t bounce_pool_base = 0;
99 uint32_t bounce_pool_size = 0;
100
101 static void reserve_bouncepool(uint32_t);
102
103
104 pmap_paddr_t avail_start, avail_end;
105 vm_offset_t virtual_avail, virtual_end;
106 static pmap_paddr_t avail_remaining;
107 vm_offset_t static_memory_end = 0;
108
109 #include <mach-o/loader.h>
110 vm_offset_t edata, etext, end;
111
112 /*
113 * _mh_execute_header is the mach_header for the currently executing
114 * 32 bit kernel
115 */
116 extern struct mach_header _mh_execute_header;
117 void *sectTEXTB; int sectSizeTEXT;
118 void *sectDATAB; int sectSizeDATA;
119 void *sectOBJCB; int sectSizeOBJC;
120 void *sectLINKB; int sectSizeLINK;
121 void *sectPRELINKB; int sectSizePRELINK;
122 void *sectHIBB; int sectSizeHIB;
123
124 extern void *getsegdatafromheader(struct mach_header *, const char *, int *);
125 extern struct segment_command *getsegbyname(const char *);
126 extern struct section *firstsect(struct segment_command *);
127 extern struct section *nextsect(struct segment_command *, struct section *);
128
129
130 void
131 i386_macho_zerofill(void)
132 {
133 struct segment_command *sgp;
134 struct section *sp;
135
136 sgp = getsegbyname("__DATA");
137 if (sgp) {
138 sp = firstsect(sgp);
139 if (sp) {
140 do {
141 if ((sp->flags & S_ZEROFILL))
142 bzero((char *) sp->addr, sp->size);
143 } while ((sp = nextsect(sgp, sp)));
144 }
145 }
146
147 return;
148 }
149
150 /*
151 * Basic VM initialization.
152 */
153 void
154 i386_vm_init(uint64_t maxmem,
155 boolean_t IA32e,
156 boot_args *args)
157 {
158 pmap_memory_region_t *pmptr;
159 pmap_memory_region_t *prev_pmptr;
160 EfiMemoryRange *mptr;
161 unsigned int mcount;
162 unsigned int msize;
163 ppnum_t fap;
164 unsigned int i;
165 unsigned int safeboot;
166 ppnum_t maxpg = 0;
167 uint32_t pmap_type;
168 uint32_t maxbouncepoolsize;
169 uint32_t maxloreserve;
170 uint32_t maxdmaaddr;
171
172 /*
173 * Now retrieve addresses for end, edata, and etext
174 * from MACH-O headers.
175 */
176
177 sectTEXTB = (void *) getsegdatafromheader(
178 &_mh_execute_header, "__TEXT", &sectSizeTEXT);
179 sectDATAB = (void *) getsegdatafromheader(
180 &_mh_execute_header, "__DATA", &sectSizeDATA);
181 sectOBJCB = (void *) getsegdatafromheader(
182 &_mh_execute_header, "__OBJC", &sectSizeOBJC);
183 sectLINKB = (void *) getsegdatafromheader(
184 &_mh_execute_header, "__LINKEDIT", &sectSizeLINK);
185 sectHIBB = (void *)getsegdatafromheader(
186 &_mh_execute_header, "__HIB", &sectSizeHIB);
187 sectPRELINKB = (void *) getsegdatafromheader(
188 &_mh_execute_header, "__PRELINK", &sectSizePRELINK);
189
190 etext = (vm_offset_t) sectTEXTB + sectSizeTEXT;
191 edata = (vm_offset_t) sectDATAB + sectSizeDATA;
192
193 vm_set_page_size();
194
195 /*
196 * Compute the memory size.
197 */
198
199 if ((1 == vm_himemory_mode) || PE_parse_boot_arg("-x", &safeboot)) {
200 maxpg = 1 << (32 - I386_PGSHIFT);
201 }
202 avail_remaining = 0;
203 avail_end = 0;
204 pmptr = pmap_memory_regions;
205 prev_pmptr = 0;
206 pmap_memory_region_count = pmap_memory_region_current = 0;
207 fap = (ppnum_t) i386_btop(first_avail);
208
209 mptr = (EfiMemoryRange *)args->MemoryMap;
210 if (args->MemoryMapDescriptorSize == 0)
211 panic("Invalid memory map descriptor size");
212 msize = args->MemoryMapDescriptorSize;
213 mcount = args->MemoryMapSize / msize;
214
215 #define FOURGIG 0x0000000100000000ULL
216
217 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
218 ppnum_t base, top;
219
220 if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
221 kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
222 break;
223 }
224 base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
225 top = (ppnum_t) ((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1;
226
227 switch (mptr->Type) {
228 case kEfiLoaderCode:
229 case kEfiLoaderData:
230 case kEfiBootServicesCode:
231 case kEfiBootServicesData:
232 case kEfiConventionalMemory:
233 /*
234 * Consolidate usable memory types into one.
235 */
236 pmap_type = kEfiConventionalMemory;
237 sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
238 break;
239
240 case kEfiRuntimeServicesCode:
241 case kEfiRuntimeServicesData:
242 case kEfiACPIReclaimMemory:
243 case kEfiACPIMemoryNVS:
244 case kEfiPalCode:
245 /*
246 * sane_size should reflect the total amount of physical ram
247 * in the system, not just the amount that is available for
248 * the OS to use
249 */
250 sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
251 /* fall thru */
252
253 case kEfiUnusableMemory:
254 case kEfiMemoryMappedIO:
255 case kEfiMemoryMappedIOPortSpace:
256 case kEfiReservedMemoryType:
257 default:
258 pmap_type = mptr->Type;
259 }
260
261 kprintf("EFI region: type = %u/%d, base = 0x%x, top = 0x%x\n", mptr->Type, pmap_type, base, top);
262
263 if (maxpg) {
264 if (base >= maxpg)
265 break;
266 top = (top > maxpg) ? maxpg : top;
267 }
268
269 /*
270 * handle each region
271 */
272 if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
273 pmap_type != kEfiConventionalMemory) {
274 prev_pmptr = 0;
275 continue;
276 } else {
277 /*
278 * Usable memory region
279 */
280 if (top < I386_LOWMEM_RESERVED) {
281 prev_pmptr = 0;
282 continue;
283 }
284 if (top < fap) {
285 /*
286 * entire range below first_avail
287 * salvage some low memory pages
288 * we use some very low memory at startup
289 * mark as already allocated here
290 */
291 if (base >= I386_LOWMEM_RESERVED)
292 pmptr->base = base;
293 else
294 pmptr->base = I386_LOWMEM_RESERVED;
295 /*
296 * mark as already mapped
297 */
298 pmptr->alloc = pmptr->end = top;
299 pmptr->type = pmap_type;
300 }
301 else if ( (base < fap) && (top > fap) ) {
302 /*
303 * spans first_avail
304 * put mem below first avail in table but
305 * mark already allocated
306 */
307 pmptr->base = base;
308 pmptr->alloc = pmptr->end = (fap - 1);
309 pmptr->type = pmap_type;
310 /*
311 * we bump these here inline so the accounting
312 * below works correctly
313 */
314 pmptr++;
315 pmap_memory_region_count++;
316 pmptr->alloc = pmptr->base = fap;
317 pmptr->type = pmap_type;
318 pmptr->end = top;
319 }
320 else {
321 /*
322 * entire range useable
323 */
324 pmptr->alloc = pmptr->base = base;
325 pmptr->type = pmap_type;
326 pmptr->end = top;
327 }
328
329 if (i386_ptob(pmptr->end) > avail_end )
330 avail_end = i386_ptob(pmptr->end);
331
332 avail_remaining += (pmptr->end - pmptr->base);
333
334 /*
335 * Consolidate contiguous memory regions, if possible
336 */
337 if (prev_pmptr &&
338 pmptr->type == prev_pmptr->type &&
339 pmptr->base == pmptr->alloc &&
340 pmptr->base == (prev_pmptr->end + 1)) {
341 prev_pmptr->end = pmptr->end;
342 } else {
343 pmap_memory_region_count++;
344 prev_pmptr = pmptr;
345 pmptr++;
346 }
347 }
348 }
349
350
351 #ifdef PRINT_PMAP_MEMORY_TABLE
352 {
353 unsigned int j;
354 pmap_memory_region_t *p = pmap_memory_regions;
355 vm_offset_t region_start, region_end;
356 vm_offset_t efi_start, efi_end;
357 for (j=0;j<pmap_memory_region_count;j++, p++) {
358 kprintf("type %d base 0x%x alloc 0x%x top 0x%x\n", p->type,
359 p->base << I386_PGSHIFT, p->alloc << I386_PGSHIFT, p->end << I386_PGSHIFT);
360 region_start = p->base << I386_PGSHIFT;
361 region_end = (p->end << I386_PGSHIFT) - 1;
362 mptr = args->MemoryMap;
363 for (i=0; i<mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
364 if (mptr->Type != kEfiLoaderCode &&
365 mptr->Type != kEfiLoaderData &&
366 mptr->Type != kEfiBootServicesCode &&
367 mptr->Type != kEfiBootServicesData &&
368 mptr->Type != kEfiConventionalMemory) {
369 efi_start = (vm_offset_t)mptr->PhysicalStart;
370 efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
371 if ((efi_start >= region_start && efi_start <= region_end) ||
372 (efi_end >= region_start && efi_end <= region_end)) {
373 kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
374 }
375 }
376
377 }
378 }
379 }
380 #endif
381
382 avail_start = first_avail;
383 mem_actual = sane_size;
384
385 #define MEG (1024*1024)
386
387 /*
388 * For user visible memory size, round up to 128 Mb - accounting for the various stolen memory
389 * not reported by EFI.
390 */
391
392 sane_size = (sane_size + 128 * MEG - 1) & ~((uint64_t)(128 * MEG - 1));
393
394 /*
395 * if user set maxmem, reduce memory sizes
396 */
397 if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
398 ppnum_t discarded_pages = (sane_size - maxmem) >> I386_PGSHIFT;
399 ppnum_t highest_pn = 0;
400 ppnum_t cur_alloc = 0;
401 uint64_t pages_to_use;
402 unsigned cur_region = 0;
403
404 sane_size = maxmem;
405
406 if (avail_remaining > discarded_pages)
407 avail_remaining -= discarded_pages;
408 else
409 avail_remaining = 0;
410
411 pages_to_use = avail_remaining;
412
413 while (cur_region < pmap_memory_region_count && pages_to_use) {
414 for (cur_alloc = pmap_memory_regions[cur_region].alloc;
415 cur_alloc < pmap_memory_regions[cur_region].end && pages_to_use;
416 cur_alloc++) {
417 if (cur_alloc > highest_pn)
418 highest_pn = cur_alloc;
419 pages_to_use--;
420 }
421 if (pages_to_use == 0)
422 pmap_memory_regions[cur_region].end = cur_alloc;
423
424 cur_region++;
425 }
426 pmap_memory_region_count = cur_region;
427
428 avail_end = i386_ptob(highest_pn + 1);
429 }
430
431 /*
432 * mem_size is only a 32 bit container... follow the PPC route
433 * and pin it to a 2 Gbyte maximum
434 */
435 if (sane_size > (FOURGIG >> 1))
436 mem_size = (vm_size_t)(FOURGIG >> 1);
437 else
438 mem_size = (vm_size_t)sane_size;
439 max_mem = sane_size;
440
441 kprintf("Physical memory %llu MB\n", sane_size/MEG);
442
443 if (!PE_parse_boot_arg("max_valid_dma_addr", &maxdmaaddr))
444 max_valid_dma_address = 1024ULL * 1024ULL * 4096ULL;
445 else
446 max_valid_dma_address = ((uint64_t) maxdmaaddr) * 1024ULL * 1024ULL;
447
448 if (!PE_parse_boot_arg("maxbouncepool", &maxbouncepoolsize))
449 maxbouncepoolsize = MAXBOUNCEPOOL;
450 else
451 maxbouncepoolsize = maxbouncepoolsize * (1024 * 1024);
452
453 /*
454 * bsd_mbuf_cluster_reserve depends on sane_size being set
455 * in order to correctly determine the size of the mbuf pool
456 * that will be reserved
457 */
458 if (!PE_parse_boot_arg("maxloreserve", &maxloreserve))
459 maxloreserve = MAXLORESERVE + bsd_mbuf_cluster_reserve();
460 else
461 maxloreserve = maxloreserve * (1024 * 1024);
462
463
464 if (avail_end >= max_valid_dma_address) {
465 if (maxbouncepoolsize)
466 reserve_bouncepool(maxbouncepoolsize);
467
468 if (maxloreserve)
469 vm_lopage_poolsize = maxloreserve / PAGE_SIZE;
470 }
471
472 /*
473 * Initialize kernel physical map.
474 * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
475 */
476 pmap_bootstrap(0, IA32e);
477 }
478
479
480 unsigned int
481 pmap_free_pages(void)
482 {
483 return avail_remaining;
484 }
485
486
487 boolean_t
488 pmap_next_page(
489 ppnum_t *pn)
490 {
491
492 if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
493 if (pmap_memory_regions[pmap_memory_region_current].alloc ==
494 pmap_memory_regions[pmap_memory_region_current].end) {
495 pmap_memory_region_current++;
496 continue;
497 }
498 *pn = pmap_memory_regions[pmap_memory_region_current].alloc++;
499 avail_remaining--;
500
501 return TRUE;
502 }
503 return FALSE;
504 }
505
506
507 boolean_t
508 pmap_valid_page(
509 ppnum_t pn)
510 {
511 unsigned int i;
512 pmap_memory_region_t *pmptr = pmap_memory_regions;
513
514 assert(pn);
515 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
516 if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
517 return TRUE;
518 }
519 return FALSE;
520 }
521
522
523 static void
524 reserve_bouncepool(uint32_t bounce_pool_wanted)
525 {
526 pmap_memory_region_t *pmptr = pmap_memory_regions;
527 pmap_memory_region_t *lowest = NULL;
528 unsigned int i;
529 unsigned int pages_needed;
530
531 pages_needed = bounce_pool_wanted / PAGE_SIZE;
532
533 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
534 if ( (pmptr->end - pmptr->alloc) >= pages_needed ) {
535 if ( (lowest == NULL) || (pmptr->alloc < lowest->alloc) )
536 lowest = pmptr;
537 }
538 }
539 if ( (lowest != NULL) ) {
540 bounce_pool_base = lowest->alloc * PAGE_SIZE;
541 bounce_pool_size = bounce_pool_wanted;
542
543 lowest->alloc += pages_needed;
544 avail_remaining -= pages_needed;
545 }
546 }